

PYTHON

FOR

DATA ANALYSIS

 Globaltech NTC

PYTHON

FOR DATA ANALYSIS

Master the Basics of Data Analysis in Python Using Numpy, Pandas, and IPython

Step-by-Step Tutorial for Beginners

Samuel Burns

Edited and Published by

Globaltech NTC and Amazon Kindle Publishing

 Copyright 2019 by Samuel Burns.

All rights reserved.

The contents of this book may not be reproduced, duplicated or transmitted without the direct written permission of the author.

Under no circumstances will any legal responsibility or blame be held against the publisher for any reparation, damages, or monetary loss due to the information herein, either directly or indirectly.

You cannot amend, distribute, sell, use, quote or paraphrase any part or the content within this book without the consent of the author.

Please note the information contained within this document is for educational and entertainment purposes only. No warranties of any kind are expressed or implied. Readers acknowledge that the author is not engaging in the rendering of legal, financial, medical or professional advice. Please consult a licensed professional before attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, which are incurred as a result of the use of information contained within this document, including, but not limited to, errors, omissions, or inaccuracies.

Thank you for buying this book! It is intended to help you understanding Data Analysis in Python Using Numpy, Pandas, and IPython
 .

Book Objectives

The Aims and Objectives of the Book:

	
To help you understand why you should choose Python for data analysis tasks.

	
To help you know the various data analysis libraries supported by Python and how to use them.

	
To help you know how to analyze your business data and draw meaningful insights for effective decision making.

	
To equip you with data analysis skills using Python programming language.

	
To help you know where data analysis is applied today and how to use it in your everyday life.

Who is this Book is for?

Here are the target readers for this book:

	
Anybody who is a complete beginner to data analysis with Python or data analysis in general.

	
Anybody who wants to advance their data analysis skills with Python programming language.

	
Anybody who wants to know how to use data analysis for the benefit of their business or brand.

	
Professionals in data science.

	
Professors, lecturers or tutors who are looking to find better ways to explain python for data analysis to their students in the simplest and easiest way.

	
Students and academicians, especially those focusing on python programming, neural networks, machine learning, and deep learning.

What do you need for this Book?

You are required to have installed the following on your computer:

	
Python 3.X

	
Numpy

	
Pandas

	
Matplotlib

The Author guides you on how to install the rest of the Python libraries that are required for machine learning and deep learning.

The author will guide you on how to install and configure the rest.

What is inside the book?

The content of this book is all about data analysis with Python programming language using NumPy, Pandas, and IPython. It has been grouped into chapters, with each chapter exploring a different aspect of data analysis. The author has provided Python codes for doing different data analysis tasks. All these codes have been tested to ensure they are working correctly. Corresponding explanations have also been provided alongside each piece of code to help the reader understand the meaning of the various lines of the code. In addition to this, screenshots showing the output that each code should return have been given. The author has used a simple language to make it easy even for beginners to understand. The author begins by exploring the basic to the complex tasks in data analysis.

About the Author:

Samuel Burns is Director of Data Science, Cloud and AI, at GlobalTech NTC Belgium. He has a Ph.D. in Machine Learning and is an Artificial Intelligence developer, researcher, and educator as well as an Open Source Software developer. He has authored many papers as well as a number of popular software packages.

From 2008 to 2016 he was Principal Computer Scientist for Data Mining with Nemesis Analytics Sweden. He has served as an Expert and Visiting Professor of the Belgium Academy of Sciences. Specialist in Data Mining and Security, Burns is an active machine learning researcher and regularly teaches courses and maintains resources for the data scientist.

Burn’s research has pioneered developments in ensemble learning, outlier detection and profile discovery. He is involved in numerous international artificial intelligence and data mining research activities and conferences
 .

“Your relevance as a data custodian is your ability to analyze and interpret it. If you can’t, your replacement is due”

Wisdom Kwashie Mensah

Introduction

Each business generates data. Data is a rich source of information. Information is a rich source of knowledge. With knowledge, you have everything it takes to grow your brand or business. Despite the fact that businesses generate data, most of them have not made meaningful use of this data. This is contributing significantly to the stagnation of their growth. Such data should be analyzed to gain meaningful insights that can help in making wise business decisions. Business should gather data about their customers and products, then analyze this data to know areas where they need to make improvements.

However, businesses generate data in huge volumes. Such data is also stored in various formats, both manually and digitally. Such data cannot be analyzed using manual mechanisms. An electronic way of doing this is needed. Python is the answer! It is a great programming language with all the tools that you need to load, analyze and draw meaningful conclusions from the data generated by your business. The good thing with Python is that you can easily learn how to use it for data analysis even if you are a complete beginner to computer programming. This can be attributed to its easy syntax. Python also has many tools that you can use to analyze your data. These tools are available for free, so you only need to download and begin to use them. This book is an excellent exploration of data analysis with Python. The author takes you through how to analyze your using Numpy, Pandas, and IPython in Python. Enjoy reading!

Table of Contents

Chapter 1- Why Python for Data Analysis?

Chapter 2- Exploring the Libraries

NumPy

Pandas

IPython

Chapter 3-
 Installation and Setup

Installing IPython

pip3 install ipython

conda install ipython

pip3 install --user ipython

Installing NumPy

pip3 install numpy

sudo apt install python3-numpy

Installing Pandas

pip3 install pandas

conda install pandas

conda install pandas=0.23.4

sudo apt-get install python-pandas

Chapter 4-
 Using IPython

ipython

Native Shell Commands

Syntax Highlighting

Proper Indentation

Tab Completion

Documentation

Pasting Code

Jupyter

conda install jupyter

Chapter 5-
 Numpy Arrays and Vectorized Computation

Creating Arrays

Ndarray Object

Loading Numpy Arrays from Text

Saving NumPy Arrays

NumPy Broadcasting

Slice, Subset and Index of Arrays

Transposing an Array

Iterating Over an Array

Manipulating Array Values

Broadcasting Iteration

Chapter 6- Pandas Library

Series

DataFrame

Panel

Importing Data

Importing CSV Data

Importing Excel Data

Importing JSON Data

Iteration

iteritems()

iterrows()

itertuples()

Data Visualization

Box Plots

Area Plot

Scatter Plot

Pie Chart

Bar plot

Histogram

Chapter 7- Data Wrangling

Sorting

Sorting by Labels

Sorting Algorithm

Missing Data

Inspecting Missing Values

Calculations

Filling/ Cleaning Missing Data

Replacing Generic or Missing Values

Joining/Merging

The “how” Argument

Concatenation

Concatenation using “append”

Time Series

GroupBy

Outliers

Reindexing

Aligning with Other Elements

Filling

Limits on Filling during Reindexing

Renaming

Sparse Data

Sparse DTypes

Chapter 8- Data Visualization

pip3 install matplotlib

Line Plot

Bar Chart

Histogram

Box and Whisker Plot

Scatter Plot

Bubble Chart

Heat Map

Area Plot

Chapter 9- Data Aggregation

Mean and Median

Mode

Variance

Standard Deviation

Skewness

Chapter 10- Working with Time Series Data

Exploring the data

Total Observations

Querying by Time

Plotting Time Series

Chapter 11- Applications of Data Analysis Today

Policing/security

Transportation

Risk and Fraud Detection

Risk Management

Delivery Logistics

Web Provision

City Planning

Healthcare

Travel

Energy Management

Internet/Web Search

Digital Advertisement

Recommender Systems

Image Recognition

Speech Recognition

Gaming

Price Comparison Websites

Airline Route Planning

Conclusion

Chapter 1- Why Python for Data Analysis?

There are different tools that can be used for data analysis. Examples of these include SAS programming, Hadoop, R programming, SQL, Python, and others. Amongst these tools, Python has a very unique feature as it is a general feature programming language whose syntax is easy to grasp.

Python has been in existence for a long time and it has been used in many industries like oil, scientific computing, gas, physics, finance, signal processing, and many others. It has been used for development of applications like YouTube and it has played a great role in powering the internal infrastructure of Google.

Python is a powerful tool for data tool for data science due to its flexibility and being open source. It is well known for its many libraries that can be used for data manipulation Examples of such libraries include Pandas, Scikit-Learn, TensorFlow, PyTorch, NumPy, Scipy, and PyBrain. Alongside these, there is the Cython library that helps in converting Python code to run in a C environment to reduce runtime, PyMySQL that helps in connecting to MySQL databases, extracting data and executing queries.

Data analysis goes hand-in-hand with data visualization. Python has made a number of improvements to overtake its competitor, R, in data visualization. We now have APIs likePlotly and libraries like Matplotlib, Pygal, ggplot, NetworkX, and others for data visualization.
 Python can also be integrated with other data visualization tools like Tableau and Qlikview using TabPy and win32com respectively.

Currently, Hadoop is the largest platform for data analysis. Python is compativle with Hadoop, which has made it a widely adopted language for data analysis. The PyDoop API provides us with access to HDFS API so as to connect our program to the HDFS installation. After that, we are able to write, read and get information on directories, files as well as global file system properties. PyDoop also provides us with the MapReduce API to help us in solving complex problems with little programming.

Chapter 2- Exploring the Libraries

Let us explore the Python libraries that we will be using in this book:

NumPy

NumPy is a general purpose package used for processing arrays. It provides us with a high-performance, multidimensional array object as well as tools that we can use to work with these arrays. It is the most popular package for scientific computing in Python. It is good for operations that are related to
 linear algebra, random number crunching and Fourier transforms. Here are some of the important features offered by the package:

	

 An N-dimensional array object

	

 Broadcasting functions

	

 Tools for integrating Fortran and C/C++ code

	

 Useful Fourier transform, linear algebra and random number capabilities

Pandas

This is a Python package for data analysis that provides us with a number of useful data structures. These data structures make it easy for us to manipulate data. The package also provides us with numerous functions that can be used for performing operations on those data structures. The common data structures provided by Pandas include the DataFrame and Series.

The DataFrame is the most popular data structure for Pandas. It stores the user data in the form of rows and columns, with rows storing observations and columns storing variables. The Pandas packages were built on NumPy.

IPython

IPython is an alternative Python interpreter. It provides us with an interactive shell for performing computations. It comes with many useful features compared to the regular Python interpreter.

To get to the Python interpreter, one types the “python” command on the terminal of their operating system. When the interpreter is loaded, one is allowed to execute their code on the interpreter terminal. However, this comes with a number of limitations. For example, this interpreter doesn’t provide us with tab completion, syntax highlighting and proper indentation etc. The IPython interpreter provides us with all these features.

Chapter 3-
 Installation and Setup

In this chapter, we will be discussing how to setup the libraries that will be required for this book.

Installing IPython

IPython can be installed using
 pip
 , a tool that comes with Python. If you have installed Python, you already have pip. For Python3 users, it is referred to as
 pip3
 . The following command can help you to install IPython:

pip3 install ipython

You can also install IPython using Anaconda. When you install Anaconda, you get the conda package, which you can use for install of Python libraries like IPython. This can be done as follows:

conda install ipython

For Linux and Mac OS X users, run the following command:

pip3 install --user ipython

Installing NumPy

Again, the installation of numpy can be done using the pip package. On Windows, just run the following command:

pip3 install numpy

For Linux users, run the following command:

sudo apt install python3-numpy

Installing Pandas

Pandas can also be installed using the pip package manager. Just run the following command:

pip3 install pandas

If you have installed Anaconda, you can use it to install Pandas. Just run the following command:

conda install pandas

If you want to install a specific version of Pandas, run the following command:

conda install pandas=0.23.4

For Linux users, run the following command to install Pandas:

sudo apt-get install python-pandas

We now have all the required libraries setup in our environment. We can now get into data analysis using these Python libraries.

Chapter 4-
 Using IPython

The use of IPython is not very much different from the use of the regular Python interpreter. To start using it, type the following command from the terminal of your operating system:

ipython

You will get some details regarding the version of IPython that you are using on your system. You will also be provided with a list of commands that you can use to get help:

[image:]

The IPython interpreter is now loaded. Let us explore some of its features:

Native Shell Commands

The IPython interpreter comes with its own built-in commands. The commands normally collide with the native shell commands. A good example is when you load the Python interpreter and then you type the
 cd
 command on the interpreter. Normally, this generates an error:

[image:]

This means that the Python interpreter does not recognize the commands that are native to your operating system. This is not the case with IPython. It is capable of supporting the native shell commands. This means that it can recognize commands such as
 cd, ls,
 and others that are native to the operating system’s shell:

[image:]

Syntax Highlighting

IPython supports syntax highlighting, which it shows by using colors to differentiate sections of code. This is demonstrated below:

a = 5

name = "Nicholas"

[image:]

When the sections are highlighted using different colors, it becomes easy for us to read the code. This is better compared to what we have with the Python interpreter.

Proper Indentation

Python is known to be very sensitive to whitespace and indentation. IPython is aware of this and it automatically indents your code when you type on the interpreter. To demonstrate this, type the following code on the Python interpreter terminal:

for num in range(5):

Now, hit the Enter or Return key. Next, type the following:

print(num)

To execute the code, just hit the enter key twice. You will see the following:

[image:]

As you can see in the code, the
 print
 statements have been indented in respect to the
 for a
 statement to appear in the way they should be. This was done automatically without our intervention.

Tab Completion

IPython provides us with the tab completion feature. The Python’s
 str
 module comes with a number of methods that we can use to operate on strings. Let us use this to demonstrate how autocompletion works in IPython:

Open the IPython interpreter terminal then type the following:

str.

Hit the Tab key and see what happens. You should get the following:

[image:]

You are provided with a number of methods that can follow. You can use the up and down arrow keys to navigate through them. You can also begin to type the name of the method that you need to use, then hit the Tab key so that it may be added The default Python interpreter does not provide us with this feature.

Documentation

With tab completion, we are able to see all the methods that are provided by a certain module. Each method comes with numerous methods, and you may wonder about what the functions do. The IPython interpreter can provide you with details about this. Consider the following example.

Type the following on the IPython’s interpreter terminal:

str.center?

Hit the enter key. You will get the following:

[image:]

The above output shows that IPython returns the documentation for the method.

Anytime that you want to get more information about a command in IPython, add the the symbol at the end of the command then hit the enter key.

Pasting Code

IPython allows you to paste large blocks of code on the terminal and the code will be indented for you.

Jupyter

IPython provides us with the Jupyter Notebook. This is a web application that helps us create documents with executable code, equations, and formulas, data visualizations etc.

If you installed your Python via Anaconda, you already have the Jupyter Notebook on your system. To launch it, just run the following command:

jupyter notebook

It will be opened in your default browser. You will also be provided with a URL that you can copy and paste into your browser of choice.

If you had installed your Python using Miniconda, first use conda to install Jupyter Notebook. Here is the command:

conda install jupyter

You can then launch it by running the following command:

jupyter notebook

Chapter 5-
 Numpy Arrays and Vectorized Computation

NumPy stands for Numerical Python. It is the core Python’s library fo9r scientific computing. It provides a multidimensional array object for high performance as well as tools that we can use to work on these arrays.

A numpy array is simply a grid of values, all belonging to the same type, and the values are indexed via a set of nonnegative integers. The total number of dimensions denotes the
 rank
 of the array. The array
 shape
 is a tuple of integers that give the array size along each dimension.

Creating Arrays

NumPy arrays can be initialized from nested Python lists, and the elements can be accessed via square brackets. First, we have to import numpy library into our workspace:

import numpy as np

The following example demonstrates how to work with numpy arrays:

import numpy as np

x = np.array([10, 20, 30]) # Create an array of rank 1

print(type(x)) # Returns the object type

print(x.shape) # Returns the size

print(x[0], x[1], x[2]) # Accessing array elements using their indexis

x[0] = 40 # Change array element at index 0

print(x) # Returns the array values

y = np.array([[10, 20, 30], [40, 50, 60]])# Create an array of rank 2

print(y.shape) # Returns "(2, 3)"

print(y[0, 0], y[0, 1], y[1, 0]) # Returns "10 20 40"

The code should return the following after execution:

[image:]

We created an array named
 x
 with 3 values. The
 type()
 method returns the class of the object, which is a numpy ndarray. The
 shape()
 method returns the number of elements in the array, which is 3. We have used array indexes to access the elements of the array. The first element is stored at index 0. This means
 x[0]
 returns the first element of the array. We have also used an index to change the value of the first element of the array.

For the case of the second array, the
 shape()
 method returned (2, 3). The reason is that we have an array of rank 2, each array having 3 elements.

NumPy provides us with several other functions that we can use to create arrays. These are demonstrated below:

import numpy as np

x = np.zeros((2,2)) # To create an array of zeros

print(x)

y = np.ones((1,2)) # To create an array of ones

print(y)

z = np.full((2,2), 7) # To create a constant array

print(z)

a = np.eye(2) # To create an identity matrix, 2x2

print(a)

b = np.random.random((2,2)) # Create an array of random values

print(b)

The code will print the following:

[image:]

Ndarray Object

The Ndarray (N-dimensiona) array is a very important object in NumPy. It is simply a collection of items that belong to the same type. To access the elements stored in the collection, we can use a zero-based index.

All elements in the ndarray are assigned an equal amount of memory. Every element in the array belongs to the data-type object (dtype). An item obtained from the ndarray through a slicing operation is represented through a Python object that belongs to one of the array scalar types.

We can create an instance of the ndarray class using a number of array creation routines. We create a basic ndarray using an array function as shown below:

numpy.array

The function creates a ndaaray from any object that exposes an array interface or from any method returning an array as shown below:

numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

Here is a description of the parameters used in the above constructor:

	
object- An object that exposes the array interface method should return an array, or a sequence (nested).

	
dtype- this is the required data type of the array. It is an optional parameter.

	
copy- The default setting is that the object will be copied. It is an optional parameter.

	
order- This can be C (for row major) or F (for column major) or A (for Any). A is the default value.

	
subok- by default, the returned array is made a base class array. If set to true, the sub-classes are passed through.

	
ndmin- for setting the minimum dimensions of the resultant array.

Here is an example:

import numpy as np

myarray = np.array([10,20,30])

print(myarray)

We have just created an array of 3 elements. The code gives the following output:

[image:]

We can also use the same mechanism to create an array with more than one dimensions. For example:

import numpy as np

myarray = np.array([[10, 20], [30, 40]])

print(myarray)

The code will return the following:

[image:]

Here is how we create an array with minimum dimensions:

import numpy as np

myarray = np.array([10, 20, 30, 40, 50], ndmin = 2)

print(myarray)

The output from the code should be as follows:

[image:]

Loading Numpy Arrays from Text

With numpy, we can create an array by loading the data from an existing sample. In fact, in data analysis, most data is loaded from text files. The loading of the data can be done using
 loadtxt()
 or
 genfromtxt()
 methods.

Let us demonstrate this using an example:

x, y = np.loadtxt('data.txt',

 skiprows=1,

 unpack=True)

In the above code, we have used the
 loadtxt()
 method to load the dataset into the environment. The function takes the name of the file with the data as the argument. We also have other arguments, with the first one skipping the first row in the file since it is the header marking the columns. The
 unpack = True
 argument returns the columns as separate arrays. What this means is that the values in the first column will be returned to
 x
 while the second column will be returned to
 y
 .

You may have data that is separated by commas. You can still use the
 loadtxt()
 method to load such data but add arguments like
 delimiter
 and
 dtype
 to the method. Here is another example demonstrating how to load data:

array2 = np.genfromtxt('myfile.txt',

 skip_header=1,

 filling_values=-999)

In the above example, we have used the
 genfromtxt()
 method to load the data. However, we have provided a way of dealing with missing values. This has been done using the
 filling_values
 argument. We have specified that all values marked as MISISNG will be replaced with -999, which will become their value.

Saving NumPy Arrays

After working with your arrays, it is possible for you to save them in a file. To save an array into a text file, you should use the
 savetxt()
 function. This is demonstrated below:

import numpy as np

array1 = np.arange(0.1, 5.2, 7.4)

np.savetxt('dat.out', array1, delimiter=',')

The
 np.arange()
 function used above will create an array with evenly spaced values.

NumPy Broadcasting

With broadcasting, NumPy can work with arrays of different shapes to perform arithmetic operations. A good example is when you have a relatively smaller and another relatively larger array. Your aim is to use the smaller array to perform operations on the larger array. Examples of such operations include multiplication, sum etc. This can be accomplished by use of the broadcasting mechanism.

However, a number of rules apply to the use of broadcasting. The good thing with this is that these rules are simple.

First, for you to be able to do broadcasting, the dimensions of the arrays must be compatible. For the dimensions to be compatible, they must be equal. Here is an example:

import numpy as np

Initialize `a`

a = np.ones((2,3))

Check the shape of `a`

print(a.shape)

Initialize `b`

b = np.random.random((2,3))

Check the shape of `b`

print(b.shape)

Add `a` and `b`

print(a + b)

The code should return something close to the following:

[image:]

Two dimensions can also be compatible if one of them is 1. Here is an example:

Import `numpy`

import numpy as np

Initialize `a`

a = np.ones((3, 4))

Check the shape of `a`

print(a.shape)

Initialize `b`

b = np.arange(4)

Check the shape of `b`

print(b.shape)

Subtract `a` and `b`

print(a - b)

The code returns something close to this:

[image:]

In case the dimensions are found not compatible, you will get a
 ValueError
 .

You can only broadcast arrays together when they are compatible in all dimensions. Here is an example:

Import `numpy`

import numpy as np

Initialize `a` and `b`

a = np.ones((3, 4))

b = np.random.random((5, 1, 4))

Add `a` and `b`

print (a + b)

The code prints the following:

[image:]

The
 a
 and
 b
 seem to be different in terms of dimensions, but it was possible for us to add them together. The reason is that the two are compatible in all dimensions. This makes the two arrays good for broadcasting. In short, if you need to do broadcasting, you have to pay attention to both the shape and dimensions of your arrays.

Slice, Subset, and Index of Arrays

In some cases, you may only need to work with only a section of the array or only a number of the array elements. This is a good example when you may need to slice, index or subset your array. The following are important for you to note:

	
Square brackets [] are used as the index operator.

	
Integers should be passed to the square brackets. You can add a colon or combine both the integer and the colon to mark the elements that you need to choose.

Let us demonstrate how sub-setting can be done:

Select the element at index 1 of the array

print(array[1])

Select the element at row 2, column 1 of the array

print(a2darray[2][1])

Select the element at row 2 column 1

print(a2darray[2, 1])

Select the element at column 1, row 2 and

print(a3darray[1,1,2])

We have another feature, more advanced compared to subsetting, which is
 slicing
 . Other than considering specific array values, you go ahead to consider both the rows and the columns. You work with data regions rather than simply locations. The following examples demonstrate this:

Select elements at index 0 and 1

print(myarray[0:2])

Select elements at row 0 and 1, column 1

print(a2darray[0:2,1])

Select elements at row 1

which is similar to saying `a3darray[1,:,:]

print(a3darray[1,...])

We also have indexing. In NumPy, we have both Boolean indexing and advanced/fancy indexing.

With Boolean indexing, instead of selecting the elements, columns or rows using index numbers, you only select values from the array that meet a certain condition. Let us demonstrate this using an example:

Test an easy example

print(myarray[myarray < 2])

Create the condition

greater_than_2 = (a3darray >= 2)

Use the above condition to index the array

print(a3darray[greater_than_2])

In the above example, we have created a condition that checks for the values that are greater than 2. This condition has then been passed to the array. Note that when specifying the condition, you can use logical operators like AND (&) and OR (||). This means that we could have specified the condition as follows:

greater_than_2 = (a3darray > 2) | (a3darray == 2)

With the arrays that we have discussed so far, we don’t have many possibilities. However, with arrays that have capitals or names, we can have endless possibilities.

This is what happens with fancy indexing: you pass an array or a list of integers to set the order of the subset of rows that you need to select from the original array. This may sound abstract, but the following example will make it easy to understand:

Select items at (1,0), (0,1), (1,2) and (0,0)

print(a2darray[[1, 0, 1, 0],[0, 1, 2, 0]])

Select subset of rows and columns

print(a2darray[[1, 0, 1, 0]][:,[0,1,2,0]])

Transposing an Array

A transpose of an array permutes its dimensions, which means that you switch around the array shape. If possible, it returns a view. Consider the following example:

import numpy as np

myarray = np.arange(10).reshape(5,2)

print('The initial array is:')

print(myarray)

print('\n')

print('After the transpose we have:')

print(np.transpose(myarray))

The output from the array is as follows:

[image:]

The transpose was performed by calling the
 transpose()
 method and passing the name of the array to the method.

Iterating Over an Array

The NumPy package comes with an iterator object called
 numpy.nditer.
 It is a multidimensional iterator object that we can use to iterate through array items. The standard iterator interface for Python is used to visit each element of the array. Consider the following example:

import numpy as np

myarray = np.arange(0,60,5)

myarray = myarray.reshape(3,4)

print('Initial array is:')

print(myarray)

print('\n')

print('After modification:')

for i in np.nditer(myarray):

 print(i)

The code prints the following:

[image:]

We have used the
 nditer
 object to iterate through the elements of the array.

The iteration order is chosen to match how the array has been laid out in the memory and no specific ordering is considered. To see this, let us iterate over the transpose of our above array:

import numpy as np

myarray = np.arange(0,60,5)

myarray = myarray.reshape(3,4)

print('Initial array is:')

print(myarray)

print('\n')

print('Transpose of our initial array:')

myarray2 = myarray.T

print(myarray2)

print('\n')

print('After modification:')

for i in np.nditer(myarray2):

 print(i)

The code returns the following:

[image:]

If the elements are stored in an F-style order, the iterator will select an efficient way of iterating over the array. Here is an example:

import numpy as np

myarray = np.arange(0,60,5)

myarray = myarray.reshape(3,4)

print('Initial array is:')

print(myarray)

print('\n')

print('The transpose of the array is:')

tarray = myarray.T

print(tarray)

print('\n')

print('Elements sorted using C-style order:')

c = tarray.copy(order = 'C')

print(c)

for i in np.nditer(c):

 print(i)

print('\n')

print('Elements sorted using F-style order:')

c = tarray.copy(order = 'F')

print(c)

for i in np.nditer(c):

 print(i)

Here is a section of the output from the code:

[image:]

If we need the
 nditer
 object to use a specific style, we can force it by explicitly mentioning the style. Here is an example:

import numpy as np

myarray = np.arange(0,60,5)

myarray = myarray.reshape(3,4)

print('The initial array is:')

print(myarray)

print('\n')

print('Elememnts sorted using C-style order:')

for i in np.nditer(myarray, order = 'C'):

 print(i)

print('\n')

print('Array sorted using F-style order:')

for i in np.nditer(myarray, order = 'F'):

 print(i)

The code returns the following output:

[image:]

Manipulating Array Values

The
 nditer
 object provides us with an optional parameter named
 op_flags
 . By default, this parameter has a read-only value, but we can set it to write-only or read-write mode. This way, we can use an iterator to modify the elements of the array. Consider the example given below:

import numpy as np

myarray = np.arange(0,60,5)

myarray = myarray.reshape(3,4)

print('The initial array:')

print(myarray)

print('\n')

for i in np.nditer(myarray, op_flags = ['readwrite']):

 i[...] = 3*i

print('Array after modification:')

print(myarray)

The code will return the following:

[image:]

We have used the parameter to multiply all the array values by 3.

Broadcasting Iteration

If we have two broadcastable arrays, we can use a combined nditer object to iterate through the elements of the two arrays concurrently. We will create two arrays, one with a dimension of 3 x 4 (array x) and another one with a dimension of 1 x 4 (array y). Array y will be broadcast to the size of array x:

import numpy as np

x = np.arange(0,60,5)

x = x.reshape(3,4)

print('Array x:')

print(x)

print('\n')

print('Array y:')

y = np.array([1, 2, 3, 4], dtype = int)

print(y)

print('\n')

print('Modified array:')

for p,q in np.nditer([x,y]):

 print("%d:%d" % (p,q))

The code prints the following:

[image:]

Chapter 6- Pandas Library

Pandas is a Python package that comes with a number of data analysis tools. Its data structures can be used for the various data manipulation tasks. Its Series and DataFrame data structures provide us with a suitable way of representing data for data analysis. With Pandas, we can get stored in various formats including CSV (Comma Separated Values), Ms Excel, Text files etc.

Let us discuss the data structures offered by Pandas:

Series

A series is simply a one-dimensional array. It is possible for you to change the values contained in a Pandas series. However, you are not allowed to alter the size of the series. The elements in a Pandas series are assigned indexes. The first element is assigned an index of 0 while the last element is assigned an index o N-1, with N denoting the total number of elements in the series.

For us to be able to create a Series, we should first import the Pandas library into the environment via the Python’s “import” statement. This is done as follows:

import pandas as pd

The Series data structure is then created by invoking the “Series()” method and passing an array inside it. The array should have the elements that we need to store in the series. This is demonstrated below:

series1 = pd.Series([10, 20, 30, 40])

We can then run the
 print
 statement to display the contents of the series:

print(series1)

In some cases, one gets an error when they attempt to display the series. The reason is that Pandas is looking for the amount of information that it should display. This means that you have to provide sys output information. You can something to the code so that you get the following:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

series1 = pd.Series([10, 20, 30, 40])

print(series1)

The output should be as follows:

[image:]

The output is displayed in two columns. The first column denotes the indexes of the elements, and as we stated earlier, the indexes begin at 0. The second column shows the elements that we added to the series.

Python allows us to create a series data structure from numpy array. This means that we should first create a numpy array then we convert it into a Pandas series. The following example demonstrates how to do this:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

names = np.array(['Michelle','Nicholas','Joyce','David'])

s2 = pd.Series(names)

print(s2)

The code returns the following output:

[image:]

We imported both the numpy, sys and pandas libraries. We hae created a numpy array named “names” and it has a total of 4 names. We have then invoked the pandas “Series()” method and passed the name of the array to it as the argument. This transforms the array into a series.

DataFrame

The Pandas DataFrame closely resembles a table. Its data is organized into rows and columns. This means that the DataFrame is a two-dimensional data structure. In most cases, the columns hold data belonging to different types. The size of the DataFrame is mutable, meaning that we can change it.

You can create your DataFrame from scratch or convert already existing data structures in a DataFrame. A numpy array is an example of such a data structure. The following example demonstrates how you can create a DataFrame from scratch:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame({

 "Name": ['Michele', 'Nicholas', 'Joyce', 'David', 'John'],

 "Age": [25, 26, 32, 36, 24],

 "Salary": [850, 1200, 920, 730, 680],

 "Dept": ['Customer Care', 'Agent', 'Accounting', 'Engineering', 'HR']

})

print(df)

The code should print the following:

[image:]

We simply created a dataframe named
 df
 . The dataframe has 4 columns. As you can see, the columns hold data that belongs to different types. For string columns, we have to enclose each value within quotes. The
 print
 statement at the end helps us to display the contents of the dataframe. You have also noticed that there is an additional column at the start of the above output. The column denotes the indexes of the column rows. The first row is at index 0. The dataframe was created by invoking the
 DataFrame()
 method provided by the Pandas library.

Other than creating a dataframe from scratch, we can choose to create a list and convert it into a dataframe. We only have to call the DataFrame() method and pass the name of the list to it as the argument. The following example demonstrates this:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

numList = [0, 10, 20, 30, 40]

df = pd.DataFrame(numList)

print(df)

The code should return the following:

[image:]

We began by creating a list of numbers and gave it the name
 numList
 . We then called the DataFrame() method and passed to it the name of the list as the argument. This converts the list into a DataFrame.

Another example has been given below:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

names = [['Michelle', 850], ['Nicholas', 1200], ['David', 850]]

df = pd.DataFrame(names, columns=['Name', 'Salary'], dtype=float)

print(df)

The code returns the following:

[image:]

The list named
 names
 has a total of 3 elements. Each element is characterized by a name and a corresponding salary. We have then converted the list into a dataframe. Note that we set the dtype to
 float
 , hence the values of the Salary column have been converted into a float.

To get the summary statistics of the data contained in the dataframe, just call the
 describe()
 function. This is demonstrated blow:

df.describe()

[image:]

The above output shows that the method gives us some summary statistics about our data. Examples of these include the count, the mean, the standard deviation, maximum and minimum values as well as the percentiles.

Panel

A panel is simply a 3D container for data. Pandas allow us to create a panel using the following constructor:

pandas.Panel(data, items, major_axis, minor_axis, dtype, copy)

Let us demonstrate how a panel can be created with Pandas:

import pandas as pd

import numpy as np

data = {'df1' : pd.DataFrame(np.random.randn(4, 3)),

 'df2' : pd.DataFrame(np.random.randn(4, 2))}

panel = pd.Panel(data)

print(panel)

First, we created a dictionary with two data frames. Each data frame holds a set of random numbers. We have then called the
 Panel()
 function and passed to it the name of the dictionary as the argument. It is expected to create a panel from this. The code gives the following result after execution:

[image:]

Importing Data

Data analysis is all about analyzing data. This data is normally stored in various formats. We need to load the data from such storages into our Python environment. Pandas provides us with a number of methods that we can use for loading of such data. Let us discuss how we can do this:

Importing CSV Data

A CSV (comma separated values) file is a file with values separated by commas. Pandas allow us to read such files into the working environment. Suppose we file named
 workers.csv
 with the following data:

[image:]

Pandas comes with the
 read_csv
 method that helps us read csv values into a DataFrame. The method expects us to pass the path to file to it as the argument. Here is the data for doing this:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

data = pd.read_csv('workers.csv')

print(data)

The code should print the csv data on the Python terminal as shown below:

[image:]

As shown in the above output, Pandas has formatted the data and grouped it into columns and rows. It has also successfully identified the header for the data. The reason is that the
 read_csv
 method is able to identify how columns have been separate using commas. Note that I had saved the csv file and the python file in the same directory, hence I simply passed in the name of the csv file. If you have saved them at different directories, ensure that you pass in the correct path to the csv file.

In other cases, you may have huge data, probably in thousands of rows. In such a case, it is prudent for you to view only the first few rows of the data. This can be done by calling the
 head()
 method on your dataframe. This is demonstrated below:

data.head()

The method will only give you the first 5 rows of the dataset. To read the last few lines of the data, use the
 tail()
 method as shown below:

data.tail()

If you need to specify the number of lines that you need to pass, use the
 sample()
 method then pass in the number of lines that you need to read. If you need to read 5 lines from the file, for example, run the following command:

data.sample(5)

Note that the lines will be picked randomly from the file.

It is also possible for us to search for a certain value from the file. However, you must know the column to which the value belongs. Suppose we need to search the details of the worker named Nicholas. This is in the Names columns. We can search for this using the following statement:

data[data.Name == 'Nicholas']

This will print the details of this worker as shown below:

[image:]

We also have the
 loc()
 method that allows us to read only certain rows of a particular column. It can be used as demonstrated below:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

data = pd.read_csv('workers.csv')

print (data.loc[[0, 2, 3], ['Salary']])

Here is the output from the above code:

[image:]

We have to use the
 loc()
 method to read the Salary column of the rows located at index 0, 2 and 3. We may also be in need of reading only certain columns and leave the rest. This can be still be done using the
 loc()
 method as shown below:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

data = pd.read_csv('workers.csv')

print (data.loc[:, ['Name', 'Dept']])

The output should be as follows:

[image:]

We have used the
 loc()
 method to select values of only select columns.

We can use the
 read_csv
 function of the pandas library to read certain columns and a range of rows. This is achieved via the
 .loc()
 method, which is a multi-axes indexing method. Consider the example given below:

import pandas as pd

data = pd.read_csv('workers.csv')

Using the multi-axes indexing method

print (data.loc[1:3,['Name', 'Age']])

In the above code, we are selecting the
 Name
 and
 Age
 column for the rows in the range of index 1 to 3. Once the code is executed, it prints the following result:

[image:]

Importing Excel Data

The Pandas library provides us with the
 read_excel
 method that helps us to read our MS Excel data into a Pandas dataframe. To demonstrate how to use this method, let us use a file named
 workers.xlxs.
 The data is organized as shown below:

[image:]

The following code can help us to read the Excel data into a Pandas dataframe:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

data = pd.read_excel('workers.xlsx')

print(data)

The code prints the following:

[image:]

We called the
 read_excel()
 method and passed the name of the file to it as the argument. The
 print()
 function has then helped us in displaying the contents read from the file.

Just as the
 read_csv()
 method, the
 read_excel()
 method can be combined with the
 loc()
 method when we need to read certain rows and columns in the file. The following example demonstrates how to do this:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

data = pd.read_excel('workers.xlsx')

print (data.loc[[0,3,6],['Name','Retire']])

The code prints the following result:

[image:]

We have used the
 loc()
 method to read the rows located at indexes 0, 3 and 6, but only on the Name and Retire columns.

MS Excel allows us to organize our data in the form of sheets but in only one file. The following code can help you to read data from two sheets of one Excel file named
 workers.xlxs
 :

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

with pd.ExcelFile('workers.xlsx') as dat:

 a = pd.read_excel(dat, 'Sheet1')

 b = pd.read_excel(dat, 'Sheet2')

print("Sheet 1:")

print(a)

print("")

print("Sheet 2:")

print(b)

The code will read and display the data from both sheets. We have just combined the
 read_excel()
 function with
 ExcelFile
 wrapper class. When calling the wrapper class, we have created a variable named
 dat
 via the
 with
 the keyword. This has been used for opening the file temporarily.

We have then created the variables
 a
 and
 b
 to represent the contents read from sheet1 and sheet2 respectively. The
 print()
 function has then been used to display the contents read from the two sheets.

Importing JSON Data

JSON stands for JavaScript object notation and it stores data as text and in a human-readable format. Pandas has the
 read_json
 function that can be used for reading JSON data. A JSON file should be saved with a .json extension in the file name.

Let us begin by creating a JSON file. Copy the following code into notepad then save it with the name
 employees.json
 .

{

 "ID":["1","2","3","4","5","6","7","8"],

 "Name":["Tom","John","Naviya","Milly", "Gerald", "Alex", "Alice","James"]

 "Salary":["453.3","613.2","511","627","642.25","477","772.8","712.5"],

 "StartDate":["1/1/2013","9/23/2012","11/15/2012","5/11/2016","3/27/2011","5/21/2013",

 "7/30/2013","6/17/2014"],

 "Dept":["IT","Operations","IT","HR","Finance","IT","Operations","Finance"]

}

The
 read_json
 function provided by JSON helps us read JSON into a data frame. The following code demonstrates how to do this:

import pandas as pd

data = pd.read_json('employees.json')

print(data)

We can also use the
 read_json
 method of Pandas to read only certain rows and columns from our JSON file. The multi-axes indexing method
 .loc()
 is used for locating the rows and columns that we specify. Let us demonstrate how this can be done:

import pandas as pd

data = pd.read_json('employees.json')

Use multi-axes indexing method

print(data.loc[[1,3,5],['salary','name']])

Iteration

When iterating over Pandas objects, the basic behavior is determined by the type in question. When dealing with a Series, it is seen as array-like and the values are produced through a basic iteration. For the case of a DataFrame, the iteration follows a dict-like iteration behavior. In this case, we iterate over the object’s keys.

When we iterate over a DataFrame, we get the column names. The following example demonstrates this:

import pandas as pd

import numpy as np

X=10

df = pd.DataFrame({

 'X': pd.date_range(start='2016-01-01',periods=X,freq='D'),

 'a': np.linspace(0,stop=X-1,num=X),

 'b': np.random.rand(X),

 'Y': np.random.choice(['Low','Medium','High'],X).tolist(),

 'Z': np.random.normal(1000, 100, size=(X)).tolist()

 })

for i in df:

 print(i)

The code will return the following result:

[image:]

The following are the functions that can help us to iterate through the rows of the dataframe:

	

 iteritems()– for iterating over (key,value) pairs.

	

 iterrows()– for iterating over rows as (index,series) pairs.

	

 itertuples()– for iterating over rows as namedtuples.

Let us discuss these methods one by one:

iteritems()

This method helps us to iterate over every method as a key, value pair with a label as the key and a column value as the Series object. This is demonstrated below:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(4,3),columns=['A','B','C'])

for key,value in df.iteritems():

 print(key, value)

The code will print the following output:

[image:]

You can clearly see that every column has been iterated separately as a key-value pair in the Series.

iterrows()

This method returns the iterator generating every index value together with a series storing data in every row. The following example clearly demonstrates this:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(4,3),columns = ['A','B','C'])

for row_index,row in df.iterrows():

 print(row_index,row)

The code should print the following:

[image:]

Note that the
 iterrows()
 method iterates over the rows, hence no data type is preserved across the rows. The 0, 1, 2 and 3 denote the row indices while the A, B, and C denote the column indices.

itertuples()

This method returns an iterator generating a named tuple for every row contained in a DataFrame. The tuple’s first element should be the index value corresponding to the row while the row values form the remaining values. An example of this is given below:

import numpy as np

import pandas as pd

df = pd.DataFrame(np.random.randn(4,3),columns = ['A','B','C'])

for x in df.itertuples():

 print(x)

The code will return the following result:

[image:]

Note that there is no need for you to modify any object during iteration. The purpose of iteration is reading and the iterator is expected to return a copy of the original object, that is, a view, meaning that any changes won’t reflect in the original object. The following example demonstrates this:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(4,3),columns = ['A','B','C'])

for index, row in df.iterrows():

 row['a'] = 10

print(df)

The code will return the following result:

[image:]

As you can see, there are no changes that were implemented.

Data Visualization

Pandas is a great tool for data visualization. When data is visualized, it becomes easy for one to understand or extract trends and patterns from the data. We can create various types of plots using the Pandas library. Let us discuss these:

Box Plots

To create a box plot with pandas, we call the
 Series.box.plot(
)
 an
 d
 DataFrame.boxplot() or DataFrame.box.plot() methods to show how the values are distributed within every column. Consider the following example:

import pandas as pd

import numpy as np

from matplotlib import pyplot

df = pd.DataFrame(np.random.rand(10, 5), columns=['V', 'W', 'X', 'Y', 'Z'])

df.plot.box()

pyplot.show()

The above code helps us draw a box plot of 10 observations for 5 trials for a uniform random variable. The code generates the following boxplot:

[image:]

Area Plot

To create an area plot, we need to call either
 Series.plot.area(
)
 o
 r

DataFrame.plot.area(
)
 methods. This is demonstrated below:

import pandas as pd

import numpy as np

from matplotlib import pyplot

a = pd.DataFrame(np.random.rand(15, 4), columns=['v', 'w', 'x', 'y'])

a.plot.area()

pyplot.show()

The generated area plot will be as shown below:

[image:]

Scatter Plot

To create a scatterplot, we call the
 DataFrame.plot.scatter(
)
 method. Here is an example:

import pandas as pd

import numpy as np

from matplotlib import pyplot

df = pd.DataFrame(np.random.rand(30, 5), columns=['v', 'w', 'x', 'y', 'z'])

df.plot.scatter(x='v', y='w')

pyplot.show()

The code generates the plot given below:

[image:]

On the y-axis we have w while on the x-axis we have v. The data points are shown in the way they are distributed on the plot.

Pie Chart

A pie chart is a good way of showing the value contributed by a certain variable by the total contributed by all variables. It provides us with a way of comparing the values of different variables in a dataset. Consider the following example:

import pandas as pd

import numpy as np

from matplotlib import pyplot

p = pd.DataFrame(3 * np.random.rand(4), index=['w', 'x', 'y', 'z'], columns=[''])

p.plot.pie(subplots=True)

pyplot.show()

The code will generate the following pie chart when executed:

[image:]

From the above pie chart, it is clear that z has the highest contribution, followed by w. The contributions made by x and y to the dataset are almost equal.

Bar plot

A bar plot can also help you see the variable with the greatest contribution in a dataset. The individual contribution of each variable is plotted in terms of a bar and the size of the bar corresponds to the individual contribution of the variable. The following code demonstrates how to plot a bar graph with pandas:

import pandas as pd

import numpy as np

from matplotlib import pyplot

p = pd.DataFrame(3 * np.random.rand(4), index=['w', 'x', 'y', 'z'])

p.plot.bar()

pyplot.show()

The code will generate the following bar chart once executed:

[image:]

The bar plot shows z has the largest contribution, followed by w, x and lastly y. This means y has the smallest contribution.

If you need to have bars that run horizontally, use the
 barh(stacked=True)
 method. This is shown in the following code:

import pandas as pd

import numpy as np

from matplotlib import pyplot

p = pd.DataFrame(3 * np.random.rand(4), index=['w', 'x', 'y', 'z'])

p.plot.barh(stacked=True)

pyplot.show()

Histogram

A histogram is also a good tool for data visualization. In pandas, a histogram can be plotted by calling the
 plot.hist()
 method. The following code demonstrates how to plot a histogram in pandas:

import pandas as pd

import numpy as np

from matplotlib import pyplot

p = pd.DataFrame({'x':np.random.randn(500)+1,'y':np.random.randn(500),'z':

np.random.randn(500) - 1}, columns=['x', 'y', 'z'])

p.plot.hist(bins=20)

pyplot.show()

The code will generate the following histogram:

[image:]

Chapter 7- Data Wrangling

Currently, a lot of data is being generated on a daily basis. Due to this huge amount of data from many different sources, it has become much important for these huge amounts of data to be organized for analysis.

When data is in its raw format, it may not be much useful to the data scientists. This means that a number of actions must be undertaken to transform this data into a meaningful or useful format. Let us discuss the various data wrangling methods in Python:

Sorting

Pandas provides us with two ways of sorting our data. These include the following:

	
By Actual Value

	
By label

Consider the example given below:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

unsorted_df=pd.DataFrame(np.random.randn(10,2),index=[2, 4, 8, 2, 10, 5, 4, 8, 2, 6],columns=['B','A'])

print(unsorted_df)

The code will print the following result:

[image:]

In the above example, we have a dataframe named
 unsorted_df
 , with the labels and the values unsorted. We need to demonstrate how one can sort out these.

Sorting by Labels

This can be done using the
 sort_index()
 method. We pass the axis arguments and the sorting order to sort our dataframe. The default setting is that the sorting will be done based on the row labels and in ascending order. Let us demonstrate this using the above unsorted dataframe:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

unsorted_df=pd.DataFrame(np.random.randn(10,2),index=[2, 4, 8, 2, 10, 5, 4, 8, 2, 6],columns=['B','A'])

sorted_df=unsorted_df.sort_index()

print(sorted_df)

The code returns the following dataframe:

[image:]

We can pass a Boolean value to the ascending parameter for the purpose of controlling the order of sorting. This is demonstrated in the following example:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

unsorted_df=pd.DataFrame(np.random.randn(10,2),index=[2, 4, 8, 2, 10, 5, 4, 8, 2, 6],columns=['B','A'])

sorted_df = unsorted_df.sort_index(ascending=False)

print(sorted_df)

The value of the
 ascending
 parameter has been set to a
 False
 . The code prints the following:

[image:]

You now know how to sort the rows. It is still possible for us to sort out the columns. This calls for us to pass an axis argument with a value of either 0 or 1. The default setting is that axis=0 sorts by row. The following example will help you understand this better:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

unsorted_df=pd.DataFrame(np.random.randn(10,2),index=[2, 4, 8, 2, 10, 5, 4, 8, 2, 6],columns=['B','A'])

sorted_df=unsorted_df.sort_index(axis=1)

print(sorted_df)

The value of the
 axis
 parameter has been set to 1, hence sorting will be done by column. The code returns the following result:

[image:]

We can sort a dataframe by value. This can be done by use of the
 sort_values()
 method. This method takes the
 by a
 parameter whose value is the name of the column whose values are to be used for sorting purposes. This is demonstrated in the following example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

unsorted_df = pd.DataFrame({'A':[3, 4, 2, 1],'B':[1, 5, 2, 7]})

sorted_df = unsorted_df.sort_values(by='A')

print(sorted_df)

We are sorting the DataFrame based on the values of column A. The code prints the following result:

[image:]

The values of column A have been sorted while the values of column B have been aligned in respect to the values of A. That is why the values of column B look unsorted.

We can pass a list of column names to the
 by
 argument. This is demonstrated in the following example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

unsorted_df = pd.DataFrame({'A':[3, 4, 2, 1],'B':[1, 5, 2, 7]})

sorted_df = unsorted_df.sort_values(by=['A', 'B'])

print(sorted_df)

We have passed in the two column names as the parameters to the function. The code returns the following:

[image:]

Sorting Algorithm

The
 sort_values()
 method comes with a number of sorting algorithms that we can choose. Examples of such algorithms include heapsort, mergesort, and quicksort. Out of all these, mergesort is known as the only stable algorithm. The algorithm is specified by using the
 kind
 parameter. Here is an example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

unsorted_df = pd.DataFrame({'A':[3, 4, 2, 1],'B':[1, 5, 2, 7]})

sorted_df = unsorted_df.sort_values(by='A' ,kind='mergesort')

print(sorted_df)

We have used the
 kind
 parameter to set the sorting algorithm to
 mergesort
 . The code returns the following:

[image:]

Missing Data

Data obtained from the real world always has some missing values. Data mining and machine learning models trained using data with missing values usually give inaccurate or unreliable results. This means that in data analysis, we must consider the process of handling missing values for the purpose of enhancing the accuracy of the results.

Suppose you are conducting an online survey about a certain product. In some cases, people will not share information about themselves. People will give you their experience, but not the period of time they have been using the product. Others will also opt not to share their contact information. This means that in most cases involving real life problems, we will always some missing values.

Pandas provides us with a way of handling missing values like NA and NAN. Here is an example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=[1, 2, 3])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)

The code prints the following result:

[image:]

We have used reindexing to create a DataFrame with missing values. The NaN shown in the output stands for
 Not a Number
 .

Inspecting Missing Values

Pandas provides us with the
 notnull()
 and
 isnull()
 functions that make it easy for us to detect any missing values in our data. We can apply these methods to the DataFrame and Series objects. Here is an example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=[1, 2, 3])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df[1].isnull())

The code will return the following:

[image:]

What is happening is that we are inspecting the rows with missing values in any of the three columns. For row a, for example, there is no column with a missing value hence the value for the
 isnull()
 function False. The row b has some missing values. In fact, all of its columns take a value of NaN. This is why the function returned a True. If a row has a missing value in any of the columns, the method should return a True.

The following example demonstrates how to use the
 notnull()
 function:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=[1, 2, 3])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df[1].notnull())

The code prints the following result:

[image:]

For the rows with no NaN values, the method returns a True. For the rows with no NaN values, the function returns a False.

Calculations

When you are doing calculations with data having NA values, Pandas will treat the NA as a zero. If all the attributes have NA values, then you will get a result of NA. Consider the following example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=[1, 2, 3])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)

print(df[1].sum())

The code will return the following:

[image:]

The code just gets the sum of all values in the column 1. If you do your calculation manually, you will realize that Pandas treated the NaN values in the column as zeroes.

Consider the next example given below:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(index=[0,1,2,3,4,5],columns=[1,2])

print(df)

print(df[1].sum())

The code will return the following:

[image:]

Filling/ Cleaning Missing Data

There are various methods provided by the Pandas library that we can use for filling and cleaning missing values in a dataset. We can use the
 fillna
 function to fill in NA values with non-null data in a number of ways. Let us demonstrate how this can be done:

Replacement with Scalar Values

In the following example, we are replacing NaN values with a 0:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=[1,

2, 3])

df = df.reindex(['a', 'b', 'c'])

print(df)

print("Replacing NaNs with '0':")

print(df.fillna(0))

The code will return the following output:

[image:]

We just passed the value 0 as the argument to the
 fillna
 function. In the second DataFrame, the NaNs have been replaced with zeroes.

Fill NA Forward and Backward

This will be done using the following functions:

	
pad/fill- to fill methods Forward.

	
bfill/backfill- to fill methods Backwards.

Here is an example:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=[1, 2, 3])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)

print('After filling:')

print(df.fillna(method='pad'))

The code will return the following result:

[image:]

In the above example, we had three rows with NaN values, but they have been filled. For each row with NaN values, the values of the immediate row at the top have been used for filling. The reason is that we have used
 pad
 as the method. Consider the next example given below:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=[1, 2, 3])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)

print('After filling:')

print(df.fillna(method='backfill'))

The code returns the following:

[image:]

Dropping Missing Values

It is possible for us to drop any missing values. This calls for us to use the
 dropna
 function together with the
 axis
 argument. The
 axis
 argument takes a default value of 0, that is, along the row. This means that if the row has even a single value being NA, then the entire row will be excluded. The following example demonstrates this:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=[1, 2, 3])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)

print('After dropping:')

print(df.dropna())

The code returns the following output:

[image:]

As the above output shows, all rows where any single column has a NA value has been dropped. The reason is that we have used the
 dropna
 function. Consider the next example given below:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=[1, 2, 3])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print(df)

print('After dropping:')

print(df.dropna(axis=1))

The code will print the following:

[image:]

Replacing Generic or Missing Values

In most cases, our goal is to replace a generic value with a specific value. This can be achieved after applying the
 replace
 method. The process of replacing NA with scalar values is similar to using the
 fillna()
 function. Consider the following example:

import numpy as np

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df = pd.DataFrame({1:[0, 1, 2, 3, 4, 5],

'2':[6, 7, 8, 9, 10, 11]})

print('Initial DataFrame:')

print(df)

print("")

print('After Replacement:')

print(df.replace({1:10, 11:110}))

The code returns the following result:

[image:]

We specified the values that we need to replace as well as the new values to be used for replacement. Note the use of colon (:) for specifying this.

Joining/Merging

Pandas comes with join operations that are similar to the join operations supported in databases lie SQL.

It has one function, the
 merge
 function that serves as the entry point for all common database join operations between the DataFrame objects. The method is used as shown below:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,

left_index=False, right_index=False, sort=True)

The following parameters have been used:

	
left- the DataFrame object.

	
right- a second DataFrame object.

	
on – the column names on which join is to be done. The column must be present in both the left and right DataFrame objects.

	
left_on- the columns from the left DataFrame to be used as keys. This can be names of columns or arrays with a length equal to the length of the DataFrame.

	
right_on- the columns from the right DataFrame to be used as keys. This can be names of columns or arrays with a length equal to the length of the DataFrame.

	
left_index- if set to True, the index/ row labels from the left DataFrame should be used as the join key(s). If it is a MultiIndex DataFrame (hierarchical), the levels must match the join keys in number from the right DataFrame.

	
right_index- if set to True, the index/ row labels from the right DataFrame should be used as the join key(s). If it is a MultiIndex DataFrame (hierarchical), the levels must match the join keys in number from the right DataFrame.

	
how- takes one of the
 'left', 'right', 'inner', 'outer'. The default is inner.

	
sort- sorts the result DataFrame using join keys in lexicographical order. By default, it takes a True value. When set to False, the performance is improved in various ways.

To demonstrate how merging is done in Pandas, let us create two DataFrames and perform a merge operation on them:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

left = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

right = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['ICT','Eng','BCC','PSC','CML']})

print(left)

print("")

print(right)

We have created two DataFrames. The code returns the following when executed:

[image:]

The above output shows that our DataFrames share the same values in the
 Reg
 column. We want to merge the two based on this key. This can be done as demonstrated below:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

left = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

right = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['ICT','Eng','BCC','PSC','CML']})

print(pd.merge(left,right,on='Reg'))

The code will return the following:

[image:]

The above two DataFrames have been merged based on one common key.

It is possible for us to merge two DataFrames based on more than on keys. Suppose we have the following two DataFrames:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

left = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

right = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

print(left)

print("")

print(right)

The code returns the following:

[image:]

The above two DataFrames share values on two columns, namely the
 Reg
 and
 Course_ID
 . We can join them based on these two columns as follows:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

left = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

right = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

print(pd.merge(left,right,on=['Reg','Course_ID']))

The code will return the following DataFrame:

[image:]

The “how” Argument

With the
 how
 argument, we can specify how to determine the keys to include in the final table. In case a key combination doesn’t appear in any of the tables, that is, right or left, NA values will be used in the resulting table. Let us demonstrate this practically:

Left Join

Keys from the left object are used. For example:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

left = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

right = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

print(pd.merge(left, right, on='Course_ID', how='left'))

The code returns the following result:

[image:]

Right Join

The keys from the right object are used for the join operation. Here is an example:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

left = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

right = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

print(pd.merge(left, right, on='Course_ID', how='right'))

The code returns the following result:

[image:]

Outer Join

The union of the keys is used for performing the join operation. For example:

i
 mport pandas as pd

import sys

sys.__stdout__ = sys.stdout

left = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

right = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

print(pd.merge(left, right, how='outer', on='Course_ID'))

The following should be the result from the code:

[image:]

Inner Join

The intersection of the keys is used for performing the join operation. The join is performed based on an index. Here is an example:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

left = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

right = pd.DataFrame({

 'Reg':[3420, 3930, 3268, 3428, 3412],

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC']})

print(pd.merge(left, right, on='Course_ID', how='inner'))

The code prints the following result:

[image:]

Concatenation

There are various facilities within the Pandas library that we can use to combine DataFrame, Series and Panel objects. The following syntax is used for concatenation of such objects:

pd.concat(objs, axis=0, join='outer', join_axes=None,

ignore_index=False)

The following parameters have been used in the above syntax:

	
objs- this is a mapping or sequence of DataFrame, Series or Panel objects.

	
axis- this takes a numerical value from 0 onwards. The default value is 0. It denotes the axis to concatenate along.

	
join- It specifies how to handle the axes on the other axis(es). It can take a value of either
 inner
 or
 outer
 , with
 inner
 being the default value. Outer is for the union while inner is for the intersection.

	
ignore_index- takes a Boolean value, with the default value being False. If set to True, don’t use the index values on concatenation axis. The final axis is labeled 0, …, n-1.

	
join_axes- this is simply a list of index objects.

The
 concat
 function does the work of concatenating the objects along an axis. To demonstrate this, we will be creating different objects then use them for concatenation. Here is an example:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df1 = pd.DataFrame({

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC'],

 'Marks':[96, 92, 86, 68, 78]},

 index=[1, 2, 3, 4, 5])

df2 = pd.DataFrame({

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC'],

 'Marks':[90, 82, 78, 66, 54]},

 index=[1, 2, 3, 4, 5])

print(pd.concat([df1, df2]))

The code will return the following output:

[image:]

In some cases, we may be in need of associating certain keys with each DataFrame piece that has been chopped off. To do this, we can use the
 keys
 argument. This is demonstrated in the following example:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df1 = pd.DataFrame({

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC'],

 'Marks':[96, 92, 86, 68, 78]},

 index=[1, 2, 3, 4, 5])

df2 = pd.DataFrame({

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC'],

 'Marks':[90, 82, 78, 66, 54]},

 index=[1, 2, 3, 4, 5])

print(pd.concat([df1, df2],keys=['x','y']))

The code will print the following result:

[image:]

The index should change and the keys overridden.

If two objects are to be added along
 axis=1
 , the new columns will be appended. This is demonstrated below:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df1 = pd.DataFrame({

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC'],

 'Marks':[96, 92, 86, 68, 78]},

 index=[1, 2, 3, 4, 5])

df2 = pd.DataFrame({

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC'],

 'Marks':[90, 82, 78, 66, 54]},

 index=[1, 2, 3, 4, 5])

print(pd.concat([df1, df2],axis=1))

The code should print the following result:

[image:]

Concatenation using “append”

The append instance methods provides us with a shortcut to concatenation on Series and DataFrame objects. The concatenation is done along
 axis=0
 , which is the index. The following example demonstrates this:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df1 = pd.DataFrame({

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC'],

 'Marks':[96, 92, 86, 68, 78]},

 index=[1, 2, 3, 4, 5])

df2 = pd.DataFrame({

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC'],

 'Marks':[90, 82, 78, 66, 54]},

 index=[1, 2, 3, 4, 5])

print(df1.append(df2))

The code will print the following result:

[image:]

The
 append
 function is capable of taking multiple objects. This is demonstrated below:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

df1 = pd.DataFrame({

 'Name': ['Nicholas', 'Michelle', 'Joyce', 'Alice', 'David'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC'],

 'Marks':[96, 92, 86, 68, 78]},

 index=[1, 2, 3, 4, 5])

df2 = pd.DataFrame({

 'Name': ['Emily', 'Tony', 'Duncan', 'Ben', 'Betty'],

 'Course_ID':['SCT','C07','HRD','ICS','CTC'],

 'Marks':[90, 82, 78, 66, 54]},

 index=[1, 2, 3, 4, 5])

print(df1.append([df2, df1, df2]))

The code will return the following result:

[image:]

Time Series

Pandas comes with a great tool with which we can work on Time Series data, especially when dealing with finance. With time series data, we encounter the following:

	
Generating a sequence of time.

	
Converting a time series into various frequencies.

Pandas comes with a number of tools which can be used to perform all the above tasks.

Getting Current Time

In Pandas, we can call the
 datetime.now()
 method to get the current time. The method can be used as demonstrated below:

import pandas as pd

print(pd.datetime.now())

The method returns both the time and the date as at the current.

Creating a Timestamp

The time stamped data forms the common type of time series data. It associates the various values with points in time. Consider the example given below:

import pandas as pd

print(pd.Timestamp('2019-01-12'))

The code will return the timestamp that you have just created as shown below:

[image:]

It is also possible for you to create a range of time. Let us demonstrate this:

import pandas as pd

print(pd.date_range("9:00", "11:40", freq="30min").time)

The output should be as shown below:

[image:]

GroupBy

The GroupBy operation involves doing any of the following on an object:

	

 Splitting
 an Object

	

 Applying
 a function

	

 Combining
 results

In most cases, data is split into sets and functionality is applied to each of these subsets. When applying the functionality, here are some of the operations that we can perform:

	

 Aggregation
 −calculating a summary statistic

	

 Transformation
 − performing a group-specific operation

	

 Filtration
 − discarding data with a certain condition.

We will now create a DataFrame object then perform the above operations on it:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

print(df)

We have created the following DataFrame:

[image:]

Splitting Data

We can split the Pandas objects. This can be done in a number of ways:

	
obj.groupby('key')

	
obj.groupby(key,axis=1)

	
obj.groupby(['key1','key2'])

Let us demonstrate how we can apply grouping to a Pandas object:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

print(df.groupby('School'))

The code should print the following result:

[image:]

Viewing Groups

You can view the various groups of the object as follows:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

print(df.groupby('School').groups)

The code returns the following:

[image:]

We use the column for School to create the groups. The output shows that the data has 4 groups, namely A, B, C and D.

In the above example, we have used a single column to do the grouping. However, it is possible for us to use multiple columns for grouping. The following example demonstrates how to do this:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

print(df.groupby(['School','Year']).groups)

The code returns the following output:

[image:]

Iterating through Groups

The groupby allows us to iterate through an object. This can be done as demonstrated below:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

groups = df.groupby('Year')

for name, group in groups:

 print(name)

 print(group)

The code returns the following result:

[image:]

The default setting is that the
 groupby
 object takes the same label name as the name of the group.

Selecting a Group

We can select a group using the
 get_group()
 method. Let us demonstrate this:

import pandas as pd

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

groups = df.groupby('Year')

print(groups.get_group(2016))

The code returns the following result:

[image:]

Aggregations

An aggregated function should return a single aggregated value for every group. After the creation of the
 group by
 object, we can perform several aggregation functions on the grouped data. An example of this is an aggregation done using aggregate or the equivalent
 agg
 method. The following example demonstrates this:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

groups = df.groupby('Year')

print(groups['Points'].agg(np.mean))

The code should return the following output:

[image:]

The
 size()
 function can also be used to show the size of each group. This is demonstrated below:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

groups = df.groupby('School')

print(groups.agg(np.size))

The code will return the following result:

[image:]

We can apply more than aggregation functions at once on a grouped Series. A dict or list of functions can also be passed and get a DataFrame as the output. The following example demonstrates this:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

groups = df.groupby('School')

print(groups['Points'].agg([np.sum, np.mean, np.std]))

In the above example, we are calculating the sum, the mean and the standard deviation on the grouped data. The result is as shown below:

[image:]

Transformations

A transformation on a column or a group should return an object that has been indexed with the same size as that is being grouped. This means that the transform should return a result of the same size as that of group chunk.

i
 mport pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

groups = df.groupby('School')

score = lambda x: (x - x.mean()) / x.std()*10

print(groups.transform(score))

The code will return the result given below:

[image:]

Filtration

The purpose of filtration is to filter the data based on a specified criteria then return a subset of the data. This can be done using the Pandas’
 filter()
 function. Let us demonstrate this:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

schools_data = {'School': ['A', 'A', 'B', 'B', 'C',

 'C', 'C', 'C', 'A', 'D', 'D', 'A'],

 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],

 'Year': [2014, 2015, 2014, 2015, 2014,2015, 2016, 2017, 2016, 2014, 2015,2017],

 'Points':[10, 17, 29, 78, 45, 53, 88, 36, 67, 72, 58, 28]}

df = pd.DataFrame(schools_data)

print(df.groupby('School').filter(lambda x: len(x) >= 3))

The code returns the following result:

[image:]

In the example given above, we are checking for the schools that have participated in the competition for 3 or more times.

Outliers

In most cases, data has duplicate rows. This is noise, hence the need to clean it. This can be done as demonstrated below:

Let us create another data with duplicate rows:

df1 = pd.DataFrame({'x1':['one']*3 + ['two']*4, 'x2':[3, 2, 1, 3, 3, 4, 4]})

[image:]

Let use the column x2 to sort the data:

df1.sort_values(by='x2')

[image:]

We can then remove the duplicate data by calling the
 drop_duplicates()
 method:

df1.drop_duplicates()

[image:]

The duplicates were removed by matching the row values across columns. Also, the duplicates can be removed by use of a column. Let us do away with all duplicates in the x1 column:

df1.drop_duplicates(subset='x1')

[image:]

Rows can also be categorized depending on some pre-defined criteria. This is very essential during data processing as you may need to categorize variables. A good example of this is when we have a column with a list of countries and we need to create another column named “continent” which will be based on the “countries” column. This can be done as demonstrated below:

df = pd.DataFrame({'food': ['bacon', 'bacon', 'Pastrami','corned beef', 'pulled pork', 'Bacon', 'honey ham', 'pastrami', 'nova lox'],

 'ounces': [3, 4, 11, 7, 9.5, 6, 2, 4, 8]})

[image:]

We now need to create a new column for the name of the animal which is the source of each of the above. We should begin by creating a dictionary that will map each of the above foods to the right animal. The map function will then be used for mapping the values of the dictionary to the keys. This is shown below:

food_to_animal = {

'bacon': 'pig',

'pulled pork': 'pig',

'pastrami': 'cow',

'corned beef': 'cow',

'honey ham': 'pig',

'nova lox': 'salmon'

}

def food_2_animal(series):

 if series['food'] == 'bacon':

 return 'pig'

 elif series['food'] == 'pulled pork':

 return 'pig'

 elif series['food'] == 'pastrami':

 return 'cow'

 elif series['food'] == 'corned beef':

 return 'cow'

 elif series['food'] == 'honey ham':

 return 'pig'

 else:

 return 'salmon'

#creating a new variable

df['animal'] = df['food'].map(str.lower).map(food_to_animal)

df

[image:]

Reindexing

The purpose of reindexing is to change the column and row labels of a DataFrame. Reindexing means conforming data to match a certain set of labels along a given axis.

There are various operations that we can accomplish through the process of reindexing. Examples include reordering existing data to match a set of new labels and inserting NA (missing values) markers to label locations in which the label has no existing data. Consider the following example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

P=10

df = pd.DataFrame({

 'A': pd.date_range(start='2019-01-01', periods=P, freq='D'),

 'x': np.linspace(0,stop=P-1, num=P),

 'y': np.random.rand(P),

 'C': np.random.choice(['Low', 'Medium','High'], P).tolist(),

 'D': np.random.normal(100, 10, size=(P)).tolist()

})

#reindexing the DataFrame

reindexed_df = df.reindex(index=[0,2,5], columns=['A', 'C', 'B'])

print(reindexed_df)

The code returns the following:

[image:]

Aligning with Other Elements

Sometimes, you may want to take an object and reindex its axis so that they may be labelled similarly to the other objects. Here is an example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df1 = pd.DataFrame(np.random.randn(8,3),columns=['A','B','C'])

df2 = pd.DataFrame(np.random.randn(5,3),columns=['A','B','C'])

df1 = df1.reindex_like(df2)

print(df1)

The code returns the following output:

[image:]

In the above example, we have altered and reindexed df1 to be as df2. You have to match the names of the columns, otherwise, NaN values will be used for the whole column label.

Filling

The
 reindex()
 method accpets an optional parameter method. This parameter can take in any of the following values:

	
pad/ffill – it fills values forward

	
bfill/backfill- it fills values backward

	
nearest – it fills from the nearest index values

Here is an example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

x = pd.DataFrame(np.random.randn(6,3),columns=['A','B','C'])

y = pd.DataFrame(np.random.randn(2,3),columns=['A','B','C'])

Padding the NAN's

print(y.reindex_like(x))

#Filling NAN's with the preceding Values

print("Data Frame using Forward Fill:")

print(y.reindex_like(x, method='ffill'))

The code will return the following result:

[image:]

In the above example, our last four columns have been padded.

Limits on Filling during Reindexing

We can use the
 limit
 argument to gain an effective control over filling during reindexing. This parameter helps us in specifying the maximum count of the consecutive matches. This can be understood better using the following example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

x = pd.DataFrame(np.random.randn(6,3),columns=['A','B','C'])

y = pd.DataFrame(np.random.randn(2,3),columns=['A','B','C'])

Padding the NAN's

print(y.reindex_like(x))

Filling the NAN's with the preceding Values

print("Forward Fill limiting of 1:")

print(y.reindex_like(x, method='ffill', limit=1))

The code will print the following:

[image:]

Only one of the rows was filled using its preceding row. The rest of the rows have remained to be as they are.

Renaming

With the
 rename()
 method, we can relabel an axis depending on a mapping (dictionary to series) or an arbitrary function. Here is an example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

x = pd.DataFrame(np.random.randn(6,3),columns=['A','B','C'])

print(x)

print ("Rows and Columns Renamed:")

print((x.rename(columns={'A' : 'P', 'B' : 'Q'},

index = {0 : 'Nicholas', 1 : 'Michelle', 2 : 'Joyce'})))

The code should return the following output:

[image:]

The
 replace()
 method has the
 inplace
 named parameter, which takes a default value of False and it copies the underlying data. If you need to rename your data inplace, just pass the parameter
 inplace=True
 .

Sparse Data

In sparse objects, when any data that matches a certain value is omitted, the object will be compressed. To know where the data has been “sparsified”, we use a special SparseIndex object. The following example best demonstrates this:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

ts_data = pd.Series(np.random.randn(10))

ts_data[2:-2] = np.nan

sp = ts_data.to_sparse()

print(sp)

The code returns the following result:

[image:]

Sparse objects are used for reasons of memory efficiency.

Suppose we have a large DataFrame of NA values. Let us run the following code:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

data = pd.DataFrame(np.random.randn(10000, 4))

data.ix[:9998] = np.nan

sdata = data.to_sparse()

print(sdata.density)

The code returns the following output:

[image:]

We can convert a sparse object to the standard dense form. This can be done by calling the
 to_dense_
 method:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

ts_data = pd.Series(np.random.randn(10))

ts_data[2:-2] = np.nan

sdata = ts_data.to_sparse()

print(sdata.to_dense())

The code returns the following result:

[image:]

Sparse DTypes

A sparse data and its dense representation should have the same dtype. Currently, three dtypes are supported, namely
 float64, int64andbooldtypes. The changes are made as follows depending on the original dtype:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

ser = pd.Series([1, np.nan, np.nan])

print(ser)

ser.to_sparse()

print(ser)

The code returns the following result:

[image:]

Chapter 8- Data Visualization

Sometimes, data may not make sense to you unless you present it visually. Python programming language helps you to represent your data using visual mechanisms.

Data visualization refers to the presentation of data in a graphical or pictorial format. With data visualization, decision makers are able to view analytics that have been presented visually, making it easy for them to identify new patterns and grasp complex concepts. Interactive visualization helps one take this a step further by use of technology to drill down into graphs and charts, making it possible for one to change the data that they see and the way it is processed.

The Matplotlib is a Python library good for data visualization.
 If you need to get a plot quickly, matplotlib is the best library to use. It forms the foundation for several other plotting libraries such as Pandas.

This library should be installed. If you have already installed Python on your system, you can use pip3 to install Matplotlib. You just have to run the following command:

pip3 install matplotlib

[image:]

Matplotlib has a context on which one or more plots may be drawn before saving or showing the image on a file. The context is accessible via functions on
 pyplot
 . There is a convention through which you can import matplotlib as
 plt
 . This is shown below:

import matplotlib.pyplot as plt

To create plots and charts, we call on context as follows:

pyplot.plot(...)

Elements like labels, axis, legends, and others can be accessed and configured on the context in the form of separate function calls:

The drawings on context may be shown in a new window after calling
 show()
 function. This is shown below:

show the plot

pyplot.show()

Also, it is possible for you to save the drawings on the context to a file like a PNG formatted file. To save images, call the
 savefig()
 function. This is shown below:

pyplot.savefig('image.png')

Line Plot

This is a good way of representing observations that were made at regular intervals. On the x-axis, a regular interval like time is shown. The observations are shown on the y-axis ordered by the x-axis and a line is used to connect them. To create a line, we call the
 plot()
 function then pass data for the x-axis for the regular interval, y-axis for the observations:

generating a line plot

pyplot.plot(x, y)

Line plots are good for presentation of time series data and any sequence data in which the observations are ordered. Consider the following example:

Generating a line plot

from numpy import sin

from matplotlib import pyplot

A consistent interval for the x-axis

a = [a*0.1 for a in range(80)]

function of a for the y-axis

b = sin(a)

Generate the line plot

pyplot.plot(a, b)

display line plot

pyplot.show()

What we have done is that we have created a sequence of 80 floating point values for the x-axis and a sine wave function for x-axis as the y-axis. The code gives the line plot given below:

[image:]

Bar Chart

This type of chart is used when there is a need to present relative quantities for numerous categories. The categories are presented on the x-axis and they are spaced evenly. The quantity for every category is shown on the y-axis and is drawn as a bar starting from the baseline to the correct level on the y-axis.

To create a bar chart, we call the
 bar()
 function and pass the names of the categories on the x-axis and y-axis on the y-axis:

Generate a bar chart

pyplot.bar(x, y)

Bars are very good when comparing multiple estimations or point quantities. Example:

creating a bar chart

from random import seed

from random import randint

from matplotlib import pyplot

seed a random number generator

seed(1)

category names

x = ['Premio', 'Avensis', 'Mark X']

quantities sold for each category

y = [randint(0, 100), randint(0, 100), randint(0, 100)]

generate the bar chart

pyplot.bar(x, y)

display the line plot

pyplot.show()

We have created three categories namely Premio, Avensis, and Mark X. A single random integer has been drawn to represent the value of each category. The code generated the bar chart shown below:

[image:]

Histogram

This tool is used for summarizing the distribution of some data sample. The x-axis shows the intervals for observations or discrete bins. If you have observations whose values range between 1 and 20 for example, they can be split into 10 bins. The first bin will have [1,2], the second bin will have [3,4] and this continues.

The count or the frequency of the observations is shown on the y-axis. To create a histogram, we call the
 hist()
 function. The list or the array with the data to be represented in the histogram is passed as the argument:

Generate a histogram plot

pyplot.hist(a)

Consider the following example:

Generating a histogram plot

from numpy.random import seed

from numpy.random import randn

from matplotlib import pyplot

seed a random number generator

seed(1)

The random numbers will be obtained from Gaussian distribution

a = randn(500)

Generate histogram plot

pyplot.hist(a)

show line plot

pyplot.show()

In the above example, we have created a dataset of 500 random numbers that have been drawn from a Gaussian distribution. The dataset has then been plotted into a histogram. The code generates the following histogram:

[image:]

It is recommended that one should be kept when choosing the number of bins. This way, it will be easy for them to tell the shape of the distribution of the data. To specify the number of bins, you should use the
 bins
 argument as shown below:

Generate a histogram plot

pyplot.hist(a, bins=100)

Box and Whisker Plot

This tool is used for illustrating how a data sample is distributed. The x- axis represents the data sample, and we can draw multiple boxplots side by side on x-axis if we need to do so.

The values for the observations are shown on the y-axis. A box is drawn summarizing the middle 50% of dataset beginning with the observation at 25
 th
 percentile and ending at 75
 th
 percentile. The 50
 th
 percentile which is the median is drawn using a line. The difference between 75
 th
 and 25
 th
 percentiles is multiplied by 1.5 to give a line known as the
 interquartile range
 . Lines are also drawn to extend both ends of the box of the length of IQR to show the range of the sensible values for the distribution, and these are known as
 whiskers
 . Observations that are outside the whiskers are known as outliers and they are drawn using small circles.

To draw boxplots in matplotlib, we call the
 boxplot()
 function. The data to be represented in thw boxplot is passed as an argument to the function. It can be used as follows:

Generating a box and whisker plot

pyplot.boxplot(a)

Boxplots are an alternative to histograms for summarizing the distribution of data. Example:

Creating a box and whisker plot

from numpy.random import seed

from numpy.random import randn

from matplotlib import pyplot

seed a random number generator

seed(1)

random numbers obtained from Gaussian distribution

a = [randn(500), 5 * randn(500), 10 * randn(500)]

generate the box and whisker plot

pyplot.boxplot(a)

display line plot

pyplot.show()

In the above example, we are creating three box plots in a single chart. Each of these summarizes a data sample that has been obtained from different Gaussian distribution. Each data sample is created in the form of an array, and the three arrays are added into a list which is in turn passed to a plotting function. The code generates the following once executed:

[image:]

The chart has three box and whisker plots. A similar scale has been used for these for the y-axis. The black box represents the middle of the data, which is 50%. The orange line represents the median while the box and whisker lines give a summary of the sensible data. The dots show any outliers in your data.

Scatter Plot

This diagram is used to show the relationship between two data samples that are paired. By paired we mean that a single observation has two recordings, like the height and weight of an individual. The values of observation for the first sample are recorded on x-axis, while the values of observation for second sample are recorded on the y-axis. On the plot, every single represents a single observation.

To create scatterplots with matplotlib, we call the
 scatter()
 function. The arrays for the two data samples are then passed into the function as the arguments. This is shown below:

generate a scatter plot

pyplot.scatter(x, y)

Scatterplots are very good for showing how two variables are correlated. We can quantify a relationship, like drawing the line of best fit.

It may happen that observation has more than two measures. This can be represented visually by use of a scatter plot matrix. Consider the example given below:

Creating a scatter plot

from numpy.random import seed

from numpy.random import randn

from matplotlib import pyplot

seed a random number generator

seed(1)

create the first variable

a = 20 * randn(500) + 100

create the second variable

b = a + (10 * randn(500) + 50)

generate a scatter plot

pyplot.scatter(a, b)

display line plot

pyplot.show()

We began by creating two related data samples. The first sample was generated from a Gaussian distribution. The second sample relies on the first sample and is obtained by adding the second random Gaussian value to value of the first measure. The code generates the following once executed:

[image:]

Bubble Chart

Bubble charts normally display the data in the form of a cluster of circles. The data for creation of a bubble chart should have the xy coordinates, size and the color of the bubbles. The library is capable of supplying the colors.

To create bubble charts in Pandas, we have to call the
 DataFrame.plot.scatter()
 method. This is demonstrated below:

import matplotlib.pyplot as plt

import numpy as np

creating the data

x = np.random.rand(20)

y = np.random.rand(20)

z = np.random.rand(20)

colors = np.random.rand(20)

Call the scatter function

plt.scatter(x, y, s=z*1000,c=colors)

plt.show()

The code will generate the chart given below:

[image:]

Heat Map

A heat map has values that represent various shades of the same color for every value that is to be plotted. The darker shades of the chart normally represent higher values compared to the lighter shade. If the value is very different, you can use a completely different color.

Consider the example given below:

from pandas import DataFrame

import matplotlib.pyplot as plt

data=[{1,3,4,2},{7,2,5,1},{5,3,1,2},{2,6,5,3},{1,9,2,6}]

Index= ['I1', 'I2','I3','I4','I5']

Cols = ['C1', 'C2', 'C3','C4']

df = DataFrame(data, index=Index, columns=Cols)

plt.pcolor(df)

plt.show()

The code will return the following plot:

[image:]

Area Plot

To create an area plot, we call the
 Series.plot.area()
 method.
 We can also call the
 DataFrame.plot.area()
 method and achieve the same result.
 The following code demonstrates how to create an area plot:

from pandas import DataFrame

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

data = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])

data.plot.area()

plt.pcolor(data)

plt.show()

The code generates the following plot:

[image:]

Chapter 9- Data Aggregation

Aggregation refers to the process of turning the values of a dataset into a single value. It is through aggregation that a single value gives a lot of insight about a large dataset. Some of the common aggregations in data analysis include
 sum(),median(), mean(), min(),
 and max
 ().

The Pandas library provides us with numerous methods that we can use for purposes of data aggregation. Let us create a DataFrame and try to apply aggregations on it:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df1 = pd.DataFrame(np.random.randn(10, 4),

 index = pd.date_range('1/1/2019', periods=10),

 columns = ['A', 'B', 'C', 'D'])

print(df1)

x = df1.rolling(window=3, min_periods=1)

print(x)

The code will return the following result:

[image:]

Aggregation can be performing by passing a function to the whole DataFrame. We can also apply aggregation on a single column by using the
 get item
 method. The following example demonstrates how we can apply aggregation on the whole DataFrame:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df1 = pd.DataFrame(np.random.randn(10, 4),

 index = pd.date_range('1/1/2019', periods=10),

 columns = ['A', 'B', 'C', 'D'])

print(df1)

x = df1.rolling(window=3,min_periods=1)

print(x.aggregate(np.sum))

The code returns the following result:

[image:]

We can also select and apply aggregation on a single column of the DataFrame. This is demonstrated below:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df1 = pd.DataFrame(np.random.randn(10, 4),

 index = pd.date_range('1/1/2019', periods=10),

 columns = ['A', 'B', 'C', 'D'])

print(df1)

x = df1.rolling(window=3,min_periods=1)

print(x['B'].aggregate(np.sum))

The code returns the following result:

[image:]

In the above example, we have applied aggregation to only one column, that is, column B. We can choose more than one columns from a DataFrame and apply aggregation on them. Let us demonstrate this:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

df1 = pd.DataFrame(np.random.randn(10, 4),

 index = pd.date_range('1/1/2019', periods=10),

 columns = ['A', 'B', 'C', 'D'])

print(df1)

x = df1.rolling(window=3,min_periods=1)

print(x[['B','C']].aggregate(np.sum))

We have selected two columns, that is, columns B and C and applied aggregation on them. The code returns the following:

[image:]

We can also calculate measures of central tendency as aggregate values. These help us tell how data is distributed. With such measures, we can tell the central value for data as well as how wide the data is distributed. This way, we can tell whether a new data value can fit into the existing data set and hence tell the probability of success. The Pandas library comes with methods that we can use to calculate a number of measures of central tendency. These measures include the following:

	
Mean- this gives the average value of data. It is calculated by getting the sum of the data values then dividing by the number of values in the data.

	
Median- this is the middle value of data after arranging the data in an ascending or descending order.

	
Mode- this is the value that occurs most in a distribution.

Mean and Median

With the Pandas library, these values can be calculated directly. For example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

#Creating a dictionary of series

dict = {'Name':pd.Series(['Nicholas','Michelle','David','Joyce','Steve','Boss','Mary',

 'Lee','Charles','Gasper','Simon','Alice']),

 'Age':pd.Series([26, 25, 25, 24, 28, 30, 32, 34, 40,26, 50, 44]),

 'Points':pd.Series([4.14, 3.12, 3.98, 2.56, 3.12, 4.4, 3.8, 3.66, 2.76, 4.40, 4.02,3.32])}

#Creating a DataFrame

df = pd.DataFrame(dict)

print("Mean Values for the Distribution:")

print(df.mean())

print("")

print("Median Values for the Distribution")

print(df.median())

The code will return the following output:

[image:]

Mode

There are some distributions that don’t have a mode. This depends on whether the data is continuous or whether there are values with maximum frequency in the data. We will use a simple distribution and find its mode. Our distribution has a value with the highest frequency. Here is the example:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

#Creating a dictionary of series

dict = {'Name':pd.Series(['Nicholas','Michelle','David','Joyce','Steve','Boss','Mary',

 'Lee','Charles','Gasper','Simon','Alice']),

 'Age':pd.Series([26, 25, 25, 23, 30, 25, 23, 34, 40, 30, 25, 46])}

#Creating a DataFrame

df = pd.DataFrame(dict)

print(df.mode())

The code will return the following result:

[image:]

Variance

The variance tells us how far a data value lies from the mean of the distribution. It tells us how dispersed the values are. Variance is measured using
 standard deviation
 . It is also measured using
 skewness
 .

Standard Deviation

To calculate standard deviation, we get the square root of the variance. Variance is calculated by getting the average of squared difference of values from the mean in a dataset. The Pandas library has the
 std()
 method that helps us calculate the standard deviation of a distribution. The following example demonstrates this:

import pandas as pd

import numpy as np

import sys

sys.__stdout__ = sys.stdout

#Creating a dictionary of series

dict = {'Name':pd.Series(['Nicholas','Michelle','David','Joyce','Steve','Boss','Mary',

 'Lee','Charles','Gasper','Simon','Alice']),

 'Age':pd.Series([26, 25, 25, 24, 28, 30, 32, 34, 40,26, 50, 44]),

 'Points':pd.Series([4.14, 3.12, 3.98, 2.56, 3.12, 4.4, 3.8, 3.66, 2.76, 4.40, 4.02,3.32])}

#Creating a DataFrame

df = pd.DataFrame(dict)

Calculate standard deviation

print(df.std())

The code will print the following output:

[image:]

Skewness

This measure helps us know whether our data is symmetric or skewed. For an index between -1 and 1, the data is symmetric. For an index of less than-1, the distribution is skewed to the left while for an index of at least 1, the distribution is skewed to the right. Pandas provides us with the
 skew()
 method that helps us calculate the value of skewness. Here is an example:

[image:]

The above output shows that Points has a symmetric distribution while Age has a distribution that is skewed to the right.

Chapter 10- Working with Time Series Data

A time series data refers to a series of data points in which every data point is associated with a timestamp. A good example of this is the price of a stock at different times of a day. Another example is the amount of humidity in a region during various months of the year. The following data shows the prices of a stock at various times of a month:

Date
 Price

01-02-2018,
 1039.04

02-02-2018,
 1031.35

03-02-2018,
 1029.7

04-02-2018,
 1020.8

05-02-2018,
 1012.3

06-02-2018,
 1025.06

07-02-2018,
 1032.32

08-02-2018,
 1019.7

09-02-2018,
 1024.8

10-02-2018,
 1026.63

11-02-2018,
 1038.04

12-02-2018,
 1022.40

13-02-2018,
 1012.7

14-02-2018,
 1016.8

15-02-2018,
 1024.87

16-02-2018,
 1039.04

17-02-2018,
 1031.35

18-02-2018,
 1029.7

19-02-2018,
 1020.8

20-02-2018,
 1022.88

21-02-2018,
 1039.04

22-02-2018,
 1031.35

23-03-2018,
 1161.3

26-03-2018,
 1167.6

27-03-2018,
 1155.25

28-03-2018,
 1154

I have saved the data in a file named
 stocks.csv
 . Let us create a time series from the above data:

import pandas as pd

import numpy as np

from datetime import datetime

import matplotlib.pyplot as plt

import sys

sys.__stdout__ = sys.stdout

x = pd.read_csv('stocks.csv')

df = pd.DataFrame(x, columns = ['MonthDate', 'Price'])

Set MonthDate as the Index

df['MonthDate'] = pd.to_datetime(df['MonthDate'])

df.index = df['MonthDate']

del df['MonthDate']

df.plot(figsize=(15, 6))

plt.show()

We can also load our stocks data into a Pandas series as shown below:

import pandas as pd

from datetime import datetime

from pandas import Series

import sys

sys.__stdout__ = sys.stdout

Load the stock data

series = Series.from_csv('stocks.csv', header=0)

print(series.head())

The code will return the following:

[image:]

The code has returned the first 5 rows of the dataset. As you can see, each row is associated with a time value. Don’t see this as a row, but as a time index for the value. Since it is an index, we can have multiple values belonging to one time, and we can space the values evenly or unevenly across the times.

As we discussed previously, we normally use the
 read_csv
 method to read csv data in pandas. Let us use it to load the data into a series rather than into a DataFrame:

import pandas as pd

from pandas import read_csv

import sys

sys.__stdout__ = sys.stdout

series = read_csv('stocks.csv', header=0, parse_dates=[0], index_col=0, squeeze=True)

print(type(series))

print(series)

The code will print the following:

[image:]

This time, we have passed a number of arguments to the
 read_csv()
 function. They include the following:

	
header=0: The header information must be provided at row 0.

	
parse_dates=[0]: The function is given a hint that the data in the first column has dates that should be parsed. This argument should take a list, hence we provide it a list of single element, the index of the first column.

	
index_col=0: A hint that the first column has the index information for time series.

	
squeeze=True: A hint that there is only one data column and that we need a Series and not a DataFrame.

You may also have to pass one more argument,
 date_parser
 , which will make the function parse date-time values. In the above example, the date format has been inferred, which works well in most cases. In the few cases where it doesn’t work, you should, state your own function for date parsing then use the
 date_parser
 argument.

There are various tools provided by the Pandas library that we can use to explore time series data.

Exploring the data

After loading your data, you should explore it to make sure that the dates, types, and data have been loaded as you intended. To do this, just use the
 head()
 or
 tail()
 function. These
 head()
 function returns the first 5 records of the dataset. However, you can also specify the number of records that you want to retrieve. The following code shows how you can retrieve the first 10 records from the dataset:

import pandas as pd

from pandas import Series

from pandas import read_csv

import sys

sys.__stdout__ = sys.stdout

s = Series.from_csv('stocks.csv', header=0)

print(s.head(10))

The code returns the following result:

[image:]

If you use the
 tail()
 function, you will get the last n records of the dataset. Let us retrieve the last 10 records of the dataset:

import pandas as pd

from pandas import Series

from pandas import read_csv

import sys

sys.__stdout__ = sys.stdout

s = Series.from_csv('stocks.csv', header=0)

print(s.tail(10))

The code will print the following result:

[image:]

Total Observations

You may also be in need of checking the number of observations that have been loaded. This way, you can be able to tell how well you can subdivide your data for the purpose of supervised learning. The
 size
 parameter can help you get the dimensionality of your data. Here is an example:

import pandas as pd

from pandas import Series

from pandas import read_csv

import sys

sys.__stdout__ = sys.stdout

s = Series.from_csv('stocks.csv', header=0)

print(s.size)

My file has 26 records, hence the above code returns 26 as the output.

Querying by Time

You can dice, slice and query a series using a time index. Here is an example showing how we can extract all the observations made in February:

import pandas as pd

from pandas import Series

from pandas import read_csv

import sys

sys.__stdout__ = sys.stdout

s = Series.from_csv('stocks.csv', header=0)

print(s['2018-02'])

The code will return the following after execution:

[image:]

All observations made in February have been returned. With such index-based querying, one can prepare plots and summary statistics during the exploration of a dataset.

You can also describe your time series data to tell about how the values have been distributed. This can be good for data cleaning and data scaling which can be done later during data modeling. The
 describe()
 function will return 7 values for different measures for the distribution. These include
 mean, standard deviation, minimum, median, and maximum of the observations. Here is how to use it

import pandas as pd

from pandas import Series

from pandas import read_csv

import sys

sys.__stdout__ = sys.stdout

s = Series.from_csv('stocks.csv', header=0)

print(s.describe())

The code returns the following:

[image:]

Plotting Time Series

During the exploration of a time series data, it is always good for you to plot it. This functionality can be applied on a loaded Series object using the
 plot()
 function. The following example demonstrates how this can be done:

import pandas as pd

from pandas import Series

from pandas import read_csv

from matplotlib import pyplot

import sys

sys.__stdout__ = sys.stdout

s = Series.from_csv('stocks.csv', header=0)

pyplot.plot(s)

pyplot.show()

The code returns the plot given below:

[image:]

The price of the stock is shown on the y-axis while the different time values have been plotted on the x-axis.

Chapter 11- Applications of Data Analysis Today

Nowadays, the amount of data generated by companies, organizations, and institutions is huge. Companies are now able to compile information from across areas within their respective industries. Such companies have an advantage over their competitors because they can identify their weak areas and take the necessary measures to make improvements. They can also be able to tell why sales have increased and decreased and take the right action before it is too late.

This shows the importance of using data analytics in various companies. It has been found that the use of deep data analytic tools has helped gain insights to some of the assumptions that are made. Also, users and business analysts are able to get a lot of information and significant potential in creating a competitive advantage and business value.

Some of the greatest advantages when companies use data are that they save a lot of money, improve their efficiency in procurement, develop better marketing strategies, differentiate themselves from their competitors and support the growth of their business.

Let us discuss the various areas in which data analytics have been employed today:

Policing/security

A number of cities in the world have implemented predictive analysis systems to prevent the likelihood of occurrence of crime in areas regarded as crime hotspots. This is normally done using both historical and geographical data. This has worked successfully in cities lie London, Chicago, Los Angeles etc. It is not possible for arrests to be made for each crime that is committed, but this has helped in reducing the number of crimes in such areas as the government ensures that there is the presence of police during times when there is a likelihood of having criminal activities. This way, we can have a bit safer cities without putting the lives of police officers at risk.

Transportation

Some years ago in the city of London, there was a need to handle more than 18 million journeys that are made by the fans within London city and this issue was sorted out. TFL and train operators relied on data analytics to ensure that nearly all the journeys were made smoothly. They used data gathered from events and successfully predicted the number of people that were to travel, which saw a smooth transport within the city with athletes and spectators being transported smoothly to and from the various stadiums.

Risk and Fraud Detection

This is regarded as one of the earliest applications of data analysis, with initial efforts being made within the finance sector. Majority of organizations had been fed up with debt. They collected and stored a lot of data during the time customers were applying for the loans, and they applied data science to this data to save themselves from the losses that they had incurred.

This way, banks learned how to divide and conquer data they get from their customer profiles, their recent expenditure as well as other information that they have access to. They can also determine or calculate the probability of having their customers default in making loan payments.

Risk Management

Insurance industries are more focused on risk management. Most insurers forget that during the process of insuring a person, the risk is not simply obtained from the data provided by the person but from the data analyzed statistically before making a decision. With data analytics, insurance companies can get information about actuarial data, claims data and risk data which is what a company needs to consider before making a decision. An underwriter makes the evaluation before the individual is insured then appropriate insurance is set.

Nowadays, analytical software is used to detect various kinds of fraudulent claims. Red flag indicators are used for the identification of risky claims. This has made it more efficient to process claims.

Delivery Logistics

Data science and analytics are applicable within a wide range of industries. Several logistics companies operating all over the world are relying on data analytics to improve the efficiency of their operations. Examples of such companies include
 UPS, DHL, FedEx, and others. By use of data analytic applications, these companies have known the best routes for shipping, the best means of transport to use for efficiency and reduced costs and the best delivery time. These companies generate a lot of data through GPS, and this has given them an opportunity to use data science and data analytics applications.

Web Provision

Most people tend to think that a smart city is any city with a fast internet speed provided by the government or companies operating from there which people can use. This is good for any city, but it doesn’t make it a smart city.

A city may have a fast internet connection, but this is just one of the things that can make it a smart city. The internet must be made available in the right place and access granted only to the right people. The internet should be able to shift the bandwidth at the right location and time. This is only possible by use of data.

It is highly assumed that the financial and commercial areas should experience a high bandwidth during the weekdays. It is also assumed that residential areas should get a high bandwidth during the weekends. This situation is more complex than it appears and it can only be solved through data analysis.

City Planning

Many cities are not applying data analytics when planning, which is a great mistake. Data analytics should be applied when creating buildings and spaces. Data plays a crucial role in amenity creating and building zoning. It is required that buildings and other strictures in a city ease access to various services or areas and reduce the risk of overloading certain resources within the city. The result of this is the creation of efficiency.

We sometimes have city buildings that seem to be located at the appropriate locations but they actually have a negative impact on other places. The cause of this is lack of proper planning before and during the construction of such structures. With modelling and data analytics applications, it is easy to tell the impact of erecting a certain structure in a certain location so that the appropriate action is taken before it is too late.

Healthcare

Most countries have made significant improvements in providing healthcare to its citizens to ensure that individuals get quality healthcare services. This improvement has led to a rise in the cost of seeking healthcare services. Hospitals are now facing the cost pressure of treating many patients.

The use of machine and instrument data is on the rise in a bid to optimize and track treatment, the flow of patients and the use of hospital equipment. It has been estimated that this will result in a 1% improvement in efficiency and it will result in more than #63 billion in the global healthcare services.

Travel

With the use of data analytics applications, we can optimize the traveler’s buying experience through mobile/weblog and social media data analysis. This is because we can obtain the desires and preferences of customers from this, which makes it possible for companies to sell their products based on the correlation of current sales to the recent browse-to-buy conversion via customized packages and offers. The data analytics applications usually deliver personalized travel recommendations based on the outcome obtained from social media data.

Energy Management

Today, forms are using data analytics to manage energy and cover areas such as smart-grid management, energy optimization, building automation and distribution of energy for utility companies. The focus of data analytics applications here is to control and monitor the dispatch crew, network devices and ensure that service outages are managed properly. Utilities are able to integrate many data points within the network performance that allows engineers to use data analytics in monitoring the network.

Internet/Web Search

When we hear the word “search”, the word “google” immediately clicks into our mind. Other than google, there are several other search engines that you can use to search for what you want from the internet. Examples of such search engines include
 Bing, Yahoo, AOL, Duckduckgo, Ask, etc.

Each of the above engines works based on data science applications since algorithms are used for delivering the best results for any query that is posed within a second. Currently, Google alone processes more than 20 petabytes of data on a daily basis. If it was for data analytics and data science, this would not be possible.

Digital Advertisement

Data science and analytics plays a great role in the running of digital advertisements. All banners that you see on big websites and the digital billboards you see in big cities are controlled by use of data analytics algorithms.

It is through the use of data analytics that digital advertisements get more clicks compared to the traditional way of running advertisements. When running digital advertisements, the target users are determined by relying on their previous behavior.

Recommender Systems

How can you forget the suggestions on similar videos on YouTube as well as suggestions of similar products on Amazon? These all rely on recommender systems, which are building using data science and analytics. These tools help you find the right product from billions of possible products, while at the same improving the user experience.

Many companies have used recommender systems, also known as recommender engines to promote their products to potential customers in the form of suggestions based on their interests and relevant information. Some of the companies that use this system to improve user experience include
 Amazon, Twitter, Netflix, Linkedin, Google Play, imdb, and many others. The previous search results of the user are used for the purpose of making the necessary recommendations.

Image Recognition

You must have experienced this when you upload your image with friends on Facebook, you will get suggestions to tag them. Such automatic tag suggestion feature relies on a face recognition algorithm. Also, when you want to use WhatsApp web, you will be asked to scan a barcode on the browse by use of your phone camera. With Google, it is now possible for you to upload an image then use it to perform a search. All these technologies use image recognition to provide you with the desired results.

Speech Recognition

The well-known speech recognition apps used worldwide are
 Google Voice, Siri, Cortana, and others. The use of voice recognition feature has made life easier. Imagine you shutting the door of your living room while seated at the comfort of your couch, cleaning the house by just issuing a voice command, ordering for shopping from the supermarket while seated in your house etc. All these have been made possible by data science and analytics algorithms.

With speech recognition, you only speak a message then it is converted into text. However, as you use speech recognition services, you will realize that sometimes it does not perform accurately.

Gaming

By use of data analytics,
 EA Sports, Zynga, Nintendo, Sony, Activision-Blizzard have taken the gaming experience to the next level. Machine learning algorithms have been used to develop games that upgrade/improve themselves as the player moves to the next higher level. When it comes to motion gaming, your opponent, that is, the computer, will analyze your previous moves and shape up its game accordingly.

Price Comparison Websites

These websites rely heavily on data which is collected using RSS Feeds and APIs. These websites have made it easy for us to compare the prices of products offered by different vendors. If you have used one, you can attest. Examples of price comparison websites include
 PriceGrabber, PriceRunner, Shopzilla, Junglee, and DealTime. You can now find price comparison websites in nearly every domain including technology, hospitality, durables, apparels, automobiles, and others.

Airline Route Planning

Many airline companies in the world have made huge losses, making people believe that this is the norm of these businesses. Except for a few airline companies, most of them are struggling to maintain operating profits and occupancy ratio. The rise in fuel prices combined with the need to offer large discounts to customers has made the situation worse.

However, airline companies are now using data science and analytics to identify strategic areas in which improvements need to be made. By use of data analytics, the airline companies can now do the following:

	
To predict flight delays

	
Determine the class of airplanes to buy

	
Decide on whether to land directly at the destination or halt in between

	
To drive customer loyalty programs effectively.

Alaska and Southwest airlines are examples of airline companies that have employed the use of data science in their operations.

Above are just a few examples of where data analytics is applied today. The reasons are because data analytics is applied nearly in all fields where data is generated. Nearly every company has a marketing department. These departments use data analytics to determine the products that are good for Up Selling as well as the ones that are good for Cross Selling, depending on the behavioral data obtained from customers. With data analytics, we can get answers to a number of questions that we can use for segmented targeting during advertising.

Conclusion

This marks the end of this guide. Python is a great programming language for use in data analytics. Although there are alternatives like R, Python is highly preferred for a number of reasons. For instance, Python has an easy syntax that we can grasp easily. This has made it the best language for learning data analytics, even for beginners. It also comes with many libraries that can be used for various operations involving data processing. Examples of such libraries include Pandas, Scikit-Learn, TensorFlow, PyTorch, NumPy, Scipy, and PyBrain. Python is also liked for its flexibility and the fact that it is an open source programming language.

Data analysis cannot be effective without data visualization. When data is presented visually, especially using graphs, it becomes easy for us to see how the various parameters have fluctuated over time. Python comes with many libraries that we can use for data visualization. We can also use libraries like Pandas to process data stored in various formats including CSV, Excel, JSON, etc. When Python’s data analytics tools are used effectively, we can extract patterns from huge sets of data which are good for decision making. This way, we can improve our products and services for the growth of our businesses. Many companies have realized how powerful data analytics is and they have tapped into this to promote their brands. Social media platforms like Facebook use data analytics in determining the right audiences to promote your ads to. Ecommerce giants like Amazon use data analytics to suggest best products for you. This is normally done by analyzing your previous behavior including the products that you view and the ones you bought previously.

OEBPS/Image00102.gif
a B
0 -0.614756 -1.133672
1 -0.342623 -0.142638

2 NaN NaN
s NaN NaN
. NaN NaN
s NaN NaN
Forward Fill limiting

a E

0 -0.614756 -1.133672
1 -0.342623 -0.142638
2 -0.342623 -0.142638

s NaN NaN
. NaN NaN
5 NaN NaN

of

c

.211696
079868

NaN
NaN
NaN
NaN

1

c

.211696
079868
079868

NaN
NaN
NaN

OEBPS/Image00101.gif
ER
0.

ER
0.
0.
0.
0.
—o.

A B
180985 1.507167 0.
872273 0.120852 0.
Nax NaN
NaN NaN
NaN NaN
NaN NaN
Frame using Forward
a E
180985 1.507167 0O
272273 0.120852 0
872273 0.120852 0
872273 0.120852 0
872273 0.120852 0
872273 0.120452 0O

c
235066
629356
Nax
NaN
NaN
NaN

Fill:
c

.235066
629356
629356
629356
629356
629356

OEBPS/Image00104.gif
0 -0.139273
1 -0.7047%6

2 NaN

s NaN

. NaN

s NaN

B NaN

7 NaN

& 0.20s620

s -0.s71128

doype: floates

BlockIndex

Block locations: array([0, 8]
Block lengths: array([2, 21)

OEBPS/Image00103.gif
a B c
0.852087 1.42210¢ 0.811821
-0.482842 0.076703 -0.297606
1.660628 -0.204419 0.524057
0.451192 -1.656386 -1.198645
1.022467 -0.37363¢ 0.433601
1.837098 -1.031747 -0.512146
Rows and Columns Renamed:

B Q c
Nicholas 0.882087 1.42210¢ 0.811821
Michelle -0.482842 0.076703 -0.297606

Joyee 1.660628 -0.204419 0.524057
B 0.451192 -1.656386 -1.198645
. 1.022467 -0.37363¢ 0.433601
5 1.837098 -1.031747 -0.512146

OEBPS/Image00106.gif
dtype:

o -0.
1 -o.
2
s
.
s
B
7
R
s o

280003
781360
NaN
NaN
NaN
NaN
NaN
Nax

.0s924¢
.sas1a2

floatéd

OEBPS/Image00105.gif
0.0001

OEBPS/Image00107.gif
0 1.0

1 Nan
2 Nan
dvype: floatés
0o 1.0
1 Nan
2 Nan

dtype: floaté4

OEBPS/Image00022.gif
10
20
30
20
dtype: int64

OEBPS/Image00023.gif
Michelle
Nicholas
Joyee
David
object

0
1
2
B

OEBPS/Image00020.gif
The initial array:
(Lo 5101s]
[20 25 30 35]
[40 45 50 55]]

Array after modification:
(L 0 15 30 a5]

[60 75 90 105]

[120 135 150 16511

OEBPS/Image00021.gif
Array
o s101s)
[20 25 30 35]
[40 45 50 55]]

array v
a2 s e

Modified array:

OEBPS/Image00018.gif
Elements sorted using C-style order:
(1020 40]
[525 45]
[10 30 50]
115 35 5511
0

20

20

s

25

a5

10

30

s0

15

35

55

Elements sorted using F-style order:
(1020 40]
[525 45]
[10 30 50]
115 35 5511
0

s

10

15

20

25

30

35

20

a5

s0

55

OEBPS/Image00098.gif
>>> df = pd.DataFrame ({'focd': ['bacon', 'bacon', 'Pastrami','corned beef',
led pork’, 'Bacon’, 'honey ham', 'pastrami’, 'mova lox'l,
tounces': [3, 4, 11, 7, 9.5, 6, 2, 4, 811)

>>> food_to_animal = {
"bacon': 'pig’,

‘pulled pork': 'pig’,

‘pastrami': ‘cou’,

‘corned beef

*honey ham': 'pig’,

'nova lox': 'salmon'
3

>>> def food 2_animal(series):

it series['fooa'] == 'bacon':
return 'pig’

e1if series['food'] == 'pulled pork':
return 'pig’

21if series['food'] == 'pastrami’
return 'cow'

=1if series['focd'] == 'corned beef':
return 'cow'

21if series['food'] == 'honey ham':
return 'pig’

else:

return 'salmon'

>>> df['animal'] = df['food'].map(stx.lower) .map(food_to_animal)
>>> ar

food ounces animal

0 bacon 3.0 pig
1 bacon 4.0 pig
2 Pastrami 11.0 cou
5 corned beer 7.0 cou
4 pulled pork 5.5 pig
s Bacon 6.0 pig
6 noney ham 2.0 pig
7 pastrami a0 cou
5 nova lox 2.0 salmon

'pul

OEBPS/Image00019.gif
The initial array is:
(Lo 5101s]

[20 25 30 35]

[40 45 50 55]]

Elememnts sorted using C-style order:

OEBPS/Image00100.gif
0.
0.
.383420
0.
129380

a
394510
758987

788185

B

752507
715698
.3e154e
.470245
933863

c

.187327
-1,
0.
761462
—o.

25475
335814

439659

OEBPS/Image00099.gif
A c B
0 2018-01-01 Medium NaN
2 2018-01-03 High NaX
5 2019-01-06 Low NaN

OEBPS/Image00026.gif
Name Salary
0 Michelle 250.0
1 Nicholas 1200.0
2 David 850.0

OEBPS/Image00027.gif
s
s66.
202.
es0.
s0.
es0.

1025.

1200.

Salary
000000
66667
072598
000000
000000
000000
000000
000000

OEBPS/Image00024.gif
Age
25
26
52
36
24

Dept
Customer Care
Agenc
Accounting
Engineering
HR

Name
Michele
Nicholas
Joyee
David
John

Salary
250
1200
820
730
680

OEBPS/Image00025.gif
10
20
30
a0

OEBPS/Image00003.gif

OEBPS/Image00002.gif
=\Windous\systen32>ipython
ython 3.5.8°(u3.5.0:374F501£4567, Sep 13 2015, 02:27:37) (NS v.1908 64 bic <M
ype ’copyright’. ’credits’ or ’license’ for more information

[Python 7.2.0 — An enhanced Interactive Python. Type '’ for help.

0 110 cd
\Users\adnin

in 21:

OEBPS/Image00005.gif
capital:
casefold endsuith

cente: expandtabs
count

OEBPS/Image00004.gif
in [21: for num in range<sd:
Drint Coumd

OEBPS/Image00007.gif
<class 'numpy.ndarray'>
)

10 20 30

[40 20 30]

2, 3

10 20 40

OEBPS/Image00006.jpg
[41: str.center?

cstring:
_centerCuidthl, fillcharl) —> str

etwen § centered in a string of length width. Padding is
one using the specified Fill character (defailt is a spaced

method_descriptor

OEBPS/Image00113.jpg
240

220

200

180

160

140

120

100

80

.
.
LIRS
.
.
.
60 80 100 120 140 160

OEBPS/Image00112.gif
30

20

10

-10

-20

-30

i

OEBPS/Image00115.gif

OEBPS/Image00114.jpg
10

0.8

0.6

0.4

02

0.0

0.0

02

10

OEBPS/Image00117.gif
2018-01-01
2018-01-02
2018-01-03
2018-01-0¢
2018-01-05
2013-01-06
2018-01-07
2018-01-08
2018-01-09
2018-01-10

0
0
0

.

-1,
0
0

0.
1

-1,

a
302393
502558
623522
395601
102662
021557
732333
728351
715019
058600

B

065454
.151243
.028546
.956473
.90s148
.639343
007572
.185787
.917235
765513
Rolling [window=3,min periods:

1
0
0.
0.
1
1
2.
1
0.
0.

c
156217
038291
742472
166967
006445
526053
10308¢
452247
418355
e79787

0.
0
0.
-1,
0.
0.
0.
-1,
0.
0.
,center=False, axis:

D
517332
293926
117853
264336
343875
210650
150708
005407
420872
o0se395

OEBPS/Image00116.jpg

OEBPS/Image00011.gif
[[10 20 30 40 50]]

OEBPS/Image00012.gif
2, 3)
(2, 3)
[[1.25833265 1.07494823 1.71289339]
[1.80906205 1.91956748 1.13260726]]

OEBPS/Image00009.gif
110 20 30]

OEBPS/Image00097.gif
>>> df = pd.DataFrame ({'food': ['bacon’, 'bacon', 'Pastrami',’corned beef', 'pul
led pork’, 'Bacon’, 'honey ham', 'pastrami’, 'mova lox'l,
tounces': [3, 4, 11, 7, 9.5, 6, 2, 4, 811)

>>> ar

food ounces

bacon 5.

bacon a.

Pastrami 1
corned bees
pulled pork
Bacon
noney ham
pastrami
nova lox

@Stk wh ko
eevawal

>>>

OEBPS/Image00010.gif
o 20]
130 4011

OEBPS/Image00132.jpg
PYTHON

FOR DATA
ANALYSIS

A Step-by-Step Guide
For Beginners

MASTER THE BASICS OF
DATA ANALYSIS IN PYTHON
USING NUMPY, PANDAS,
AND IPYTHON

Samuel Burns

© Globaltech NTC

OEBPS/Image00095.gif
>>> dfi.drop duplicates()
ey

o

o

>>>

OEBPS/Image00109.jpg
1.00

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

OEBPS/Image00008.gif
tro. o.1
[o. 011
(1. 101
wn

7 M

4
t
4
T

1.0
0. 111

0.88325492 0.54391249]
0.83040157 0.504027651]

OEBPS/Image00096.gif
>>> dfl.drop_duplicates(subset='x1')
X1 x2

0 ome 3

EER

55>

OEBPS/Image00108.gif
:\Users\admindpip3 install matplotlib
ollecting matplotlib
Dounloading https://Files.pythonhosted.org/packages /ce/B2/dBF h7dc284a56449£782|
SeF 74158b682bF 44005 40a6d6 151 Fabf aaS3a/macp Lot Lih—2.2.2-cp3b—cpISm-win and6 4.4
1087 |HREIEEBEREIBERER IR IR 8 7HE 254KB/s
ollecting cycler>=8.10 (From matplotlib>
Dounloading https://Files.pythonhosted.org /packages/f7/d2/eB7d3ebb2bd7af 696446)
ce7e754059dd546F Fel bbe732c8ah68b9c834c61 /cycler—8.10.8-py2 - py3—none—any.uhl
Requirenent already satisfied: python-dateutil>=2.1 in c:\users\admin\appdatalol
al\prograns\python\python35\1ib\s ite-packages (From matplotlih> (2.6.1>
Collecting kiwisoluers=i.8.1 (from matplotlih)
Dounloading https://files.pythonhosted.org,/packages /67,57/834881c88cd1 3617921l
Bhdo7ac8c16380234048495058865102F 9016030/ kiviso Luor—1 .6.1-cp3b-none-win_andod.ui
1087 [HIBIBEHIREBENIR IR NURNIGN | 61KB P5KB/s
Requirement already satisfied: nunpy>=1.7.1 in c:\users\admin\appdatazlocaliprog]
rans\python\python35\1ih\site-packages (From matplotlib) (1.13.3>
Requirenent already satisfied: pytz in c:\users\adminvappdataslocal\programs\pyt|
on\python35\1ib\site-packages (From matplotlib) (2817.2)
Requirement already satisfied: six>=1.18 in c:\users\admin\appdatatlocal\progran)
s\python\python35\1ib\site-packages (From matplotlih) (1.11.8)
Collecting pyparsing!=2.8.4, .1=2.1.6,5>=2.0.1 <from matplotlih)
Dounloading https://Files pythonhosted.org,/packages/6a Ba,718Fd7d3358¢9Fahge]
186 b08ahdd34556 39976 ho 7F b3ac722e1bB26a50, pypars ing-2 .2 8-py2 . py3-none-any.uhl (5|

v LRI RNN | 61KB 77KB/s
Requirement already satisfied: setuptools in c:\usersvadnin\appdata\localiprogra]
ns\python\python3E\1ib\site-packages <from kiwisolver>=1.8.1->matplotlib) <18.2)|

[nstalling collected packages: cycler. kiwisolver, pyparsing, matplotlib
Successfully installed cycler-9.10.0 kiwisolver-1.8.1 matplotlih-2.2.2 pyparsing]
F2.2.0

C:\Usersiadnin>

OEBPS/Image00093.gif
>>> dfl = pd.DataFrame ({'xl
>>> arl

[lone’]1*3 + ['two'l®4, 'x2':(3, 2, 1, 3, 3, 4, 411)

X1 x2
0 one 3
1 one 2
2 one 1
3 otwo 3
4 two 3
5 two 4
6 two 4

>>>

OEBPS/Image00111.gif

OEBPS/Image00094.gif
>>> dfl.sort_values (by='x2')
x w2

o

o

o

o

atewokRN

>>>

OEBPS/Image00110.gif
100

Avensis

OEBPS/Image00017.gif
Initial array is:
(L0 5101s]
[20 25 30 35]
[40 45 50 55]]

Transpose of our initial array:
(1020 40]

[525 45]

[10 30 50]

115 35 5511

After modification:

OEBPS/Image00015.gif
The initial array is:
(o 1

23]

4 s]

671

8911

After the transpose we have:
(02468
1357911

OEBPS/Image00016.gif
Initial array is:
(L0 5101s]
[20 25 30 35]
[40 45 50 55]]

After modification:
o
s
10
15
20
25
30
35
20
a5
s0
55

OEBPS/Image00001.gif
3 \Windous\s ysten32>python
ython 3.5.8 (u3.5.0:374F501¢4567, Sep 13 2015, 02:27:37) (NSC v.1908 64 bit <M
Ycopyright", “credits" or “license" for more information.

raceback Cmost recent call last):
File "Cstdin>", line 1. in <module>
janeError: name Scd’ is ot defined

L an

OEBPS/Image00013.gif
(3, 4

(4,)

(1. 0. -1 -2.]
(1. 0. -1 -2
{1. 0. -1. -2.11

OEBPS/Image00000.gif
2\Windous\systen32>ipython
ython 3.5.8°(u3.5.0:374F501£4567, Sep 13 2015, 02:27:37) (NS v.1908 64 bic <M
ype ’copyright’. ’credits’ or ’license’ for more information

[Python 7.2.0 — An enhanced Interactive Python. Type ’?7’ for help.

n r11:

OEBPS/Image00014.gif
78102557
78102557
.78102557

.9372402
.9372402
.9372402

5057764
5057764
5057764

.92863798
.92863798
.92863792

27827926
.27827926
27827926

74977271
78977271
74977271

.28930363
.22930363
.22930263

.43431567
.43431567
.43431567

.15736223
.15736223
.15736223

.4186055¢
.4186055¢
41860554

49652607
.49652607
.49652607

.84075393
.84075393
.84075393

72935755
72935755
72935755

.55748743
.55745743
.55745743

99675455
99675455
99675455

.09286643]
.0s286643]
.03286643]1

.67310304]
.67310304]
.67310304]1

.78274838]
.78274838]
.78272838]]

L0231]
02318]
.s02318 11

.23437043]
.23237043]
23437043111

OEBPS/Image00091.gif
hbBwodatbdwhko

.
s,
-7,
071068
e,
1.
1a.
.
1a.
071068
ER
0.

Points
o0se382
307398
071062

612920
098791
284277
570566
323631

071062
982851

e

-7,
071068
.000000
11,
.
.
.000000
071068
ER
000000

Rank
000000
000000
071062

66667
333333
333333

071062

Year

.618350
.872083
071068
071068
.618350
.872083
.872983
618350
.872083
071068
071068
.618950

OEBPS/Image00092.gif
heSawmero

Points
10
17
a5
53
e
36
&
28

Rank School

PR

Year
2014
2015
201¢
2015
2016
2017
2016
2017

OEBPS/Image00089.gif
Points
School

B oW

Rank

Year

OEBPS/Image00090.gif
Scnool

ooy

122
107
222
130

0.
s3.
ss.
65.

std

25.436135
34625232
22.752289

9.899495

OEBPS/Image00088.gif
Year
2014
2015
2016
2017

Name:

39,
s1.
77.
s2.

Poin:

dtype:

float6s

OEBPS/Image00086.gif
2014

Points
0 10
2 29
A a5
s 72
2015
Points
1 17
s 78
s 53
10 ss
2016
Points
6 e
s &
2017
Points
7 36
11 28

Rank School

1

2
s
.

Rank School
2

s
.
1

Rank School

1
2

Rank School
1
2

coww

coww

Year
201¢
201¢
201¢
201¢

Year
2015
2015
2015
2015

Year
2016
2016

Year

c 2017
a 2017

OEBPS/Image00087.gif
Points Rank School Year
e 1 c 2016
67 2 A 2016

OEBPS/Image00084.gif
{'B': Inté4Index([2, 3], dtype='int4'), 'A': IntééIndex([0, 1, 8, 11], dtype
nt64'), 'C': Int64Index([4, 5, 6, 7], dtype='int64'), 'D': Inté4Index([2, 101, d
type='inté4')}

OEBPS/Image00085.gif
{('A', 2016): Int64Index([E], dtype='inté4'), ('A', 2017): Inté4Index([11], dtyp
e='intés’), ('C', 2016): Incé4lndex([6], dtype='inté4'), ('B', 2014): InvééIndex
([2], deype='intés’), ('C', 2017): Incé4lndex([7], dtype='intés'), ('B', 2018):
Int6Index([3], dtype='intéd'), ('C', 2014): Inté4Index([4], dtype='intéd'), ('C
', 2015): IntééIndex([S], dtype='inté4'), ('A', 2014): Incé4lndex([0], dtype='in
©64'), ('A', 2015): Ince4lndex([1], dvype='intéé’), ('D', 2015): Incé4Index([10]
, dtype='inté4'), ('D', 2014): Inté4Index([9], dtype='intéd')}

OEBPS/Image00082.gif
BRoodoanewnko

Points Rank School Year

10 1 a 201
17 2 a 2015
29 2 3 201
78 s 3 2015
a5 s c 2012
53 . c 2015
e 1 c 2016
36 1 c 2017
& 2 a 2016
72 . D 2012
se 1 D 2015
28 2 A 2017

OEBPS/Image00083.gif
<pandas.core.groupby.groupby.DataFrameGroupBy object at 0x000000000850EDDS>

OEBPS/Image00080.gif
2019-01-12 00:00:00

OEBPS/Image00081.gif
[datetime.time (3, 0) datetime.time(8, 30) datetime.time(10, 0)
datetime.time (10, 30) datetime.cime (11, 0) datetime.time(1l, 30)]

OEBPS/Image00078.gif
Course_ID
scr
co7
=RD
1cs
crc
scr
co7
=RD
1cs
cTc

Marks
26
52
26
&
78
50
e2
78
&6
sq

Nicholas
Michelle
Joyee
Alice
David
Emily
Tony
Duncan
Ben
Betty

OEBPS/Image00079.gif
Course_ID
scr
co7
=RD
1cs
crc
scr
co7
=RD
1cs
crc
scr
co7
=RD
1cs

scr
co7
=RD
1cs

Marks
26
52
26
&
78
50
e2
78
&6
se
26
52
26
&
78
50
e2
78
&6
sq

Nicholas
Michelle
Joyee
Alice
David
Emily
Tony
Duncan
Ben
Betty
Nicholas
Michelle
Joyee
Alice
David
Emily
Tony
Duncan
Ben
Betty

OEBPS/Image00077.gif
Course_ID
scr
co7
=RD
1cs
cTc

Marks
26
52
26
&
78

Name
Nicholas
Michelle
Joyee
Alice
David

Course_ID
scr
co7
=RD
1cs
cTc

Marks
50
e2
78
&6
sq

Emily
Tony
Duncan
Ben
Betty

OEBPS/Image00075.gif
Course_ID
scr
co7
=RD
1cs
crc
scr
co7
=RD
1cs
crc

Marks
26
52
26
&
78
50
e2
78
&6
54

Nicholas
Michelle
Joyee
Alice
David
Emily
Tony
Duncan
Ben
Betty

OEBPS/Image00076.gif
Course_ID
scr
co7
=RD
1cs
crc
scr
co7
=RD
1cs
crc

Marks
26
52
26
&
78
50
e2
78
&6
54

Nicholas
Michelle
Joyee
Alice
David
Emily
Tony
Duncan
Ben
Becey

OEBPS/Image00073.gif
Course_ID
scr
co7
=RD
1cs

Name x Reg x Name y Reg y

Nicholas
Michelle
Joyee
Alice
David

3420
3930
s268
3428
3412

Emily
Tony
Duncan
Ben
Betty

3420
3930
s268
3428
3412

OEBPS/Image00074.gif
Course_ID
scr
co7
=RD
1cs

Neme x Reg_x Name_y Reg_y

Nicholas
Michelle
Joyee
Alice
David

3420
3930
s268
3428
3412

Emily
Tony
Duncan
Ben
Betty

3420
3930
s268
3428
3412

OEBPS/Image00071.gif
Course_ID
scr
co7
=RD
1cs

Name x Reg x Name y Reg_y

Nicholas
Michelle
Joyee
Alice
David

3420
3930
s268
3428
3412

Emily
Tony
Duncan
Ben
Betty

3420
3930
s268
3428
3412

OEBPS/Image00072.gif
Course_ID
scr
co7
=RD
1cs

Neme x Reg_x Name_y Reg_y

Nicholas
Michelle
Joyee
Alice
David

3420
3930
s268
3428
3412

Emily
Tony
Duncan
Ben
Betty

3420
3930
s268
3428
3412

OEBPS/Image00069.gif
Course_ID
scr
co7
=RD
1cs

Course_ID
scr
co7
=RD
1cs

Nicholas
Michelle
Joyee
Alice
David

Emily
Tony
Duncan
Ben
Betty

Reg
3420
3930
s268
3428
3412

Reg
3420
3930
s268
3428
3412

OEBPS/Image00070.gif
Course_ID
scr
co7
=RD
1cs

Name_x.
Nicholas
Michelle
Joyee
Alice
David

Reg
3420
3930
s268
3428
3412

Name_y
Emily
Tony
Duncan
Ben
Betty

OEBPS/Image00068.gif
Course_ID_x
scr
co7
=RD
1cs
crc

Name_x
Nicholas
Michelle
Joyee
Alice
David

Reg Course ID_y Name y

3420
3930
s268
3428
3412

1cT
Eng
scC
BsC
an

Emily
Tony
Duncan
Ben
Betty

OEBPS/Image00066.gif
Initial DataFrame
1

EBwvmaan

1
1

After Replacement:

12
o 0 &
110 7
2 2 e
EREETT
4 2 10
5 5 110

OEBPS/Image00067.gif
Course_ID
scr
co7
=RD
1cs

Course_ID
Icr
Eng
scC
BsC

Nicholas
Michelle
Joyee
Alice
David

Emily
Tony
Duncan
Ben
Betty

Reg
3420
3930
s268
3428
3412

Reg
3420
3930
s268
3428
3412

OEBPS/Image00064.gif
Famopooe

Fhoae

0

0.
0.
0.
o.
0.

1

.245438

Nax

Lse8123

Nax

.432a8
977788

Nax
so2s28

1
245438
sas123
432449
577788
s02828

0
After dropping:

2

.31257¢

Nax

.016802

Nax

.210797
.306018

NaN
263627

2

312572
.016802
.210797
.306018
263627

3

.993202

Nax

.702081

NaN

.379072
.0ss692

NaN

.522707

s

.993202
-1,
379072
0.
522707

702031

ossg9e

OEBPS/Image00065.gif
1 2 3

0.398976 2.185052 -0.089295
Nax NaN Nax
-0.573940 -0.332511 -0.82657¢
Nax NaN Nax

.141063 -0.728065 -0.47328%

-0.084159 -0.439285 -0.529925

NaN Nax Nax
-0.360735 0.442748 -0.345643

After droppin

Empty DataFrame

Columns: [1

Index: [a, b, ¢, d, e, £, g, hl]

pPamopooe

OEBPS/Image00062.gif
1

NaN

Nax

Nax

Famopooe

After £illin

1
-2.835950
-2.835950
-0.207322

-0.536339
-1.750367 -
-1.750367 -

Famopooe

-2.835950 0.
-0.207322 0.

-0.536339 0.
-1.750367 -1.

0.032185 1.

0
0
0
-0.207322 0.
0
1
1

2
873407
Nax
708696
NaN
471911
121623
NaN
537532

2

.873207
.873207
708696

708696

471811
.121623
.121623
0.034195 1.

537532

-0

3
.040827
Nax
.401188
NaN
.248253
.sese32
Nax
.223526

s
.040427
04027
.a01188
.a01188
.248253
.sese32
.sese32
223526

OEBPS/Image00063.gif
1

a -1.057132 1.
o Nax
c 0.6e3142 -1.
a NaN
e 0.264505 -1.
£ 1.480712 -1.
g ax
n 0.825951 -1.
After £illin

1
a -1.057132 1.
b 0.6¢3142 -1.
c 0.6e3142 -1.
a4 0.264505 -1.
e 0.264505 -1.
£ 1.480712 -1.
g 0.823951 -1.
h 0.825951 -1.

2
730330
Nax
093226
Nax
333950
107457
Nax
348411

2
730330
093226
093226
333950
333950
107457
343411
349411

ER
-1,
-1,
-1,
-1,
.582670
.aa184e
441844

3

JECLEEN

Nax

.8a5123

NaN

.171061
.582670

Nax

.aa18ae

s
330438
sas123
sas123
171061
171061

OEBPS/Image00060.gif
NaN
NaN
NaN
NaN
NaN
NaN

Nax
NaN
NaN
NaN
NaN
NaN

OEBPS/Image00061.gif
1
2 0.332853
b NaN
c -2.303102

0.

1

Replacing Nalls

1
2 0.332853
b 0.000000

¢ -2.303102

0.
o.
1.

2
593073 0.
Nax
198966 0.

with 10

2
593073 0.
000000 0.
198966 -0.

3
124331

Nax
515339

s
124331
000000
515339

OEBPS/Image00058.gif
True
False
True
False
True
True
False
True
Name: 1, dtype: bool

pPamopooe

OEBPS/Image00059.gif
1

a -0.082785 0.
5 NaN
c -0.327938 0.
a NaN
e -0.346074 0.
£ 0.260836 0.
i ax
n 0.280416 0.

-0.215495853607

2
17699
Nax
278305
Nax
556470
265070
Nax
268314

ER
-1,

3

L9s2718

Nax

.322008

NaN
713877
g93247

Nax

.147562

OEBPS/Image00055.gif
0w
PERERY

OEBPS/Image00056.gif
Famopooe

1

.370168

Nax

.612286

Nax

.212198
781833

Nax

.355051

2

.540662

Nax

.18923¢

NaN

637563
.0s0152

Nax

.294298

3

003754

NaN

.322793

NaN

.115908
.995391

Nax

.072919

OEBPS/Image00053.gif
e
R

OEBPS/Image00054.gif
LR
R

OEBPS/Image00051.gif
NNNe RO DR

B

.203196
.s63418
.252707
.249253
.884653
.132916
732897
.165817
.8s8268
714554

ER
o.
0.
o.
o.
0
0.
0.
.
1.

a
311887
297778
381367
290893
788978
751513
528236
388451
708258
617339

OEBPS/Image00052.gif
R

2
743378
.113240
717761
.010062
.130536
536411
.301000
765943
.281412
.418827

B

.421473
.249552
792391
.108668
.048330
.875315
772611
.158278
.201815
166441

OEBPS/Image00049.gif
ER
-1,
-1,
.200161
.362052
.526408
227372
.
718670
1.

R

B
356508
112136
572905

15579

846540

2.
0.
1.
-1,
1.
2.
o.
0.
0.
0.

a
213020
111403
G231
128518
sss508
038493
338751
323388
222028
555890

OEBPS/Image00050.gif
Booa0e s NN

3

173667
666772
.375995
.90258¢
.0s8155
.400058
642643
029708
.656923
616988

0.
0.
0.
o.
0.
o.
0.
o.
0.
0.

2
587960
g62022
993366
432519
1s8218
222036
520758
050463
155241
102053

OEBPS/Image00057.gif
b
a4 True
£
i
o

OEBPS/Image00124.gif
Age 1.143198
Points -0.328993
dtype: floaté4d

OEBPS/Image00048.gif
80

° °
8 EJ

fouanbaiy

20

OEBPS/Image00123.gif
Age 8.474561
Points 0.622449
dtype: float64

OEBPS/Image00126.gif
<class 'pandas.core.series.Series'>
2018-01-02 1039.0¢
2018-02-02 1031.35

2018-03-02 1029.7
2018-02-02 1020.2
2018-05-02 1012.3

2015-06-02 1025.06
2018-07-02 1032.32
2018-08-02 1019.7
2018-08-02 1024.2
2018-10-02 1026.63
2018-11-02 1038.0¢

2018-12-02 1022.4
2018-02-13 1012.7
2018-02-1¢ 1016.2

2018-02-15 1022.87
2018-02-16 1039.0¢
2018-02-17 1031.35
2018-02-18 1029.7
2018-02-13 1020.8
2018-02-20 1022.88
2018-02-21 1039.0¢
2018-02-22 1031.35

2018-03-23 1161.3
2015-03-26 1167.6
2018-03-27 1155.25
2018-03-2¢ 1154.0

Name: MonthDate\tPrice, dtype: object

OEBPS/Image00125.gif
2018-01-02 1039.04
2018-02-02 1031.35
2018-03-02 1029.70
2018-02-02 1020.80
2018-05-02 1012.30
Name: MonthbDate\tPrice, dtype: floatéd

OEBPS/Image00127.gif
2018-01-02 1039.04
2018-02-02 1031.35
2018-03-02 1029.70
2018-04-02 1020.80
2018-05-02 1012.30
2018-06-02 1025.06
2018-07-02 1032.32
2018-08-02 1018.70
2018-09-02 1022.80
2018-10-02 1026.63
Name: MonthDate\tPrice, dtype: floatéd

OEBPS/Image00044.jpg

OEBPS/Image00045.gif
10

0.8

0.6

0.4

02

0.0

02

0.4

0.6

0.8

OEBPS/Image00042.gif
a

0.666982
-1.877027
~0.512841
-0.539151

B

c

2.095155 -1.81553¢

0.611646

0.561116

0.130243 -0.145257

-0.783617

0.210482

OEBPS/Image00118.gif
2018-01-01
2018-01-02
2018-01-03
2018-01-0¢
2018-01-05
2013-01-06
2018-01-07
2018-01-08
2018-01-09
2018-01-10

2018-01-01
2018-01-02
2018-01-03
2018-01-0¢
2018-01-05
2013-01-06
2018-01-07
2018-01-08
2018-01-09
2018-01-10

0.
.
.929830
.104768
0.
.
-1,
.100847
.843205
367997

0.
2.
0.
.205650
787227
-1,
2.
0.
.936553
312148

a
588206
28980

247433
065811
007598

a
588206
217186
287295

208475
320842
572463

ER
0.

o.
-1,
0.

o.
0.
0.
-1,

o.

ER
-1,
-1,
0.
-1,
0.
0.
0.
2.
-1,

B
524753
041222
352153
058378
ses22e
517365
se7s8e
767505
117721
19015¢

B
524753
565974
213821
728447
392453
527242
755748
23802
773110
695071

0.
0.
.
-1,
.223370
.945367
1323753
.939322
.969745
381883

c

.931670
.612110
.791841
056553
621622
377896
.32123¢
759807
.408318
733371

c
531670
313560
111001
235884

D

.910458
.510155
.868536
.532548
.6a2521
.01287¢
.26403¢
771642
008437
.409735

D

.910458
.420643
.289178
.913240
760565
.122885
.393360
.522283
La59172
646529

OEBPS/Image00043.gif
0.8

0.6

0.4

02

0.0

OEBPS/Image00040.gif
0&a 0.213439
3 0.762255
¢ -1.071350

Neme: 0, doype: floatésd
13 0.363875

5 1.10081¢

¢ -2.123¢70

Neme: 1, dtype: floatés

23 0.5%6263
5 -0.9s6e51

c -0.758337

Neme: 2, dype: floatés
sa 0.832008

5 0.200238

c -0.79883¢

MName: 3, dtype: floaté4d

OEBPS/Image00120.gif
2018-01-01
2018-01-02
2018-01-03
2018-01-0¢
2018-01-05
2013-01-06
2018-01-07
2018-01-08
2018-01-09
2018-01-10

2018-01-01
2018-01-02
2018-01-03
2018-01-0¢
2018-01-05
2013-01-06
2018-01-07
2018-01-08
2018-01-09
2019-01-10

1
0.
0.

o.
0.

o.
0.
-1,

o.
0.

1
1
1

0.

.

-1,

2.

0.

2.

1.

2
107604
418033
513840
15319
362500
207142
217738
374733
506636
se1ase

E
341090
202250
510347
150316
438135
356991
153405
382064
120393
148661

e

.341090
061160
.108097
.319573
.226658
.189240
.121886
.sez652
.se7082
.150255

c

.a63728
.640823
.225123
.1s6828
.522792
.6206s2
.se1078
.31158¢
.ess8as
.288350

0
0
0

0.
1

-1,
0
0
0
1

c
a63728
177095
582300
572567
513058
s13180
587200
320397
ses22e
213705

D

929737
L425837
0.
0.
.s28382
0.
0.
.959118
0.
.638330

os2s65
028208

230103
726504

793626

OEBPS/Image00041.gif
Pandas (Index=0,
5)

Pandas (Index=1,
s085)

Pandas (Index=2,
503)

Pandas (Index=3,

)

A=1.2574717939786884, B=0.3095308502484736,

~0.4755765150391845, B=2.959827761954603,

€=0.3924256806591483

~0.46063944794868955, B=-1.2288814290286088, C=-0.337251554287

~0.45373061153073563, B=0.8279515144917616, C=0.38380700008241

c=-2.203634841651581

OEBPS/Image00119.gif
2019-01-01
2019-01-02
2019-01-03
2019-01-0¢
2019-01-05
2013-01-06
2019-01-07
2019-01-08
2019-01-08
2019-01-10
2019-01-01
2019-01-02
2019-01-03
2019-01-0¢
2019-01-05
2013-01-06
2019-01-07
2019-01-08
2019-01-08
2019-01-10

2

0.62733¢ 0.
1.418859 0.
0.035732 2.
124817 1.
.128068 -0.
.163633 -0.
.49770¢ -1.
.825255 0.
.293262 -0.
.221522 -0.

-1
-1

0
-1
-0

0
-1

0.
0.
2.
0.
.

1.
-1,
0.
-1,
0.

&71362
255608
29662
so1188
473713
096269
579295
702567
350515
622833

Freq: D, Name: B, dtype:

B
&71362 0
415753 0.
574060 -2.
357117 1
256771 1
004077 0.
318447 -1,
617957 0.
650025 0.
590765 0.
floates

c

.189572

475981
351475

047307
.305698

228191
392091
021414
371585
732057

0.
o.
0.
0.
0.
o.
o.
0.
-1,
o.

D
205082
625030
G42666
316525
388722
136102
205441
260873
245197
163905

OEBPS/Image00038.gif
KM N ©a

OEBPS/Image00122.gif
BRro®SaewN KO

Age Name

25.0 Alice
NaN Soss
NeN Charles
NaN David
NaN Gasper
NaN Joyee
NaN Lee
NaN Mary

NN Michelle
NN Nicholas
NaN Simon
NaN Steve

OEBPS/Image00039.gif
A0 0.321738
1 0.21975¢

2 -1.23290¢

3 -1.693008

Name: B, dtype: floatés
50 0.212267

1 1.s92e58

2 -0.220773

s 2.a17782

Name: B, dtype: floatés
co 0.202950

1 -0.13320¢

2 -0.a91785

s -0.2247170

Name: C, dtype: floaté4

OEBPS/Image00121.gif
Mean Values for the Distribution:
age 32.000000

Points 3.606667

doype: floates

Median Values for the Distribution
age 29.00
Points 5.73
dtype: floatéd

OEBPS/Image00046.jpg
No<

OEBPS/Image00047.gif
3.0

2.5

2.0

15

10

05

0.0

OEBPS/Image00033.gif
Nicholas
Michelle
Joyee
David

Dept.
1cT

Agenc
Accounting
Engineering

OEBPS/Image00034.gif
1 Michelle
2 Joyee
3 David

Age
25
28
32

OEBPS/Image00031.gif
Name RAge Salary Dept
0 Nicholas 26 1200 ICT

OEBPS/Image00129.gif
2018-02-02 1031.35
2018-02-13 1012.70
2018-02-1¢ 1016.80
2018-02-15 1022.87
2018-02-16 1038.0¢
2018-02-17 1031.35
2018-02-18 1029.70
2018-02-19 1020.80
2018-02-20 1022.88
2018-02-21 1039.04
2018-02-22 1031.35
Name: MonthDate\rPrice drvne: £loarEd.

OEBPS/Image00032.gif
Salary
1200
280
1150

OEBPS/Image00128.gif
2018-02-17 1031.35
2018-02-18 1029.70
2018-02-13 1020.80
2018-02-20 1022.88
2018-02-21 1039.0¢
2018-02-22 1031.35
2018-03-23 1161.30
2015-03-26 1167.60
2018-03-27 1155.25
2018-03-28 1152.00
Name: MonthDate\tPrice, dtype: floatéd

OEBPS/Image00029.jpg
"7 workers - Notepad

File Edit Format View Help

Name, Age, Salary, Dept
Nicholas 26,1200, ICT
ichelle) 25,850, Agent
Joyce, 28,980, AcCounting
bavid;32,1150,Engineering

OEBPS/Image00131.jpg
1160

1140

1120

1100

1080

1060

1040

1020

2018-02

2018-04

2018-06

2018-08

2018-10

2018-12

OEBPS/Image00030.gif
Nicholas
Michelle
Joyee
David

Age
26
25
28
32

Salary
1200
50
280
1150

Dept
1cT

Agenc
Accounting
Engineering

OEBPS/Image00130.gif
count 26.000000

mean 1047.262308
st 49.424667
min 1012.300000
25¢ 1022.520000
s0% 1029.700000
75% 1038.790000
max 1167.600000

Name: MonthDate\tPrice, dtype: float64

OEBPS/Image00134.jpg
PYTHON
FOR DATA
ANALYSIS

For By

OEBPS/Image00028.gif
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x & (major_axis) x 3 (minor_axis)
Items axis: dfl to df2
Major_axis axis: 0 to 3
Minor axis axis: 0 to 2

OEBPS/Image00037.gif
Name Retire
Daniel 2023
Josepn 2043

James 2048

OEBPS/Image00035.gif
8
Name

1 Daniel
2 Joyce
3 Joseph
4 Joseph

5 Luy

6 George
7 James.
8 Agnes
9 Bosco
10 Jayden

Age

c

BRELEBRUEG Y

3

D
Retire

OEBPS/Image00036.gif
weSateWwhEO

Booaanewnesd

Name
Daniel
Joyee
Josepn
Josepn
Lucy
George
James
Agnes
Sosco
Jayden

Age
ss
a5
55
35
a2
s0
30
20
33
35

Retire
2023
2033
2023
2083
2036
2028
2088
205¢
2085
2043

