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Preface

This is, on the surface, a book about writing device drivers for the

Linux system. That is a worthy goal, of course; the flow of new

hardware products is not likely to slow down anytime soon, and

somebody is going to have to make all those new gadgets work with

Linux. But this book is also about how the Linux kernel works and how

to adapt its workings to your needs or interests. Linux is an open

system; with this book, we hope, it is more open and accessible to a

larger community of developers.

This is the third edition of Linux Device

Drivers. The kernel has changed greatly since this book

was first published, and we have tried to evolve the text to match.

This edition covers the 2.6.10 kernel as completely as we are able.

We have, this time around, elected to omit the discussion of backward

compatibility with previous kernel versions. The changes from 2.4 are

simply too large, and the 2.4 interface remains well documented in

the (freely available) second edition.

This edition contains quite a bit of new material relevant to the 2.6

kernel. The discussion of locking and concurrency has been expanded

and moved into its own chapter. The Linux device model, which is new

in 2.6, is covered in detail. There are new chapters on the USB bus

and the serial driver subsystem; the chapter on PCI has also been

enhanced. While the organization of the rest of the book resembles

that of the earlier editions, every chapter has been thoroughly

updated.

We hope you enjoy reading this book as much as we have enjoyed

writing it.
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Jon's Introduction

The publication of this edition coincides with my twelth year of

working with Linux and, shockingly, my twenty-fifth year in the

computing field. Computing seemed like a fast-moving field back in

1980, but things have sped up a lot since then. Keeping

Linux Device Drivers up to date is increasingly

a challenge; the Linux kernel hackers continue to improve their code,

and they have little patience for documentation that fails to keep

up.

Linux continues to succeed in the market and, more importantly, in

the hearts and minds of developers worldwide. The success of Linux is

clearly a testament to its technical quality and to the numerous

benefits of free software in general. But the true key to its

success, in my opinion, lies in the fact that it has brought the fun

back to computing. With Linux, anybody can get their hands into the

system and play in a sandbox where contributions from any direction

are welcome, but where technical excellence is valued above all else.

Linux not only provides us with a top-quality operating system; it

gives us the opportunity to be part of its future development and to

have fun while we're at it.

In my 25 years in the field, I have had many interesting

opportunities, from programming the first Cray computers (in Fortran,

on punch cards) to seeing the minicomputer and Unix workstation

waves, through to the current, microprocessor-dominated era. Never,

though, have I seen the field more full of life, opportunity, and

fun. Never have we had such control over our own tools and their

evolution. Linux, and free software in general, is clearly the

driving force behind those changes.

My hope is that this edition helps to bring that fun and opportunity

to a new set of Linux developers. Whether your interests are in the

kernel or in user space, I hope you find this book to be a useful and

interesting guide to just how the kernel works with the hardware. I

hope it helps and inspires you to fire up your editor and to make our

shared, free operating system even better. Linux has come a long way,

but it is also just beginning; it will be more than interesting to

watch�and participate in�what happens from here.
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Alessandro's Introduction

I've always enjoyed computers because they can talk

to external hardware. So, after soldering my devices for the Apple II

and the ZX Spectrum, backed with the Unix and free software expertise

the university gave me, I could escape the DOS trap by installing

GNU/Linux on a fresh new 386 and by turning on the soldering iron

once again.

Back then, the community was a small one, and there

wasn't much documentation about writing drivers

around, so I started writing for Linux Journal.

That's how things started: when I later discovered I

didn't like writing papers, I left the univeristy

and found myself with an O'Reilly contract in my

hands.

That was in 1996. Ages ago.

The computing world is different now: free software looks like a

viable solution, both technically and politically, but

there's a lot of work to do in both realms. I hope

this book furthers two aims: spreading technical knowledge and

raising awareness about the need to spread knowledge.

That's why, after the first edition proved

interesting to the public, the two authors of the second edition

switched to a free license, supported by our editor and our

publisher. I'm betting this is the right approach to

information, and it's great to team up with other

people sharing this vision.

I'm excited by what I witness in the embedded arena,

and I hope this text helps by doing more; but ideas are moving fast

these days, and it's already time to plan for the

fourth edition, and look for a fourth author to help.
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Greg's Introduction

It seems like a long time ago that I picked up the first edition of

this Linux Device Drivers book in order to

figure out how to write a real Linux driver. That first edition was a

great guide to helping me understand the internals of this operating

system that I had already been using for a number of years but whose

kernel had never taken the time to look into. With the knowledge

gained from that book, and by reading other

programmers' code already present in the kernel, my

first horribly buggy, broken, and very SMP-unsafe driver was accepted

by the kernel community into the main kernel tree. Despite receiving

my first bug report five minutes later, I was hooked on wanting to do

as much as I could to make this operating system the best it could

possibly be.

I am honored that I've had the ability to contribute

to this book. I hope that it enables others to learn the details

about the kernel, discover that driver development is not a scary or

forbidding place, and possibly encourage others to join in and help

in the collective effort of making this operating system work on

every computing platform with every type of device available. The

development procedure is fun, the community is rewarding, and

everyone benefits from the effort involved.

Now it's back to making this edition obsolete by

fixing current bugs, changing APIs to work better and be simpler to

understand for everyone, and adding new features. Come along; we can

always use the help.
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Audience for This Book

This book should be an interesting source of information both for

people who want to experiment with their computer and for technical

programmers who face the need to deal with the inner levels of a

Linux box. Note that "a Linux box"

is a wider concept than "a PC running

Linux," as many platforms are supported by our

operating system, and kernel programming is by no means bound to a

specific platform. We hope this book is useful as a starting point

for people who want to become kernel hackers but

don't know where to start.

On the technical side, this text should offer a hands-on approach to

understanding the kernel internals and some of the design choices

made by the Linux developers. Although the main, official target of

the book is teaching how to write device drivers, the material should

give an interesting overview of the kernel implementation as well.

Although real hackers can find all the necessary information in the

official kernel sources, usually a written text can be helpful in

developing programming skills. The text you are approaching is the

result of hours of patient grepping through the kernel sources, and

we hope the final result is worth the effort it took.

The Linux enthusiast should find in this book enough food for her

mind to start playing with the code base and should be able to join

the group of developers that is continuously working on new

capabilities and performance enhancements. This book does not cover

the Linux kernel in its entirety, of course, but Linux device driver

authors need to know how to work with many of the

kernel's subsystems. Therefore, it makes a good

introduction to kernel programming in general. Linux is still a work

in progress, and there's always a place for new

programmers to jump into the game.

If, on the other hand, you are just trying to write a device driver

for your own device, and you don't want to muck with

the kernel internals, the text should be modularized enough to fit

your needs as well. If you don't want to go deep

into the details, you can just skip the most technical sections, and

stick to the standard API used by device drivers to seamlessly

integrate with the rest of the kernel.
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Organization of the Material

The book introduces its topics in ascending order of complexity and

is divided into two parts. The first part (Chapters 1-11) begins with

the proper setup of kernel modules and goes on to describe the

various aspects of programming that you'll need in

order to write a full-featured driver for a char-oriented device.

Every chapter covers a distinct problem and includes a quick summary

at the end, which can be used as a reference during actual

development.

Throughout the first part of the book, the organization of the

material moves roughly from the software-oriented concepts to the

hardware-related ones. This organization is meant to allow you to

test the software on your own computer as far as possible without the

need to plug external hardware into the machine. Every chapter

includes source code and points to sample drivers that you can run on

any Linux computer. In Chapter 9 and Chapter 10, however, we ask you to

connect an inch of wire to the parallel port in order to test out

hardware handling, but this requirement should be manageable by

everyone.

The second half of the book (Chapters 12-18) describes block drivers

and network interfaces and goes deeper into more advanced topics,

such as working with the virtual memory subsystem and with the PCI

and USB buses. Many driver authors do not need all of this material,

but we encourage you to go on reading anyway. Much of the material

found there is interesting as a view into how the Linux kernel works,

even if you do not need it for a specific project.
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Background Information

In order to be able to use this book, you need to be confident with C

programming. Some Unix expertise is needed as well, as we often refer

to Unix semantics about system calls, commands, and pipelines.

At the hardware level, no previous expertise is required to

understand the material in this book, as long as the general concepts

are clear in advance. The text isn't based on

specific PC hardware, and we provide all the needed information when

we do refer to specific hardware.

Several free software tools are needed to build the kernel, and you

often need specific versions of these tools. Those that are too old

can lack needed features, while those that are too new can

occasionally generate broken kernels. Usually, the tools provided

with any current distribution work just fine. Tool version

requirements vary from one kernel to the next; consult

Documentation/Changes in the source tree of the

kernel you are using for exact requirements.
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Online Version and License

The authors have chosen to make this book freely available under the

Creative Commons

"Attribution-ShareAlike" license,

Version 2.0:

	http://www.oreilly.com/catalog/linuxdrive3
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Conventions Used in This Book

The following is a list of the typographical conventions used in this

book:



	Italic

	
Used for file and directory names, program and command names,

command-line options, URLs, and new terms





	Constant Width

	
Used in examples to show the contents of files or the output from

commands, and in the text to indicate words that appear in C code or

other literal strings





	Constant Width Italic

	
Used to indicate text within commands that the user replaces with an

actual value





	Constant Width Bold


	
Used in examples to show commands or other text that should be typed

literally by the user





Pay special attention to notes set apart from the text with the

following icons:

		[image: ]	
This is a tip. It contains useful supplementary information about the

topic at hand.






 

		[image: ]	
This is a warning. It helps you solve and avoid annoying problems.
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Using Code Examples

This book is here to help you get your job done. In general, you may

use the code in this book in your programs and documentation. The

code samples are covered by a dual BSD/GPL license.

We appreciate, but do not require, attribution. An attribution

usually includes the title, author, publisher, and ISBN. For example:

"Linux Device Drivers, Third

Edition, by Jonathan Corbet, Alessandro Rubini, and Greg

Kroah-Hartman. Copyright 2005 O'Reilly Media, Inc.,

0-596-00590-3."
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We'd Like to Hear from You

Please address comments and questions concerning this book to the

publisher:

	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)


We have a web page for this book, where we list errata, examples, and

any additional information. You can access this page at:

	http://www.oreilly.com/catalog/linuxdrive3


To comment or ask technical questions about this book, send email to:

	bookquestions@oreilly.com


For more information about our books, conferences, Resource Centers,

and the O'Reilly Network, see our web site at:

	http://www.oreilly.com
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Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the book is available online through the O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books.

It's a virtual library that lets you easily search

thousands of top tech books, cut and paste code samples, download

chapters, and find quick answers when you need the most accurate,

current information. Try it for free at http://safari.oreilly.com.
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Chapter 1. An Introduction to Device Drivers

[bookmark: linuxdrive3-CHP-1-ITERM-3961]One of the many advantages of free

operating systems, as typified by Linux, is that their internals are

open for all to view. The operating system, once a dark and

mysterious area whose code was restricted to a small number of

programmers, can now be readily examined, understood, and modified by

anybody with the requisite skills. Linux has helped to democratize

operating systems. The Linux kernel remains a large and complex body

of code, however, and would-be kernel hackers need an entry point

where they can approach the code without being overwhelmed by

complexity. Often, device drivers provide that gateway.

Device drivers take on a special role in the Linux kernel. They are

distinct "black boxes" that make a

particular piece of hardware respond to a well-defined internal

programming interface; they hide completely the details of how the

device works. User activities are performed by means of a set of

standardized calls that are independent of the specific driver;

mapping those calls to device-specific operations that act on real

hardware is then the role of the device driver. This programming

interface is such that drivers can be built separately from the rest

of the kernel and "plugged in" at

runtime when needed. This modularity makes Linux drivers easy to

write, to the point that there are now hundreds of them available.

There are a number of reasons to be interested in the writing of

Linux device drivers. The rate at which new hardware becomes

available (and obsolete!) alone guarantees that driver writers will

be busy for the foreseeable future. Individuals may need to know

about drivers in order to gain access to a particular device that is

of interest to them. Hardware vendors, by making a Linux driver

available for their products, can add the large and growing Linux

user base to their potential markets. And the open source nature of

the Linux system means that if the driver writer wishes, the source

to a driver can be quickly disseminated to millions of users.

This book teaches you how to write your own drivers and how to hack

around in related parts of the kernel. We have taken a

device-independent approach; the programming techniques and

interfaces are presented, whenever possible, without being tied to

any specific device. Each driver is different; as a driver writer,

you need to understand your specific device well. But most of the

principles and basic techniques are the same for all drivers. This

book cannot teach you about your device, but it gives you a handle on

the background you need to make your device work.

As you learn to write drivers, you find out a lot about the Linux

kernel in general; this may help you understand how your machine

works and why things aren't always as fast as you

expect or don't do quite what you want. We introduce

new ideas gradually, starting off with very simple drivers and

building on them; every new concept is accompanied by sample code

that doesn't need special hardware to be tested.

This chapter doesn't actually get into writing code.

However, we introduce some background concepts about the Linux kernel

that you'll be glad you know later, when we do

launch into programming.
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1.1. The Role of the Device Driver

As a programmer, you are[bookmark: linuxdrive3-CHP-1-ITERM-3962]
[bookmark: linuxdrive3-CHP-1-ITERM-3963] able to make your own choices

about your driver, and choose an acceptable trade-off between the

programming time required and the flexibility of the result. Though

it may appear strange to say that a driver is

"flexible," we like this word

because it emphasizes that the role of a device driver is providing

[bookmark: linuxdrive3-CHP-1-ITERM-3964]mechanism, not

policy.[bookmark: linuxdrive3-CHP-1-ITERM-3965]

The distinction between mechanism and policy is one of the best ideas

behind the Unix design. Most programming problems can indeed be split

into two parts: "what capabilities are to be

provided" (the mechanism) and "how

those capabilities can be used" (the policy). If the

two issues are addressed by different parts of the program, or even

by different programs altogether, the software package is much easier

to develop and to adapt to particular needs.

For example, Unix management of the graphic display is split between

the X server, which knows the hardware and offers a unified interface

to user programs, and the window and session managers, which

implement a particular policy without knowing anything about the

hardware. People can use the same window manager on different

hardware, and different users can run different configurations on the

same workstation. Even completely different desktop environments,

such as KDE and GNOME, can coexist on the same system. Another

example is the layered structure of TCP/IP networking: the operating

system offers the socket abstraction, which implements no policy

regarding the data to be transferred, while different servers are in

charge of the services (and their associated policies). Moreover, a

server like ftpd provides the file transfer

mechanism, while users can use whatever client they prefer; both

command-line and graphic clients exist, and anyone can write a new

user interface to transfer files.

Where drivers are concerned, the same separation of mechanism and

policy applies. The floppy driver is policy free�its role is

only to show the diskette as a continuous array of data blocks.

Higher levels of the system provide policies, such as who may access

the floppy drive, whether the drive is accessed directly or via a

filesystem, and whether users may mount filesystems on the drive.

Since different environments usually need to use hardware in

different ways, it's important to be as policy free

as possible.

When writing drivers, a programmer

[bookmark: linuxdrive3-CHP-1-ITERM-3966]should

pay particular attention to this fundamental concept: write kernel

code to access the hardware, but don't force

particular policies on the user, since different users have different

needs. The driver should deal with making the hardware available,

leaving all the issues about how to use the

hardware to the applications. A driver, then, is flexible if it

offers access to the hardware capabilities without adding

constraints. Sometimes, however, some policy decisions must be made.

For example, a digital I/O driver may only offer byte-wide access to

the hardware in order to avoid the extra code needed to handle

individual bits.

You can also look at your driver from a different perspective: it is

a software layer that lies between the applications and the actual

device. This privileged role of the driver allows the driver

programmer to choose exactly how the device should appear: different

drivers can

[bookmark: linuxdrive3-CHP-1-ITERM-3967]offer different capabilities, even for

the same device. The actual driver design should be a balance between

many different considerations. For instance, a single device may be

used concurrently by different programs, and the driver programmer

has complete freedom to determine how to handle concurrency. You

could implement memory mapping on the device independently of its

hardware capabilities, or you could provide a user library to help

application

programmers[bookmark: linuxdrive3-CHP-1-ITERM-3968] implement new

policies on top of the available primitives, and so forth. One major

consideration is the trade-off between the desire to present the user

with as many options as possible and the time you have to write the

driver, as well as the need to keep things simple so that errors

don't creep in.

Policy-free drivers have a number of typical characteristics. These

include support for both synchronous and asynchronous operation, the

ability to be opened multiple times, the ability to exploit the full

capabilities of the hardware, and the lack of software layers to

"simplify things" or provide

policy-related operations. Drivers of this sort not only work better

for their end users, but also turn out to be easier to write and

maintain as well. Being policy-free is actually a common target for

software designers.

[bookmark: linuxdrive3-CHP-1-ITERM-3969]
[bookmark: linuxdrive3-CHP-1-ITERM-3970]Many

device drivers, indeed, are released together with

[bookmark: linuxdrive3-CHP-1-ITERM-3971]
[bookmark: linuxdrive3-CHP-1-ITERM-3972]
[bookmark: linuxdrive3-CHP-1-ITERM-3973]user programs to

help with configuration and access to the target device. Those

programs can range from simple utilities to complete graphical

applications. Examples include the

tunelp[bookmark: linuxdrive3-CHP-1-ITERM-3974] program, which adjusts how the parallel

port printer driver operates, and the graphical

cardctl[bookmark: linuxdrive3-CHP-1-ITERM-3975] utility that is part of the PCMCIA

driver package. Often a client library is provided as well, which

provides capabilities that do not need to be implemented as part of

the driver itself.

The scope of this book is the kernel, so we try not to deal with

policy issues or with application programs or support libraries.

Sometimes we talk about different policies and how to support them,

but we won't go into much detail about programs

using the device or the policies they enforce. You should understand,

however, that user programs are an integral part of a software

package and that even policy-free packages are distributed with

[bookmark: linuxdrive3-CHP-1-ITERM-3976]
[bookmark: linuxdrive3-CHP-1-ITERM-3977]configuration files that apply a

default behavior to the underlying mechanisms.[bookmark: linuxdrive3-CHP-1-ITERM-3978]
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1.2. Splitting the Kernel

In a Unix system, [bookmark: linuxdrive3-CHP-1-ITERM-3979] [bookmark: linuxdrive3-CHP-1-ITERM-3980]
[bookmark: linuxdrive3-CHP-1-ITERM-3981]several concurrent

processes attend to different tasks. Each

process asks for system resources, be it computing power, memory,

network connectivity, or some other resource. The

kernel is the big chunk of executable code in

charge of handling all such requests. Although the distinction

between the different kernel tasks isn't always

clearly marked, the kernel's role can be split (as

shown in Figure 1-1) into the

following parts:
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	Process management

	
[bookmark: linuxdrive3-CHP-1-ITERM-3982]The

kernel is in charge

[bookmark: linuxdrive3-CHP-1-ITERM-3983]
[bookmark: linuxdrive3-CHP-1-ITERM-3984]
[bookmark: linuxdrive3-CHP-1-ITERM-3985]
[bookmark: linuxdrive3-CHP-1-ITERM-3986]
[bookmark: linuxdrive3-CHP-1-ITERM-3987]
[bookmark: linuxdrive3-CHP-1-ITERM-3988]of creating and

destroying processes and handling their connection to the outside

world (input and output). Communication among different processes

(through signals, pipes, or interprocess communication primitives) is

basic to the overall system functionality and is also handled by the

kernel. In addition, the scheduler, which controls how processes

share the CPU, is part of process management. More generally, the

kernel's process management activity implements the

abstraction of several processes on top of a single CPU or a few of

them.





	Memory management

	
The computer's memory is a

[bookmark: linuxdrive3-CHP-1-ITERM-3989]
[bookmark: linuxdrive3-CHP-1-ITERM-3990]major resource, and the policy used

to deal with it is a critical one for system performance. The kernel

builds up a virtual addressing space for any and all processes on top

of the limited available resources. The different parts of the kernel

interact with the memory-management subsystem through a set of

function calls, ranging from the simple

malloc/free pair to much

more complex functionalities.





	Filesystems

	
[bookmark: linuxdrive3-CHP-1-ITERM-3991]Unix

is heavily based on

the[bookmark: linuxdrive3-CHP-1-ITERM-3992]

filesystem concept; almost everything in Unix can be treated as a

file. The kernel builds a structured filesystem on top of

unstructured hardware, and the resulting file abstraction is heavily

used throughout the whole system. In addition, Linux supports

multiple filesystem types, that is, different ways of organizing data

on the physical medium. For example, disks may be formatted with the

Linux-standard ext3 filesystem, the commonly used FAT filesystem or

several others.





	Device control

	
[bookmark: linuxdrive3-CHP-1-ITERM-3993]Almost every system operation

eventually maps to a physical device. With the exception of the

processor, memory, and a very few other entities, any and all device

control operations are performed by code that is specific to the

device being addressed. That code is called a device

driver. The kernel must have embedded in it a device

driver for every peripheral present on a system, from the hard drive

to the keyboard and the tape drive. This aspect of the

kernel's functions is our primary interest in this

book.





	Networking

	
[bookmark: linuxdrive3-CHP-1-ITERM-3994]Networking must

be[bookmark: linuxdrive3-CHP-1-ITERM-3995]
[bookmark: linuxdrive3-CHP-1-ITERM-3996]
[bookmark: linuxdrive3-CHP-1-ITERM-3997]

managed by the operating system, because most network operations are

not specific to a process: incoming packets are asynchronous events.

The packets must be collected, identified, and dispatched before a

process takes care of them. The system is in charge of delivering

data packets across program and network interfaces, and it must

control the execution of programs according to their network

activity. Additionally, all the[bookmark: linuxdrive3-CHP-1-ITERM-3998]
[bookmark: linuxdrive3-CHP-1-ITERM-3999] routing

[bookmark: linuxdrive3-CHP-1-ITERM-4000]
[bookmark: linuxdrive3-CHP-1-ITERM-4001]and address

resolution issues are implemented within the kernel.





[bookmark: linuxdrive3-CHP-1-FIG-1]
Figure 1-1. A split view of the kernel

[image: ]

 

[bookmark: linuxdrive3-CHP-1-SECT-2.1]
1.2.1. Loadable Modules

One of the good features of[bookmark: linuxdrive3-CHP-1-ITERM-4002] Linux is the ability to extend at

runtime the set of features offered by the kernel. This means that

you can add functionality to the kernel (and remove functionality as

well) while the system is up and running.

[bookmark: linuxdrive3-CHP-1-ITERM-4003][bookmark: linuxdrive3-CHP-1-ITERM-4004][bookmark: linuxdrive3-CHP-1-ITERM-4005]Each piece of code that can be added to

the kernel at runtime is called a

module[bookmark: linuxdrive3-CHP-1-ITERM-4006]
[bookmark: linuxdrive3-CHP-1-ITERM-4007]
[bookmark: linuxdrive3-CHP-1-ITERM-4008]. The Linux

kernel offers support for quite a few different types (or classes) of

modules, including, but not limited to, device drivers. Each module

is made up of object code (not linked into a complete executable)

that can be dynamically linked to the running kernel by the

insmod[bookmark: linuxdrive3-CHP-1-ITERM-4009]
[bookmark: linuxdrive3-CHP-1-ITERM-4010]

program and can be unlinked by the[bookmark: linuxdrive3-CHP-1-ITERM-4011]
[bookmark: linuxdrive3-CHP-1-ITERM-4012]
rmmod program.

Figure 1-1 identifies different

classes of modules in charge of specific tasks�a module is said

to belong to a specific class according to the functionality it

offers. The placement of modules in Figure 1-1 covers the most important

classes, but is far from complete because more and more

functionality[bookmark: linuxdrive3-CHP-1-ITERM-4013] [bookmark: linuxdrive3-CHP-1-ITERM-4014] [bookmark: linuxdrive3-CHP-1-ITERM-4015] in Linux is being modularized.







[bookmark: linuxdrive3-CHP-1-SECT-3]
[bookmark: linuxdrive3-CHP-1-ITERM-4016]1.3. Classes of Devices and Modules

The Linux way of looking at

devices[bookmark: linuxdrive3-CHP-1-ITERM-4017]
[bookmark: linuxdrive3-CHP-1-ITERM-4018] distinguishes

between three fundamental device types. Each module usually

implements one of these types, and thus is classifiable as a

char module, a block

module, or a network module. This

division of modules into different types, or classes, is not a rigid

one; the programmer can choose to build huge modules implementing

different drivers in a single chunk of code. Good programmers,

nonetheless, usually create a different module for each new

functionality they implement, because decomposition is a key element

of scalability and extendability.

The three classes are:

[bookmark: linuxdrive3-CHP-1-ITERM-4019][bookmark: linuxdrive3-CHP-1-ITERM-4020][bookmark: linuxdrive3-CHP-1-ITERM-4021][bookmark: linuxdrive3-CHP-1-ITERM-4022][bookmark: linuxdrive3-CHP-1-ITERM-4023][bookmark: linuxdrive3-CHP-1-ITERM-4024][bookmark: linuxdrive3-CHP-1-ITERM-4025][bookmark: linuxdrive3-CHP-1-ITERM-4026]

	Character devices

	
[bookmark: linuxdrive3-CHP-1-ITERM-4019]A

[bookmark: linuxdrive3-CHP-1-ITERM-4020]character (char) device is one that

can be accessed as a stream of bytes (like a file); a

[bookmark: linuxdrive3-CHP-1-ITERM-4021]char [bookmark: linuxdrive3-CHP-1-ITERM-4022]driver is in

charge of implementing this behavior. Such a driver usually

implements at least the open,

close, read, and

write system calls. The text console

(/dev/console) and the serial ports

(/dev/ttyS0 and friends) are examples of char

devices, as they are well represented by the stream abstraction. Char

devices are accessed by means of filesystem nodes, such as

/dev/tty1 and /dev/lp0. The

only relevant difference between a char device and a regular file is

that you can always move back and forth in the regular file, whereas

most char devices are just data channels, which you can only access

sequentially. There exist, nonetheless, char devices that look like

data areas, and you can move back and forth in them; for instance,

this usually applies to frame grabbers, where the applications can

access the whole acquired image using mmap or

lseek.





	Block devices

	
[bookmark: linuxdrive3-CHP-1-ITERM-4023]Like

char devices,[bookmark: linuxdrive3-CHP-1-ITERM-4024]

block devices are accessed by filesystem nodes in the

/dev directory. A block device is a device

(e.g., a disk) that can host a filesystem. In most Unix systems, a

block device can only handle I/O operations that transfer one or more

whole blocks, which are usually 512 bytes (or a larger power of two)

bytes in length. Linux, instead, allows the application to read and

write a block device like a char device�it permits the transfer

of any number of bytes at a time. As a result, block and char devices

differ only in the way data is managed internally by the kernel, and

thus in the kernel/driver software interface. Like a char device,

each block device is accessed through a filesystem node, and the

difference between them is transparent to the user. Block drivers

have a completely different interface to the kernel than char

drivers.





	Network interfaces

	
Any network transaction is

[bookmark: linuxdrive3-CHP-1-ITERM-4025]
[bookmark: linuxdrive3-CHP-1-ITERM-4026]made

through an interface, that is, a device that is able to exchange data

with other hosts. Usually, an interface is a

hardware device, but it might also be a pure software device, like

the loopback interface. A network interface is in charge of sending

and receiving data packets, driven by the network subsystem of the

kernel, without knowing how individual transactions map to the actual

packets being transmitted. Many network connections (especially those

using TCP) are stream-oriented, but network devices are, usually,

designed around the transmission and receipt of packets. A network

driver knows nothing about individual connections; it only handles

packets.





Not being a stream-oriented device, a network interface

isn't easily mapped to a node in the filesystem, as

/dev/tty1 is. The Unix way to

provide[bookmark: linuxdrive3-CHP-1-ITERM-4027]
[bookmark: linuxdrive3-CHP-1-ITERM-4028] access to interfaces is still by

assigning a unique name to them (such as eth0),

but that name doesn't have a corresponding entry in

the filesystem. Communication between the kernel and a network device

driver is completely different from that used with char and block

drivers. Instead of read and

write, the kernel calls functions related to

packet transmission.

[bookmark: linuxdrive3-CHP-1-ITERM-4029]
[bookmark: linuxdrive3-CHP-1-ITERM-4030][bookmark: linuxdrive3-CHP-1-ITERM-4031][bookmark: linuxdrive3-CHP-1-ITERM-4032][bookmark: linuxdrive3-CHP-1-ITERM-4033]There are other ways of

classifying driver modules that are orthogonal to the above device

types. In general, some types of drivers work with additional layers

of kernel support functions for a given type of device. For example,

one can talk of [bookmark: linuxdrive3-CHP-1-ITERM-4034]
[bookmark: linuxdrive3-CHP-1-ITERM-4035]universal

serial bus (USB) modules, serial modules, SCSI modules, and so on.

Every USB device is driven by a USB module that works with the USB

subsystem, but the device itself shows up in the system as a char

device (a USB serial port, say), a block device (a USB memory card

reader), or a network device (a USB Ethernet interface).

[bookmark: linuxdrive3-CHP-1-ITERM-4036][bookmark: linuxdrive3-CHP-1-ITERM-4037][bookmark: linuxdrive3-CHP-1-ITERM-4038][bookmark: linuxdrive3-CHP-1-ITERM-4039]Other

classes of device drivers have been added to the kernel in recent

times, including FireWire drivers and I2O drivers. In the same way

that they handled USB and SCSI drivers, kernel developers collected

class-wide features and exported them to driver implementers to avoid

duplicating work and bugs, thus simplifying and strengthening the

process of writing such drivers.

In addition to device drivers, other functionalities, both hardware

and software, are modularized in the kernel.

[bookmark: linuxdrive3-CHP-1-ITERM-4040][bookmark: linuxdrive3-CHP-1-ITERM-4041][bookmark: linuxdrive3-CHP-1-ITERM-4042]One common example is filesystems. A

filesystem type determines how information is organized on a block

device in order to represent a tree of directories and files. Such an

entity is not a device driver, in that there's no

explicit device associated with the way the information is laid down;

the filesystem type is instead a software driver, because it maps the

low-level data structures to high-level data structures. It is the

filesystem that determines how long a filename can be and what

information about each file is stored in a directory entry. The

[bookmark: linuxdrive3-CHP-1-ITERM-4043]filesystem

module must implement the lowest level of the system calls that

access directories and files, by mapping filenames and paths (as well

as other information, such as access modes) to data structures stored

in data blocks. Such an interface is completely independent of the

actual data transfer to and from the disk (or other medium), which is

accomplished by a block device driver.

If you think of how strongly a Unix system depends on the underlying

filesystem, you'll realize that such a software

concept is vital to system operation. The ability to decode

filesystem information stays at the lowest level of the kernel

hierarchy and is of utmost importance; even if you write a block

driver for your new CD-ROM, it is useless if you are not able to run

ls or cp on the data it

hosts. Linux supports the concept of a filesystem module, whose

software interface declares the different operations that can be

performed on a filesystem inode, directory, file, and superblock.

It's quite unusual for a programmer to actually need

to write a filesystem module, because the official kernel already

includes code for the most important filesystem types.[bookmark: linuxdrive3-CHP-1-ITERM-4044]







[bookmark: linuxdrive3-CHP-1-SECT-4]
1.4. Security Issues

[bookmark: linuxdrive3-CHP-1-ITERM-4045]Security is an

increasingly [bookmark: linuxdrive3-CHP-1-ITERM-4046]
[bookmark: linuxdrive3-CHP-1-ITERM-4047]
[bookmark: linuxdrive3-CHP-1-ITERM-4048]
[bookmark: linuxdrive3-CHP-1-ITERM-4049]important

concern in modern times. We will discuss security-related issues as

they come up throughout the book. There are a few general concepts,

however, that are worth mentioning now.

[bookmark: linuxdrive3-CHP-1-ITERM-4050]Any security check in the system is

enforced by kernel code. If the kernel has security holes, then the

system as a whole has holes. In the official kernel distribution,

only an authorized user can load modules; the system call

init_module checks if the invoking process

is[bookmark: linuxdrive3-CHP-1-ITERM-4051]
[bookmark: linuxdrive3-CHP-1-ITERM-4052] authorized to

load a module into the kernel. Thus, when running an official kernel,

only the superuser,[1] or an

intruder who has succeeded in becoming privileged, can exploit the

power of privileged code.
[bookmark: linuxdrive3-CHP-1-FNOTE-1][1] Technically, only somebody with

the CAP_SYS_MODULE capability can perform this

operation. We discuss capabilities in Chapter 6.


When possible, driver writers should avoid encoding security policy

in their code. Security is a policy issue that is often best handled

at higher levels within the kernel, under the control of the system

administrator. There are always exceptions, however. As a device

driver writer, you should be aware of situations in which some types

of device access could adversely affect the system as a whole and

should provide adequate controls. For example, device operations that

affect global resources (such as setting an interrupt line), which

could damage the hardware (loading firmware, for example), or that

could affect other users (such as setting a default block size on a

tape drive), are usually only available to sufficiently privileged

users, and this check must be made in the driver itself.

Driver writers must also be careful, of course, to avoid introducing

security bugs. The C programming language makes it easy to make

several types of errors. Many current security problems are created,

for example, by buffer

overrun[bookmark: linuxdrive3-CHP-1-ITERM-4053] errors, in which the programmer

forgets to check how much data is written to a buffer, and data ends

up written beyond the end of the buffer, thus overwriting unrelated

data. Such errors can compromise the entire system and must be

avoided. Fortunately, avoiding these errors is usually relatively

easy in the device driver context, in which the interface to the user

is narrowly defined and highly controlled.

Some other general security ideas are worth keeping in mind. Any

input received from user processes should be treated with great

suspicion; never trust it unless you can verify it. Be careful with

uninitialized memory; any memory obtained from the kernel should be

zeroed or otherwise initialized before being made available to a user

process or device. Otherwise, [bookmark: linuxdrive3-CHP-1-ITERM-4054]information leakage

([bookmark: linuxdrive3-CHP-1-ITERM-4055]disclosure of data,

[bookmark: linuxdrive3-CHP-1-ITERM-4056]passwords, etc.)

could result. If your device interprets data sent to it, be sure the

user cannot send anything that could compromise the system. Finally,

think about the possible effect of device operations; if there are

specific operations (e.g., reloading the firmware on an adapter board

or formatting a disk) that could affect the system, those operations

should almost certainly be restricted to privileged users.

Be careful, also, when receiving software from third parties,

especially when the kernel is concerned: because everybody has access

to the source code, everybody can break and recompile things.

Although you can usually trust precompiled kernels found in your

distribution, you should avoid running kernels compiled by an

untrusted friend�if you wouldn't run a

precompiled binary as root, then you'd better not

run a precompiled kernel. For example, a maliciously modified kernel

could allow anyone to load a module, thus opening an unexpected back

door via init_module.

Note that the Linux kernel can be compiled to have no module support

whatsoever, thus closing any module-related security holes. In this

case, of course, all needed drivers must be built directly into the

kernel itself. It is also possible, with 2.2 and later kernels, to

disable the loading of kernel modules after system boot via the

capability mechanism.







[bookmark: linuxdrive3-CHP-1-SECT-5]
1.5. Version Numbering

[bookmark: linuxdrive3-CHP-1-ITERM-4057][bookmark: linuxdrive3-CHP-1-ITERM-4058][bookmark: linuxdrive3-CHP-1-ITERM-4059]Before digging into [bookmark: linuxdrive3-CHP-1-ITERM-4060]
[bookmark: linuxdrive3-CHP-1-ITERM-4061]
[bookmark: linuxdrive3-CHP-1-ITERM-4062]programming,

we should comment on the version numbering scheme used in Linux and

which versions are covered by this book.

[bookmark: linuxdrive3-CHP-1-ITERM-4063]First of

all, note that every software package used in a

Linux system has its own release number, and there are often

interdependencies across them: you need a particular version of one

package to run a particular version of another package. The creators

of Linux distributions usually handle the messy problem of matching

packages, and the user who installs from a prepackaged distribution

doesn't need to deal with version numbers. Those who

replace and upgrade system software, on the other hand, are on their

own in this regard. Fortunately, almost all modern distributions

support the upgrade of single packages by checking interpackage

dependencies; the distribution's package manager

generally does not allow an upgrade until the dependencies are

satisfied.

To run the examples we introduce during the discussion, you

won't need particular versions of any tool beyond

what the 2.6 kernel requires; any recent Linux distribution can be

used to run our examples. We won't detail specific

requirements, because the file

Documentation/Changes in your kernel sources is

the best source of such information if you experience any problems.

[bookmark: linuxdrive3-CHP-1-ITERM-4064][bookmark: linuxdrive3-CHP-1-ITERM-4065][bookmark: linuxdrive3-CHP-1-ITERM-4066]As far as the kernel is

concerned, the even-numbered kernel versions (i.e.,

2.6.x) are the stable ones that are intended for

general distribution. The odd versions (such as

2.7.x), on the contrary, are development

snapshots and are quite ephemeral; the latest of them represents the

current status of development, but becomes obsolete in a few days or

so.

This book covers Version 2.6 of the kernel. Our focus has been to

show all the features available to device driver writers in 2.6.10,

the current version at the time we are writing. This edition of the

book does not cover prior versions of the kernel. For those of you

who are interested, the second edition covered Versions 2.0 through

2.4 in detail. That edition is still available online at http://lwn.net/Kernel/LDD2/.

Kernel programmers should be aware that the development process

changed with 2.6. The 2.6 series is now accepting changes that

previously would have been considered too large for a

"stable" kernel. Among other

things, that means that internal kernel programming interfaces can

change, thus potentially obsoleting parts of this book; for this

reason, the sample code accompanying the text is known to work with

2.6.10, but some modules don't compile under earlier

versions. Programmers wanting to keep up with kernel programming

changes are encouraged to join the mailing lists and to make use of

the web sites listed in the bibliography. There is also a web page

maintained at http://lwn.net/Articles/2.6-kernel-api/,

which contains information about API changes that have happened since

this book was published.

This text doesn't talk specifically about

odd-numbered kernel versions. General users never have a reason to

run development kernels. Developers experimenting with new features,

however, want to be running the latest development release. They

usually keep upgrading to the most recent version to pick up bug

fixes and new implementations of features. Note, however, that

there's no guarantee on experimental

kernels,[2]

and nobody helps you if you have problems due to a bug in a

noncurrent odd-numbered kernel. Those who run odd-numbered versions

of the kernel are usually skilled enough to dig in the code without

the need for a textbook, which is another reason why we

don't talk about development kernels here.
[bookmark: linuxdrive3-CHP-1-FNOTE-2][2] Note that there's no

guarantee on even-numbered kernels as well, unless you rely on a

commercial provider that grants its own warranty.


[bookmark: linuxdrive3-CHP-1-ITERM-4067]Another

feature of Linux is that it is a platform-independent operating

system, not just "a Unix clone for PC

clones" anymore: it currently supports some 20

architectures. This book is platform independent as far as possible,

and all the code samples have been tested on at least the x86 and

x86-64 platforms. Because the code has been tested on both 32-bit and

64-bit processors, it should compile and run on all other platforms.

As you might expect, the code samples that rely on particular

hardware don't work on all the supported

platforms,[bookmark: linuxdrive3-CHP-1-ITERM-4068] [bookmark: linuxdrive3-CHP-1-ITERM-4069] [bookmark: linuxdrive3-CHP-1-ITERM-4070] but this is always stated in the

source code.







[bookmark: linuxdrive3-CHP-1-SECT-6]
1.6. License Terms

[bookmark: linuxdrive3-CHP-1-ITERM-4071][bookmark: linuxdrive3-CHP-1-ITERM-4072][bookmark: linuxdrive3-CHP-1-ITERM-4073]Linux is licensed under Version 2 of the

[bookmark: linuxdrive3-CHP-1-ITERM-4074] [bookmark: linuxdrive3-CHP-1-ITERM-4075] [bookmark: linuxdrive3-CHP-1-ITERM-4076]GNU General Public License (GPL), a

document devised for the GNU project by the Free Software Foundation.

The GPL allows anybody to redistribute, and even sell, a product

covered by the GPL, as long as the recipient has access to the source

and is able to exercise the same rights. Additionally, any software

product derived from a product covered by the GPL must, if it is

redistributed at all, be released under the GPL.

The main goal of such a license is to allow the growth of knowledge

by permitting everybody to modify programs at will; at the same time,

people selling software to the public can still do their job. Despite

this simple objective, there's a never-ending

discussion about the GPL and its use. If you want to read the

license, you can find it in several places in your system, including

the top directory of your kernel source tree in the COPYING

file.

Vendors often ask whether they can distribute kernel modules in

binary form only. The answer to that question has been deliberately

left ambiguous. Distribution of binary modules�as long as they

adhere to the published kernel interface�has been tolerated so

far. But the copyrights on the kernel are held by many developers,

and not all of them agree that kernel modules are not derived

products. If you or your employer wish to distribute kernel modules

under a nonfree license, you really need to discuss the situation

with your legal counsel. Please note also that the kernel developers

have no qualms against breaking binary modules between kernel

releases, even in the middle of a stable kernel series. If it is at

all possible, both you and your users are better off if you release

your module as free software.

If you want your code to go into the mainline kernel, or if your code

requires patches to the kernel, you must use a

GPL-compatible license as soon as you release the code. Although

personal use of your changes doesn't force the GPL

on you, if you distribute your code, you must include the source code

in the distribution�people acquiring your package must be

allowed to rebuild the binary at will.

[bookmark: linuxdrive3-CHP-1-ITERM-4077][bookmark: linuxdrive3-CHP-1-ITERM-4078]As

far as this book is concerned, most of the code is freely

redistributable, either in source or binary form, and neither we nor

O'Reilly retain any right on any derived works. All

the programs are available at

ftp://ftp.ora.com/pub/examples/linux/drivers/,

and the exact license terms are stated in the

LICENSE file in the same directory.







[bookmark: linuxdrive3-CHP-1-SECT-7]
1.7. Joining the Kernel Development Community

[bookmark: linuxdrive3-CHP-1-ITERM-4079][bookmark: linuxdrive3-CHP-1-ITERM-4080]As you begin writing modules for

the [bookmark: linuxdrive3-CHP-1-ITERM-4081]
[bookmark: linuxdrive3-CHP-1-ITERM-4082]Linux kernel, you become part of a

larger community of developers. Within that community, you can find

not only people engaged in similar work, but also a group of highly

committed engineers working toward making Linux a better system.

These people can be a source of help, ideas, and critical review as

well�they will be the first people you will likely turn to when

you are looking for testers for a new driver.

The central gathering point for Linux kernel developers is the

linux-kernel mailing list. All major kernel

developers, from Linus Torvalds on down, subscribe to this list.

Please note that the list is not for the faint of heart: traffic as

of this writing can run up to 200 messages per day or more.

Nonetheless, following this list is essential for those who are

interested in kernel development; it also can be a top-quality

resource for those in need of kernel development help.

To join the linux-kernel list, follow the instructions found in the

linux-kernel mailing list FAQ:

http://www.tux.org/lkml. Read the rest of the

FAQ while you are at it; there is a great deal of useful information

there. Linux kernel developers are busy people, and they are much

more inclined to help people who have clearly done their homework

first.







[bookmark: linuxdrive3-CHP-1-SECT-8]
1.8. Overview of the Book

From here on, we enter the world of kernel programming. Chapter 2 introduces modularization,

explaining the secrets of the art and showing the code for running

modules. Chapter 3 talks about

char drivers and shows the complete code for a memory-based device

driver that can be read and written for fun. Using memory as the

hardware base for the device allows anyone to run the sample code

without the need to acquire special hardware.

Debugging techniques are vital tools for the programmer and are

introduced in Chapter 4.

Equally important for those who would hack on contemporary kernels is

the management of concurrency and race conditions. 

Chapter 5 concerns itself with the

problems posed by concurrent access to resources and introduces the

Linux mechanisms for controlling concurrency.

With debugging and concurrency management skills in place, we move to

advanced features of char drivers, such as blocking operations, the

use of select, and the important

ioctl call; these topics are the subject of

Chapter 6.

Before dealing with hardware management, we dissect a few more of the

kernel's software interfaces: Chapter 7 shows how time is managed

in the kernel, and Chapter 8

explains memory allocation.

Next we focus on hardware. Chapter 9 describes the management of I/O ports and memory buffers that

live on the device; after that comes interrupt handling, in Chapter 10. Unfortunately, not

everyone is able to run the sample code for these chapters, because

some hardware support is actually needed to test

the software interface interrupts. We've tried our

best to keep required hardware support to a minimum, but you still

need some simple hardware, such as a standard parallel port, to work

with the sample code for these chapters.

Chapter 11 covers the use of

data types in the kernel and the writing of portable code.

The second half of the book is dedicated to more advanced topics. We

start by getting deeper into the hardware and, in particular, the

functioning of specific peripheral buses. Chapter 12 covers the details of

writing drivers for PCI devices, and Chapter 13 examines the API for

working with USB devices.

With an understanding of peripheral buses in place, we can take a

detailed look at the Linux device model, which is the abstraction

layer used by the kernel to describe the hardware and software

resources it is managing. Chapter 14

is a bottom-up look at the device model infrastructure,

starting with the kobject type and working up from there. It covers

the integration of the device model with real hardware; it then uses

that knowledge to cover topics like hot-pluggable devices and power

management.

In Chapter 15, we take a

diversion into Linux memory management. This chapter shows how to map

kernel memory into user space (the mmap system

call), map user memory into kernel space (with

get_user_pages), and how to map either kind of

memory into device space (to perform direct memory access [DMA]

operations).

Our understanding of memory will be useful for the following two

chapters, which cover the other major driver classes. Chapter 16 introduces block drivers

and shows how they are different from the char drivers we have worked

with so far. Then Chapter 17

gets into the writing of network drivers. We finish up with a

discussion of serial drivers 

and a bibliography.







[bookmark: linuxdrive3-CHP-2]

Chapter 2. Building and Running Modules

It's almost time to begin programming. This chapter

introduces all the essential concepts about modules and kernel

programming. In these few pages, we build and run a complete (if

relatively useless) module, and look at some of the basic code shared

by all modules. Developing such expertise is an essential foundation

for any kind of modularized driver. To avoid throwing in too many

concepts at once, this chapter talks only about modules, without

referring to any specific device class.

All the kernel items (functions, variables, header files, and macros)

that are introduced here are described in a reference section at the

end of the chapter.







[bookmark: linuxdrive3-CHP-2-SECT-1]
2.1. Setting Up Your Test System

Starting with this chapter, we

[bookmark: linuxdrive3-CHP-2-ITERM-4083]
[bookmark: linuxdrive3-CHP-2-ITERM-4084] [bookmark: linuxdrive3-CHP-2-ITERM-4085]
[bookmark: linuxdrive3-CHP-2-ITERM-4086]
[bookmark: linuxdrive3-CHP-2-ITERM-4087]
[bookmark: linuxdrive3-CHP-2-ITERM-4088]present example modules to demonstrate

programming concepts. (All of these examples are available on

O'Reilly's FTP site, as explained

in Chapter 1.) Building,

loading, and modifying these examples are a good way to improve your

understanding of how drivers work and interact with the kernel.

The example modules should work with almost any 2.6.x kernel,

including those provided by distribution vendors. However, we

recommend that you obtain a

"mainline" kernel directly

from[bookmark: linuxdrive3-CHP-2-ITERM-4089] [bookmark: linuxdrive3-CHP-2-ITERM-4090]
[bookmark: linuxdrive3-CHP-2-ITERM-4091] the

kernel.org mirror network, and install it on

your system. Vendor kernels can be heavily patched and divergent from

the mainline; at times, vendor patches can change the kernel API as

seen by device drivers. If you are writing a driver that must work on

a particular distribution, you will certainly want to build and test

against the relevant kernels. But, for the purpose of learning about

driver writing, a standard kernel is best.

Regardless of the origin of your kernel, building modules for 2.6.x

requires that you have a configured and built kernel tree on your

system. This requirement is a change from previous versions of the

kernel, where a current set of header files was sufficient. 2.6

modules are linked against object files found in the kernel source

tree; the result is a more robust module loader, but also the

requirement that those object files be available. So your first order

of business is to come up with a kernel source tree (either from the

kernel.org network or your

distributor's kernel source package), build a new

kernel, and install it on your system. For reasons

we'll see later, life is generally easiest if you

are actually running the target kernel when you build your modules,

though this is not required.

		[image: ]	
You should also give some thought to where you do your module

experimentation, development, and testing. We have done our best to

make our example modules safe and correct, but the possibility of

bugs is always present. Faults in kernel code can bring about the

demise of a user process or, occasionally, the entire system. They do

not normally create more serious problems, such as disk corruption.

Nonetheless, it is advisable to do your kernel experimentation on a

system that does not contain data that you cannot afford to lose, and

that does not perform essential services. Kernel hackers typically

keep a "sacrificial" system around

for the purpose of testing new code.






 

So, if you do not yet have a suitable system with a configured and

built kernel source tree on disk, now would be a good time to set

that up. We'll wait. Once that task is taken care

of, you'll be ready to start playing with kernel

modules.







[bookmark: linuxdrive3-CHP-2-SECT-2]
2.2. The Hello World Module

Many programming books begin [bookmark: linuxdrive3-CHP-2-ITERM-4092] [bookmark: linuxdrive3-CHP-2-ITERM-4093] [bookmark: linuxdrive3-CHP-2-ITERM-4094] [bookmark: linuxdrive3-CHP-2-ITERM-4095]with a "hello

world" example as a way of showing the simplest

possible program. This book deals in kernel modules rather than

programs; so, for the impatient reader, the following code is a

complete "hello world" module:

#include <linux/init.h>

#include <linux/module.h>

MODULE_LICENSE("Dual BSD/GPL");



static int hello_init(void)

{

    printk(KERN_ALERT "Hello, world\n");

    return 0;

}



static void hello_exit(void)

{

    printk(KERN_ALERT "Goodbye, cruel world\n");

}



module_init(hello_init);

module_exit(hello_exit);
 

This module defines

two[bookmark: linuxdrive3-CHP-2-ITERM-4096]
[bookmark: linuxdrive3-CHP-2-ITERM-4097] functions, one to be invoked when the

module is loaded into the kernel (hello_init)

and one for when the module is removed

(hello_exit). The

module_init and module_exit

lines use special kernel macros to indicate the role of these two

functions. Another special macro

(MODULE_LICENSE) is used to tell the kernel that

this module bears a free license; without such a declaration, the

kernel complains when the module is loaded.

[bookmark: linuxdrive3-CHP-2-ITERM-4098][bookmark: linuxdrive3-CHP-2-ITERM-4099]The

printk[bookmark: linuxdrive3-CHP-2-ITERM-4100]
[bookmark: linuxdrive3-CHP-2-ITERM-4101]

function is defined in the Linux kernel and made available to

modules; it behaves similarly to the standard C library function

printf. The kernel needs its own printing

function because it runs by itself, without the help of the C

library. The module can call printk because,

after insmod has loaded it, the module is linked

to the kernel and can access the kernel's public

symbols (functions and variables, as detailed in the next section).

The string KERN_ALERT is the priority of the

message.[1] We've specified a high

priority in this module, because a message with the default priority

might not show up anywhere useful, depending on the kernel version

you are running, the version of the

klogd[bookmark: linuxdrive3-CHP-2-ITERM-4102]
[bookmark: linuxdrive3-CHP-2-ITERM-4103]

daemon, and your configuration. You can ignore this issue for now; we

explain it in Chapter 4.
[bookmark: linuxdrive3-CHP-2-FNOTE-1][1] The priority is just a string, such as

<1>, which is prepended to the

printk format string. Note the lack of a comma

after KERN_ALERT; adding a comma there is a common

and annoying typo (which, fortunately, is caught by the

compiler).


[bookmark: linuxdrive3-CHP-2-ITERM-4104][bookmark: linuxdrive3-CHP-2-ITERM-4105]You can test the module with the

insmod[bookmark: linuxdrive3-CHP-2-ITERM-4106] [bookmark: linuxdrive3-CHP-2-ITERM-4107]
[bookmark: linuxdrive3-CHP-2-ITERM-4108]
[bookmark: linuxdrive3-CHP-2-ITERM-4109]
[bookmark: linuxdrive3-CHP-2-ITERM-4110] and rmmod

utilities, as shown below. Note that only the superuser can load and

unload a module.

% make

make[1]: Entering directory `/usr/src/linux-2.6.10'

  CC [M]  /home/ldd3/src/misc-modules/hello.o

  Building modules, stage 2.

  MODPOST

  CC      /home/ldd3/src/misc-modules/hello.mod.o

  LD [M]  /home/ldd3/src/misc-modules/hello.ko

make[1]: Leaving directory `/usr/src/linux-2.6.10'

% su

root# insmod ./hello.ko

Hello, world

root# rmmod hello

Goodbye cruel world

root#
 

Please note once again that, for the above sequence of commands to

work, you must have a properly configured and built kernel tree in a

place where the makefile is able to find it

(/usr/src/linux-2.6.10 in the example shown). We

get into the details of how modules are built in Section 2.4.

According to the mechanism your system uses to deliver the message

lines, your output may be different. In particular, the previous

screen dump was taken from a text console; if you are running

insmod and rmmod from a

terminal emulator running under the window system, you

won't see anything on your screen. The message goes

to one of the system log files, such as

/var/log/messages (the name of the actual file

varies between Linux distributions). The mechanism used to deliver

[bookmark: linuxdrive3-CHP-2-ITERM-4111]
[bookmark: linuxdrive3-CHP-2-ITERM-4112]kernel

messages is described in Chapter 4.

As you can see, writing a module is not as difficult as you might

expect�at least, as long as the module is not required to do

anything worthwhile. The hard part is understanding your device and

how to maximize performance. We go deeper into modularization

throughout this[bookmark: linuxdrive3-CHP-2-ITERM-4113] [bookmark: linuxdrive3-CHP-2-ITERM-4114] [bookmark: linuxdrive3-CHP-2-ITERM-4115] [bookmark: linuxdrive3-CHP-2-ITERM-4116] chapter and leave device-specific

issues for later chapters.







[bookmark: linuxdrive3-CHP-2-SECT-3]
2.3. Kernel Modules Versus Applications

Before we go further, it's worth[bookmark: linuxdrive3-CHP-2-ITERM-4117] [bookmark: linuxdrive3-CHP-2-ITERM-4118] [bookmark: linuxdrive3-CHP-2-ITERM-4119]

underlining the[bookmark: linuxdrive3-CHP-2-ITERM-4120]

various differences between a kernel module and an application.

[bookmark: linuxdrive3-CHP-2-ITERM-4121][bookmark: linuxdrive3-CHP-2-ITERM-4122]
[bookmark: linuxdrive3-CHP-2-ITERM-4123]While

most small and medium-sized applications perform a single task from

beginning to end, every kernel module just registers itself in order

to serve future requests, and its initialization function terminates

immediately. In other words, the task of the

module's initialization function is to prepare for

later invocation of the module's functions;

it's as though the module were saying,

"Here I am, and this is what I can

do." The module's exit function

(hello_exit in the example) gets invoked just

before the module is unloaded. It should tell the kernel,

"I'm not there anymore;

don't ask me to do anything else."

This kind of approach to programming is similar to event-driven

programming, but while not all applications are event-driven, each

and every kernel module is. Another major difference between

event-driven applications and kernel code is in the exit function:

whereas an application that terminates can be lazy in releasing

resources or avoids clean up altogether, the exit function of a

module must carefully undo everything the init

function built up, or the pieces remain around until the system is

rebooted.

Incidentally, the ability to unload a module is one of the features

of modularization that you'll most appreciate,

because it helps cut down development time; you can test successive

versions of your new driver without going through the lengthy

shutdown/reboot cycle each time.

[bookmark: linuxdrive3-CHP-2-ITERM-4124]As a programmer, you know

that an application can call functions it doesn't

define: the linking stage resolves external references using the

appropriate library of functions. printf is one

of those callable functions and is defined in

libc. A module, on the other hand, is linked

only to the kernel, and [bookmark: linuxdrive3-CHP-2-ITERM-4125]the only functions it can call are the

ones exported by the kernel; there are no libraries to link to. The

printk function used in

hello.c earlier, for example, is the version of

printf defined within the kernel and exported to

modules. It behaves similarly to the original function, with a few

minor differences, the main one being lack of floating-point support.

Figure 2-1 shows how

function calls and function pointers are used in a module to add new

functionality to a running kernel.

[bookmark: linuxdrive3-CHP-2-FIG-1]
Figure 2-1. Linking a module to the kernel

[image: ]

 

[bookmark: linuxdrive3-CHP-2-ITERM-4126][bookmark: linuxdrive3-CHP-2-ITERM-4127][bookmark: linuxdrive3-CHP-2-ITERM-4128][bookmark: linuxdrive3-CHP-2-ITERM-4129][bookmark: linuxdrive3-CHP-2-ITERM-4130][bookmark: linuxdrive3-CHP-2-ITERM-4131]Because no library is linked to

modules, source files should never include the usual header files,

<stdarg.h> and very special situations

being the only exceptions. Only functions that are actually part of

the kernel itself may be used in kernel modules. Anything related to

the kernel is declared in headers found in the kernel source tree you

have set up and configured; most of the relevant headers live in

include/linux and

include/asm, but other subdirectories of

include have been added to host material

associated to specific kernel subsystems.

The role of individual kernel headers is introduced throughout the

book as each of them is needed.

[bookmark: linuxdrive3-CHP-2-ITERM-4132]Another

important difference between kernel programming and application

programming is in how each environment handles

[bookmark: linuxdrive3-CHP-2-ITERM-4133]faults: whereas a

segmentation fault is harmless during application development and a

debugger can always be used to trace the error to the problem in the

source code, a kernel fault kills the current process at least, if

not the whole system. We see how to trace kernel errors in Chapter 4.

[bookmark: linuxdrive3-CHP-2-SECT-3.1]
[bookmark: linuxdrive3-CHP-2-ITERM-4134]2.3.1. User Space and Kernel Space

[bookmark: linuxdrive3-CHP-2-ITERM-4135][bookmark: linuxdrive3-CHP-2-ITERM-4136]A module runs in kernel

space, whereas

applications[bookmark: linuxdrive3-CHP-2-ITERM-4137]
[bookmark: linuxdrive3-CHP-2-ITERM-4138]
[bookmark: linuxdrive3-CHP-2-ITERM-4139] run in user

space. This concept is at the base of operating systems

theory.

The role of the operating system, in practice, is to provide programs

with a consistent view of the computer's hardware.

In addition, the operating system must account for independent

operation of programs and protection against unauthorized access to

resources. This nontrivial task is possible only if the CPU enforces

protection of system software from the applications.

[bookmark: linuxdrive3-CHP-2-ITERM-4140][bookmark: linuxdrive3-CHP-2-ITERM-4141][bookmark: linuxdrive3-CHP-2-ITERM-4142][bookmark: linuxdrive3-CHP-2-ITERM-4143][bookmark: linuxdrive3-CHP-2-ITERM-4144]Every modern processor is able to enforce

this behavior. The chosen approach is to implement different

operating modalities (or levels) in the CPU itself. The levels have

different roles, and some operations are disallowed at the lower

levels; program code can switch from one level to another only

through a limited number of gates. Unix systems are designed to take

advantage of this hardware feature, using two such levels. All

current processors have at least two protection levels, and some,

like the x86 family, have more levels; when several levels exist, the

highest and lowest levels are used. Under Unix, the kernel executes

in the highest level (also called supervisor

mode[bookmark: linuxdrive3-CHP-2-ITERM-4145]), where everything is allowed, whereas

applications execute in the lowest level (the so-called

user mode[bookmark: linuxdrive3-CHP-2-ITERM-4146]), where the processor regulates direct

access to hardware and unauthorized access to memory.

[bookmark: linuxdrive3-CHP-2-ITERM-4147]We

usually refer to the

[bookmark: linuxdrive3-CHP-2-ITERM-4148]execution

modes as kernel space and user

space. These terms encompass not only the different

privilege levels inherent in the two modes, but also the fact that

each mode can have its own memory mapping�its own address

space�as well.

Unix transfers execution from user space to kernel space whenever an

application issues a system call or is suspended by a hardware

interrupt. Kernel code executing a system call is working in the

context of a process�it operates on behalf of the calling

process and is able to access data in the process's

address space. Code that handles interrupts, on the other hand, is

asynchronous with respect to processes and is not related to any

particular process.

The role of a module is to extend kernel functionality; modularized

code runs in kernel space. Usually a driver performs both the tasks

outlined previously: some functions in the module are executed as

part of system calls, and some are in charge of interrupt handling.

[bookmark: linuxdrive3-CHP-2-SECT-3.2]
2.3.2. Concurrency in the Kernel

[bookmark: linuxdrive3-CHP-2-ITERM-4149]One

way in which kernel

[bookmark: linuxdrive3-CHP-2-ITERM-4150]
[bookmark: linuxdrive3-CHP-2-ITERM-4151]
[bookmark: linuxdrive3-CHP-2-ITERM-4152]programming

differs greatly from conventional application programming is the

issue of concurrency. Most applications, with the notable exception

of multithreading applications, typically run sequentially, from the

beginning to the end, without any need to worry about what else might

be happening to change their environment. Kernel code does not run in

such a simple world, and even the simplest kernel modules must be

written with the idea that many things can be happening at once.

There are a few sources of concurrency in kernel programming.

Naturally, Linux systems run multiple processes, more than one of

which can be trying to use your driver at the same time. Most devices

are capable of interrupting the processor; interrupt handlers run

asynchronously and can be invoked at the same time that your driver

is trying to do something else. Several software abstractions (such

as kernel timers, introduced in Chapter 7) run asynchronously as

well. Moreover, of course, Linux can run on

[bookmark: linuxdrive3-CHP-2-ITERM-4153] [bookmark: linuxdrive3-CHP-2-ITERM-4154]symmetric multiprocessor

(SMP) systems, with the result that your driver could be executing

concurrently on more than one CPU. Finally, in 2.6, kernel code has

been made preemptible; this change causes even

[bookmark: linuxdrive3-CHP-2-ITERM-4155]uniprocessor systems to have many of the same

concurrency issues as multiprocessor systems.

[bookmark: linuxdrive3-CHP-2-ITERM-4156]As a result,

Linux kernel code, including driver code, must be

reentrant[bookmark: linuxdrive3-CHP-2-ITERM-4157]�it

must be capable of running in more than one context at the same time.

Data structures must be carefully designed to keep multiple threads

of execution separate, and the code must take care to access shared

data in ways that prevent corruption of the data. Writing code that

handles concurrency and avoids race conditions (situations in which

an unfortunate order of execution causes undesirable behavior)

requires thought and can be tricky. Proper management of concurrency

is required to write correct kernel code; for that reason, every

sample driver in this book has been written with concurrency in mind.

The techniques used are explained as we come to them; Chapter 5 has also been dedicated to

this issue and the kernel primitives available for concurrency

management.

[bookmark: linuxdrive3-CHP-2-ITERM-4158][bookmark: linuxdrive3-CHP-2-ITERM-4159]A common mistake made by driver

programmers is to assume that concurrency is not a problem as long as

a particular segment of code does not go to sleep (or

"block"). Even in previous kernels

(which were not preemptive), this assumption was not valid on

multiprocessor systems. In 2.6, kernel code can (almost) never assume

that it can hold the processor over a given stretch of code. If you

do not write your code with concurrency in mind, it will be subject

to catastrophic

[bookmark: linuxdrive3-CHP-2-ITERM-4160]
[bookmark: linuxdrive3-CHP-2-ITERM-4161]failures

that can be exceedingly difficult to debug.

[bookmark: linuxdrive3-CHP-2-SECT-3.3]
2.3.3. The Current Process

[bookmark: linuxdrive3-CHP-2-ITERM-4162][bookmark: linuxdrive3-CHP-2-ITERM-4163][bookmark: linuxdrive3-CHP-2-ITERM-4164][bookmark: linuxdrive3-CHP-2-ITERM-4165]Although kernel modules

[bookmark: linuxdrive3-CHP-2-ITERM-4166]
[bookmark: linuxdrive3-CHP-2-ITERM-4167]
[bookmark: linuxdrive3-CHP-2-ITERM-4168]don't

execute sequentially as applications do, most actions performed by

the kernel are done on behalf of a specific process. Kernel code can

refer to the current process by accessing the global item

current, defined in

<asm/current.h>, which yields a pointer to

struct task_struct, defined by

<linux/sched.h>. The

current pointer refers to the process that is

currently executing. During the execution of a system call, such as

open or read, the current

process is the one that invoked the call. Kernel code can use

process-specific information by using current, if

it needs to do so. An example of this technique is presented in Chapter 6.

Actually, current is not truly a global variable.

The need to support SMP systems forced the kernel developers to

develop a mechanism that finds the current process on the relevant

CPU. This mechanism must also be fast, since references to

current happen frequently. The result is an

architecture-dependent mechanism that, usually, hides a pointer to

the task_struct structure on the kernel stack. The

details of the implementation remain hidden to other kernel

subsystems though, and a device driver can just include

<linux/sched.h> and refer to the

current process. For example, the following

statement prints the process ID and the command name of the current

process by accessing certain fields in struct

task_struct:

printk(KERN_INFO "The process is \"%s\" (pid %i)\n",

        current->comm, current->pid);
 

The command name stored in current->comm is the

base name of the program file (trimmed to 15 characters if need be)

that is being executed by the current process.

[bookmark: linuxdrive3-CHP-2-SECT-3.4]
2.3.4. A Few Other Details

Kernel programming differs from user-space programming in many ways.

We'll point things out as we get to them over the

course of the book, but there are a few fundamental issues which,

while not warranting a section of their own, are worth a mention. So,

as you dig into the kernel, the following issues should be kept in

mind.

Applications are laid out in virtual memory with a very large stack

area. The stack, of course, is used to hold the function call history

and all automatic variables created by currently active functions.

The kernel, instead, has a very small stack; it can be as small as a

single, 4096-byte page. Your functions must share that stack with the

entire kernel-space call chain. Thus, it is never a good idea to

declare large automatic variables; if you need larger structures, you

should allocate them dynamically at call time.

Often, as you look at the kernel API, you will encounter function

names starting with a double [bookmark: linuxdrive3-CHP-2-ITERM-4169]
[bookmark: linuxdrive3-CHP-2-ITERM-4170]underscore (_ _).

Functions so marked are generally a low-level component of the

interface and should be used with caution. Essentially, the double

underscore says to the programmer: "If you call this

function, be sure you know what you are doing."

Kernel code cannot do floating point arithmetic. Enabling floating

point would require that the kernel save and restore the floating

point processor's state on each entry to, and exit

from, kernel space�at least, on some architectures. Given that

there really is no need for floating point in kernel[bookmark: linuxdrive3-CHP-2-ITERM-4171] [bookmark: linuxdrive3-CHP-2-ITERM-4172] code, the extra

overhead is not worthwhile.







[bookmark: linuxdrive3-CHP-2-SECT-4]
2.4. Compiling and Loading

The "hello world" example at the

beginning of this chapter included a brief demonstration of building

a module and loading it into the system. There is, of course, a lot

more to that whole process than we have seen so far. This section

provides more detail on how a module author turns source code into an

executing subsystem within the kernel.

[bookmark: linuxdrive3-CHP-2-SECT-4.1]
2.4.1. Compiling Modules

As the first step, we need to [bookmark: linuxdrive3-CHP-2-ITERM-4173]
[bookmark: linuxdrive3-CHP-2-ITERM-4174]look

a bit at how modules must be built. The build process for modules

differs significantly from that used for user-space applications; the

kernel is a large, standalone program with detailed and explicit

requirements on how its pieces are put together. The build process

also differs from how things were done with previous versions of the

kernel; the new build system is simpler to use and produces more

correct results, but it looks very different from what came before.

The kernel build system is a complex beast, and we just look at a

tiny piece of it. The files found in the

Documentation/kbuild directory in the kernel

source are required reading for anybody wanting to understand all

that is really going on beneath the surface.

There are some prerequisites that you must get out of the way before

you can build kernel modules. The first is to ensure that you have

sufficiently current versions of the compiler, module utilities, and

other necessary tools. The file

Documentation/Changes in the kernel

documentation directory always lists the required tool versions; you

should consult it before going any further. Trying to build a kernel

(and its modules) with the wrong tool versions can lead to no end of

subtle, difficult problems. Note that, occasionally, a version of the

compiler that is too new can be just as problematic as one that is

too old; the kernel source makes a great many assumptions about the

compiler, and new releases can sometimes break things for a while.

If you still do not have a kernel tree handy, or have not yet

configured and built that kernel, now is the time to go do it. You

cannot build loadable modules for a 2.6 kernel without this tree on

your filesystem. It is also helpful (though not required) to be

actually running the kernel that you are building for.

Once you have everything set up, creating a makefile for your module

is straightforward. In fact, for the "hello

world" example shown earlier in this chapter, a

single line will suffice:

obj-m := hello.o
 

Readers who are familiar with make, but not with

the 2.6 kernel build system, are likely to be wondering how this

makefile works. The above line is not how a traditional makefile

looks, after all. The answer, of course, is that the kernel build

system handles the rest. The assignment above (which takes advantage

of the extended syntax provided by GNU make)

states that there is one module to be built from the object file

hello.o. The resulting module is named

hello.ko after being built from the object file.

If, instead, you have a module called module.ko

that is generated from two source files (called, say,

file1.c and file2.c), the

correct incantation would be:

obj-m := module.o

module-objs := file1.o file2.o
 

For a makefile like those shown above to work, it must be invoked

within the context of the larger kernel build system. If your kernel

source tree is located in, say, your

~/kernel-2.6 directory, the

make[bookmark: linuxdrive3-CHP-2-ITERM-4175] command required to build your module

(typed in the directory containing the module source and makefile)

would be:

make -C ~/kernel-2.6 M=`pwd` modules
 

This command starts by changing its directory to the one provided

with the -C option (that is, your kernel source

directory). There it finds the kernel's top-level

makefile. The M= option causes that makefile to

move back into your module source directory before trying to build

the modules target. This target, in turn, refers

to the list of modules found in the obj-m

variable, which we've set to

module.o in our examples.

Typing the previous make command can get

tiresome after a while, so the kernel developers have developed a

sort of makefile idiom, which makes life easier for those building

modules outside of the kernel tree. The trick is to write your

[bookmark: linuxdrive3-CHP-2-ITERM-4176]makefile as

follows:

# If KERNELRELEASE is defined, we've been invoked from the

# kernel build system and can use its language.

ifneq ($(KERNELRELEASE),)

    obj-m := hello.o 



# Otherwise we were called directly from the command

# line; invoke the kernel build system.

else



    KERNELDIR ?= /lib/modules/$(shell uname -r)/build

    PWD  := $(shell pwd)



default:

    $(MAKE) -C $(KERNELDIR) M=$(PWD) modules



endif
 

Once again, we are seeing the extended GNU make

syntax in action. This makefile is read twice on a typical build.

When the makefile is invoked from the command line, it notices that

the KERNELRELEASE variable has not been set. It

locates the kernel source directory by taking advantage of the fact

that the symbolic link build in the installed

modules directory points back at the kernel build tree. If you are

not actually running the kernel that you are building for, you can

supply a KERNELDIR= option on the command line,

set the KERNELDIR environment variable, or rewrite

the line that sets KERNELDIR in the makefile. Once

the kernel source tree has been found, the makefile invokes the

default: target, which runs a second

make command (parameterized in the makefile as

$(MAKE)) to invoke the kernel build system as

described previously. On the second reading, the makefile sets

obj-m, and the kernel makefiles take care of

actually building the module.

This mechanism for building modules may strike you as a bit unwieldy

and obscure. Once you get used to it, however, you will likely

appreciate the capabilities that have been programmed into the kernel

build system. Do note that the above is not a complete makefile; a

real makefile includes the usual sort of targets for cleaning up

unneeded files, installing modules, [bookmark: linuxdrive3-CHP-2-ITERM-4177] [bookmark: linuxdrive3-CHP-2-ITERM-4178]etc. See the makefiles in the example

source directory for a complete example.

[bookmark: linuxdrive3-CHP-2-SECT-4.2]
2.4.2. Loading and Unloading Modules

[bookmark: linuxdrive3-CHP-2-ITERM-4179][bookmark: linuxdrive3-CHP-2-ITERM-4180]After the module is built, the

[bookmark: linuxdrive3-CHP-2-ITERM-4181]
[bookmark: linuxdrive3-CHP-2-ITERM-4182]
[bookmark: linuxdrive3-CHP-2-ITERM-4183]next

step is loading it into the kernel. As we've already

pointed out, insmod does the job for you. The

program loads the module code and data into the kernel, which, in

turn, performs a function similar to that of ld,

in that it links any unresolved symbol in the module to the symbol

table of the kernel. Unlike the linker, however, the kernel

doesn't modify the module's disk

file, but rather an in-memory copy. insmod

accepts a number of command-line options (for details, see the

manpage), and it can assign values to parameters in your module

before linking it to the current kernel. Thus, if a module is

correctly designed, it can be configured at load time; load-time

configuration gives the user more flexibility than compile-time

configuration, which is still used sometimes. Load-time configuration

is explained in Section 2.8 later in this chapter.

[bookmark: linuxdrive3-CHP-2-ITERM-4184]Interested readers may want to look at how

the kernel supports insmod: it relies on a

system call defined in kernel/module.c. The

function sys_init_module allocates kernel memory

to hold a[bookmark: linuxdrive3-CHP-2-ITERM-4185] module (this memory is allocated

with vmalloc ; see the Section 8.4 in Chapter 2); it then copies the module

text into that memory region, resolves kernel references in the

module via the kernel symbol table, and calls the

module's initialization function to get everything

going.

[bookmark: linuxdrive3-CHP-2-ITERM-4186]If you actually

look in the kernel source, you'll find that the

names of the system calls are prefixed with sys_.

This is true for all system calls and no other functions;

it's useful to keep this in mind when grepping for

the system calls in the sources.

The[bookmark: linuxdrive3-CHP-2-ITERM-4187]
[bookmark: linuxdrive3-CHP-2-ITERM-4188]
modprobe utility is worth a quick mention.

modprobe, like insmod,

loads a module into the kernel. It differs in that it will look at

the module to be loaded to see whether it references any symbols that

are not currently defined in the kernel. If any such references are

found, modprobe looks for other modules in the

current module search path that define the relevant symbols. When

modprobe finds those modules (which are needed

by the module being loaded), it loads them into the kernel as well.

If you use insmod in this situation instead, the

command fails with an "unresolved

symbols" message left in the system logfile.

As mentioned before, modules may be removed from the kernel with the

rmmod utility. Note that module removal fails if

the[bookmark: linuxdrive3-CHP-2-ITERM-4189]
[bookmark: linuxdrive3-CHP-2-ITERM-4190]
[bookmark: linuxdrive3-CHP-2-ITERM-4191]

kernel believes that the module is still in use (e.g., a program

still has an open file for a device exported by the modules), or if

the kernel has been configured to disallow module removal. It is

possible to configure the kernel to allow

"forced" removal of modules, even

when they appear to be busy. If you reach a point where you are

considering using this option, however, things are likely to have

gone wrong badly enough that a reboot may well be the better course

of action.

The lsmod program produces a list of the modules

currently loaded in the kernel. Some other information, such as any

other modules making use of a specific module, is also provided.

lsmod works by reading the

/proc/modules virtual file. Information on

currently loaded modules can also be found in the sysfs virtual

filesystem under /sys/module.

[bookmark: linuxdrive3-CHP-2-SECT-4.3]
2.4.3. Version Dependency

[bookmark: linuxdrive3-CHP-2-ITERM-4192]Bear in

mind that your module's

[bookmark: linuxdrive3-CHP-2-ITERM-4193]
[bookmark: linuxdrive3-CHP-2-ITERM-4194]
[bookmark: linuxdrive3-CHP-2-ITERM-4195]
[bookmark: linuxdrive3-CHP-2-ITERM-4196]code

has to be recompiled for each version of the kernel that it is linked

to�at least, in the absence of modversions, not covered here as

they are more for distribution makers than developers. Modules are

strongly tied to the data structures and function prototypes defined

in a particular kernel version; the interface seen by a module can

change significantly from one kernel version to the next. This is

especially true of development kernels, of course.

The kernel does not just assume that a given module has been built

against the proper kernel version. One of the steps in the build

process is to link your module against a file (called

vermagic.o) from the current kernel tree; this

object contains a fair amount of information about the kernel the

module was built for, including the target kernel version, compiler

version, and the settings of a number of important configuration

variables. When an attempt is made to load a module, this information

can be tested for compatibility with the running kernel. If things

don't match, the module is not loaded; instead, you

see something like:

# insmod hello.ko

Error inserting './hello.ko': -1 Invalid module format
 

A look in the system log file (/var/log/messages

or whatever your system is configured to use) will reveal

the[bookmark: linuxdrive3-CHP-2-ITERM-4197] specific problem that caused the

module to fail to load.

If you need to compile a module for a specific kernel version, you

will need to use the build system and source tree for that particular

version. A simple change to the KERNELDIR variable

in the example makefile shown previously does the trick.

[bookmark: linuxdrive3-CHP-2-ITERM-4198]Kernel

interfaces often

[bookmark: linuxdrive3-CHP-2-ITERM-4199]change between releases. If you are

writing a module that is intended to work with multiple versions of

the kernel (especially if it must work across major releases), you

likely have to make use of macros and #ifdef

constructs to make your code build properly. This edition of this

book only concerns itself with one major version of the kernel, so

you do not often see version tests in our example code. But the need

for them does occasionally arise. In such cases, you want to make use

of the definitions found in linux/version.h.

This header file, automatically included by

linux/module.h, defines the

following[bookmark: linuxdrive3-CHP-2-ITERM-4200] macros:

[bookmark: linuxdrive3-CHP-2-ITERM-4201][bookmark: linuxdrive3-CHP-2-ITERM-4202][bookmark: linuxdrive3-CHP-2-ITERM-4203][bookmark: linuxdrive3-CHP-2-ITERM-4204][bookmark: linuxdrive3-CHP-2-ITERM-4205]

	UTS_RELEASE[bookmark: linuxdrive3-CHP-2-ITERM-4201]

	
[bookmark: linuxdrive3-CHP-2-ITERM-4202]This macro

expands to a string describing the version of this kernel tree. For

example, "2.6.10".





	LINUX_VERSION_CODE[bookmark: linuxdrive3-CHP-2-ITERM-4203]

	
[bookmark: linuxdrive3-CHP-2-ITERM-4204]This macro expands to the binary

representation of the kernel version, one byte for each part of the

version release number. For example, the code for 2.6.10 is 132618

(i.e., 0x02060a).[2] With this

information, you can (almost) easily determine what version of the

kernel you are dealing with.
[bookmark: linuxdrive3-CHP-2-FNOTE-2][2] This allows up to 256 development

versions between stable versions.






	KERNEL_VERSION(major,minor,release)[bookmark: linuxdrive3-CHP-2-ITERM-4205]

	
This is the macro used to build an integer version code from the

individual numbers that build up a version number. For example,

KERNEL_VERSION(2,6,10) expands to 132618. This

macro is very useful when you need to compare the current version and

a known checkpoint.





Most dependencies based on the kernel version can be worked around

with preprocessor conditionals by exploiting

KERNEL_VERSION and

LINUX_VERSION_CODE. Version dependency should,

however, not clutter driver code with hairy #ifdef

conditionals; the best way to deal with incompatibilities is by

confining them to a specific header file. As a general rule, code

which is explicitly version (or platform) dependent should be hidden

behind a low-level macro or function. High-level code can then just

call those functions without concern for the low-level details. Code

written in this way tends to be easier to read and more robust.

[bookmark: linuxdrive3-CHP-2-SECT-4.4]
2.4.4. Platform Dependency

[bookmark: linuxdrive3-CHP-2-ITERM-4206][bookmark: linuxdrive3-CHP-2-ITERM-4207]Each computer platform has its

[bookmark: linuxdrive3-CHP-2-ITERM-4208]
[bookmark: linuxdrive3-CHP-2-ITERM-4209] [bookmark: linuxdrive3-CHP-2-ITERM-4210]
[bookmark: linuxdrive3-CHP-2-ITERM-4211]peculiarities,

and kernel designers are free to exploit all the peculiarities to

achieve better performance in the target object file.

Unlike application developers, who must link their code with

precompiled libraries and stick to conventions on parameter passing,

kernel developers can dedicate some processor registers to specific

roles, and they have done so. Moreover, kernel code can be optimized

for a specific processor in a CPU family to get the best from the

target platform: unlike applications that are often distributed in

binary format, a custom compilation of the kernel can be optimized

for a specific computer set.

For example, the IA32 (x86) architecture has been subdivided into

several different processor types. The old 80386 processor is still

supported (for now), even though its instruction set is, by modern

standards, quite limited. The more modern processors in this

architecture have introduced a number of new capabilities, including

faster instructions for entering the kernel, interprocessor locking,

copying data, etc. Newer processors can also, when operated in the

correct mode, employ 36-bit (or larger) physical addresses, allowing

them to address more than 4 GB of physical memory. Other processor

families have seen similar improvements. The kernel, depending on

various configuration options, can be built to make use of these

additional features.

Clearly, if a module is to work with a given kernel, it must be built

with the same understanding of the target processor as that kernel

was. Once again, the vermagic.o object comes in

to play. When a module is loaded, the kernel checks the

processor-specific configuration options for the module and makes

sure they match the running kernel. If the module was compiled with

different options, it is not loaded.

If you are planning to write a driver for

general[bookmark: linuxdrive3-CHP-2-ITERM-4212] [bookmark: linuxdrive3-CHP-2-ITERM-4213] distribution, you may well be

wondering just how you can possibly support all these different

variations. The best answer, of course, is to release your driver

under a GPL-compatible license and contribute it to the mainline

kernel. Failing that, distributing your driver in source form and a

set of scripts to compile it on the user's system

may be the best answer. Some vendors have released tools to make this

task easier. If you must distribute your driver in binary form, you

need to look at the different kernels provided by your target

distributions, and provide a version of the module for each. Be sure

to take into account any errata kernels that may have been released

since the distribution was produced. Then, there are licensing issues

to be considered, as we discussed in Section 1.6.

As a general rule,

distributing things in source form is an easier[bookmark: linuxdrive3-CHP-2-ITERM-4214] [bookmark: linuxdrive3-CHP-2-ITERM-4215] [bookmark: linuxdrive3-CHP-2-ITERM-4216] way to make your

way in the world.







[bookmark: linuxdrive3-CHP-2-SECT-5]
2.5. The Kernel Symbol Table

We've seen how insmod resolves

[bookmark: linuxdrive3-CHP-2-ITERM-4217]
[bookmark: linuxdrive3-CHP-2-ITERM-4218]
[bookmark: linuxdrive3-CHP-2-ITERM-4219]
[bookmark: linuxdrive3-CHP-2-ITERM-4220] [bookmark: linuxdrive3-CHP-2-ITERM-4221] [bookmark: linuxdrive3-CHP-2-ITERM-4222]undefined symbols against the table of

public kernel symbols. The table contains the addresses of global

kernel items�functions and variables�that are needed to

implement modularized drivers. When a module is loaded, any symbol

exported by the module becomes part of the kernel symbol table. In

the usual case, a module implements its own functionality without the

need to export any symbols at all. You need to export symbols,

however, whenever other modules may benefit from using them.

[bookmark: linuxdrive3-CHP-2-ITERM-4223][bookmark: linuxdrive3-CHP-2-ITERM-4224][bookmark: linuxdrive3-CHP-2-ITERM-4225][bookmark: linuxdrive3-CHP-2-ITERM-4226][bookmark: linuxdrive3-CHP-2-ITERM-4227][bookmark: linuxdrive3-CHP-2-ITERM-4228][bookmark: linuxdrive3-CHP-2-ITERM-4229]New modules can use symbols exported by

your module, and you can stack new modules on top of other modules.

Module stacking is implemented in the mainstream kernel sources as

well: the msdos filesystem relies on symbols

exported by the fat module, and each input USB

device module stacks on the usbcore and

input modules.

[bookmark: linuxdrive3-CHP-2-ITERM-4230]Module stacking is useful in

[bookmark: linuxdrive3-CHP-2-ITERM-4231]
[bookmark: linuxdrive3-CHP-2-ITERM-4232]complex

projects. If a new abstraction is implemented in the form of a device

driver, it might offer a plug for hardware-specific implementations.

For example, the video-for-linux set of drivers is split into a

generic module that exports symbols used by lower-level device

drivers for specific hardware. According to your setup, you load the

generic video module and the specific module for your installed

hardware. Support for parallel ports and the wide variety of

attachable devices is handled in the same way, as is the USB kernel

subsystem. Stacking in the parallel port subsystem is

[bookmark: linuxdrive3-CHP-2-ITERM-4233]shown in Figure 2-2; the arrows show the

communications between the modules and with the kernel programming

interface.

[bookmark: linuxdrive3-CHP-2-FIG-2]
Figure 2-2. Stacking of parallel port driver modules

[image: ]

 

[bookmark: linuxdrive3-CHP-2-ITERM-4234][bookmark: linuxdrive3-CHP-2-ITERM-4235]When using stacked modules, it is

[bookmark: linuxdrive3-CHP-2-ITERM-4236]helpful to be aware of the

modprobe[bookmark: linuxdrive3-CHP-2-ITERM-4237]
[bookmark: linuxdrive3-CHP-2-ITERM-4238]

utility. As we described earlier, modprobe

functions in much the same way as insmod, but it

also loads any other modules that are required by the module you want

to load. Thus, one modprobe command can

sometimes replace several invocations of insmod

(although you'll still need

insmod when loading your own modules from the

current directory, because modprobe looks only

in the standard installed module directories).

Using stacking to split modules into multiple layers can help reduce

development time by simplifying each layer. This is similar to the

separation between mechanism and policy that we discussed in Chapter 1.[bookmark: linuxdrive3-CHP-2-ITERM-4239]

The Linux kernel header files provide a convenient way to manage the

visibility of your symbols, thus reducing namespace pollution

(filling the namespace with names that may conflict with those

defined elsewhere in the kernel) and promoting proper information

hiding. If your module needs to export

[bookmark: linuxdrive3-CHP-2-ITERM-4240]symbols

for other modules to use, the following macros should be used.

EXPORT_SYMBOL(name);

EXPORT_SYMBOL_GPL(name);
 

Either of the above macros makes the given symbol available outside

the module. The _GPL version makes the symbol

available to GPL-licensed modules only. Symbols must be exported in

the global part of the module's file, outside of any

function, because the macros expand to the declaration of a

special-purpose variable that is expected to be accessible globally.

This variable is stored in a special part of the module executible

(an "ELF section") that is used by

the kernel at load time to find the variables exported by the module.

(Interested readers can look at

<linux/module.h> for the details, even

though the details are not needed to[bookmark: linuxdrive3-CHP-2-ITERM-4241] [bookmark: linuxdrive3-CHP-2-ITERM-4242] [bookmark: linuxdrive3-CHP-2-ITERM-4243] [bookmark: linuxdrive3-CHP-2-ITERM-4244] [bookmark: linuxdrive3-CHP-2-ITERM-4245] [bookmark: linuxdrive3-CHP-2-ITERM-4246] make things work.)







[bookmark: linuxdrive3-CHP-2-SECT-6]
2.6. Preliminaries

We are getting closer to looking

[bookmark: linuxdrive3-CHP-2-ITERM-4247]
[bookmark: linuxdrive3-CHP-2-ITERM-4248]
[bookmark: linuxdrive3-CHP-2-ITERM-4249]
[bookmark: linuxdrive3-CHP-2-ITERM-4250]
[bookmark: linuxdrive3-CHP-2-ITERM-4251]at some

actual module code. But first, we need to look at some other things

that need to appear in your module source files. The kernel is a

unique environment, and it imposes its own requirements on code that

would interface with it.

Most kernel code ends up including a fairly large number of header

files to get definitions of functions, data types, and variables.

We'll examine these files as we come to them, but

there are a few that are specific to modules, and must appear in

every loadable module. Thus, just about all module code has the

following:

#include <linux/module.h>

#include <linux/init.h>
 

module.h contains a great many definitions of

symbols and functions needed by loadable modules. You need

init.h to specify your initialization and

cleanup functions, as we saw in the "hello

world" example above, and which we revisit in the

next section. Most modules also include

moduleparam.h to enable the passing of

parameters to the module at load time; we will get to that shortly.

It is not strictly necessary, but your module really should specify

which license applies to its code. Doing so is just a matter of

including a MODULE_LICENSE line:

MODULE_LICENSE("GPL");
 

The specific licenses recognized by the kernel are

"GPL" (for any version of the GNU

General Public License), "GPL v2"

(for GPL version two only), "GPL and additional

rights," "Dual

BSD/GPL," "Dual

MPL/GPL," and

"Proprietary." Unless your module

is explicitly marked as being under a free license recognized by the

kernel, it is assumed to be proprietary, and the kernel is

"tainted" when the module is

loaded. As we mentioned in Section 1.6, kernel developers tend to be

unenthusiastic about helping users who experience problems after

loading proprietary modules.

Other descriptive definitions that can be contained within a module

include MODULE_AUTHOR (stating who wrote the

module), MODULE_DESCRIPTION (a human-readable

statement of what the module does), MODULE_VERSION

(for a code revision number; see the comments in

<linux/module.h> for the conventions to

use in creating version strings), MODULE_ALIAS

(another name by which this module can be known), and

MODULE_DEVICE_TABLE (to tell user space about

which devices the module supports).

The various MODULE_ declarations can appear

anywhere within your source file outside of a function. A relatively

recent convention in kernel code, however, is to put these

declarations at the end of the file.







[bookmark: linuxdrive3-CHP-2-SECT-7]
2.7. Initialization and Shutdown

As already mentioned, the module[bookmark: linuxdrive3-CHP-2-ITERM-4252]
[bookmark: linuxdrive3-CHP-2-ITERM-4253]
[bookmark: linuxdrive3-CHP-2-ITERM-4254]

initialization function

[bookmark: linuxdrive3-CHP-2-ITERM-4255]registers any

facility offered by the module. By facility, we

mean a new functionality, be it a whole driver or a new software

abstraction, that can be accessed by an application. The actual

definition of the initialization function always looks like:

static int _ _init initialization_function(void)

{

    /* Initialization code here */

}

module_init(initialization_function);
 

Initialization functions should be declared

static, since they are not meant to be visible

outside the specific file; there is no hard rule about this, though,

as no function is exported to the rest of the kernel unless

explicitly requested. The _ _init token in the

definition may look a little strange; it is a hint to the kernel that

the given function is used only at initialization time. The module

loader drops the initialization function after the module is loaded,

making its memory available for other uses. There is a similar tag

(_ _initdata) for data used only during

initialization. Use of _ _init and _

_initdata is optional, but it is worth the trouble. Just be

sure not to use them for any function (or data structure) you will be

using after initialization completes. You may also encounter

_ _devinit and _ _devinitdata

in the kernel source; these translate to _ _init

and _ _initdata only if the kernel has not been

configured for hotpluggable devices. We will look at hotplug support

in Chapter 14.

The use of

module_init[bookmark: linuxdrive3-CHP-2-ITERM-4256]
[bookmark: linuxdrive3-CHP-2-ITERM-4257]

is mandatory. This macro adds a special section to the

module's object code stating where the

module's initialization function is to be found.

Without this definition, your initialization function is never

called.

Modules can register many different types of facilities, including

different kinds of devices, filesystems, cryptographic transforms,

and more. For each facility, there is a specific kernel function that

accomplishes this registration. The arguments passed to the kernel

registration functions are usually pointers to data structures

describing the new facility and the name of the facility being

registered. The data structure usually contains pointers to module

functions, which is how functions in the module body get called.

The items that can be registered go beyond the list of device types

mentioned in Chapter 1. They

include, among others, serial ports, miscellaneous devices, sysfs

entries, /proc files, executable domains, and

line disciplines. Many of those registrable items support functions

that aren't directly related to hardware but remain

in the "software abstractions"

field. Those items can be registered, because they are integrated

into the driver's functionality anyway (like

/proc files and line disciplines for example).

[bookmark: linuxdrive3-CHP-2-ITERM-4258][bookmark: linuxdrive3-CHP-2-ITERM-4259]
[bookmark: linuxdrive3-CHP-2-ITERM-4260]There

are other facilities that can be registered as add-ons for certain

drivers, but their use is so specific that it's not

worth talking about them; they use the stacking technique, as

described in Section 2.5. If you want to probe further, you can

grep for EXPORT_SYMBOL in the kernel sources, and

find the entry points offered by different drivers. Most registration

functions are prefixed with register_, so another

possible way to find them is to grep for register_

in the kernel source.

[bookmark: linuxdrive3-CHP-2-SECT-7.1]
2.7.1. The Cleanup Function

Every nontrivial module also requires a cleanup function, which

[bookmark: linuxdrive3-CHP-2-ITERM-4261]
[bookmark: linuxdrive3-CHP-2-ITERM-4262]unregisters interfaces and returns

all resources to the system before the module is removed. This

function is defined as:

static void _ _exit cleanup_function(void)

{

    /* Cleanup code here */

}



module_exit(cleanup_function);
 

The [bookmark: linuxdrive3-CHP-2-ITERM-4263]
[bookmark: linuxdrive3-CHP-2-ITERM-4264]cleanup

function has no value to return, so it is declared

void. The _ _exit modifier

marks the code as being for module unload only (by causing the

compiler to place it in a special ELF section). If your module is

built directly into the kernel, or if your kernel is configured to

disallow the unloading of modules, functions marked _

_exit are simply discarded. For this reason, a function

marked _ _exit can be called only

at module unload or system shutdown time; any other use is

an error. Once again, the module_exit

declaration is necessary to enable to kernel to find your cleanup

function.

If your module does not define a cleanup function, the kernel does

not allow it to be unloaded.

[bookmark: linuxdrive3-CHP-2-SECT-7.2]
2.7.2. Error Handling During Initialization

One thing you must always [bookmark: linuxdrive3-CHP-2-ITERM-4265]bear in mind when registering

facilities with the kernel is that the registration could fail. Even

the simplest action often requires memory allocation, and the

required memory may not be available. So module code must always

check return values, and be sure that the requested operations have

actually succeeded.

If any errors occur when you register utilities, the first order of

business is to decide whether the module can continue initializing

itself anyway. Often, the module can continue to operate after a

registration failure, with degraded functionality if necessary.

Whenever possible, your module should press forward and provide what

capabilities it can after things fail.

If it turns out that your module simply cannot load after a

particular type of failure, you must undo any registration activities

performed before the failure. [bookmark: linuxdrive3-CHP-2-ITERM-4266]Linux doesn't keep a

per-module registry of facilities that have been registered, so the

module must back out of everything itself if initialization fails at

some point. If you ever fail to unregister what you obtained, the

kernel is left in an unstable state; it contains internal pointers to

code that no longer exists. In such situations, the only recourse,

usually, is to reboot the system. You really do want to take care to

do the right thing when an initialization error occurs.

[bookmark: linuxdrive3-CHP-2-ITERM-4267]Error

recovery is sometimes [bookmark: linuxdrive3-CHP-2-ITERM-4268] [bookmark: linuxdrive3-CHP-2-ITERM-4269]
[bookmark: linuxdrive3-CHP-2-ITERM-4270]best

handled with the goto statement. We normally hate

to use goto, but in our opinion, this is one

situation where it is useful. Careful use of goto

in error situations can eliminate a great deal of complicated,

highly-indented, "structured"

logic. Thus, in the kernel, goto is often used as

shown here to deal with errors.

The following sample code (using fictitious registration and

unregistration functions) behaves correctly if initialization fails

at any point:

int _ _init my_init_function(void)

{

    int err;



    /* registration takes a pointer and a name */

    err = register_this(ptr1, "skull");

    if (err) goto fail_this;

    err = register_that(ptr2, "skull");

    if (err) goto fail_that;

    err = register_those(ptr3, "skull");

    if (err) goto fail_those;



    return 0; /* success */



  fail_those: unregister_that(ptr2, "skull");

  fail_that: unregister_this(ptr1, "skull");

  fail_this: return err; /* propagate the error */

 }
 

This code attempts to register three (fictitious) facilities. The

goto statement is used in case of failure to cause

the unregistration of only the facilities that had been successfully

registered before things went bad.

[bookmark: linuxdrive3-CHP-2-ITERM-4271][bookmark: linuxdrive3-CHP-2-ITERM-4272]Another option, requiring no hairy

goto statements, is keeping track of what has been

successfully registered and calling

[bookmark: linuxdrive3-CHP-2-ITERM-4273]
[bookmark: linuxdrive3-CHP-2-ITERM-4274]your

module's cleanup function in case of any error. The

cleanup function unrolls only the steps that have been successfully

accomplished. This alternative, however, requires more code and more

CPU time, so in fast paths you still resort to

goto as the best error-recovery tool.

The return value[bookmark: linuxdrive3-CHP-2-ITERM-4275] of

my_init_function, err, is an

error code. In the Linux kernel, error codes are negative numbers

belonging to the set defined in

<linux/errno.h>. If you want to generate

your own error codes instead of returning what you get from other

functions, you should include

<linux/errno.h> in order to use symbolic

values such as -ENODEV,

-ENOMEM, and so on. It is always good practice to

return appropriate error codes, because user programs can turn them

to meaningful strings using perror or similar

means.

Obviously, the module cleanup function must undo any registration

performed by the initialization function, and it is customary (but

not usually mandatory) to unregister facilities in the reverse order

used to register them:

void _ _exit my_cleanup_function(void)

{

    unregister_those(ptr3, "skull");

    unregister_that(ptr2, "skull");

    unregister_this(ptr1, "skull");

    return;

}
 

If your initialization and cleanup are more complex than dealing with

a few items, the goto approach may become

difficult to manage, because all the cleanup code must be repeated

within the initialization function, with several labels intermixed.

Sometimes, therefore, a different layout of the code proves more

successful.

What you'd do to minimize code duplication and keep

everything streamlined is to call the cleanup function from within

the initialization whenever an error occurs. The cleanup function

then must check the status of each item before undoing its

registration. In its simplest form, the code looks like the

following:

struct something *item1;

struct somethingelse *item2;

int stuff_ok;



void my_cleanup(void)

{

    if (item1)

        release_thing(item1);

    if (item2)

        release_thing2(item2);

    if (stuff_ok)

        unregister_stuff(  );

    return;

 }



int _ _init my_init(void)

{

    int err = -ENOMEM;



    item1 = allocate_thing(arguments);

    item2 = allocate_thing2(arguments2);

    if (!item2 || !item2)

        goto fail;

    err = register_stuff(item1, item2);

    if (!err)

        stuff_ok = 1;

    else

        goto fail;

    return 0; /* success */ 

   

  fail:

    my_cleanup(  );

    return err;

}
 

As shown in this code, you may or may not need external flags to mark

success of the initialization step, depending on the semantics of the

registration/allocation function you call. Whether or not flags are

needed, this kind of initialization scales well to a large number of

items and is often better than the technique shown earlier. Note,

however, that the cleanup function cannot be marked _

_exit when it is called by nonexit code, as in the previous

example.

[bookmark: linuxdrive3-CHP-2-SECT-7.3]
2.7.3. Module-Loading Races

Thus far, our discussion has

skated[bookmark: linuxdrive3-CHP-2-ITERM-4276]
[bookmark: linuxdrive3-CHP-2-ITERM-4277]
[bookmark: linuxdrive3-CHP-2-ITERM-4278]
[bookmark: linuxdrive3-CHP-2-ITERM-4279] over an important aspect of module

loading: race conditions. If you are not careful in how you write

your initialization function, you can create situations that can

compromise the stability of the system as a whole. We will discuss

race conditions later in this book; for now, a couple of quick points

will have to suffice.

The first is that you should always

remember[bookmark: linuxdrive3-CHP-2-ITERM-4280] that some other part of

the kernel can make use of any facility you register immediately

after that registration has completed. It is entirely possible, in

other words, that the kernel will make calls into your module while

your initialization function is still running. So your code must be

prepared to be called as soon as it completes its first registration.

Do not register any facility until all of your internal

initialization needed to support that facility has been completed.

You must also consider what happens if your initialization function

decides to fail, but some part of the kernel is already making use of

a facility your module has registered. If this situation is possible

for your module, you should seriously consider not failing the

initialization at all. After all, the module has clearly succeeded in

exporting something useful. If initialization must fail, it must

carefully step around any possible operations going on elsewhere in

the [bookmark: linuxdrive3-CHP-2-ITERM-4281]
[bookmark: linuxdrive3-CHP-2-ITERM-4282]
[bookmark: linuxdrive3-CHP-2-ITERM-4283]kernel

until those operations have completed.







[bookmark: linuxdrive3-CHP-2-SECT-8]
2.8. Module Parameters

Several parameters that a driver needs to [bookmark: linuxdrive3-CHP-2-ITERM-4284]
[bookmark: linuxdrive3-CHP-2-ITERM-4285]
[bookmark: linuxdrive3-CHP-2-ITERM-4286]
[bookmark: linuxdrive3-CHP-2-ITERM-4287]
[bookmark: linuxdrive3-CHP-2-ITERM-4288]know can change from system to

system. These can vary from the device number to use (as

we'll see in the next chapter) to numerous aspects

of how the driver should operate. For example, drivers for SCSI

adapters often have options controlling the use of tagged command

queuing, and the Integrated Device Electronics (IDE) drivers allow

user control of DMA operations. If your driver controls older

hardware, it may also need to be told explicitly where to find that

hardware's I/O ports or I/O memory addresses. The

kernel supports these needs by making it possible for a driver to

designate parameters that may be changed when the

driver's module is loaded.

[bookmark: linuxdrive3-CHP-2-ITERM-4289][bookmark: linuxdrive3-CHP-2-ITERM-4290][bookmark: linuxdrive3-CHP-2-ITERM-4291]These parameter values can be assigned

at load time by insmod or

modprobe ; the latter can also read parameter

assignment from its configuration file

(/etc/modprobe.conf ). The commands accept the

specification of several types of values on the command line. As a

way of demonstrating this capability, imagine a much-needed

enhancement to the "hello world"

module (called hellop) shown at the beginning of

this chapter. We add two parameters: an integer value called

howmany and a character string called

whom. Our vastly more functional module then, at

load time, greets whom not just once, but

howmany times. Such a module could then be loaded

with a command line such as:

insmod hellop howmany=10 whom="Mom"
 

Upon being loaded that way, hellop would say

"Hello, Mom" 10 times.

[bookmark: linuxdrive3-CHP-2-ITERM-4292]However,

before insmod can change module parameters, the

module must make them available. Parameters are declared with the

module_param macro, which is defined in

moduleparam.h. module_param

takes three parameters: the name of the variable, its type, and a

permissions mask to be used for an accompanying sysfs entry. The

macro should be placed outside of any function and is typically found

near the head of the source file. So hellop

would declare its parameters and make them available to

insmod as follows:

static char *whom = "world";

static int howmany = 1;

module_param(howmany, int, S_IRUGO);

module_param(whom, charp, S_IRUGO);
 

Numerous types are

[bookmark: linuxdrive3-CHP-2-ITERM-4293]supported for module parameters:



	bool



	invbool

	
A boolean (true or false) value (the associated variable should be of

type int). The invbool type

inverts the value, so that true values become false and vice versa.





	charp

	
A char pointer value. Memory is allocated for user-provided strings,

and the pointer is set accordingly.





	int



	long



	short



	uint



	ulong



	ushort

	
Basic integer values of various lengths. The versions starting with

u are for unsigned values.





Array parameters, where the values are supplied as a comma-separated

list, are also supported by the module loader. To

[bookmark: linuxdrive3-CHP-2-ITERM-4294]
[bookmark: linuxdrive3-CHP-2-ITERM-4295]declare an array parameter, use:

module_param_array(name,type,num,perm);
 

Where name is the name of your array (and of the

parameter), type is the type of the array

elements, num is an integer variable, and

perm is the usual permissions value. If the array

parameter is set at load time, num is set to the

number of values supplied. The module loader refuses to accept more

values than will fit in the array.

If you really need a type that does not appear in the list above,

there are hooks in the module code that allow you to define them; see

moduleparam.h for details on how to do that. All

module parameters should be given a default value;

insmod changes the value only if explicitly told

to by the user. The module can check for explicit parameters by

testing parameters against their default values.

The final module_param field is a permission

value; you should use the definitions found in

<linux/stat.h>. This value controls who

can access the representation of the module parameter in sysfs. If

perm is set to 0, there is no

sysfs entry at all; otherwise, it appears under

/sys/module[3] with the given set of permissions. Use

S_IRUGO for a parameter that can be read by the

world but cannot be changed; S_IRUGO|S_IWUSR

allows root to change the parameter. Note that if a parameter is

changed by sysfs, the value of that parameter as seen by your module

changes, but your module is not notified in any other way. You should

probably not make module parameters writable, unless you are prepared

to detect the [bookmark: linuxdrive3-CHP-2-ITERM-4296] [bookmark: linuxdrive3-CHP-2-ITERM-4297] [bookmark: linuxdrive3-CHP-2-ITERM-4298] [bookmark: linuxdrive3-CHP-2-ITERM-4299] [bookmark: linuxdrive3-CHP-2-ITERM-4300]change and react accordingly.
[bookmark: linuxdrive3-CHP-2-FNOTE-3][3] As of this writing,

there is talk of moving parameters elsewhere within sysfs,

however.








[bookmark: linuxdrive3-CHP-2-SECT-9]
[bookmark: linuxdrive3-CHP-2-ITERM-4301]2.9. Doing It in User Space

[bookmark: linuxdrive3-CHP-2-ITERM-4302][bookmark: linuxdrive3-CHP-2-ITERM-4303][bookmark: linuxdrive3-CHP-2-ITERM-4304]A

Unix programmer who's addressing kernel issues for

the first time might be nervous about writing a module.

Writing[bookmark: linuxdrive3-CHP-2-ITERM-4305] [bookmark: linuxdrive3-CHP-2-ITERM-4306] [bookmark: linuxdrive3-CHP-2-ITERM-4307] a user program that reads and writes

directly to the device ports may be easier.

Indeed, there are some arguments in favor of user-space programming,

and sometimes writing a so-called user-space device driver is a wise

alternative to kernel hacking. In this section, we discuss some of

the reasons why you might write a driver in user space. This book is

about kernel-space drivers, however, so we do not go beyond this

introductory discussion.

The advantages of user-space drivers are:

	The full C library can be linked in. The driver can perform many

exotic tasks without resorting to external programs (the utility

programs implementing usage policies that are usually distributed

along with the driver itself).

	The programmer can run a conventional debugger on the driver code

without having to go through contortions to debug a running kernel.

	If a user-space driver hangs, you can simply kill it. Problems with

the driver are unlikely to hang the entire system, unless the

hardware being controlled is really misbehaving.

	User memory is swappable, unlike kernel memory. An infrequently used

device with a huge driver won't occupy RAM that

other programs could be using, except when it is actually in use.

	A well-designed driver program can still, like kernel-space drivers,

allow concurrent access to a device.

	If you must write a closed-source driver, the user-space option makes

it easier for you to avoid ambiguous licensing situations and

problems with changing kernel interfaces.



For example, USB drivers can be written for user space; see the

(still young) libusb project at libusb.sourceforge.net and

"gadgetfs" in the kernel source.

Another example is the X server: it knows exactly what the hardware

can do and what it can't, and it offers the graphic

resources to all X clients. Note, however, that there is a slow but

steady drift toward frame-buffer-based graphics environments, where

the X server acts only as a server based on a real kernel-space

device driver for actual graphic manipulation.

Usually, the writer of a user-space driver implements a server

process, taking over from the kernel the task of being the single

agent in charge of hardware control. Client applications can then

connect to the server to perform actual communication with the

device; therefore, a smart driver process can allow concurrent access

to the device. This is exactly how the X server works.

But the user-space approach to device driving has a number of

drawbacks. The most important are:

	Interrupts are not available in user space. There are workarounds for

this limitation on some platforms, such as the

vm86 system call on the IA32 architecture.

	Direct access to memory is possible only by

mmapping /dev/mem, and only

a privileged user can do that.

	Access to I/O ports is available only after calling

ioperm or iopl. Moreover,

not all platforms support these system calls, and access to

/dev/port can be too slow to be effective. Both

the system calls and the device file are reserved to a privileged

user.

	Response time is slower, because a context switch is required to

transfer information or actions between the client and the hardware.

	[bookmark: linuxdrive3-CHP-2-ITERM-4308]Worse yet,

if the driver has been swapped to disk, response time is unacceptably

long. Using the mlock system call might help,

but usually you'll need to lock many memory pages,

because a user-space program depends on a lot of library code.

mlock, too, is limited to privileged users.

	The most important devices can't be handled in user

space, including, but not limited to, network interfaces and block

devices.



As you see, user-space drivers can't do that much

after all. Interesting applications nonetheless exist: for example,

support for SCSI scanner devices (implemented by the

SANE package) and CD writers (implemented by

cdrecord and other tools). In both cases,

user-level device drivers rely on the "SCSI

generic" kernel driver, which exports low-level SCSI

functionality to user-space programs so they can drive their own

hardware.

One case in which working in user space might make sense is when you

are beginning to deal with new and unusual hardware. This way you can

learn to manage your hardware without the risk of hanging the whole

system. Once you've done that, encapsulating the

software in a kernel module should be a[bookmark: linuxdrive3-CHP-2-ITERM-4309] [bookmark: linuxdrive3-CHP-2-ITERM-4310] [bookmark: linuxdrive3-CHP-2-ITERM-4311] painless operation. [bookmark: linuxdrive3-CHP-2-ITERM-4312]







[bookmark: linuxdrive3-CHP-2-SECT-10]
2.10. Quick Reference

This section summarizes the kernel functions, variables, macros, and

/proc files that we've touched

on in this chapter. It is meant to act as a reference. Each item is

listed after the relevant header file, if any. A similar section

appears at the end of almost every chapter from here on, summarizing

the new symbols introduced in the chapter. Entries in this section

generally appear in the same order in which they were introduced in

the chapter:

[bookmark: linuxdrive3-CHP-2-ITERM-4313][bookmark: linuxdrive3-CHP-2-ITERM-4314][bookmark: linuxdrive3-CHP-2-ITERM-4315][bookmark: linuxdrive3-CHP-2-ITERM-4316][bookmark: linuxdrive3-CHP-2-ITERM-4317][bookmark: linuxdrive3-CHP-2-ITERM-4318][bookmark: linuxdrive3-CHP-2-ITERM-4319][bookmark: linuxdrive3-CHP-2-ITERM-4320][bookmark: linuxdrive3-CHP-2-ITERM-4321][bookmark: linuxdrive3-CHP-2-ITERM-4322][bookmark: linuxdrive3-CHP-2-ITERM-4323][bookmark: linuxdrive3-CHP-2-ITERM-4324][bookmark: linuxdrive3-CHP-2-ITERM-4325][bookmark: linuxdrive3-CHP-2-ITERM-4326][bookmark: linuxdrive3-CHP-2-ITERM-4327]

	insmod



	modprobe



	rmmod

	
User-space utilities that load modules into the running kernels and

remove them.





	#include <linux/init.h>



	module_init(init_function);



	module_exit(cleanup_function);

	
[bookmark: linuxdrive3-CHP-2-ITERM-4313]Macros

that designate a module's initialization and cleanup

functions.





	_ _init



	_ _initdata



	_ _exit



	_ _exitdata

	
Markers for functions (_ _init and _

_exit) and data (_ _initdata and

_ _exitdata) that are only used at module

initialization or cleanup time. Items marked for initialization may

be discarded once initialization completes; the exit items may be

discarded if module unloading has not been configured into the

kernel. These markers work by causing the relevant objects to be

placed in a special ELF section in the executable file.





	#include <linux/sched.h>

	
[bookmark: linuxdrive3-CHP-2-ITERM-4314]One of

the most important header files. This file contains definitions of

much of the kernel API used by the driver, including functions for

sleeping and numerous variable declarations.





	struct task_struct *current;

	
[bookmark: linuxdrive3-CHP-2-ITERM-4315]The current

process.





	current->pid



	current->comm

	
The process ID and command name for the current process.





	obj-m

	
A makefile symbol used by the kernel build system to determine which

modules should be built in the current directory.





	/sys/module



	/proc/modules

	
[bookmark: linuxdrive3-CHP-2-ITERM-4316][bookmark: linuxdrive3-CHP-2-ITERM-4317]/sys/module

is a sysfs directory hierarchy containing information on

currently-loaded modules. /proc/modules is the

older, single-file version of that information. Entries contain the

module name, the amount of memory each module occupies, and the usage

count. Extra strings are appended to each line to specify flags that

are currently active for the module.





	vermagic.o

	
An object file from the kernel source directory that describes the

environment a module was built for.





	#include <linux/module.h>

	
[bookmark: linuxdrive3-CHP-2-ITERM-4318]Required header. It must be included by a

module source.





	#include <linux/version.h>

	
[bookmark: linuxdrive3-CHP-2-ITERM-4319]A

header file containing information on the version of the kernel being

built.





	LINUX_VERSION_CODE

	
[bookmark: linuxdrive3-CHP-2-ITERM-4320]Integer macro, useful to

#ifdef version dependencies.





	EXPORT_SYMBOL (symbol);



	EXPORT_SYMBOL_GPL (symbol);

	
[bookmark: linuxdrive3-CHP-2-ITERM-4321][bookmark: linuxdrive3-CHP-2-ITERM-4322]Macro used to export a symbol to the

kernel. The second form exports without using versioning information,

and the third limits the export to GPL-licensed modules.





	MODULE_AUTHOR(author);



	MODULE_DESCRIPTION(description);



	MODULE_VERSION(version_string);



	MODULE_DEVICE_TABLE(table_info);



	MODULE_ALIAS(alternate_name);

	
[bookmark: linuxdrive3-CHP-2-ITERM-4323][bookmark: linuxdrive3-CHP-2-ITERM-4324][bookmark: linuxdrive3-CHP-2-ITERM-4325][bookmark: linuxdrive3-CHP-2-ITERM-4326]Place documentation on the module in the

object file.





	module_init(init_function);



	module_exit(exit_function);

	
Macros that declare a module's initialization and

cleanup functions.





	#include <linux/moduleparam.h>



	module_param(variable, type, perm);

	
[bookmark: linuxdrive3-CHP-2-ITERM-4327]Macro

that creates a module parameter that can be adjusted by the user when

the module is loaded (or at boot time for built-in code). The type

can be one of bool, charp,

int, invbool,

long, short,

ushort, uint,

ulong, or intarray.





	#include <linux/kernel.h>



	int printk(const char * fmt, ...);

	
The analogue of printf for kernel code.











[bookmark: linuxdrive3-CHP-3]

Chapter 3. Char Drivers

The goal of this chapter is to write a complete char device driver.

We develop a character driver because this class is suitable for most

simple hardware devices. Char drivers are also easier to understand

than block drivers or network drivers (which we get to in later

chapters). Our ultimate aim is to write a

modularized char driver, but we

won't talk about modularization issues in this

chapter.

[bookmark: linuxdrive3-CHP-3-ITERM-4328]Throughout the chapter, we present

code fragments extracted from a real device driver:

scull ([bookmark: linuxdrive3-CHP-3-ITERM-4329]Simple

[bookmark: linuxdrive3-CHP-3-ITERM-4330]Character Utility for

Loading Localities). scull is a char driver that

acts on a memory area as though it were a device. In this chapter,

because of that peculiarity of scull, we use the

word device interchangeably with

"the memory area used by

scull."

The advantage of scull is that it

isn't hardware dependent. scull

just acts on some memory, allocated from the kernel. Anyone can

compile and run scull, and

scull is portable across the computer

architectures on which Linux runs. On the other hand, the device

doesn't do anything

"useful" other than demonstrate the

interface between the kernel and char drivers and allow the user to

run some tests.







[bookmark: linuxdrive3-CHP-3-SECT-1]
3.1. The Design of scull

[bookmark: linuxdrive3-CHP-3-ITERM-4331][bookmark: linuxdrive3-CHP-3-ITERM-4332]The

first step of driver[bookmark: linuxdrive3-CHP-3-ITERM-4333]

writing[bookmark: linuxdrive3-CHP-3-ITERM-4334]
[bookmark: linuxdrive3-CHP-3-ITERM-4335]
[bookmark: linuxdrive3-CHP-3-ITERM-4336] [bookmark: linuxdrive3-CHP-3-ITERM-4337] is defining the capabilities (the

mechanism) the driver will offer to user programs. Since our

"device" is part of the

computer's memory, we're free to do

what we want with it. It can be a sequential or random-access device,

one device or many, and so on.

To make scull useful as a template for writing

real drivers for real devices, we'll show you how to

implement several device abstractions on top of the computer memory,

each with a different personality.

The scull source implements the following

devices. Each kind of device implemented by the module is referred to

as a type .

[bookmark: linuxdrive3-CHP-3-ITERM-4338][bookmark: linuxdrive3-CHP-3-ITERM-4339][bookmark: linuxdrive3-CHP-3-ITERM-4340][bookmark: linuxdrive3-CHP-3-ITERM-4341][bookmark: linuxdrive3-CHP-3-ITERM-4342][bookmark: linuxdrive3-CHP-3-ITERM-4343][bookmark: linuxdrive3-CHP-3-ITERM-4344][bookmark: linuxdrive3-CHP-3-ITERM-4345][bookmark: linuxdrive3-CHP-3-ITERM-4346]

	scull0 to scull3

	
[bookmark: linuxdrive3-CHP-3-ITERM-4338][bookmark: linuxdrive3-CHP-3-ITERM-4339][bookmark: linuxdrive3-CHP-3-ITERM-4340][bookmark: linuxdrive3-CHP-3-ITERM-4341]Four devices, each consisting of

[bookmark: linuxdrive3-CHP-3-ITERM-4342]a memory area that is both global and

persistent. Global means that if the device is opened multiple times,

the data contained within the device is shared by all the file

descriptors that opened it. Persistent means that if the device is

closed and reopened, data isn't lost. This device

can be fun to work with, because it can be accessed and tested using

conventional commands, such as cp,

cat, and shell I/O redirection.





	scullpipe0 to scullpipe3

	
[bookmark: linuxdrive3-CHP-3-ITERM-4343]Four [bookmark: linuxdrive3-CHP-3-ITERM-4344]
[bookmark: linuxdrive3-CHP-3-ITERM-4345]FIFO

(first-in-first-out) devices, [bookmark: linuxdrive3-CHP-3-ITERM-4346]which act like pipes. One process reads

what another process writes. If multiple processes read the same

device, they contend for data. The internals of

scullpipe will show how blocking and nonblocking

read and write can be

implemented without having to resort to interrupts. Although real

drivers synchronize with their devices using hardware interrupts, the

topic of blocking and nonblocking operations is an important one and

is separate from interrupt handling (covered in Chapter 10).





	scullsingle



	scullpriv



	sculluid



	scullwuid

	
These devices are similar to scull0 but with

some limitations on when an open is permitted.

The first (scullsingle) allows only one process

at a time to use the driver, whereas scullpriv

is private to each virtual console (or X terminal session), because

processes on each console/terminal get different memory areas.

sculluid and scullwuid can

be opened multiple times, but only by one user at a time; the former

returns an error of "Device Busy"

if another user is locking the device, whereas the latter implements

blocking open. These variations of

scull would appear to be confusing policy and

mechanism, but they are worth looking at, because some real-life

devices require this sort of management.





Each of the scull devices demonstrates different

features of a driver and presents different difficulties. This

chapter covers the internals of scull0 to

scull3; the more advanced devices are covered in

Chapter 6.

scullpipe is described in the section Section 3.4 and the others are described in Section 6.6







[bookmark: linuxdrive3-CHP-3-SECT-2]
[bookmark: linuxdrive3-CHP-3-ITERM-4347]3.2. Major and Minor Numbers

[bookmark: linuxdrive3-CHP-3-ITERM-4348][bookmark: linuxdrive3-CHP-3-ITERM-4349][bookmark: linuxdrive3-CHP-3-ITERM-4350]
[bookmark: linuxdrive3-CHP-3-ITERM-4351][bookmark: linuxdrive3-CHP-3-ITERM-4352][bookmark: linuxdrive3-CHP-3-ITERM-4353]Char [bookmark: linuxdrive3-CHP-3-ITERM-4354]devices are accessed

[bookmark: linuxdrive3-CHP-3-ITERM-4355]through [bookmark: linuxdrive3-CHP-3-ITERM-4356] [bookmark: linuxdrive3-CHP-3-ITERM-4357] [bookmark: linuxdrive3-CHP-3-ITERM-4358] [bookmark: linuxdrive3-CHP-3-ITERM-4359] [bookmark: linuxdrive3-CHP-3-ITERM-4360]
[bookmark: linuxdrive3-CHP-3-ITERM-4361]names in the filesystem. Those names are

called special files or device files or simply nodes of the

filesystem tree; they are conventionally located in the

/dev[bookmark: linuxdrive3-CHP-3-ITERM-4362]
[bookmark: linuxdrive3-CHP-3-ITERM-4363] directory. Special files

for char drivers are identified by a

"c" in the first column of the

output of ls -l. Block devices appear in

/dev as well, but they are identified by a

"b." The focus of this chapter is

on char devices, but much of the following information applies to

block devices as well.

[bookmark: linuxdrive3-CHP-3-ITERM-4364]If you

issue the ls -l command, you'll

see two numbers (separated by a comma) in the device file entries

before the date of the last modification, where the file length

normally appears. These numbers are the major and minor device number

for the particular device. The following listing shows a few devices

as they appear on a typical system. Their major numbers are 1, 4, 7,

and 10, while the minors are 1, 3, 5, 64, 65, and 129.

 crw-rw-rw-    1 root     root       1,   3 Apr 11  2002 null

 crw-------    1 root     root      10,   1 Apr 11  2002 psaux

 crw-------    1 root     root       4,   1 Oct 28 03:04 tty1

 crw-rw-rw-    1 root     tty        4,  64 Apr 11  2002 ttys0

 crw-rw----    1 root     uucp       4,  65 Apr 11  2002 ttyS1

 crw--w----    1 vcsa     tty        7,   1 Apr 11  2002 vcs1

 crw--w----    1 vcsa     tty        7, 129 Apr 11  2002 vcsa1

 crw-rw-rw-    1 root     root       1,   5 Apr 11  2002 zero
 

Traditionally, the major number identifies the driver associated with

the device. For example, /dev/null and

/dev/zero are both managed by driver 1, whereas

virtual consoles and serial terminals are managed by driver 4;

similarly, both vcs1 and

vcsa1 devices are managed by driver 7. Modern

Linux kernels allow multiple drivers to share major numbers, but most

devices that you will see are still organized on the

one-major-one-driver principle.

[bookmark: linuxdrive3-CHP-3-ITERM-4365][bookmark: linuxdrive3-CHP-3-ITERM-4366]The minor number is used by the

kernel to determine exactly which device is being referred to.

Depending on how your driver is written (as we will see below), you

can either get a direct pointer to your device from the kernel, or

you can use the minor number yourself as an index into a local array

of devices. Either way, the kernel itself knows almost nothing about

minor numbers beyond the fact that they refer to devices implemented

by your driver.

[bookmark: linuxdrive3-CHP-3-SECT-2.1]
3.2.1. The Internal Representation of Device Numbers

Within the kernel, the dev_t type (defined in

<linux/types.h>)

is[bookmark: linuxdrive3-CHP-3-ITERM-4367] used to hold device numbers�both

the major and[bookmark: linuxdrive3-CHP-3-ITERM-4368]
[bookmark: linuxdrive3-CHP-3-ITERM-4369] minor parts. As of

Version 2.6.0 of the kernel, dev_t is a 32-bit

quantity with 12 bits set aside for the

[bookmark: linuxdrive3-CHP-3-ITERM-4370]major number and 20 for the

minor number. Your code should, of course, never make any assumptions

about the internal organization of device numbers; it should,

instead, make use of a set of

[bookmark: linuxdrive3-CHP-3-ITERM-4371]macros found

in <linux/kdev_t.h>. To obtain the major

or minor parts of a dev_t, use:

MAJOR(dev_t dev);

MINOR(dev_t dev);
 

If, instead, you have the major and minor numbers and need to turn

them into a dev_t, use:

MKDEV(int major, int minor);
 

Note that the 2.6 kernel can accommodate a vast number of devices,

while previous kernel versions were limited to 255 major and 255

minor numbers. One assumes that the wider range will be sufficient

for quite some time, but the computing field is littered with

erroneous assumptions of that nature. So you should expect that the

format of dev_t could change again in the future;

if you write your drivers carefully, however, these changes will not

be a problem.

[bookmark: linuxdrive3-CHP-3-SECT-2.2]
3.2.2. Allocating and Freeing Device Numbers

One of the first things your

driver[bookmark: linuxdrive3-CHP-3-ITERM-4372]
[bookmark: linuxdrive3-CHP-3-ITERM-4373]
[bookmark: linuxdrive3-CHP-3-ITERM-4374]
[bookmark: linuxdrive3-CHP-3-ITERM-4375] will need to do

[bookmark: linuxdrive3-CHP-3-ITERM-4376]when setting up a char

device is to obtain one or more device numbers to work with. The

necessary function for this task is

register_chrdev_region, which is declared in

<linux/fs.h>:

int register_chrdev_region(dev_t first, unsigned int count, 

                           char *name);
 

Here, first is the beginning

[bookmark: linuxdrive3-CHP-3-ITERM-4377]device number of the range you would

like to allocate. The minor number portion of

first is often 0, but there is

no requirement to that effect. count is the total

number of contiguous device numbers you are requesting. Note that, if

count is large, the range you request could spill

over to the next major number; but everything will still work

properly as long as the number range you request is available.

Finally, name is the name of the device that

should be associated with this number range; it will appear in

/proc/devices and sysfs.

As with most kernel functions, the return value from

register_chrdev_region will be

0 if the allocation was successfully performed. In

case of error, a negative error code will be returned, and you will

not have access to the requested region.

register_chrdev_region works well if you know

ahead of time exactly which device numbers you want. Often, however,

you will not know which major numbers your device will use; there is

a constant effort within the Linux kernel development community to

move over to the use of dynamicly-allocated device numbers. The

kernel will happily allocate a major number for you on the fly, but

you must request this allocation by using a different function:

int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, 

                        unsigned int count, char *name);
 

With this function, dev is an output-only

parameter that will, on successful completion, hold the first number

in your allocated range. firstminor should be the

requested first minor number to use; it is usually

0. The count and

name parameters work like those given to

request_chrdev_region.

Regardless of how you allocate your device numbers, you should free

them when they are no longer in use. Device numbers are freed with:

void unregister_chrdev_region(dev_t first, unsigned int count);
 

The usual place to call unregister_chrdev_region

would be in your module's cleanup function.

The above functions allocate device numbers for your

driver's use, but they do not tell the kernel

anything about what you will actually do with those numbers. Before a

user-space program can access one of those device numbers, your

driver needs to connect them to its internal functions that implement

the device's operations. We will describe how this

connection is accomplished shortly, but there are a couple of

necessary digressions to take care of first.

[bookmark: linuxdrive3-CHP-3-SECT-2.3]
3.2.3. Dynamic Allocation of Major Numbers

Some major device numbers are statically [bookmark: linuxdrive3-CHP-3-ITERM-4378]
[bookmark: linuxdrive3-CHP-3-ITERM-4379]
[bookmark: linuxdrive3-CHP-3-ITERM-4380]assigned to the most common devices. A

list of those devices can be found in

Documentation/devices.txt within the kernel

source tree. The chances of a [bookmark: linuxdrive3-CHP-3-ITERM-4381]static number having already been

assigned for the use of your new driver are small, however, and new

numbers are not being assigned. So, as a driver writer, you have a

choice: you can simply pick a number that appears to be unused, or

you can allocate major numbers in a dynamic manner. Picking a number

may work as long as the only user of your driver is you; once your

driver is more widely deployed, a randomly picked major number will

lead to conflicts and trouble.

Thus, for new drivers, we strongly

[bookmark: linuxdrive3-CHP-3-ITERM-4382]suggest that you use dynamic

allocation to obtain your major device number, rather than choosing a

number randomly from the ones that are currently free. In other

words, your drivers should almost certainly be using

alloc_chrdev_region rather than

register_chrdev_region.

[bookmark: linuxdrive3-CHP-3-ITERM-4383][bookmark: linuxdrive3-CHP-3-ITERM-4384]The disadvantage of dynamic assignment is

that you can't create the device nodes in advance,

because the major number assigned to your module will vary. For

normal use of the driver, this is hardly a problem, because once the

number has been assigned, you can read it from

/proc/devices.[1]
[bookmark: linuxdrive3-CHP-3-FNOTE-1][1] Even better

device information can usually be obtained from sysfs, generally

mounted on /sys on 2.6-based systems. Getting

scull to export information via sysfs is beyond

the scope of this chapter, however; we'll return to

this topic in Chapter 14.


[bookmark: linuxdrive3-CHP-3-ITERM-4385]To load a driver using a

dynamic[bookmark: linuxdrive3-CHP-3-ITERM-4386]
[bookmark: linuxdrive3-CHP-3-ITERM-4387]

major number, therefore, the invocation of

insmod can be replaced by a simple script that,

after calling insmod, reads

/proc/devices in order to create the special

file(s).

A typical /proc/devices file looks like the

following:

Character devices:

 1 mem

 2 pty

 3 ttyp

 4 ttyS

 6 lp

 7 vcs

 10 misc

 13 input

 14 sound

 21 sg

180 usb



Block devices:

 2 fd

 8 sd

 11 sr

 65 sd

 66 sd
 

[bookmark: linuxdrive3-CHP-3-ITERM-4388]The script to load a

module that[bookmark: linuxdrive3-CHP-3-ITERM-4389]
[bookmark: linuxdrive3-CHP-3-ITERM-4390]
[bookmark: linuxdrive3-CHP-3-ITERM-4391] has been assigned a dynamic number

can, therefore, be written using a tool such as

awk to retrieve information from

/proc/devices in order to create the files in

/dev.

The following script, scull_load, is part of the

scull distribution. The user of a driver that is

distributed in the form of a module can invoke such a script from the

system's rc.local file or call

it manually whenever the module is needed.

#!/bin/sh

module="scull"

device="scull"

mode="664"



# invoke insmod with all arguments we got

# and use a pathname, as newer modutils don't look in . by default

/sbin/insmod ./$module.ko $* || exit 1



# remove stale nodes

rm -f /dev/${device}[0-3]



major=$(awk "\\$2=  =\"$module\" {print \\$1}" /proc/devices)



mknod /dev/${device}0 c $major 0

mknod /dev/${device}1 c $major 1

mknod /dev/${device}2 c $major 2

mknod /dev/${device}3 c $major 3



# give appropriate group/permissions, and change the group.

# Not all distributions have staff, some have "wheel" instead.

group="staff"

grep -q '^staff:' /etc/group || group="wheel"



chgrp $group /dev/${device}[0-3]

chmod $mode  /dev/${device}[0-3]
 

The script can be adapted for another driver by redefining the

variables and adjusting the mknod lines. The

script just shown creates four devices because four is the default in

the scull sources.

[bookmark: linuxdrive3-CHP-3-ITERM-4392][bookmark: linuxdrive3-CHP-3-ITERM-4393][bookmark: linuxdrive3-CHP-3-ITERM-4394]The last few lines

of the script may seem obscure: why change the group and mode of a

device? The reason is that the script must be run by the superuser,

so newly created special files are owned by root. The permission bits

default so that only root has write access, while anyone can get read

access. Normally, a device node requires a different access policy,

so in some way or another access rights must be changed. The default

in our script is to give access to a group of users, but your needs

may vary. In Section 6.6 in Chapter 3, the code for

sculluid demonstrates how the driver can enforce

its own kind of authorization for device access.

A scull_unload script is also available to clean

up the /dev directory and remove the module.

[bookmark: linuxdrive3-CHP-3-ITERM-4395][bookmark: linuxdrive3-CHP-3-ITERM-4396]As an alternative to using a pair

of scripts for loading and unloading, you could write an init script,

ready to be placed in the directory your distribution uses for these

scripts.[2] As part of the

scull source, we offer a fairly complete and

configurable example of an init script, called

scull.init; it accepts the conventional

arguments�start, stop,

and restart�and performs the role of both

scull_load and

scull_unload.
[bookmark: linuxdrive3-CHP-3-FNOTE-2][2] The Linux Standard Base specifies that init

scripts should be placed in /etc/init.d, but

some distributions still place them elsewhere. In addition, if your

script is to be run at boot time, you need to make a link to it from

the appropriate run-level directory (i.e.,

.../rc3.d).


[bookmark: linuxdrive3-CHP-3-ITERM-4397][bookmark: linuxdrive3-CHP-3-ITERM-4398]If repeatedly creating and destroying

/dev nodes sounds like overkill, there is a

useful workaround. If you are loading and unloading only a single

driver, you can just use rmmod and

insmod after the first time you create the

special files with your script: dynamic numbers are not

randomized,[3] and

you can count on the same number being chosen each time if you

don't load any other (dynamic) modules. Avoiding

lengthy scripts is useful during development. But this trick,

clearly, doesn't scale to more than one driver at a

time.
[bookmark: linuxdrive3-CHP-3-FNOTE-3][3] Though certain kernel developers have

threatened to do exactly that in the future.


The best way to assign major numbers, in our opinion, is by

defaulting to dynamic allocation while leaving yourself the option of

specifying the major number at load time, or even at compile time.

The scull implementation works in this way; it

uses a global variable, scull_major, to hold the

chosen number (there is also a scull_minor for the

minor number). The variable is initialized to

SCULL_MAJOR, defined in

scull.h. The default value of

SCULL_MAJOR in the distributed source is

0, which means "use dynamic

assignment." The user can accept the default or

choose a particular major number, either by modifying the macro

before compiling or by specifying a value for

scull_major on the insmod

command line. Finally, by using the scull_load

script, the user can pass arguments to insmod on

scull_load 's command

line.[4]
[bookmark: linuxdrive3-CHP-3-FNOTE-4][4] The init script scull.init

doesn't accept driver options on the command line,

but it supports a configuration file, because it's

designed for automatic use at boot and shutdown time.


Here's the code we use in scull

's source to get a major number:

if (scull_major) {

    dev = MKDEV(scull_major, scull_minor);

    result = register_chrdev_region(dev, scull_nr_devs, "scull");

} else {

    result = alloc_chrdev_region(&dev, scull_minor, scull_nr_devs,

            "scull");

    scull_major = MAJOR(dev);

}

if (result < 0) {

    printk(KERN_WARNING "scull: can't get major %d\n", scull_major);

    return result;

}
 

Almost all of the sample drivers used in [bookmark: linuxdrive3-CHP-3-ITERM-4399] [bookmark: linuxdrive3-CHP-3-ITERM-4400] [bookmark: linuxdrive3-CHP-3-ITERM-4401] [bookmark: linuxdrive3-CHP-3-ITERM-4402] [bookmark: linuxdrive3-CHP-3-ITERM-4403] [bookmark: linuxdrive3-CHP-3-ITERM-4404]this book use

similar code for their major number assignment.







[bookmark: linuxdrive3-CHP-3-SECT-3]
3.3. Some Important Data Structures

As you can imagine, device number registration

[bookmark: linuxdrive3-CHP-3-ITERM-4405]
[bookmark: linuxdrive3-CHP-3-ITERM-4406]
[bookmark: linuxdrive3-CHP-3-ITERM-4407]is just the first of many tasks

that driver code must carry out. We will soon look at other important

driver components, but one other digression is needed first. Most of

the fundamental driver operations involve three important kernel data

structures, called file_operations,

file, and inode. A basic

familiarity with these structures is required to be able to do much

of anything interesting, so we will now take a quick look at each of

them before getting into the details of how to implement the

fundamental driver operations.

[bookmark: linuxdrive3-CHP-3-SECT-3.1]
3.3.1. File Operations

[bookmark: linuxdrive3-CHP-3-ITERM-4408][bookmark: linuxdrive3-CHP-3-ITERM-4409][bookmark: linuxdrive3-CHP-3-ITERM-4410][bookmark: linuxdrive3-CHP-3-ITERM-4411]So far, we have reserved som[bookmark: linuxdrive3-CHP-3-ITERM-4412]
[bookmark: linuxdrive3-CHP-3-ITERM-4413] [bookmark: linuxdrive3-CHP-3-ITERM-4414]
[bookmark: linuxdrive3-CHP-3-ITERM-4415]
[bookmark: linuxdrive3-CHP-3-ITERM-4416] [bookmark: linuxdrive3-CHP-3-ITERM-4417]
[bookmark: linuxdrive3-CHP-3-ITERM-4418]e

device numbers for our use, but we have not yet connected any of our

driver's operations to those numbers. The

file_operations structure is how a char driver

sets up this connection. The structure, defined in

<linux/fs.h>, is a collection of function

pointers. Each open file (represented internally by a

file structure, which we will examine shortly) is

associated with its own set of functions (by including a field called

f_op that points to a

file_operations structure). The operations are

mostly in charge of implementing the system calls and are therefore,

named open, read, and so

on. We can consider the file to be an

"object" and the functions

operating on it to be its

"methods," using object-oriented

programming terminology to denote actions declared by an object to

act on itself. This is the first sign of object-oriented programming

we see in the Linux kernel, and we'll see more in

later chapters.

[bookmark: linuxdrive3-CHP-3-ITERM-4419]Conventionally, a

file_operations structure or a pointer to one is

called fops (or some variation thereof ). Each

field in the structure must point to the function in the driver that

implements a specific operation, or be left NULL

for unsupported operations. The exact behavior of the kernel when a

NULL pointer is specified is different for each

function, as the list later in this section shows.

The following list introduces all the operations that an application

can invoke on a device. We've tried to keep the list

brief so it can be used as a reference, merely summarizing each

operation and the default kernel behavior when a

NULL pointer is used.

As you read through the list of file_operations

methods, you will note that a number of parameters include the string

_ _user. This annotation is a form of

documentation, noting that a pointer is a user-space address that

cannot be directly dereferenced. For normal compilation, _

_user has no effect, but it can be used by external

checking software to find misuse of user-space addresses.

The rest of the chapter, after describing some other important data

structures, explains the role of the most important operations and

offers hints, caveats, and real code examples. We defer discussion of

the more complex operations to later chapters, because we

aren't ready to dig into topics such as memory

management, blocking operations, and asynchronous notification quite

yet.

[bookmark: linuxdrive3-CHP-3-ITERM-4420][bookmark: linuxdrive3-CHP-3-ITERM-4421][bookmark: linuxdrive3-CHP-3-ITERM-4422][bookmark: linuxdrive3-CHP-3-ITERM-4423][bookmark: linuxdrive3-CHP-3-ITERM-4424][bookmark: linuxdrive3-CHP-3-ITERM-4425][bookmark: linuxdrive3-CHP-3-ITERM-4426][bookmark: linuxdrive3-CHP-3-ITERM-4427][bookmark: linuxdrive3-CHP-3-ITERM-4428][bookmark: linuxdrive3-CHP-3-ITERM-4429][bookmark: linuxdrive3-CHP-3-ITERM-4430][bookmark: linuxdrive3-CHP-3-ITERM-4431][bookmark: linuxdrive3-CHP-3-ITERM-4432][bookmark: linuxdrive3-CHP-3-ITERM-4433][bookmark: linuxdrive3-CHP-3-ITERM-4434][bookmark: linuxdrive3-CHP-3-ITERM-4435][bookmark: linuxdrive3-CHP-3-ITERM-4436][bookmark: linuxdrive3-CHP-3-ITERM-4437][bookmark: linuxdrive3-CHP-3-ITERM-4438][bookmark: linuxdrive3-CHP-3-ITERM-4439][bookmark: linuxdrive3-CHP-3-ITERM-4440][bookmark: linuxdrive3-CHP-3-ITERM-4441][bookmark: linuxdrive3-CHP-3-ITERM-4442][bookmark: linuxdrive3-CHP-3-ITERM-4443][bookmark: linuxdrive3-CHP-3-ITERM-4444][bookmark: linuxdrive3-CHP-3-ITERM-4445][bookmark: linuxdrive3-CHP-3-ITERM-4446][bookmark: linuxdrive3-CHP-3-ITERM-4447][bookmark: linuxdrive3-CHP-3-ITERM-4448][bookmark: linuxdrive3-CHP-3-ITERM-4449][bookmark: linuxdrive3-CHP-3-ITERM-4450][bookmark: linuxdrive3-CHP-3-ITERM-4451][bookmark: linuxdrive3-CHP-3-ITERM-4452][bookmark: linuxdrive3-CHP-3-ITERM-4453][bookmark: linuxdrive3-CHP-3-ITERM-4454][bookmark: linuxdrive3-CHP-3-ITERM-4455][bookmark: linuxdrive3-CHP-3-ITERM-4456][bookmark: linuxdrive3-CHP-3-ITERM-4457][bookmark: linuxdrive3-CHP-3-ITERM-4458][bookmark: linuxdrive3-CHP-3-ITERM-4459][bookmark: linuxdrive3-CHP-3-ITERM-4460][bookmark: linuxdrive3-CHP-3-ITERM-4461][bookmark: linuxdrive3-CHP-3-ITERM-4462][bookmark: linuxdrive3-CHP-3-ITERM-4463][bookmark: linuxdrive3-CHP-3-ITERM-4464][bookmark: linuxdrive3-CHP-3-ITERM-4465][bookmark: linuxdrive3-CHP-3-ITERM-4466][bookmark: linuxdrive3-CHP-3-ITERM-4467][bookmark: linuxdrive3-CHP-3-ITERM-4468][bookmark: linuxdrive3-CHP-3-ITERM-4469][bookmark: linuxdrive3-CHP-3-ITERM-4470][bookmark: linuxdrive3-CHP-3-ITERM-4471]

	struct module *owner[bookmark: linuxdrive3-CHP-3-ITERM-4420]
[bookmark: linuxdrive3-CHP-3-ITERM-4421]

	
The first file_operations field is not an

operation at all; it is a pointer to the module that

"owns" the structure. This field is

used to prevent the module from being unloaded while its operations

are in use. Almost all the time, it is simply initialized to

THIS_MODULE, a macro defined in

<linux/module.h>.





	loff_t (*llseek) (struct file *, loff_t, int);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4422]
[bookmark: linuxdrive3-CHP-3-ITERM-4423][bookmark: linuxdrive3-CHP-3-ITERM-4424][bookmark: linuxdrive3-CHP-3-ITERM-4425]The

llseek[bookmark: linuxdrive3-CHP-3-ITERM-4426] method is used to change the current

read/write position in a file, and the new position is returned as a

(positive) return value. The loff_t parameter is a

"long offset" and is at least 64

bits wide even on 32-bit platforms. Errors are signaled by a negative

return value. If this function pointer is NULL,

seek calls will modify the position counter in the

file structure (described in Section 3.3.2)

in potentially unpredictable ways.





	ssize_t (*read) (struct file *, char _ _user *, size_t, loff_t *);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4427]
[bookmark: linuxdrive3-CHP-3-ITERM-4428]Used

to retrieve data from the device. A null pointer in this position

causes the read system call to fail with

-EINVAL ("Invalid

argument"). A nonnegative return value represents

the number of bytes successfully read (the return value is a

"signed size" type, usually the

native integer type for the target platform).





	ssize_t (*aio_read)(struct kiocb *, char _ _user *, size_t, loff_t);

	
Initiates an asynchronous read�a read operation that might not

complete before the function returns. If this method is

NULL, all operations will be processed

(synchronously) by read instead.





	ssize_t (*write) (struct file *, const char _ _user *, size_t, loff_t *);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4429]
[bookmark: linuxdrive3-CHP-3-ITERM-4430]Sends

data to the device. If NULL,

-EINVAL is returned to the program calling the

write[bookmark: linuxdrive3-CHP-3-ITERM-4431] system call. The return value, if

nonnegative, represents the number of bytes successfully written.





	ssize_t (*aio_write)(struct kiocb *, const char _ _user *, size_t, loff_t *);

	
Initiates an asynchronous write operation on the device.





	int (*readdir) (struct file *, void *, filldir_t);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4432]
[bookmark: linuxdrive3-CHP-3-ITERM-4433]This

field should be NULL for device files; it is used

for reading directories and is useful only for filesystems.





	unsigned int (*poll) (struct file *, struct poll_table_struct *);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4434]
[bookmark: linuxdrive3-CHP-3-ITERM-4435][bookmark: linuxdrive3-CHP-3-ITERM-4436]
[bookmark: linuxdrive3-CHP-3-ITERM-4437]The

poll[bookmark: linuxdrive3-CHP-3-ITERM-4438] method is the back end of three system

calls: poll, epoll, and

select, all of which are used to query whether a

read or write to one or more file descriptors would block. The

poll method should return a bit mask indicating

whether non-blocking reads or writes are possible, and, possibly,

provide the kernel with information that can be used to put the

calling process to sleep until I/O becomes possible. If a driver

leaves its poll method NULL,

the device is assumed to be both readable and writable without

blocking.





	int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4439]
[bookmark: linuxdrive3-CHP-3-ITERM-4440]The

ioctl system call offers a way to issue

device-specific commands (such as formatting a track of a floppy

disk, which is neither reading nor writing). Additionally, a few

ioctl commands are recognized by the kernel

without referring to the fops table. If the device

doesn't provide an ioctl

method, the system call returns an error for any request that

isn't predefined (-ENOTTY,

"No such ioctl for device").





	int (*mmap) (struct file *, struct vm_area_struct *);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4441]
[bookmark: linuxdrive3-CHP-3-ITERM-4442]mmap

is used to request a mapping of device memory to a

process's address space. If this method is

NULL, the mmap system call

returns -ENODEV.





	int (*open) (struct inode *, struct file *);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4443]
[bookmark: linuxdrive3-CHP-3-ITERM-4444]Though

this is always the first operation performed on the device file, the

driver is not required to declare a corresponding method. If this

entry is NULL, opening the device always succeeds,

but your driver isn't notified.





	int (*flush) (struct file *);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4445]
[bookmark: linuxdrive3-CHP-3-ITERM-4446]The

flush[bookmark: linuxdrive3-CHP-3-ITERM-4447]
[bookmark: linuxdrive3-CHP-3-ITERM-4448]
[bookmark: linuxdrive3-CHP-3-ITERM-4449]

operation is invoked when a process closes its copy of a file

descriptor for a device; it should execute (and wait for) any

outstanding operations on the device. This must not be confused with

the fsync operation requested by user programs.

Currently, flush is used in very few drivers;

the SCSI tape driver uses it, for example, to ensure that all data

written makes it to the tape before the device is closed. If

flush is NULL, the kernel

simply ignores the user application request.





	int (*release) (struct inode *, struct file *);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4450]
[bookmark: linuxdrive3-CHP-3-ITERM-4451]This

operation is invoked when the file structure is

being released. Like open,

release can be

NULL.[5]
[bookmark: linuxdrive3-CHP-3-FNOTE-5][5] Note that

release isn't invoked every

time a process calls close. Whenever a

file structure is shared (for example, after a

fork or a dup),

release won't be invoked until

all copies are closed. If you need to flush pending data when any

copy is closed, you should implement the flush

method.






	int (*fsync) (struct file *, struct dentry *, int);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4452]
[bookmark: linuxdrive3-CHP-3-ITERM-4453]This

method is the back end of the fsync system call,

which a user calls to flush any pending data. If this pointer is

NULL, the system call returns

-EINVAL.





	int (*aio_fsync)(struct kiocb *, int);

	
This is the asynchronous version of the fsync

method.





	int (*fasync) (int, struct file *, int);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4454]
[bookmark: linuxdrive3-CHP-3-ITERM-4455]This

operation is used to notify the device of a change in its

FASYNC[bookmark: linuxdrive3-CHP-3-ITERM-4456] flag. Asynchronous notification is an

advanced topic and is described in Chapter 6. The field can be

NULL if the driver doesn't

support asynchronous notification.





	int (*lock) (struct file *, int, struct file_lock *);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4457]
[bookmark: linuxdrive3-CHP-3-ITERM-4458]The[bookmark: linuxdrive3-CHP-3-ITERM-4459] lock method is used

to implement file locking; locking is an indispensable feature for

regular files but is almost never implemented by device drivers.





	ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);



	ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4460]
[bookmark: linuxdrive3-CHP-3-ITERM-4461][bookmark: linuxdrive3-CHP-3-ITERM-4462]
[bookmark: linuxdrive3-CHP-3-ITERM-4463]These

methods implement scatter/gather read and write operations.

Applications occasionally need to do a single read or write operation

involving multiple memory areas; these system calls allow them to do

so without forcing extra copy operations on the data. If these

function pointers are left NULL, the

read and write methods are

called (perhaps more than once) instead.





	ssize_t (*sendfile)(struct file *, loff_t *, size_t, read_actor_t, void *);

	
This method implements the read side of the

sendfile[bookmark: linuxdrive3-CHP-3-ITERM-4464] system call, which moves the data from

one file descriptor to another with a minimum of copying. It is used,

for example, by a web server that needs to send the contents of a

file out a network connection. Device drivers usually leave

sendfile NULL.





	ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, 



	 int);

	
sendpage[bookmark: linuxdrive3-CHP-3-ITERM-4465] is the other half of

sendfile; it is called by the kernel to send

data, one page at a time, to the corresponding file. Device drivers

do not usually implement sendpage.





	unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned 



	 long, unsigned long, unsigned long);

	
The purpose of this[bookmark: linuxdrive3-CHP-3-ITERM-4466]
[bookmark: linuxdrive3-CHP-3-ITERM-4467] method is to find a suitable location in

the process's address space to map in a memory

segment on the underlying device. This task is normally performed by

the memory management code; this method exists to allow drivers to

enforce any alignment requirements a particular device may have. Most

drivers can leave this method NULL.





	int (*check_flags)(int)

	
This method allows a module to [bookmark: linuxdrive3-CHP-3-ITERM-4468]
[bookmark: linuxdrive3-CHP-3-ITERM-4469]check

the flags passed to an fcntl(F_SETFL...) call.





	int (*dir_notify)(struct file *, unsigned long);

	
This method is invoked when an[bookmark: linuxdrive3-CHP-3-ITERM-4470]
[bookmark: linuxdrive3-CHP-3-ITERM-4471] application

uses fcntl to request directory change

notifications. It is useful only to filesystems; drivers need not

implement dir_notify.





[bookmark: linuxdrive3-CHP-3-ITERM-4472][bookmark: linuxdrive3-CHP-3-ITERM-4473]The scull

device driver implements only the most important device methods. Its

file_operations structure is initialized as

follows:

struct file_operations scull_fops = {

    .owner =    THIS_MODULE,

    .llseek =   scull_llseek,

    .read =     scull_read,

    .write =    scull_write,

    .ioctl =    scull_ioctl,

    .open =     scull_open,

    .release =  scull_release,

};
 

This declaration uses the standard C tagged structure initialization

syntax. This syntax is preferred because it makes drivers more

portable across changes in the definitions of the structures and,

arguably, makes the code more compact and readable. Tagged

initialization allows the reordering of structure members; in some

cases, substantial performance improvements have been realized by

placing pointers to frequently accessed members in the same

[bookmark: linuxdrive3-CHP-3-ITERM-4474]
[bookmark: linuxdrive3-CHP-3-ITERM-4475]
[bookmark: linuxdrive3-CHP-3-ITERM-4476]
[bookmark: linuxdrive3-CHP-3-ITERM-4477]
[bookmark: linuxdrive3-CHP-3-ITERM-4478]
[bookmark: linuxdrive3-CHP-3-ITERM-4479]
[bookmark: linuxdrive3-CHP-3-ITERM-4480]hardware

cache line.

[bookmark: linuxdrive3-CHP-3-SECT-3.2]
3.3.2. The file Structure

struct file, defined in

<linux/fs.h>, is

the[bookmark: linuxdrive3-CHP-3-ITERM-4481]
[bookmark: linuxdrive3-CHP-3-ITERM-4482]
[bookmark: linuxdrive3-CHP-3-ITERM-4483] second most

important data structure used in device drivers. Note that a

file has nothing to do with the

FILE pointers of user-space programs. A

FILE is defined in the C library and never appears

in kernel code. A struct file,

on the other hand, is a kernel structure that never appears in user

programs.

[bookmark: linuxdrive3-CHP-3-ITERM-4484]The file structure

represents an open file[bookmark: linuxdrive3-CHP-3-ITERM-4485]
[bookmark: linuxdrive3-CHP-3-ITERM-4486].

(It is not specific to device drivers; every open file in the system

has an associated struct file

in kernel space.) It is created by the kernel on

open and is passed to any function that operates

on the file, until the last close. After all

instances of the file are closed, the kernel releases the data

structure.

[bookmark: linuxdrive3-CHP-3-ITERM-4487]In the kernel

sources, a pointer to struct
file is usually called either

file or filp

("file pointer").

We'll consistently call the pointer

filp to prevent ambiguities with the structure

itself. Thus, file refers to the structure and

filp to a pointer to the structure.

The most important fields of struct
file are shown here. As in the previous section,

the list can be skipped on a first reading. However, later in this

chapter, when we face some real C code, we'll

discuss the fields in more detail.

[bookmark: linuxdrive3-CHP-3-ITERM-4488][bookmark: linuxdrive3-CHP-3-ITERM-4489][bookmark: linuxdrive3-CHP-3-ITERM-4490][bookmark: linuxdrive3-CHP-3-ITERM-4491][bookmark: linuxdrive3-CHP-3-ITERM-4492][bookmark: linuxdrive3-CHP-3-ITERM-4493][bookmark: linuxdrive3-CHP-3-ITERM-4494][bookmark: linuxdrive3-CHP-3-ITERM-4495][bookmark: linuxdrive3-CHP-3-ITERM-4496][bookmark: linuxdrive3-CHP-3-ITERM-4497][bookmark: linuxdrive3-CHP-3-ITERM-4498][bookmark: linuxdrive3-CHP-3-ITERM-4499][bookmark: linuxdrive3-CHP-3-ITERM-4500][bookmark: linuxdrive3-CHP-3-ITERM-4501][bookmark: linuxdrive3-CHP-3-ITERM-4502][bookmark: linuxdrive3-CHP-3-ITERM-4503][bookmark: linuxdrive3-CHP-3-ITERM-4504][bookmark: linuxdrive3-CHP-3-ITERM-4505][bookmark: linuxdrive3-CHP-3-ITERM-4506][bookmark: linuxdrive3-CHP-3-ITERM-4507][bookmark: linuxdrive3-CHP-3-ITERM-4508][bookmark: linuxdrive3-CHP-3-ITERM-4509][bookmark: linuxdrive3-CHP-3-ITERM-4510][bookmark: linuxdrive3-CHP-3-ITERM-4511][bookmark: linuxdrive3-CHP-3-ITERM-4512][bookmark: linuxdrive3-CHP-3-ITERM-4513][bookmark: linuxdrive3-CHP-3-ITERM-4514][bookmark: linuxdrive3-CHP-3-ITERM-4515][bookmark: linuxdrive3-CHP-3-ITERM-4516][bookmark: linuxdrive3-CHP-3-ITERM-4517]

	mode_t f_mode;[bookmark: linuxdrive3-CHP-3-ITERM-4488]

	
[bookmark: linuxdrive3-CHP-3-ITERM-4489][bookmark: linuxdrive3-CHP-3-ITERM-4490][bookmark: linuxdrive3-CHP-3-ITERM-4491]The

file mode identifies the file as either readable or writable (or

both), by means of the bits FMODE_READ and

FMODE_WRITE. You might want to check this field

for read/write permission in your open or

ioctl function, but you don't

need to check permissions for read and

write, because the kernel checks before invoking

your method. An attempt to read or write when the file has not been

opened for that type of access is rejected without the driver even

knowing about it.





	loff_t f_pos;[bookmark: linuxdrive3-CHP-3-ITERM-4492]

	
[bookmark: linuxdrive3-CHP-3-ITERM-4493][bookmark: linuxdrive3-CHP-3-ITERM-4494]
[bookmark: linuxdrive3-CHP-3-ITERM-4495][bookmark: linuxdrive3-CHP-3-ITERM-4496]
[bookmark: linuxdrive3-CHP-3-ITERM-4497][bookmark: linuxdrive3-CHP-3-ITERM-4498]The current reading or writing position.

loff_t is a 64-bit value on all platforms

(long long in gcc

terminology). The driver can read this value if it needs to know the

current position in the file but should not normally change it;

read and write should

update a position using the pointer they receive as the last argument

instead of acting on filp->f_pos directly. The

one exception to this rule is in the llseek

method, the purpose of which is to change the file position.





	unsigned int f_flags;[bookmark: linuxdrive3-CHP-3-ITERM-4499]

	
[bookmark: linuxdrive3-CHP-3-ITERM-4500][bookmark: linuxdrive3-CHP-3-ITERM-4501][bookmark: linuxdrive3-CHP-3-ITERM-4502][bookmark: linuxdrive3-CHP-3-ITERM-4503][bookmark: linuxdrive3-CHP-3-ITERM-4504][bookmark: linuxdrive3-CHP-3-ITERM-4505]These are the file flags, such

as O_RDONLY, O_NONBLOCK, and

O_SYNC. A driver should check the

O_NONBLOCK flag to see if nonblocking operation

has been requested (we discuss nonblocking I/O in Section 6.2.3); the other

flags are seldom used. In particular, read/write permission should be

checked using f_mode rather than

f_flags. All the flags are defined in the header

<linux/fcntl.h>.





	struct file_operations *f_op;[bookmark: linuxdrive3-CHP-3-ITERM-4506]

	
[bookmark: linuxdrive3-CHP-3-ITERM-4507][bookmark: linuxdrive3-CHP-3-ITERM-4508][bookmark: linuxdrive3-CHP-3-ITERM-4509]The

operations associated with the file. The kernel assigns the pointer

as part of its implementation of open and then

reads it when it needs to dispatch any operations. The value in

filp->f_op is never saved by the kernel for

later reference; this means that you can change the file operations

associated with your file, and the new methods will be effective

after you return to the caller. For example, the code for

open associated with major number 1

(/dev/null, /dev/zero, and

so on) substitutes the operations in filp->f_op

depending on the minor number being opened. This practice allows the

implementation of several behaviors under the same major number

without introducing overhead at each system call. The ability to

replace the file operations is the kernel equivalent of

"method overriding" in

object-oriented programming.





	void *private_data;[bookmark: linuxdrive3-CHP-3-ITERM-4510]

	
[bookmark: linuxdrive3-CHP-3-ITERM-4511]
[bookmark: linuxdrive3-CHP-3-ITERM-4512][bookmark: linuxdrive3-CHP-3-ITERM-4513]The open

system call sets this pointer to NULL before

calling the open method for the driver. You are

free to make its own use of the field or to ignore it; you can use

the field to point to allocated data, but then you must remember to

free that memory in the release method before

the file structure is destroyed by the kernel.

private_data is a useful resource for preserving

state information across system calls and is used by most of our

sample modules.





	struct dentry *f_dentry;[bookmark: linuxdrive3-CHP-3-ITERM-4514]

	
[bookmark: linuxdrive3-CHP-3-ITERM-4515][bookmark: linuxdrive3-CHP-3-ITERM-4516][bookmark: linuxdrive3-CHP-3-ITERM-4517]The directory entry

(dentry) structure associated with the file.

Device driver writers normally need not concern themselves with

dentry structures, other than to access the inode

structure as filp->f_dentry->d_inode.





The real structure has a few more fields, but they

aren't useful to device drivers. We can safely

ignore those fields, because drivers never create

file structures; they only access structures

created elsewhere.

[bookmark: linuxdrive3-CHP-3-SECT-3.3]
3.3.3. The inode Structure

The inode structure is[bookmark: linuxdrive3-CHP-3-ITERM-4518]
[bookmark: linuxdrive3-CHP-3-ITERM-4519]
[bookmark: linuxdrive3-CHP-3-ITERM-4520] [bookmark: linuxdrive3-CHP-3-ITERM-4521] used by the

[bookmark: linuxdrive3-CHP-3-ITERM-4522]kernel internally to represent

files. Therefore, it is different from the file

structure that represents an open file descriptor. There can be

numerous file structures representing multiple

open descriptors on a single file, but they all point to a single

inode structure.

The inode structure contains a great deal of

information about the file. As a general rule, only two fields of

this structure are of interest for writing driver code:

[bookmark: linuxdrive3-CHP-3-ITERM-4523][bookmark: linuxdrive3-CHP-3-ITERM-4524]

	dev_t i_rdev;[bookmark: linuxdrive3-CHP-3-ITERM-4523]

	
For inodes that represent device files, this field contains the

actual device number.





	struct cdev *i_cdev;[bookmark: linuxdrive3-CHP-3-ITERM-4524]

	
struct cdev is the kernel's

internal structure that represents char devices; this field contains

a pointer to that structure when the inode refers to a char device

file.





The type of i_rdev changed over the course of the

2.5 development series, breaking a lot of drivers. As a way of

encouraging more portable programming, the kernel developers have

added two macros that can be used to obtain the major and minor

number from an inode:

unsigned int iminor(struct inode *inode);

unsigned int imajor(struct inode *inode);
 

In the interest of not being caught by the next change, these macros

should be used instead of manipulating i_rdev

directly.







[bookmark: linuxdrive3-CHP-3-SECT-4]
3.4. Char Device Registration

As we mentioned, the kernel uses [bookmark: linuxdrive3-CHP-3-ITERM-4525]
[bookmark: linuxdrive3-CHP-3-ITERM-4526] [bookmark: linuxdrive3-CHP-3-ITERM-4527]
[bookmark: linuxdrive3-CHP-3-ITERM-4528] [bookmark: linuxdrive3-CHP-3-ITERM-4529]structures of type

struct cdev to represent char

devices internally. Before the kernel invokes your

device's operations, you must allocate and register

one or more of these structures.[6] To do so, your code should include

<linux/cdev.h>, where the structure and

its associated helper functions are defined.
[bookmark: linuxdrive3-CHP-3-FNOTE-6][6] There is an older

mechanism that avoids the use of cdev structures

(which we discuss in Section 3.4.2). New code should use the newer technique,

however.


There are two ways of allocating and initializing one of these

structures. If you wish to obtain a standalone

cdev structure at runtime, you may do so with code

such as:

struct cdev *my_cdev = cdev_alloc(  );

my_cdev->ops = &my_fops;
 

Chances are, however, that you will want to embed the

cdev structure within a device-specific structure

of your own; that is what scull does. In that

case, you should initialize the structure that you have already

allocated with:

void cdev_init(struct cdev *cdev, struct file_operations *fops);
 

Either way, there is one other struct
cdev field that you need to initialize. Like the

file_operations structure,

struct cdev has an

owner field that should be set to

THIS_MODULE.

Once the cdev[bookmark: linuxdrive3-CHP-3-ITERM-4530]
[bookmark: linuxdrive3-CHP-3-ITERM-4531]
[bookmark: linuxdrive3-CHP-3-ITERM-4532] structure is set up, the final

step is to tell the kernel about it with a call to:

int cdev_add(struct cdev *dev, dev_t num, unsigned int count);
 

Here, dev is the cdev

structure, num is the first device number to which

this device responds, and count is the number of

device numbers that should be associated with the device. Often

count is one, but there are situations where it

makes sense to have more than one device number correspond to a

specific device. Consider, for example, the SCSI tape driver, which

allows user space to select operating modes (such as density) by

assigning multiple minor numbers to each physical device.

There are a couple of important things to keep in mind when using

cdev_add. The first is that this call can fail.

If it returns a negative error code, your device has not been added

to the system. It almost always succeeds, however, and that brings up

the other point: as soon as cdev_add returns,

your device is "live" and its

operations can be called by the kernel. You should not call

cdev_add until your driver is completely ready

to handle operations on the device.

To remove a char device from the system, call:

void cdev_del(struct cdev *dev);
 

Clearly, you should not access the cdev structure

after passing it to cdev_del.

[bookmark: linuxdrive3-CHP-3-SECT-4.1]
3.4.1. Device Registration in scull

Internally, scull represents each device

with[bookmark: linuxdrive3-CHP-3-ITERM-4533] a structure of type

struct scull_dev. This

structure is defined as:

struct scull_dev {

    struct scull_qset *data;  /* Pointer to first quantum set */

    int quantum;              /* the current quantum size */

    int qset;                 /* the current array size */

    unsigned long size;       /* amount of data stored here */

    unsigned int access_key;  /* used by sculluid and scullpriv */

    struct semaphore sem;     /* mutual exclusion semaphore     */

    struct cdev cdev;     /* Char device structure      */

};
 

We discuss the various fields in this structure as we come to them,

but for now, we call attention to cdev, the

struct cdev that interfaces our device to the

kernel. This structure must be initialized and added to the system as

described above; the scull code that handles

this task is:

static void scull_setup_cdev(struct scull_dev *dev, int index)

{

    int err, devno = MKDEV(scull_major, scull_minor + index);

    

    cdev_init(&dev->cdev, &scull_fops);

    dev->cdev.owner = THIS_MODULE;

    dev->cdev.ops = &scull_fops;

    err = cdev_add (&dev->cdev, devno, 1);

    /* Fail gracefully if need be */

    if (err)

    printk(KERN_NOTICE "Error %d adding scull%d", err, index);

}
 

Since the cdev structure is embedded within

struct scull_dev,

cdev_init must be called to perform the

initialization of that structure.

[bookmark: linuxdrive3-CHP-3-SECT-4.2]
3.4.2. The Older Way

If you dig through much driver code in the 2.6 kernel, you may notice

that quite a few char drivers do not use the cdev

interface that we have just described. What you are seeing is older

code that has not yet been upgraded to the 2.6 interface. Since that

code works as it is, this upgrade may not happen for a long time. For

completeness, we describe the [bookmark: linuxdrive3-CHP-3-ITERM-4534]
[bookmark: linuxdrive3-CHP-3-ITERM-4535]
[bookmark: linuxdrive3-CHP-3-ITERM-4536]older char device

registration interface, but new code should not use it; this

mechanism will likely go away in a future kernel.

The classic way to register a char device driver is with:

int register_chrdev(unsigned int major, const char *name,

                    struct file_operations *fops);
 

Here, major is the major number

of[bookmark: linuxdrive3-CHP-3-ITERM-4537] interest,

name is the name of the driver (it appears in

/proc/devices), and fops is

the default file_operations structure. A call to

register_chrdev registers minor numbers 0-255

for the given major, and sets up a default

cdev structure for each. Drivers using this

interface must be prepared to handle open calls

on all 256 minor numbers (whether they correspond to real devices or

not), and they cannot use major or minor numbers greater than 255.

If you use register_chrdev, the proper function

to remove your device(s) from the system is:

int unregister_chrdev(unsigned int major, const char *name);
 

major and name must be

the[bookmark: linuxdrive3-CHP-3-ITERM-4538]
[bookmark: linuxdrive3-CHP-3-ITERM-4539]
[bookmark: linuxdrive3-CHP-3-ITERM-4540]
[bookmark: linuxdrive3-CHP-3-ITERM-4541]
[bookmark: linuxdrive3-CHP-3-ITERM-4542] same as

those passed to register_chrdev, or the call

will fail.







[bookmark: linuxdrive3-CHP-3-SECT-5]
3.5. open and release

Now that we've taken a quick look at the fields, we

start using them in real scull functions.

[bookmark: linuxdrive3-CHP-3-SECT-5.1]
3.5.1. The open Method

[bookmark: linuxdrive3-CHP-3-ITERM-4543]The open

method is provided for a [bookmark: linuxdrive3-CHP-3-ITERM-4544]
[bookmark: linuxdrive3-CHP-3-ITERM-4545] [bookmark: linuxdrive3-CHP-3-ITERM-4546] [bookmark: linuxdrive3-CHP-3-ITERM-4547] [bookmark: linuxdrive3-CHP-3-ITERM-4548]driver

to do any initialization in preparation for later operations. In most

drivers, open should perform the following

tasks:

	Check for device-specific errors (such as device-not-ready or similar

hardware problems)

	Initialize the device if it is being opened for the first time

	Update the f_op pointer, if necessary

	Allocate and fill any data structure to be put in

filp->private_data



The first order of business, however, is usually to identify which

device is being opened. Remember that the prototype for the

open method is:

int (*open)(struct inode *inode, struct file *filp);
 

The inode argument has the information we need

in the form of its i_cdev field, which contains

the cdev structure we set up before. The only

problem is that we do not normally want the cdev

structure itself, we want the scull_dev structure

that contains that cdev structure. The C language

lets programmers play all sorts of tricks to make that kind of

conversion; programming such tricks is error prone, however, and

leads to code that is difficult for others to read and understand.

Fortunately, in this case, the kernel hackers have done the tricky

stuff for us, in the form of the container_of

macro, defined in <linux/kernel.h>:

container_of(pointer, container_type, container_field);
 

This macro takes a pointer to a field of type

container_field, within a structure of type

container_type, and returns a pointer to the

containing structure. In scull_open, this macro

is used to find the appropriate device structure:

struct scull_dev *dev; /* device information */



dev = container_of(inode->i_cdev, struct scull_dev, cdev);

filp->private_data = dev; /* for other methods */
 

Once it has found the scull_dev structure,

scull stores a pointer to it in the

private_data field of the file

structure for easier access in the future.

The other way to identify the device being opened is to look at the

minor number stored in the inode structure. If you

register your device with register_chrdev, you

must use this technique. Be sure to use iminor

to obtain the minor number from the inode

structure, and make sure that it corresponds to a device that your

driver is actually prepared to handle.

The (slightly simplified) code for scull_open is:

int scull_open(struct inode *inode, struct file *filp)

{

    struct scull_dev *dev; /* device information */



    dev = container_of(inode->i_cdev, struct scull_dev, cdev);

    filp->private_data = dev; /* for other methods */



    /* now trim to 0 the length of the device if open was write-only */

    if ( (filp->f_flags & O_ACCMODE) =  = O_WRONLY) {

        scull_trim(dev); /* ignore errors */

    }

    return 0;          /* success */

}
 

The code looks pretty sparse, because it doesn't do

any particular device handling when open is

called. It doesn't need to, because the

scull device is global and persistent by design.

Specifically, there's no action such as

"initializing the device on first

open," because we don't keep an

open count for sculls.

[bookmark: linuxdrive3-CHP-3-ITERM-4549][bookmark: linuxdrive3-CHP-3-ITERM-4550]The only real operation performed on

the device is truncating it to a length of 0 when the device is

opened for writing. This is performed because, by design, overwriting

a scull device with a shorter file results in a

shorter device data area. This is similar to the way opening a

regular file for writing truncates it to zero length. The operation

does nothing if the device is opened for reading.

We'll see later how a real initialization [bookmark: linuxdrive3-CHP-3-ITERM-4551] [bookmark: linuxdrive3-CHP-3-ITERM-4552] [bookmark: linuxdrive3-CHP-3-ITERM-4553] [bookmark: linuxdrive3-CHP-3-ITERM-4554]works when we look

at the code for the other scull personalities.

[bookmark: linuxdrive3-CHP-3-SECT-5.2]
3.5.2. The release Method

[bookmark: linuxdrive3-CHP-3-ITERM-4555]
[bookmark: linuxdrive3-CHP-3-ITERM-4556][bookmark: linuxdrive3-CHP-3-ITERM-4557]
[bookmark: linuxdrive3-CHP-3-ITERM-4558][bookmark: linuxdrive3-CHP-3-ITERM-4559][bookmark: linuxdrive3-CHP-3-ITERM-4560]The role of the

release method is the[bookmark: linuxdrive3-CHP-3-ITERM-4561] [bookmark: linuxdrive3-CHP-3-ITERM-4562]
[bookmark: linuxdrive3-CHP-3-ITERM-4563]
[bookmark: linuxdrive3-CHP-3-ITERM-4564]
[bookmark: linuxdrive3-CHP-3-ITERM-4565]

reverse of open. Sometimes

you'll find that the method implementation is called

device_close instead of

device_release. Either

way, the device method should perform the following tasks:

	Deallocate anything that open allocated in

filp->private_data

	Shut down the device on last close



The basic form of scull has no hardware to shut

down, so the code required is minimal:[7]
[bookmark: linuxdrive3-CHP-3-FNOTE-7][7] The other

flavors of the device are closed by different functions because

scull_open substituted a different

filp->f_op for each device.

We'll discuss these as we introduce each

flavor.


int scull_release(struct inode *inode, struct file *filp)

{

    return 0;

}
 

You may be wondering what happens when a device file is closed more

times than it is opened. After all, the dup and

fork system calls create copies of open files

without calling open; each of those copies is

then closed at program termination. For example, most programs

don't open their stdin file (or

device), but all of them end up closing it. How does a driver know

when an open device file has really been closed?

The answer is simple: not every close system

call causes the release method to be invoked.

Only the calls that actually release the device data structure invoke

the method�hence its name. The kernel keeps a counter of how

many times a file structure is being used. Neither

fork nor dup creates a new

file structure (only open

does that); they just increment the counter in the existing

structure. The close system call executes the

release method only when the counter for the

file structure drops to 0,

which happens when the structure is destroyed. This relationship

between the release method and the

close system call guarantees that your driver

sees only one release call for each

open.

[bookmark: linuxdrive3-CHP-3-ITERM-4566]
[bookmark: linuxdrive3-CHP-3-ITERM-4567]Note

that the flush method is

called every time an application calls close.

However, very few drivers implement flush,

because usually there's nothing to perform at close

time unless release is involved.

As you may imagine, the previous discussion applies even when the

application terminates without explicitly closing its open files: the

kernel automatically closes any file at process exit time by

internally using the close system call.







[bookmark: linuxdrive3-CHP-3-SECT-6]
3.6. scull's Memory Usage

Before introducing the read and[bookmark: linuxdrive3-CHP-3-ITERM-4568] [bookmark: linuxdrive3-CHP-3-ITERM-4569]
[bookmark: linuxdrive3-CHP-3-ITERM-4570]
[bookmark: linuxdrive3-CHP-3-ITERM-4571] [bookmark: linuxdrive3-CHP-3-ITERM-4572] [bookmark: linuxdrive3-CHP-3-ITERM-4573]
write operations, we'd better

look at how and why scull performs memory

allocation. "How" is needed to

thoroughly understand the code, and

"why" demonstrates the kind of

choices a driver writer needs to make, although

scull is definitely not typical as a device.

This section deals only with the memory allocation policy in

scull and doesn't show the

hardware management skills you need to write real drivers. These

skills are introduced in Chapter 9 and Chapter 10. Therefore, you can skip this

section if you're not interested in understanding

the inner workings of the memory-oriented scull

driver.

The region of memory used by scull, also called

a device, is variable in length. The more you

write, the more it grows; trimming is performed by overwriting the

device with a shorter file.

The scull driver introduces two core functions

used to manage memory in the Linux kernel. These functions, defined

in <linux/slab.h>, are:

void *kmalloc(size_t size, int flags);

void kfree(void *ptr);
 

A call to kmalloc attempts to allocate

size bytes of memory; the return value is a

pointer to that memory or NULL if the allocation

fails. The flags argument is used to describe how

the memory should be allocated; we examine those flags in detail in

Chapter 8. For now, we always

use GFP_KERNEL. Allocated memory should be freed

with kfree. You should never pass anything to

kfree that was not obtained from

kmalloc. It is, however, legal to pass a

NULL pointer to kfree.

[bookmark: linuxdrive3-CHP-3-ITERM-4574]
[bookmark: linuxdrive3-CHP-3-ITERM-4575][bookmark: linuxdrive3-CHP-3-ITERM-4576]kmalloc

is not the most efficient way to allocate large areas of memory (see

Chapter 8), so the

implementation chosen for scull is not a

particularly smart one. The source code for a smart implementation

would be more difficult to read, and the aim of this section is to

show read and write, not

memory management. That's why the code just uses

kmalloc and kfree without

resorting to allocation of whole pages, although that approach would

be more efficient.

[bookmark: linuxdrive3-CHP-3-ITERM-4577]On the flip side, we

didn't want to limit the size of the

"device" area, for both a

philosophical reason and a practical one. Philosophically,

it's always a bad idea to put arbitrary limits on

data items being managed. Practically, scull can

be used to temporarily eat up your system's memory

in order to run tests under low-memory conditions. Running such tests

might help you understand the system's internals.

You can use the command cp /dev/zero /dev/scull0

to eat all the real RAM with scull, and you can

use the dd utility to choose how much data is

copied to the scull device.

In scull, each device is a linked list of

[bookmark: linuxdrive3-CHP-3-ITERM-4578]
[bookmark: linuxdrive3-CHP-3-ITERM-4579]pointers,

each of which points to a scull_dev structure.

Each such structure can refer, by default, to at most four million

bytes, through an array of intermediate pointers. The released source

uses an array of 1000 pointers to areas of 4000 bytes. We call each

memory area a quantum and the array (or its

length) a quantum

set[bookmark: linuxdrive3-CHP-3-ITERM-4580]
[bookmark: linuxdrive3-CHP-3-ITERM-4581]. A scull device

and its memory areas are shown in Figure 3-1.

[bookmark: linuxdrive3-CHP-3-FIG-1]
Figure 3-1. The layout of a scull device
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The chosen numbers are such that writing a single byte in

scull consumes 8000 or 12,000 thousand bytes of

memory: 4000 for the quantum and 4000 or 8000 for the quantum set

(according to whether a pointer is represented in 32 bits or 64 bits

on the target platform). If, instead, you write a huge amount of

data, the overhead of the linked list is not too bad. There is only

one list element for every four megabytes of data, and the maximum

size of the device is limited by the computer's

memory size.

Choosing the appropriate values for the quantum and the quantum set

is a question of policy, rather than mechanism, and the optimal sizes

depend on how the device is used. Thus, the

scull driver should not force the use of any

particular values for the quantum and quantum set sizes. In

scull, the user can change the values in charge

in several ways: by changing the macros

SCULL_QUANTUM and SCULL_QSET in

scull.h at compile time, by setting the integer

values scull_quantum and

scull_qset at module load time, or by changing

both the current and default values using ioctl

at runtime.

Using a macro and an integer value to allow both compile-time and

load-time configuration is reminiscent of how the major number is

selected. We use this technique for whatever value in the driver is

arbitrary or related to policy.

The only question left is how the default numbers have been chosen.

In this particular case, the problem is finding the best balance

between the waste of memory resulting from half-filled quanta and

quantum sets and the overhead of allocation, deallocation, and

pointer chaining that occurs if quanta and sets are small.

Additionally, the internal design of kmalloc

should be taken into account. (We won't pursue the

point now, though; the innards of kmalloc are

explored in Chapter 8.) The

choice of default numbers comes from the assumption that massive

amounts of data are likely to be written to

scull while testing it, although normal use of

the device will most likely transfer just a few kilobytes of data.

We have already seen the scull_dev structure that

represents our device internally. That structure's

quantum and qset fields hold

the device's quantum and quantum set sizes,

respectively. The actual data, however, is

[bookmark: linuxdrive3-CHP-3-ITERM-4582]tracked by a different structure,

which we call struct

scull_qset[bookmark: linuxdrive3-CHP-3-ITERM-4583]
[bookmark: linuxdrive3-CHP-3-ITERM-4584]:

struct scull_qset {

    void **data;

    struct scull_qset *next;

};
 

The next code fragment shows in practice how

struct scull_dev and

struct scull_qset are used to

hold data. The function scull_trim is in charge

of freeing the whole data area and is invoked by

scull_open when the file is opened for writing.

It simply walks through the list and frees any quantum and quantum

set it finds.

int scull_trim(struct scull_dev *dev)

{

    struct scull_qset *next, *dptr;

    int qset = dev->qset;   /* "dev" is not-null */

    int i;



    for (dptr = dev->data; dptr; dptr = next) { /* all the list items */

        if (dptr->data) {

            for (i = 0; i < qset; i++)

                kfree(dptr->data[i]);

            kfree(dptr->data);

            dptr->data = NULL;

        }

        next = dptr->next;

        kfree(dptr);

    }

    dev->size = 0;

    dev->quantum = scull_quantum;

    dev->qset = scull_qset;

    dev->data = NULL;

    return 0;

}
 

scull_trim is also used in [bookmark: linuxdrive3-CHP-3-ITERM-4585] [bookmark: linuxdrive3-CHP-3-ITERM-4586] [bookmark: linuxdrive3-CHP-3-ITERM-4587] [bookmark: linuxdrive3-CHP-3-ITERM-4588] [bookmark: linuxdrive3-CHP-3-ITERM-4589] [bookmark: linuxdrive3-CHP-3-ITERM-4590]the module cleanup

function to return memory used by scull to the

system.







[bookmark: linuxdrive3-CHP-3-SECT-7]
3.7. read and write

[bookmark: linuxdrive3-CHP-3-ITERM-4591][bookmark: linuxdrive3-CHP-3-ITERM-4592]The read and

write methods both[bookmark: linuxdrive3-CHP-3-ITERM-4593] [bookmark: linuxdrive3-CHP-3-ITERM-4594] [bookmark: linuxdrive3-CHP-3-ITERM-4595]
[bookmark: linuxdrive3-CHP-3-ITERM-4596] [bookmark: linuxdrive3-CHP-3-ITERM-4597]
[bookmark: linuxdrive3-CHP-3-ITERM-4598]

perform a similar task, that is, copying data from and to application

code. Therefore, their prototypes are pretty similar, and

it's worth introducing them at the same time:

ssize_t read(struct file *filp, char _ _user *buff,

    size_t count, loff_t *offp);

ssize_t write(struct file *filp, const char _ _user *buff,

    size_t count, loff_t *offp);
 

[bookmark: linuxdrive3-CHP-3-ITERM-4599]For both methods,

filp is the file pointer and

count is the size of the requested data transfer.

The buff argument points to the user buffer

holding the data to be written or the empty buffer where the newly

read data should be placed. Finally, offp is a

pointer to a "long offset type"

object that indicates the file position the user is accessing. The

return value is a "signed size

type"; its use is discussed later.

Let us repeat that the buff argument to the

read and write methods is a

user-space pointer. Therefore, it cannot be directly dereferenced by

kernel code. There are a few reasons for this restriction:

	Depending on which architecture your driver is running on, and how

the kernel was configured, the user-space pointer may not be valid

while running in kernel mode at all. There may be no mapping for that

address, or it could point to some other, random data.

	Even if the pointer does mean the same thing in

[bookmark: linuxdrive3-CHP-3-ITERM-4600]kernel

space, user-space memory is paged, and the memory in question might

not be resident in RAM when the system call is made. Attempting to

reference the user-space memory directly could generate a page fault,

which is something that kernel code is not allowed to do. The result

would be an "oops," which would

result in the death of the process that made the system call.

	The pointer in question has been supplied by a user program, which

could be buggy or malicious. If your driver ever blindly dereferences

a user-supplied pointer, it provides an open doorway allowing a

user-space program to access or overwrite memory anywhere in the

system. If you do not wish to be responsible for compromising the

security of your users' systems, you cannot ever

dereference a user-space pointer directly.



Obviously, your driver must be able to access the user-space buffer

in order to get its job done. This access must always be performed by

special, kernel-supplied functions, however, in order to be safe. We

introduce some of those functions (which are defined in

<asm/uaccess.h>) here, and the rest in the

Section 6.1.4; they use some

special, architecture-dependent magic to ensure that data transfers

between kernel and user space happen in a safe and correct way.

[bookmark: linuxdrive3-CHP-3-ITERM-4601][bookmark: linuxdrive3-CHP-3-ITERM-4602][bookmark: linuxdrive3-CHP-3-ITERM-4603]

The code for read and write

in scull needs to copy a whole segment of data

to or from the user address space. This capability is offered by the

following kernel functions, which copy an arbitrary array of bytes

and sit at the heart of most read and

write implementations:

unsigned long copy_to_user(void _ _user *to, 

                           const void *from, 

                           unsigned long count);

unsigned long copy_from_user(void *to, 

                             const void _ _user *from, 

                             unsigned long count);
 

Although these functions behave like normal

memcpy functions, a little extra care must be

used when accessing user space from kernel code. The user pages being

addressed might not be currently present in memory, and the virtual

memory subsystem can put the process to sleep while the page is being

transferred into place. This happens, for example, when the page must

be retrieved from swap space. The net result for the driver writer is

that any function that accesses user space must be reentrant, must be

able to execute concurrently with other driver functions, and, in

particular, must be in a position where it can legally sleep. We

return to this subject in Chapter 5.

The role of the two functions is not limited to copying data to and

from user-space: they also check whether the user space pointer is

valid. If the pointer is invalid, no copy is performed; if an invalid

address is encountered during the copy, on the other hand, only part

of the data is copied. In both cases, the return value is the amount

of memory still to be copied. The scull code

looks for this error return, and returns -EFAULT

to the user if it's not 0.

The topic of user-space access and invalid user space pointers is

somewhat advanced and is discussed in Chapter 6. However,

it's worth noting that if you don't

need to check the user-space pointer you can invoke _

_copy_to_user and _ _copy_from_user

instead. This is useful, for example, if you know you already checked

the argument. Be careful, however; if, in fact, you do

not check a user-space pointer that you pass to

these functions, then you can create kernel crashes and/or security

holes.

As far as the actual device methods are concerned, the task of the

read method is to copy data from the device to

user space (using copy_to_user), while the

write method must copy data from user space to

the device (using copy_from_user). Each

read or write system call

requests transfer of a specific number of bytes, but the driver is

free to transfer less data�the exact rules are slightly

different for reading and writing and are described later in this

chapter.

[bookmark: linuxdrive3-CHP-3-ITERM-4604]
[bookmark: linuxdrive3-CHP-3-ITERM-4605][bookmark: linuxdrive3-CHP-3-ITERM-4606]
[bookmark: linuxdrive3-CHP-3-ITERM-4607]Whatever

the amount of data the methods transfer, they should generally update

the file position at *offp to represent the

current file position after successful completion of the system call.

The kernel then propagates the file position change back into the

file structure when appropriate. The

pread and pwrite system

calls have different semantics, however; they operate from a given

file offset and do not change the file position as seen by any other

system calls. These calls pass in a pointer to the user-supplied

position, and discard the changes that your driver makes.

[bookmark: linuxdrive3-CHP-3-ITERM-4608]
[bookmark: linuxdrive3-CHP-3-ITERM-4609]Figure 3-2

represents how a typical read

implementation uses its arguments.

[bookmark: linuxdrive3-CHP-3-FIG-2]
Figure 3-2. The arguments to read
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[bookmark: linuxdrive3-CHP-3-ITERM-4610]Both

the read and write methods

return a negative value if an error occurs. A return value greater

than or equal to 0, instead, tells the calling program how many bytes

have been successfully transferred. If some data is transferred

correctly and then an error happens, the return value must be the

count of bytes successfully transferred, and the error does not get

reported until the next time the function is called. Implementing

this convention requires, of course, that your driver remember that

the error has occurred so that it can return the error status in the

future.

Although kernel functions return a negative number to signal an

error, and the value of the number indicates the kind of error that

occurred (as introduced in Chapter 2), programs that run in user space always see

-1 as the error return value. They need to access

the errno variable to find out what happened. The

user-space behavior is dictated by the POSIX standard, but that

standard does not make requirements on how the kernel operates

internally.

[bookmark: linuxdrive3-CHP-3-SECT-7.1]
3.7.1. The read Method

[bookmark: linuxdrive3-CHP-3-ITERM-4611]
[bookmark: linuxdrive3-CHP-3-ITERM-4612]The return value

for read is interpreted by the calling

application program:

	[bookmark: linuxdrive3-CHP-3-ITERM-4613]If the value equals the

count argument passed to the

read system call, the requested number of bytes

has been transferred. This is the optimal case.

	If the value is positive, but smaller than count,

only part of the data has been transferred. This may happen for a

number of reasons, depending on the device. Most often, the

application program retries the read. For instance, if you read using

the fread function, the library function

reissues the system call until completion of the requested data

transfer.

	If the value is 0, end-of-file was reached (and no

data was read).

	A negative value means there was an error. The value specifies what

the error was, according to

<linux/errno.h>. Typical values returned

on error include -EINTR (interrupted system call)

or -EFAULT (bad address).



What is missing from the preceding list is the case of

"there is no data, but it may arrive

later." In this case, the read

system call should block. We'll deal with blocking

input in Chapter 6.

The scull code takes advantage of these rules.

In particular, it takes advantage of the partial-read rule. Each

invocation of scull_read deals only with a

single data quantum, without implementing a loop to gather all the

data; this makes the code shorter and easier to read. If the reading

program really wants more data, it reiterates the call. If the

standard I/O library (i.e., fread) is used to

read the device, the application won't even notice

the quantization of the data transfer.

If the current read position is greater than the device size, the

read method of scull

returns 0 to signal that there's

no data available (in other words, we're at

end-of-file). This situation can happen if process A is reading the

device while process B opens it for writing, thus truncating the

device to a length of 0. Process A suddenly finds itself past

end-of-file, and the next read call returns

0.

[bookmark: linuxdrive3-CHP-3-ITERM-4614]
[bookmark: linuxdrive3-CHP-3-ITERM-4615]Here is the code for

read (ignore the calls to

down_interruptible and up

for now; we will get to them in the next chapter):

ssize_t scull_read(struct file *filp, char _ _user *buf, size_t count,

                loff_t *f_pos)

{

    struct scull_dev *dev = filp->private_data; 

    struct scull_qset *dptr;    /* the first listitem */

    int quantum = dev->quantum, qset = dev->qset;

    int itemsize = quantum * qset; /* how many bytes in the listitem */

    int item, s_pos, q_pos, rest;

    ssize_t retval = 0;



    if (down_interruptible(&dev->sem))

        return -ERESTARTSYS;

    if (*f_pos >= dev->size)

        goto out;

    if (*f_pos + count > dev->size)

        count = dev->size - *f_pos;



    /* find listitem, qset index, and offset in the quantum */

    item = (long)*f_pos / itemsize;

    rest = (long)*f_pos % itemsize;

    s_pos = rest / quantum; q_pos = rest % quantum;



    /* follow the list up to the right position (defined elsewhere) */

    dptr = scull_follow(dev, item);



    if (dptr =  = NULL || !dptr->data || ! dptr->data[s_pos])

        goto out; /* don't fill holes */



    /* read only up to the end of this quantum */

    if (count > quantum - q_pos)

        count = quantum - q_pos;



    if (copy_to_user(buf, dptr->data[s_pos] + q_pos, count)) {

        retval = -EFAULT;

        goto out;

    }

    *f_pos += count;

    retval = count;



  out:

    up(&dev->sem);

    return retval;

}
 

[bookmark: linuxdrive3-CHP-3-SECT-7.2]
3.7.2. The write Method

[bookmark: linuxdrive3-CHP-3-ITERM-4616][bookmark: linuxdrive3-CHP-3-ITERM-4617]
[bookmark: linuxdrive3-CHP-3-ITERM-4618][bookmark: linuxdrive3-CHP-3-ITERM-4619]write, like

read, can transfer less data than was requested,

according to the following rules for the return value:

	If the value equals count, the requested number of

bytes has been transferred.

	If the value is positive, but smaller than count,

only part of the data has been transferred. The program will most

likely retry writing the rest of the data.

	If the value is 0, nothing was written. This

result is not an error, and there is no reason to return an error

code. Once again, the standard library retries the call to

write. We'll examine the exact

meaning of this case in Chapter 6, where blocking write is introduced.

	A negative value means an error occurred; as for

read, valid error values are those defined in

<linux/errno.h>.



Unfortunately, there may still be misbehaving programs that issue an

error message and abort when a partial transfer is performed. This

happens because some programmers are accustomed to seeing

write calls that either fail or succeed

completely, which is actually what happens most of the time and

should be supported by devices as well. This limitation in the

scull implementation could be fixed, but we

didn't want to complicate the code more than

necessary.

[bookmark: linuxdrive3-CHP-3-ITERM-4620]
[bookmark: linuxdrive3-CHP-3-ITERM-4621]The scull code for

write deals with a single quantum at a time, as

the read method does:

[bookmark: linuxdrive3-CHP-3-ITERM-4622][bookmark: linuxdrive3-CHP-3-ITERM-4623][bookmark: linuxdrive3-CHP-3-ITERM-4624][bookmark: linuxdrive3-CHP-3-ITERM-4625][bookmark: linuxdrive3-CHP-3-ITERM-4626][bookmark: linuxdrive3-CHP-3-ITERM-4627]ssize_t scull_write(struct file *filp, const char _ _user *buf, size_t count,

                loff_t *f_pos)

{

    struct scull_dev *dev = filp->private_data;

    struct scull_qset *dptr;

    int quantum = dev->quantum, qset = dev->qset;

    int itemsize = quantum * qset;

    int item, s_pos, q_pos, rest;

    ssize_t retval = -ENOMEM; /* value used in "goto out" statements */



    if (down_interruptible(&dev->sem))

        return -ERESTARTSYS;



    /* find listitem, qset index and offset in the quantum */

    item = (long)*f_pos / itemsize;

    rest = (long)*f_pos % itemsize;

    s_pos = rest / quantum; q_pos = rest % quantum;



    /* follow the list up to the right position */

    dptr = scull_follow(dev, item);

    if (dptr =  = NULL)

        goto out;

    if (!dptr->data) {

        dptr->data = kmalloc(qset * sizeof(char *), GFP_KERNEL);

        if (!dptr->data)

            goto out;

        memset(dptr->data, 0, qset * sizeof(char *));

    }

    if (!dptr->data[s_pos]) {

        dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);

        if (!dptr->data[s_pos])

            goto out;

    }

    /* write only up to the end of this quantum */

    if (count > quantum - q_pos)

        count = quantum - q_pos;



    if (copy_from_user(dptr->data[s_pos]+q_pos, buf, count)) {

        retval = -EFAULT;

        goto out;

    }

    *f_pos += count;

    retval = count;



        /* update the size */

    if (dev->size < *f_pos)

        dev->size = *f_pos;



  out:

    up(&dev->sem);

    return retval;













}
 

[bookmark: linuxdrive3-CHP-3-SECT-7.3]
3.7.3. readv and writev

Unix systems have long supported two [bookmark: linuxdrive3-CHP-3-ITERM-4628] [bookmark: linuxdrive3-CHP-3-ITERM-4629]
[bookmark: linuxdrive3-CHP-3-ITERM-4630] [bookmark: linuxdrive3-CHP-3-ITERM-4631]
[bookmark: linuxdrive3-CHP-3-ITERM-4632] [bookmark: linuxdrive3-CHP-3-ITERM-4633]
[bookmark: linuxdrive3-CHP-3-ITERM-4634]system

calls named readv and

writev. These

"vector" versions of

read and write take an

array of structures, each of which contains a pointer to a buffer and

a length value. A readv call would then be

expected to read the indicated amount into each buffer in turn.

writev, instead, would gather together the

contents of each buffer and put them out as a single write operation.

If your driver does not supply methods to handle the

[bookmark: linuxdrive3-CHP-3-ITERM-4635]
[bookmark: linuxdrive3-CHP-3-ITERM-4636]
[bookmark: linuxdrive3-CHP-3-ITERM-4637]vector

operations, readv and

writev are implemented with multiple calls to

your read and write

methods. In many situations, however, greater efficiency is acheived

by implementing readv and

writev directly.

The prototypes for the vector operations are:

ssize_t (*readv) (struct file *filp, const struct iovec *iov, 

                  unsigned long count, loff_t *ppos);

ssize_t (*writev) (struct file *filp, const struct iovec *iov, 

                  unsigned long count, loff_t *ppos);
 

Here, the filp and ppos

arguments are the same as for read and

write. The iovec structure,

defined in <linux/uio.h>, looks like:

struct iovec

{

    void _  _user *iov_base;

    _ _kernel_size_t iov_len;

};
 

Each iovec describes one chunk of data to be

transferred; it starts at iov_base (in user space)

and is iov_len bytes long. The

count parameter tells the method how many

iovec structures there are. These structures are

created by the application, but the kernel copies them into kernel

space before calling the driver.

The simplest implementation of the vectored operations would be a

straightforward loop that just passes the address and length out of

each iovec to the driver's

read or write function.

Often, however, efficient and correct behavior requires that the

driver do something smarter. For example, a

writev on a tape drive should write the contents

of all the iovec structures as a single record on

the tape.

Many drivers, however, gain no benefit from implementing these

methods themselves. Therefore, scull omits them.

The kernel emulates them with read and

write, and the end result is the same.







[bookmark: linuxdrive3-CHP-3-SECT-8]
3.8. Playing with the New Devices

Once you are equipped with the four [bookmark: linuxdrive3-CHP-3-ITERM-4638]
[bookmark: linuxdrive3-CHP-3-ITERM-4639]
[bookmark: linuxdrive3-CHP-3-ITERM-4640]
[bookmark: linuxdrive3-CHP-3-ITERM-4641]methods just described, the driver can

be compiled and tested; it retains any data you write to it until you

overwrite it with new data. The device acts like a data buffer whose

length is limited only by the amount of real RAM available. You can

try using cp, dd, and

input/output redirection to test out the driver.

The[bookmark: linuxdrive3-CHP-3-ITERM-4642]
free command can be used to see how the amount

of free memory shrinks and expands according to how much data is

written into scull.

To get more confident with reading and writing one quantum at a time,

you can add a printk at an appropriate point in

the driver and watch what happens while an application reads or

writes large chunks of data. Alternatively, use the

strace utility to monitor the system calls

issued by a program, together with their return values. Tracing a

cp or an ls -l >

/dev/scull0 shows quantized reads and writes. Monitoring

(and debugging) techniques are presented in detail in Chapter 4







[bookmark: linuxdrive3-CHP-3-SECT-9]
3.9. Quick Reference

This chapter introduced the following symbols and header files. The

list of the fields in struct
file_operations and struct
file is not repeated here.

[bookmark: linuxdrive3-CHP-3-ITERM-4643][bookmark: linuxdrive3-CHP-3-ITERM-4644][bookmark: linuxdrive3-CHP-3-ITERM-4645][bookmark: linuxdrive3-CHP-3-ITERM-4646][bookmark: linuxdrive3-CHP-3-ITERM-4647][bookmark: linuxdrive3-CHP-3-ITERM-4648][bookmark: linuxdrive3-CHP-3-ITERM-4649][bookmark: linuxdrive3-CHP-3-ITERM-4650]

	#include <linux/types.h>



	dev_t

	
dev_t is the type used to

r[bookmark: linuxdrive3-CHP-3-ITERM-4643]
[bookmark: linuxdrive3-CHP-3-ITERM-4644]epresent

device numbers within the kernel.





	int MAJOR(dev_t dev);



	int MINOR(dev_t dev);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4645][bookmark: linuxdrive3-CHP-3-ITERM-4646]Macros that extract the major and minor

numbers from a device number.





	dev_t MKDEV(unsigned int major, unsigned int minor);

	
[bookmark: linuxdrive3-CHP-3-ITERM-4647]Macro that

builds a dev_t data item from the major and minor

numbers.





	#include <linux/fs.h>

	
[bookmark: linuxdrive3-CHP-3-ITERM-4648][bookmark: linuxdrive3-CHP-3-ITERM-4649]The

"filesystem" header is the header

required for writing device drivers. Many important functions and

data structures are declared in here.





	int register_chrdev_region(dev_t first, unsigned int count, char *name)



	int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, unsigned int



	 count, char *name)



	void unregister_chrdev_region(dev_t first, unsigned int count);

	
Functions that allow a driver to allocate and free ranges of device

numbers. register_chrdev_region should be used

when the desired major number is known in advance; for dynamic

allocation, use alloc_chrdev_region instead.





	int register_chrdev(unsigned int major, const char *name, struct file_operations 



	 *fops);

	
The old (pre-2.6) char device registration routine. It is emulated in

the 2.6 kernel but should not be used for new code. If the major

number is not 0, it is used unchanged; otherwise a dynamic number is

assigned for this device.





	int unregister_chrdev(unsigned int major, const char *name);

	
Function that undoes a registration made with

register_chrdev. Both major

and the name string must contain the same values

that were used to register the driver.





	struct file_operations;



	struct file;



	struct inode;

	
Three important data structures used by most device drivers. The

file_operations structure holds a char

driver's methods; struct
file represents an open file, and struct

inode represents a file on disk.





	#include <linux/cdev.h>



	struct cdev *cdev_alloc(void);



	void cdev_init(struct cdev *dev, struct file_operations *fops);



	int cdev_add(struct cdev *dev, dev_t num, unsigned int count);



	void cdev_del(struct cdev *dev);

	
Functions for the management of cdev structures,

which represent char devices within the kernel.





	#include <linux/kernel.h>



	container_of(pointer, type, field);

	
A convenience macro that may be used to obtain a pointer to a

structure from a pointer to some other structure contained within it.





	#include <asm/uaccess.h>

	
[bookmark: linuxdrive3-CHP-3-ITERM-4650]This

include file declares functions used by kernel code to move data to

and from user space.





	unsigned long copy_from_user (void *to, const void *from, unsigned long 



	 count);



	unsigned long copy_to_user (void *to, const void *from, unsigned long count);

	
Copy data between user space and kernel space.











[bookmark: linuxdrive3-CHP-4]

Chapter 4. Debugging Techniques

[bookmark: linuxdrive3-CHP-4-ITERM-4651][bookmark: linuxdrive3-CHP-4-ITERM-4652]Kernel

programming brings its own, unique debugging challenges. Kernel code

cannot be easily executed under a debugger, nor can it be easily

traced, because it is a set of functionalities not related to a

specific process. Kernel code errors can also be exceedingly hard to

reproduce and can bring down the entire system with them, thus

destroying much of the evidence that could be used to track them

down.

This chapter introduces techniques you can use to monitor kernel code

and trace errors under such trying circumstances.







[bookmark: linuxdrive3-CHP-4-SECT-1]
4.1. Debugging Support in the Kernel

In Chapter 2, we recommended

that[bookmark: linuxdrive3-CHP-4-ITERM-4653]
[bookmark: linuxdrive3-CHP-4-ITERM-4654]
[bookmark: linuxdrive3-CHP-4-ITERM-4655] you build

[bookmark: linuxdrive3-CHP-4-ITERM-4656]and install your

own kernel, rather than running the stock kernel that comes with your

distribution. One of the strongest reasons for running your own

kernel is that the kernel developers have built several debugging

features into the kernel itself. These features can create extra

output and slow performance, so they tend not to be enabled in

production kernels from distributors. As a kernel developer, however,

you have different priorities and will gladly accept the (minimal)

overhead of the extra kernel debugging support.

Here, we list the configuration options that [bookmark: linuxdrive3-CHP-4-ITERM-4657]
[bookmark: linuxdrive3-CHP-4-ITERM-4658] [bookmark: linuxdrive3-CHP-4-ITERM-4659] [bookmark: linuxdrive3-CHP-4-ITERM-4660] [bookmark: linuxdrive3-CHP-4-ITERM-4661]should be

enabled for kernels used for development. Except where specified

otherwise, all of these options are found under the

"kernel hacking" menu in whatever

kernel configuration tool you prefer. Note that some of these options

are not supported by all architectures.

[bookmark: linuxdrive3-CHP-4-ITERM-4662][bookmark: linuxdrive3-CHP-4-ITERM-4663][bookmark: linuxdrive3-CHP-4-ITERM-4664][bookmark: linuxdrive3-CHP-4-ITERM-4665][bookmark: linuxdrive3-CHP-4-ITERM-4666][bookmark: linuxdrive3-CHP-4-ITERM-4667][bookmark: linuxdrive3-CHP-4-ITERM-4668][bookmark: linuxdrive3-CHP-4-ITERM-4669][bookmark: linuxdrive3-CHP-4-ITERM-4670][bookmark: linuxdrive3-CHP-4-ITERM-4671][bookmark: linuxdrive3-CHP-4-ITERM-4672][bookmark: linuxdrive3-CHP-4-ITERM-4673][bookmark: linuxdrive3-CHP-4-ITERM-4674][bookmark: linuxdrive3-CHP-4-ITERM-4675][bookmark: linuxdrive3-CHP-4-ITERM-4676][bookmark: linuxdrive3-CHP-4-ITERM-4677][bookmark: linuxdrive3-CHP-4-ITERM-4678][bookmark: linuxdrive3-CHP-4-ITERM-4679]

	CONFIG_DEBUG_KERNEL[bookmark: linuxdrive3-CHP-4-ITERM-4662]

	
This option just makes other debugging options available; it should

be turned on but does not, by itself, enable any features.





	CONFIG_DEBUG_SLAB[bookmark: linuxdrive3-CHP-4-ITERM-4663]

	
This crucial option turns on several types of checks in the kernel

memory allocation functions; with these checks enabled, it is

possible to detect a number of memory overrun and missing

initialization errors. Each byte of allocated memory is set to

0xa5 before being handed to the caller and then

set to 0x6b when it is freed. If you ever see

either of those "poison" patterns

repeating in output from your driver (or often in an oops listing),

you'll know exactly what sort of error to look for.

When debugging is enabled, the kernel also places special guard

values before and after every allocated memory object; if those

values ever get changed, the kernel knows that somebody has overrun a

memory allocation, and it complains loudly. Various checks for more

obscure errors are enabled as well.





	CONFIG_DEBUG_PAGEALLOC[bookmark: linuxdrive3-CHP-4-ITERM-4664]

	
Full pages are removed from the kernel address space when freed. This

option can slow things down significantly, but it can also quickly

point out certain kinds of memory corruption errors.





	CONFIG_DEBUG_SPINLOCK[bookmark: linuxdrive3-CHP-4-ITERM-4665]

	
With this option enabled, the kernel catches operations on

uninitialized spinlocks and various other errors (such as unlocking a

lock twice).





	CONFIG_DEBUG_SPINLOCK_SLEEP[bookmark: linuxdrive3-CHP-4-ITERM-4666]

	
This option enables a check for attempts to sleep while holding a

spinlock. In fact, it complains if you call a function that could

potentially sleep, even if the call in question would not sleep.





	CONFIG_INIT_DEBUG[bookmark: linuxdrive3-CHP-4-ITERM-4667]

	
Items marked with _ _init (or _

_initdata) are discarded after system initialization or

module load time. This option enables checks for code that attempts

to access initialization-time memory after initialization is

complete.





	CONFIG_DEBUG_INFO[bookmark: linuxdrive3-CHP-4-ITERM-4668]

	
This option causes the kernel to be built with full debugging

information included. You'll need that information

if you want to debug the kernel with gdb. You

may also want to enable CONFIG_FRAME_POINTER if

you plan to use gdb.





	CONFIG_MAGIC_SYSRQ[bookmark: linuxdrive3-CHP-4-ITERM-4669]

	
Enables the "magic SysRq" key. We

look at this key in Section 4.5.2 later in this chapter.





	CONFIG_DEBUG_STACKOVERFLOW[bookmark: linuxdrive3-CHP-4-ITERM-4670]



	CONFIG_DEBUG_STACK_USAGE[bookmark: linuxdrive3-CHP-4-ITERM-4671]

	
These options can help track down kernel stack overflows. A sure sign

of a stack overflow is an oops listing without any sort of reasonable

back trace. The first option adds explicit overflow checks to the

kernel; the second causes the kernel to monitor stack usage and make

some statistics available via the magic SysRq key.





	CONFIG_KALLSYMS[bookmark: linuxdrive3-CHP-4-ITERM-4672]

	
This option (under "General setup/Standard

features") causes kernel symbol information to be

built into the kernel; it is enabled by default. The symbol

information is used in debugging contexts; without it, an oops

listing can give you a kernel traceback only in hexadecimal, which is

not very useful.





	CONFIG_IKCONFIG[bookmark: linuxdrive3-CHP-4-ITERM-4673]



	CONFIG_IKCONFIG_PROC[bookmark: linuxdrive3-CHP-4-ITERM-4674]

	
These options (found in the "General

setup" menu) cause the full kernel configuration

state to be built into the kernel and to be made available via

/proc. Most kernel developers know which

configuration they used and do not need these options (which make the

kernel bigger). They can be useful, though, if you are trying to

debug a problem in a kernel built by somebody else.





	CONFIG_ACPI_DEBUG[bookmark: linuxdrive3-CHP-4-ITERM-4675]

	
Under "Power management/ACPI." This

option turns on verbose ACPI (Advanced Configuration and Power

Interface) debugging information, which can be useful if you suspect

a problem related to ACPI.





	CONFIG_DEBUG_DRIVER[bookmark: linuxdrive3-CHP-4-ITERM-4676]

	
Under "Device drivers." Turns on

debugging information in the driver core, which can be useful for

tracking down problems in the low-level support code.

We'll look at the driver core in Chapter 14.





	CONFIG_SCSI_CONSTANTS[bookmark: linuxdrive3-CHP-4-ITERM-4677]

	
This option, found under "Device drivers/SCSI device

support," builds in information for verbose SCSI

error messages. If you are working on a SCSI driver, you probably

want this option.





	CONFIG_INPUT_EVBUG[bookmark: linuxdrive3-CHP-4-ITERM-4678]

	
This option (under "Device drivers/Input device

support") turns on verbose logging of input events.

If you are working on a driver for an input device, this option may

be helpful. Be aware of the security implications of this option,

however: it logs everything you type, including your passwords.





	CONFIG_PROFILING[bookmark: linuxdrive3-CHP-4-ITERM-4679]

	
This option is found under "Profiling

support." Profiling is normally used for system

performance tuning, but it can also be useful for tracking down some

kernel hangs and related problems.





We will revisit[bookmark: linuxdrive3-CHP-4-ITERM-4680] [bookmark: linuxdrive3-CHP-4-ITERM-4681] [bookmark: linuxdrive3-CHP-4-ITERM-4682] [bookmark: linuxdrive3-CHP-4-ITERM-4683] [bookmark: linuxdrive3-CHP-4-ITERM-4684] some [bookmark: linuxdrive3-CHP-4-ITERM-4685] [bookmark: linuxdrive3-CHP-4-ITERM-4686] [bookmark: linuxdrive3-CHP-4-ITERM-4687]of the above options as we look at

various ways of tracking down kernel problems. But first, we will

look at the classic debugging technique: print statements.







[bookmark: linuxdrive3-CHP-4-SECT-2]
4.2. Debugging by Printing

The most common debugging [bookmark: linuxdrive3-CHP-4-ITERM-4688] [bookmark: linuxdrive3-CHP-4-ITERM-4689]
[bookmark: linuxdrive3-CHP-4-ITERM-4690]technique

is monitoring, which in applications programming is done by calling

printf at

suitable[bookmark: linuxdrive3-CHP-4-ITERM-4691]

points. When you are debugging kernel code, you can accomplish the

same goal with printk.

[bookmark: linuxdrive3-CHP-4-SECT-2.1]
4.2.1. printk

We used the printk[bookmark: linuxdrive3-CHP-4-ITERM-4692] [bookmark: linuxdrive3-CHP-4-ITERM-4693]

function in earlier chapters with the simplifying assumption that it

works like printf. Now it's

time to introduce some of the differences.

[bookmark: linuxdrive3-CHP-4-ITERM-4694]One of the differences is that

printk lets you classify messages according to

their severity by associating different

loglevels[bookmark: linuxdrive3-CHP-4-ITERM-4695],

or [bookmark: linuxdrive3-CHP-4-ITERM-4696]priorities,

with the messages. You usually indicate the loglevel with a macro.

For example, KERN_INFO, which we saw prepended to

some of the earlier print statements, is one of the possible

loglevels of the message. The loglevel macro expands

to[bookmark: linuxdrive3-CHP-4-ITERM-4697]
[bookmark: linuxdrive3-CHP-4-ITERM-4698] a string, which is concatenated to the

message text at compile time; that's why there is no

comma between the priority and the format string in the following

examples. Here are two examples of printk

commands, a debug message and a critical message:

printk(KERN_DEBUG "Here I am: %s:%i\n", _ _FILE_ _, _ _LINE_ _);

printk(KERN_CRIT "I'm trashed; giving up on %p\n", ptr);
 

There are eight possible loglevel strings, defined in the header

<linux/kernel.h>; we list them in order of

decreasing severity:

[bookmark: linuxdrive3-CHP-4-ITERM-4699][bookmark: linuxdrive3-CHP-4-ITERM-4700][bookmark: linuxdrive3-CHP-4-ITERM-4701][bookmark: linuxdrive3-CHP-4-ITERM-4702][bookmark: linuxdrive3-CHP-4-ITERM-4703][bookmark: linuxdrive3-CHP-4-ITERM-4704][bookmark: linuxdrive3-CHP-4-ITERM-4705][bookmark: linuxdrive3-CHP-4-ITERM-4706][bookmark: linuxdrive3-CHP-4-ITERM-4707][bookmark: linuxdrive3-CHP-4-ITERM-4708][bookmark: linuxdrive3-CHP-4-ITERM-4709][bookmark: linuxdrive3-CHP-4-ITERM-4710][bookmark: linuxdrive3-CHP-4-ITERM-4711][bookmark: linuxdrive3-CHP-4-ITERM-4712][bookmark: linuxdrive3-CHP-4-ITERM-4713][bookmark: linuxdrive3-CHP-4-ITERM-4714]

	KERN_EMERG

	
[bookmark: linuxdrive3-CHP-4-ITERM-4699]
[bookmark: linuxdrive3-CHP-4-ITERM-4700]Used

for emergency messages, usually those that precede a crash.





	KERN_ALERT

	
[bookmark: linuxdrive3-CHP-4-ITERM-4701]
[bookmark: linuxdrive3-CHP-4-ITERM-4702]A

situation requiring immediate action.





	KERN_CRIT

	
[bookmark: linuxdrive3-CHP-4-ITERM-4703]
[bookmark: linuxdrive3-CHP-4-ITERM-4704]Critical

conditions, often related to serious hardware or software failures.





	KERN_ERR

	
[bookmark: linuxdrive3-CHP-4-ITERM-4705]
[bookmark: linuxdrive3-CHP-4-ITERM-4706]Used

to report error conditions; device drivers often use

KERN_ERR to report hardware difficulties.





	KERN_WARNING

	
[bookmark: linuxdrive3-CHP-4-ITERM-4707]
[bookmark: linuxdrive3-CHP-4-ITERM-4708]Warnings

about problematic situations that do not, in themselves, create

serious problems with the system.





	KERN_NOTICE

	
[bookmark: linuxdrive3-CHP-4-ITERM-4709]
[bookmark: linuxdrive3-CHP-4-ITERM-4710]Situations

that are normal, but still worthy of note. A number of

security-related conditions are reported at this level.





	KERN_INFO

	
[bookmark: linuxdrive3-CHP-4-ITERM-4711]
[bookmark: linuxdrive3-CHP-4-ITERM-4712]Informational

messages. Many drivers print information about the hardware they find

at startup time at this level.





	KERN_DEBUG

	
[bookmark: linuxdrive3-CHP-4-ITERM-4713]
[bookmark: linuxdrive3-CHP-4-ITERM-4714]Used

for debugging messages.





Each string (in the macro expansion) represents an integer in angle

brackets. Integers range from 0 to 7, with smaller values

representing higher priorities.

[bookmark: linuxdrive3-CHP-4-ITERM-4715]A

printk statement with no specified priority

defaults to DEFAULT_MESSAGE_LOGLEVEL, specified in

kernel/printk.c as an integer. In the 2.6.10

kernel, DEFAULT_MESSAGE_LOGLEVEL is

KERN_WARNING, but that has been known to change in

the past.

[bookmark: linuxdrive3-CHP-4-ITERM-4716]
[bookmark: linuxdrive3-CHP-4-ITERM-4717]Based

on the loglevel, the kernel may print the message to the current

console, be it a text-mode terminal, a serial port, or a parallel

printer. If the priority is less than the integer variable

console_loglevel, the message is delivered to the

console one line at a time (nothing is sent unless a trailing newline

is provided). If both klogd and

syslogd are running on the system, kernel

messages are appended to /var/log/messages (or

otherwise treated depending on your syslogd

configuration), independent of console_loglevel.

If klogd is not running, the message

won't reach user space unless you read

/proc/kmsg (which is often most easily done with

the dmesg[bookmark: linuxdrive3-CHP-4-ITERM-4718]
[bookmark: linuxdrive3-CHP-4-ITERM-4719]

command). When using klogd, you should remember

that it doesn't save consecutive identical lines; it

only saves the first such line and, at a later time, the number of

repetitions it received.

[bookmark: linuxdrive3-CHP-4-ITERM-4720][bookmark: linuxdrive3-CHP-4-ITERM-4721]
[bookmark: linuxdrive3-CHP-4-ITERM-4722][bookmark: linuxdrive3-CHP-4-ITERM-4723]
[bookmark: linuxdrive3-CHP-4-ITERM-4724]The

variable console_loglevel is initialized to

DEFAULT_CONSOLE_LOGLEVEL and can be modified

through the sys_syslog system call. One way to

change it is by specifying the -c switch when

invoking klogd, as specified in the

klogd manpage. Note that to change the current

value, you must first kill klogd and then

restart it with the -c option. Alternatively,

you can write a program to change the console loglevel.

You'll find a version of such a program in

misc-progs/setlevel.c in the source files

provided on O'Reilly's FTP site.

The new level is specified as an integer value between 1 and 8,

inclusive. If it is set to 1, only messages of

level 0 (KERN_EMERG) reach the console; if it is

set to 8, all messages, including debugging ones,

are displayed.

[bookmark: linuxdrive3-CHP-4-ITERM-4725]It is also possible to

read and modify the console loglevel using the text file

/proc/sys/kernel/printk. The file hosts four

integer values: the current loglevel, the default level for messages

that lack an explicit loglevel, the minimum allowed loglevel, and the

boot-time default loglevel. Writing a single value to this file

changes the current loglevel to that value; thus, for example, you

can cause all kernel messages to appear at the console by simply

entering:

 # echo 8 > /proc/sys/kernel/printk
 

It should now be apparent why the hello.c sample

had the KERN_ALERT; markers; they are there to

make sure that the messages appear on the console.

[bookmark: linuxdrive3-CHP-4-SECT-2.2]
4.2.2. Redirecting Console Messages

[bookmark: linuxdrive3-CHP-4-ITERM-4726]
[bookmark: linuxdrive3-CHP-4-ITERM-4727]
[bookmark: linuxdrive3-CHP-4-ITERM-4728][bookmark: linuxdrive3-CHP-4-ITERM-4729][bookmark: linuxdrive3-CHP-4-ITERM-4730][bookmark: linuxdrive3-CHP-4-ITERM-4731]Linux allows for some flexibility in

console logging policies by letting you send messages to a specific

virtual console (if your console lives on the text screen). By

default, the "console" is the

current virtual terminal. To select a different virtual terminal to

receive messages, you can issue ioctl(TIOCLINUX)

on any console device. The following program,

setconsole[bookmark: linuxdrive3-CHP-4-ITERM-4732]
[bookmark: linuxdrive3-CHP-4-ITERM-4733],

can be used to choose which console receives kernel messages; it must

be run by the superuser and is available in the

misc-progs[bookmark: linuxdrive3-CHP-4-ITERM-4734]
[bookmark: linuxdrive3-CHP-4-ITERM-4735] directory.

The following is the program in its entirety. You should invoke it

with a single argument specifying the number of the console that is

to receive messages.

int main(int argc, char **argv)

{

    char bytes[2] = {11,0}; /* 11 is the TIOCLINUX cmd number */



    if (argc=  =2) bytes[1] = atoi(argv[1]); /* the chosen console */

    else {

        fprintf(stderr, "%s: need a single arg\n",argv[0]); exit(1);

    }

    if (ioctl(STDIN_FILENO, TIOCLINUX, bytes)<0) {    /* use stdin */

        fprintf(stderr,"%s: ioctl(stdin, TIOCLINUX): %s\n",

                argv[0], strerror(errno));

        exit(1);

    }

    exit(0);

}
 

setconsole uses the special

ioctl command TIOCLINUX,

which implements Linux-specific functions. To use

TIOCLINUX, you pass it an argument that is a

pointer to a byte array. The first byte of the array is a number that

specifies the requested subcommand, and the following bytes are

subcommand specific. In setconsole, subcommand

11 is used, and the next byte (stored in bytes[1])

identifies the virtual console. The complete description of

TIOCLINUX can be found in

drivers/char/tty_io.c, in the kernel sources.

[bookmark: linuxdrive3-CHP-4-SECT-2.3]
4.2.3. How Messages Get Logged

[bookmark: linuxdrive3-CHP-4-ITERM-4736][bookmark: linuxdrive3-CHP-4-ITERM-4737][bookmark: linuxdrive3-CHP-4-ITERM-4738]
[bookmark: linuxdrive3-CHP-4-ITERM-4739][bookmark: linuxdrive3-CHP-4-ITERM-4740][bookmark: linuxdrive3-CHP-4-ITERM-4741]
[bookmark: linuxdrive3-CHP-4-ITERM-4742][bookmark: linuxdrive3-CHP-4-ITERM-4743]
[bookmark: linuxdrive3-CHP-4-ITERM-4744][bookmark: linuxdrive3-CHP-4-ITERM-4745][bookmark: linuxdrive3-CHP-4-ITERM-4746][bookmark: linuxdrive3-CHP-4-ITERM-4747][bookmark: linuxdrive3-CHP-4-ITERM-4748]
[bookmark: linuxdrive3-CHP-4-ITERM-4749]The

[bookmark: linuxdrive3-CHP-4-ITERM-4750]printk function

writes messages into a circular buffer that is _

_LOG_BUF_LEN bytes long: a value from 4 KB to 1 MB chosen

while configuring the kernel. The function then wakes any process

that is waiting for messages, that is, any process that is sleeping

in the syslog system call or that is reading

/proc/kmsg. These two interfaces to the logging

engine are almost equivalent, but note that reading from

/proc/kmsg consumes the data from the log

buffer, whereas the syslog system call can

optionally return log data while leaving it for other processes as

well. In general, reading the /proc file is

easier and is the default behavior for klogd.

The dmesg command can be used to look at the

content of the buffer without flushing it; actually, the command

returns to stdout the whole content of the

buffer, whether or not it has already been read.

If you happen to read the kernel messages by hand, after stopping

klogd, you'll find that the

/proc file looks like a FIFO, in that the reader

blocks, waiting for more data. Obviously, you can't

read messages this way if klogd or another

process is already reading the same data, because

you'll contend for it.

If the circular buffer fills up, printk wraps

around and starts adding new data to the beginning of the buffer,

overwriting the oldest data. Therefore, the logging process loses the

oldest data. This problem is negligible compared with the advantages

of using such a circular buffer. For example, a circular buffer

allows the system to run even without a logging process, while

minimizing memory waste by overwriting old data should nobody read

it. Another feature of the Linux approach to messaging is that

printk can be invoked from anywhere, even from

an interrupt handler, with no limit on how much data can be printed.

The only disadvantage is the possibility of losing some data.

[bookmark: linuxdrive3-CHP-4-ITERM-4751][bookmark: linuxdrive3-CHP-4-ITERM-4752]
[bookmark: linuxdrive3-CHP-4-ITERM-4753][bookmark: linuxdrive3-CHP-4-ITERM-4754]If the klogd process

is running, it retrieves kernel messages and dispatches them to

syslogd, which in turn checks

/etc/syslog.conf to find out how to deal with

them. syslogd differentiates between messages

according to a facility and a priority; allowable values for both the

facility and the priority are defined in

<sys/syslog.h>. Kernel messages are logged

by the LOG_KERN facility at a priority

corresponding to the one used in printk (for

example, LOG_ERR is used for

KERN_ERR messages). If klogd

isn't running, data remains in the circular buffer

until someone reads it or the buffer overflows.

If you want to avoid clobbering your system log with the monitoring

messages from your driver, you can either specify the

-f (file) option to klogd

to instruct it to save messages to a specific file, or customize

/etc/syslog.conf to suit your needs. Yet another

possibility is to take the brute-force approach: kill

klogd and verbosely print messages on an unused

virtual terminal,[1] or issue the command cat

/proc/kmsg from an unused xterm.
[bookmark: linuxdrive3-CHP-4-FNOTE-1][1] For example, use setlevel

8; setconsole 10 to set up terminal 10 to display

messages.


[bookmark: linuxdrive3-CHP-4-SECT-2.4]
4.2.4. Turning the Messages On and Off

[bookmark: linuxdrive3-CHP-4-ITERM-4755]
[bookmark: linuxdrive3-CHP-4-ITERM-4756]
[bookmark: linuxdrive3-CHP-4-ITERM-4757][bookmark: linuxdrive3-CHP-4-ITERM-4758][bookmark: linuxdrive3-CHP-4-ITERM-4759][bookmark: linuxdrive3-CHP-4-ITERM-4760]
[bookmark: linuxdrive3-CHP-4-ITERM-4761]During the early stages

of driver development, printk can help

considerably in debugging and testing new code. When you officially

release the driver, on the other hand, you should remove, or at least

disable, such print statements. Unfortunately,

you're likely to find that as soon as you think you

no longer need the messages and remove them, you implement a new

feature in the driver (or somebody finds a bug), and you want to turn

at least one of the messages back on. There are several ways to solve

both issues, to globally enable or disable your debug messages and to

turn individual messages on or off.

Here we show one way to code printk calls so you

can turn them on and off individually or globally; the technique

depends on defining a macro that resolves to a

printk (or printf ) call

when you want it to:

	Each print statement can be enabled or disabled by removing or adding

a single letter to the macro's name.

	All the messages can be disabled at once by changing the value of the

CFLAGS variable before compiling.

	The same print statement can be used in kernel code and user-level

code, so that the driver and test programs can be managed in the same

way with regard to extra messages.



[bookmark: linuxdrive3-CHP-4-ITERM-4762]The following code fragment

implements these features and comes directly from the header

scull.h:

#undef PDEBUG             /* undef it, just in case */

#ifdef SCULL_DEBUG

#  ifdef _ _KERNEL_ _

     /* This one if debugging is on, and kernel space */

#    define PDEBUG(fmt, args...) printk( KERN_DEBUG "scull: " fmt, ## args)

#  else

     /* This one for user space */

#    define PDEBUG(fmt, args...) fprintf(stderr, fmt, ## args)

#  endif

#else

#  define PDEBUG(fmt, args...) /* not debugging: nothing */

#endif



#undef PDEBUGG

#define PDEBUGG(fmt, args...) /* nothing: it's a placeholder */
 

[bookmark: linuxdrive3-CHP-4-ITERM-4763]
[bookmark: linuxdrive3-CHP-4-ITERM-4764]The

symbol PDEBUG is defined or undefined, depending

on whether SCULL_DEBUG is defined, and displays

information in whatever manner is appropriate to the environment

where the code is running: it uses the kernel call

printk when it's in the kernel

and the libc call fprintf

to the standard error when run in user space. The

PDEBUGG symbol, on the other hand, does nothing;

it can be used to easily "comment"

print statements without removing them entirely.

To simplify the process further, add the following lines to your

makefile:

# Comment/uncomment the following line to disable/enable debugging

DEBUG = y



# Add your debugging flag (or not) to CFLAGS

ifeq ($(DEBUG),y)

  DEBFLAGS = -O -g -DSCULL_DEBUG # "-O" is needed to expand inlines

else

  DEBFLAGS = -O2

endif



CFLAGS += $(DEBFLAGS)
 

The macros shown in this section depend on a gcc

extension to the ANSI C preprocessor that supports macros with a

variable number of arguments. This gcc

dependency shouldn't be a problem, because the

kernel proper depends heavily on gcc features

anyway. In addition, the

[bookmark: linuxdrive3-CHP-4-ITERM-4765]makefile depends on

GNU's version of make ; once

again, the kernel already depends on GNU make,

so this dependency is not a problem.

[bookmark: linuxdrive3-CHP-4-ITERM-4766]
[bookmark: linuxdrive3-CHP-4-ITERM-4767]
[bookmark: linuxdrive3-CHP-4-ITERM-4768][bookmark: linuxdrive3-CHP-4-ITERM-4769]If

you're familiar with the C preprocessor, you can

expand on the given definitions to implement the concept of a

"debug level," defining different

levels and assigning an integer (or bit mask) value to each level to

determine how verbose it should be.

But every driver has its own features and monitoring needs. The art

of good programming is in choosing the best trade-off between

flexibility and efficiency, and we can't tell what

is the best for you. Remember that preprocessor conditionals (as well

as constant expressions in the code) are executed at compile time, so

you must recompile to turn messages on or off. A possible alternative

is to use C conditionals, which are executed at runtime and,

therefore, permit you to turn messaging on and off during program

execution. This is a nice feature, but it requires additional

processing every time the code is executed, which can affect

performance even when the messages are disabled. Sometimes this

performance hit is unacceptable.

[bookmark: linuxdrive3-CHP-4-ITERM-4770][bookmark: linuxdrive3-CHP-4-ITERM-4771]The macros shown

in this section have proven themselves useful in a number of

situations, with the only disadvantage being the requirement to

recompile a module after any changes to its messages.

[bookmark: linuxdrive3-CHP-4-SECT-2.5]
4.2.5. Rate Limiting

If you are not careful, you[bookmark: linuxdrive3-CHP-4-ITERM-4772] can[bookmark: linuxdrive3-CHP-4-ITERM-4773]
[bookmark: linuxdrive3-CHP-4-ITERM-4774] find yourself generating

thousands of messages with printk, overwhelming

the console and, possibly, overflowing the system log file. When

using a slow console device (e.g., a serial port), an excessive

message rate can also slow down the system or just make it

unresponsive. It can be very hard to get a handle on what is wrong

with a system when the console is spewing out data nonstop.

Therefore, you should be very careful about what you print,

especially in production versions of drivers and especially once

initialization is complete. In general, production code should never

print anything during normal operation; printed output should be an

indication of an exceptional situation requiring attention.

On the other hand, you may want to emit a log message if a device you

are driving stops working. But you should be careful not to overdo

things. An unintelligent process that continues forever in the face

of failures can generate thousands of retries per second; if your

driver prints a "my device is

broken" message every time, it could create vast

amounts of output and possibly hog the CPU if the console device is

slow�no interrupts can be used to driver the console, even if

it is a serial port or a line printer.

In many cases, the best behavior is to set a flag saying,

"I have already complained about

this," and not print any further messages once the

flag gets set. In others, though, there are reasons to emit an

occasional "the device is still

broken" notice. The kernel has provided a function

that can be helpful in such cases:

[bookmark: linuxdrive3-CHP-4-ITERM-4775][bookmark: linuxdrive3-CHP-4-ITERM-4776]int printk_ratelimit(void);
 

This function should be called before you consider printing a message

that could be repeated often. If the function returns a nonzero

value, go ahead and print your message, otherwise skip it. Thus,

typical calls look like this:

if (printk_ratelimit(  ))

    printk(KERN_NOTICE "The printer is still on fire\n");
 

printk_ratelimit works by tracking how many

messages are sent to the console. When the level of output exceeds a

threshold, printk_ratelimit starts returning

0 and causing messages to be dropped.

The behavior of printk_ratelimit can be

customized by modifying

/proc/sys/kernel/printk_ratelimit (the number of

seconds to wait before re-enabling messages) and are

/proc/sys/kernel/printk_ratelimit_burst (the

number of messages accepted before rate-limiting).

[bookmark: linuxdrive3-CHP-4-SECT-2.6]
4.2.6. Printing Device Numbers

Occasionally, when printing a message from a driver, you will want to

print the device number associated

withp[bookmark: linuxdrive3-CHP-4-ITERM-4777]
[bookmark: linuxdrive3-CHP-4-ITERM-4778]
[bookmark: linuxdrive3-CHP-4-ITERM-4779] the hardware of interest. It is

not particularly hard to print the major and minor numbers, but, in

the interest of consistency, the kernel provides a couple of utility

macros (defined in <linux/kdev_t.h>) for

this purpose:

int print_dev_t(char *buffer, dev_t dev);

char *format_dev_t(char *buffer, dev_t dev);
 

Both macros encode the device number into the given

buffer; the only difference is that

print_dev_t returns the number of characters

printed, while format_dev_t returns

buffer; therefore, it can be used as a parameter

to a printk call directly, although one must

remember that printk doesn't

flush until a trailing newline is provided. The buffer should be

large enough to hold a device number; given that 64-bit device

numbers are a distinct possibility in [bookmark: linuxdrive3-CHP-4-ITERM-4780] [bookmark: linuxdrive3-CHP-4-ITERM-4781]future [bookmark: linuxdrive3-CHP-4-ITERM-4782] [bookmark: linuxdrive3-CHP-4-ITERM-4783] [bookmark: linuxdrive3-CHP-4-ITERM-4784]kernel releases, the buffer should

probably be at least 20 bytes long.







[bookmark: linuxdrive3-CHP-4-SECT-3]
4.3. Debugging by Querying

The previous section[bookmark: linuxdrive3-CHP-4-ITERM-4785] [bookmark: linuxdrive3-CHP-4-ITERM-4786]
[bookmark: linuxdrive3-CHP-4-ITERM-4787] described how

printk works and how it can be used. What it

didn't talk about are its disadvantages.

A massive use of printk can

slow[bookmark: linuxdrive3-CHP-4-ITERM-4788]

down the system noticeably, even if you lower

console_loglevel to avoid loading the console

device, because syslogd keeps syncing its output

files; thus, every line that is printed causes a disk operation. This

is the right implementation from syslogd

's perspective. It tries to write everything to disk

in case the system crashes right after printing the message; however,

you don't want to slow down your system just for the

sake of debugging messages. This problem can be solved by prefixing

the name of your log file as it appears in

/etc/syslogd.conf with a hyphen.[2] The problem with changing

the configuration file is that the modification will likely remain

there after you are done debugging, even though during normal system

operation you do want messages to be flushed to disk as soon as

possible. An alternative to such a permanent change is running a

program other than klogd (such as cat

/proc/kmsg, as suggested earlier), but this may not

provide a suitable environment for normal system operation.
[bookmark: linuxdrive3-CHP-4-FNOTE-2][2] The hyphen, or minus sign, is a

"magic" marker to prevent

syslogd from flushing the file to disk at every

new message, documented in syslog.conf(5), a

manpage worth reading.


More often than not, the best way to get relevant information is to

query the system when you need the information, instead of

continually producing data. In fact, every Unix system provides many

tools for obtaining system information: ps,

netstat, vmstat, and so on.

A few techniques are available to driver developers for querying the

system: creating a file in the /proc filesystem,

using the ioctl driver method, and exporting

attributes via sysfs. The use of

sysfs requires quite some background on the

driver model. It is discussed in Chapter 14.

[bookmark: linuxdrive3-CHP-4-SECT-3.1]
4.3.1. Using the /proc Filesystem

The /proc filesystem is a special,

software-created filesystem that is used by the kernel to export

information to the world. Each file under /proc

is tied to a kernel function that generates the

file's "contents"

on the fly when the file is read. We have already seen some of these

files in action; /proc/modules, for example,

always returns a list of the currently loaded modules.

/proc is heavily used in the Linux system. Many

utilities on a modern Linux distribution, such as

ps, top, and

uptime, get their information from

/proc. Some device drivers also export

information via /proc, and yours can do so as

well. The /proc filesystem is dynamic, so your

module can add or remove entries at any time.

Fully featured /proc entries can be complicated

beasts; among other things, they can be written to as well as read

from. Most of the time, however, /proc entries

are read-only files. This section concerns itself with the simple

read-only case. Those who are interested in implementing something

more complicated can look here for the basics; the kernel source may

then be consulted for the full picture.

Before we continue, however, we should mention that adding files

under /proc is discouraged. The

/proc filesystem is seen by the kernel

developers as a bit of an uncontrolled mess that has gone far beyond

its original purpose (which was to provide information about the

processes running in the system). The recommended way of making

information available in new code is via sysfs. As suggested, working

with sysfs requires an understanding of the Linux device model,

however, and we do not get to that until Chapter 14. Meanwhile, files under

/proc are slightly easier to create, and they

are entirely suitable for debugging purposes, so we cover them here.

[bookmark: linuxdrive3-CHP-4-SECT-3.1.1]
4.3.1.1 Implementing files in /proc

All modules that work with /proc
[bookmark: linuxdrive3-CHP-4-ITERM-4789]should include

<linux/proc_fs.h> to define the proper

functions.

To create a [bookmark: linuxdrive3-CHP-4-ITERM-4790]read-only /proc

file, your[bookmark: linuxdrive3-CHP-4-ITERM-4791] driver must implement a

function to produce the data when the file is read. When some process

reads the file (using the read system call), the

request reaches your module by means of this function.

We'll look at this function first and get to the

registration interface later in this section.

When a process reads from your /proc file, the

kernel allocates a page of memory (i.e., PAGE_SIZE

bytes) where the driver can write data to be returned to user space.

That buffer is passed to your function, which is a method called

read_proc:

int (*read_proc)(char *page, char **start, off_t offset, int count, 

                 int *eof, void *data);
 

The page pointer is the buffer where

you'll write your data; start is

used by the function to say where the interesting data has been

written in page (more on this later);

offset and count have the same

meaning as for the read method. The

eof argument points to an integer that must be set

by the driver to signal that it has no more data to return, while

data is a driver-specific data pointer you can use

for internal bookkeeping.

This function should return the number of bytes of data actually

placed in the page buffer, just like the

read method does for other files. Other output

values are *eof and *start.

eof is a simple flag, but the use of the

start value is somewhat more complicated; its

purpose is to help with the implementation of large (greater than one

page) /proc files.

The start parameter has a somewhat unconventional

use. Its purpose is to indicate where (within

page) the data to be returned to the user is

found. When your

proc_read[bookmark: linuxdrive3-CHP-4-ITERM-4792]
[bookmark: linuxdrive3-CHP-4-ITERM-4793]

method is called, *start will be

NULL. If you leave it NULL, the

kernel assumes that the data has been put into

page as if offset were

0; in other words, it assumes a simple-minded

version of proc_read, which places the entire

contents of the virtual file in page without

paying attention to the offset parameter. If,

instead, you set *start to a

non-NULL value, the kernel assumes that the data

pointed to by *start takes

offset into account and is ready to be returned

directly to the user. In general, simple

proc_read methods that return tiny amounts of

data just ignore start. More complex methods set

*start to page and only place

data beginning at the requested offset there.

[bookmark: linuxdrive3-CHP-4-ITERM-4794]There has long been another major issue

with /proc files, which start

is meant to solve as well. Sometimes the ASCII representation of

kernel data structures changes between successive calls to

read, so the reader process could find

inconsistent data from one call to the next. If

*start is set to a small integer value, the caller

uses it to increment filp->f_pos independently

of the amount of data you return, thus making

f_pos an internal record number of your

read_proc procedure. If, for example, your

read_proc[bookmark: linuxdrive3-CHP-4-ITERM-4795]
[bookmark: linuxdrive3-CHP-4-ITERM-4796]

function is returning information from a big array of structures, and

five of those structures were returned in the first call,

*start could be set to 5. The

next call provides that same value as the offset; the driver then

knows to start returning data from the sixth structure in the array.

This is acknowledged as a "hack" by

its authors and can be seen in

fs/proc/generic.c.

Note that there is a better way to implement large

/proc files; it's called

seq_file, and we'll discuss it

shortly. First, though, it is time for an example. Here is a simple

(if somewhat ugly) read_proc implementation for

the[bookmark: linuxdrive3-CHP-4-ITERM-4797] scull device:

int scull_read_procmem(char *buf, char **start, off_t offset,

                   int count, int *eof, void *data)

{

    int i, j, len = 0;

    int limit = count - 80; /* Don't print more than this */



    for (i = 0; i < scull_nr_devs && len <= limit; i++) {

        struct scull_dev *d = &scull_devices[i];

        struct scull_qset *qs = d->data;

        if (down_interruptible(&d->sem))

            return -ERESTARTSYS;

        len += sprintf(buf+len,"\nDevice %i: qset %i, q %i, sz %li\n",

                i, d->qset, d->quantum, d->size);

        for (; qs && len <= limit; qs = qs->next) { /* scan the list */

            len += sprintf(buf + len, "  item at %p, qset at %p\n",

                    qs, qs->data);

            if (qs->data && !qs->next) /* dump only the last item */

                for (j = 0; j < d->qset; j++) {

                    if (qs->data[j])

                        len += sprintf(buf + len,

                                "    % 4i: %8p\n",

                                j, qs->data[j]);

                }

        }

        up(&scull_devices[i].sem);

    }

    *eof = 1;

    return len;

}
 

This is a fairly typical read_proc

implementation. It assumes that there will never be a need to

generate more than one page of data and so ignores the

start and offset values. It is,

however, careful not to overrun its buffer, just in case.

[bookmark: linuxdrive3-CHP-4-SECT-3.1.2]
4.3.1.2 An older interface

If you read through the kernel source,[bookmark: linuxdrive3-CHP-4-ITERM-4798]
[bookmark: linuxdrive3-CHP-4-ITERM-4799] you may encounter code

implementing /proc files with an older

interface:

int (*get_info)(char *page, char **start, off_t offset, int count);
 

All of the arguments have the same meaning as they do for

read_proc, but the eof and

data arguments are missing. This interface is

still supported, but it could go away in the future; new code should

use the read_proc interface instead.

[bookmark: linuxdrive3-CHP-4-SECT-3.1.3]
4.3.1.3 Creating your /proc file

Once you have a read_proc
[bookmark: linuxdrive3-CHP-4-ITERM-4800]function defined,

[bookmark: linuxdrive3-CHP-4-ITERM-4801]
[bookmark: linuxdrive3-CHP-4-ITERM-4802]you need to connect it to

an entry in the /proc hierarchy. This is

[bookmark: linuxdrive3-CHP-4-ITERM-4803]
[bookmark: linuxdrive3-CHP-4-ITERM-4804]done with

a call to

create_proc_read_entry[bookmark: linuxdrive3-CHP-4-ITERM-4805]
[bookmark: linuxdrive3-CHP-4-ITERM-4806]:

struct proc_dir_entry *create_proc_read_entry(const char *name,

                              mode_t mode, struct proc_dir_entry *base, 

                              read_proc_t *read_proc, void *data);
 

Here, name is the name of the file to create,

mode is the protection mask for the file (it can

be passed as 0 for a system-wide default), base

indicates the directory in which the file should be created (if

base is NULL, the file is

created in the /proc root),

read_proc is the read_proc

function that implements the file, and data is

ignored by the kernel (but passed to read_proc).

Here is the call used by scull to make its

/proc function available as

/proc/scullmem:

create_proc_read_entry("scullmem", 0 /* default mode */,

        NULL /* parent dir */, scull_read_procmem,

        NULL /* client data */);
 

Here, we create a file called scullmem directly

under /proc, with the default, world-readable

protections.

The directory entry pointer can be used to

create[bookmark: linuxdrive3-CHP-4-ITERM-4807] entire directory hierarchies

under /proc. Note, however, that an entry may be

more easily placed in a subdirectory of /proc

simply by giving the directory name as part of the name of the

entry�as long as the directory itself already exists. For

example, an (often ignored) convention says that

/proc entries associated with device drivers

should go in the subdirectory driver/;

scull could place its entry there simply by

giving its name as driver/scullmem.

[bookmark: linuxdrive3-CHP-4-ITERM-4808]
[bookmark: linuxdrive3-CHP-4-ITERM-4809][bookmark: linuxdrive3-CHP-4-ITERM-4810]Entries in /proc,

of course, should be removed when the module is unloaded.

remove_proc_entry is the function that undoes

what create_proc_read_entry already did:

remove_proc_entry("scullmem", NULL /* parent dir */);
 

Failure to remove entries can result in calls at unwanted times, or,

if your module has been unloaded, kernel crashes.

When using /proc files as shown, you must

remember a few nuisances of the implementation�no surprise its

use is discouraged nowadays.

The most important problem is with

[bookmark: linuxdrive3-CHP-4-ITERM-4811]removal of

/proc entries. Such removal may well happen

while the file is in use, as there is no owner associated to

/proc entries, so using them

doesn't act on the module's

reference count. This problem is simply triggered by running

sleep 100 < /proc/myfile just before removing

the module, for example.

Another issue is about registering two entries with the same name.

The kernel trusts the driver and doesn't check if

the name is already registered, so if you are not careful you might

end up with two or more entries with the same name. This is a problem

known to happen in classrooms, and such entries are

indistinguishable, both when you access them and when you call

remove_proc_entry.

[bookmark: linuxdrive3-CHP-4-SECT-3.1.4]
4.3.1.4 The seq_file interface

As we noted above, [bookmark: linuxdrive3-CHP-4-ITERM-4812] [bookmark: linuxdrive3-CHP-4-ITERM-4813]the

implementation of [bookmark: linuxdrive3-CHP-4-ITERM-4814]large files under

/proc is a little awkward. Over time,

/proc methods have become notorious for buggy

implementations when the amount of output grows large. As a way of

cleaning up the /proc code and making life

easier for kernel programmers, the seq_file

interface was added. This interface provides a simple set of

functions for the implementation of large kernel virtual files.

The seq_file interface assumes that you are

creating a virtual file that steps through a sequence of items that

must be returned to user space. To use seq_file,

you must create a simple "iterator"

object that can establish a position within the sequence, step

forward, and output one item in the sequence. It may sound

complicated, but, in fact, the process is quite simple.

We'll step through the creation of a

/proc file in the scull

driver to show how it is done.

The first step, inevitably, is the inclusion of

<linux/seq_file.h>. Then you must create

four iterator methods, called start,

next, stop, and

show.

The start[bookmark: linuxdrive3-CHP-4-ITERM-4815]
[bookmark: linuxdrive3-CHP-4-ITERM-4816]

method is always called first. The prototype for this function is:

void *start(struct seq_file *sfile, loff_t *pos);
 

The sfile[bookmark: linuxdrive3-CHP-4-ITERM-4817]
[bookmark: linuxdrive3-CHP-4-ITERM-4818]

argument can almost always be ignored. pos is an

integer position indicating where the reading should start. The

interpretation of the position is entirely up to the implementation;

it need not be a byte position in the resulting file. Since

seq_file implementations typically step through a

sequence of interesting items, the position is often interpreted as a

cursor pointing to the next item in the sequence. The

scull driver interprets each device as one item

in the sequence, so the incoming pos is simply an

index into the scull_devices array. Thus, the

start method used in scull

is:

static void *scull_seq_start(struct seq_file *s, loff_t *pos)

{

    if (*pos >= scull_nr_devs)

        return NULL;   /* No more to read */

    return scull_devices + *pos;

}
 

The return value, if non-NULL, is a private value

that can be used by the iterator implementation.

The next[bookmark: linuxdrive3-CHP-4-ITERM-4819]
[bookmark: linuxdrive3-CHP-4-ITERM-4820]
[bookmark: linuxdrive3-CHP-4-ITERM-4821] function should move the iterator to

the next position, returning NULL if there is

nothing left in the sequence. This method's

prototype is:

void *next(struct seq_file *sfile, void *v, loff_t *pos);
 

Here, v is the iterator as returned from the

previous call to start or

next, and pos is the current

position in the file. next should increment the

value pointed to by pos; depending on how your

iterator works, you might (though probably won't)

want to increment pos by more than one.

Here's what scull does:

static void *scull_seq_next(struct seq_file *s, void *v, loff_t *pos)

{

    (*pos)++;

    if (*pos >= scull_nr_devs)

        return NULL;

    return scull_devices + *pos;

}
 

When the kernel is done with the iterator, it

calls[bookmark: linuxdrive3-CHP-4-ITERM-4822]
[bookmark: linuxdrive3-CHP-4-ITERM-4823]
[bookmark: linuxdrive3-CHP-4-ITERM-4824] stop to clean up:

void stop(struct seq_file *sfile, void *v);
 

The scull implementation has no cleanup work to

do, so its stop method is empty.

It is worth noting that the seq_file code, by

design, does not sleep or perform other nonatomic tasks between the

calls to start and stop.

You are also guaranteed to see one stop call

sometime shortly after a call to start.

Therefore, it is safe for your start method to

acquire semaphores or spinlocks. As long as your other

seq_file methods are atomic, the whole sequence of

calls is atomic. (If this paragraph does not make sense to you, come

back to it after you've read the next chapter.)

In between these calls, the kernel calls the [bookmark: linuxdrive3-CHP-4-ITERM-4825]
[bookmark: linuxdrive3-CHP-4-ITERM-4826]
[bookmark: linuxdrive3-CHP-4-ITERM-4827]show method to

actually output something interesting to the user space. This

method's prototype is:

int show(struct seq_file *sfile, void *v);
 

This method should create output for the item in the sequence

indicated by the iterator v. It should not

use[bookmark: linuxdrive3-CHP-4-ITERM-4828]
[bookmark: linuxdrive3-CHP-4-ITERM-4829]
printk, however; instead, there is a special set

of functions for seq_file output:

[bookmark: linuxdrive3-CHP-4-ITERM-4830][bookmark: linuxdrive3-CHP-4-ITERM-4831][bookmark: linuxdrive3-CHP-4-ITERM-4832][bookmark: linuxdrive3-CHP-4-ITERM-4833][bookmark: linuxdrive3-CHP-4-ITERM-4834][bookmark: linuxdrive3-CHP-4-ITERM-4835][bookmark: linuxdrive3-CHP-4-ITERM-4836][bookmark: linuxdrive3-CHP-4-ITERM-4837][bookmark: linuxdrive3-CHP-4-ITERM-4838][bookmark: linuxdrive3-CHP-4-ITERM-4839]

	int seq_printf(struct seq_file *sfile, const char *fmt, ...);[bookmark: linuxdrive3-CHP-4-ITERM-4830]
[bookmark: linuxdrive3-CHP-4-ITERM-4831]

	
This is the printf equivalent for

seq_file implementations; it takes the usual

format string and additional value arguments. You must also pass it

the seq_file structure given to the

show function, however. If

seq_printf returns a nonzero value, it means

that the buffer has filled, and output is being discarded. Most

implementations ignore the return value, however.





	int seq_putc(struct seq_file *sfile, char c);[bookmark: linuxdrive3-CHP-4-ITERM-4832]
[bookmark: linuxdrive3-CHP-4-ITERM-4833]



	int seq_puts(struct seq_file *sfile, const char *s);[bookmark: linuxdrive3-CHP-4-ITERM-4834]
[bookmark: linuxdrive3-CHP-4-ITERM-4835]

	
These are the equivalents of the user-space putc

and puts functions.





	int seq_escape(struct seq_file *m, const char *s, const char *esc);[bookmark: linuxdrive3-CHP-4-ITERM-4836]
[bookmark: linuxdrive3-CHP-4-ITERM-4837]

	
This function is equivalent to seq_puts with the

exception that any character in s that is also

found in esc is printed in octal format. A common

value for esc is " \t\n\\",

which keeps embedded white space from messing up the output and

possibly confusing shell scripts.





	int seq_path(struct seq_file *sfile, struct vfsmount *m, struct dentry[bookmark: linuxdrive3-CHP-4-ITERM-4838]
[bookmark: linuxdrive3-CHP-4-ITERM-4839] 



	 *dentry, char *esc);

	
This function can be used for outputting the file name associated

with a given directory entry. It is unlikely to be useful in device

drivers; we have included it here for completeness.





Getting back to our example; the show method

used in scull is:

static int scull_seq_show(struct seq_file *s, void *v)

{

    struct scull_dev *dev = (struct scull_dev *) v;

    struct scull_qset *d;

    int i;



    if (down_interruptible(&dev->sem))

        return -ERESTARTSYS;

    seq_printf(s, "\nDevice %i: qset %i, q %i, sz %li\n",

            (int) (dev - scull_devices), dev->qset,

            dev->quantum, dev->size);

    for (d = dev->data; d; d = d->next) { /* scan the list */

        seq_printf(s, "  item at %p, qset at %p\n", d, d->data);

        if (d->data && !d->next) /* dump only the last item */

            for (i = 0; i < dev->qset; i++) {

                if (d->data[i])

                    seq_printf(s, "    % 4i: %8p\n",

                            i, d->data[i]);

            }

    }

    up(&dev->sem);

    return 0;

}
 

Here, we finally interpret our

"iterator" value, which is simply a

pointer to a scull_dev structure.

Now that it has a full set of iterator operations,

scull must package them up and connect them to a

file in /proc. The first step is done by filling

in a seq_operations structure:

static struct seq_operations scull_seq_ops = {

    .start = scull_seq_start,

    .next  = scull_seq_next,

    .stop  = scull_seq_stop,

    .show  = scull_seq_show

};
 

With that structure in place, we must create a file implementation

that the kernel understands. We do not use the

read_proc method described previously; when

using seq_file, it is best to connect in to

/proc at a slightly lower level. That means

creating a file_operations structure (yes, the

same structure used for char drivers) implementing all of the

operations needed by the kernel to handle reads and seeks on the

file. Fortunately, this task is straightforward. The first step is to

create an open method that connects the file to

the seq_file operations:

static int scull_proc_open(struct inode *inode, struct file *file)

{

    return seq_open(file, &scull_seq_ops);

}
 

The call to seq_open connects the

file structure with our sequence operations

defined above. As it turns out, open is the only

file operation we must implement ourselves, so we can now set up our

file_operations structure:

static struct file_operations scull_proc_ops = {

    .owner   = THIS_MODULE,

    .open    = scull_proc_open,

    .read    = seq_read,

    .llseek  = seq_lseek,

    .release = seq_release

};
 

Here we specify our own open method, but use the

canned methods seq_read,

seq_lseek, and seq_release

for everything else.

The final step is to create the actual file in

/proc:

entry = create_proc_entry("scullseq", 0, NULL);

if (entry)

    entry->proc_fops = &scull_proc_ops;
 

Rather than using create_proc_read_entry, we

call the lower-level create_proc_entry, which

has this prototype:

struct proc_dir_entry *create_proc_entry(const char *name,

                              mode_t mode, 

                              struct proc_dir_entry *parent);
 

The arguments are the same as their equivalents in

create_proc_read_entry: the name of the file,

its protections, and the parent directory.

With the above code, scull has a new

/proc entry that looks much like the previous

one. It is superior, however, because it works regardless of how

large its output becomes, it handles seeks properly, and it is

generally easier to read and maintain. We recommend the use of

seq_file for the implementation [bookmark: linuxdrive3-CHP-4-ITERM-4840] [bookmark: linuxdrive3-CHP-4-ITERM-4841]of files that

contain more than a very small number of lines of[bookmark: linuxdrive3-CHP-4-ITERM-4842] [bookmark: linuxdrive3-CHP-4-ITERM-4843] output.

[bookmark: linuxdrive3-CHP-4-SECT-3.2]
4.3.2. The ioctl Method

ioctl, which we show you

how[bookmark: linuxdrive3-CHP-4-ITERM-4844]
[bookmark: linuxdrive3-CHP-4-ITERM-4845]
[bookmark: linuxdrive3-CHP-4-ITERM-4846] to use in Chapter 6, is a system call

that acts on a file descriptor; it receives a number that identifies

a command to be performed and (optionally) another argument, usually

a pointer. As an alternative to using the /proc

filesystem, you can implement a few ioctl

commands tailored for debugging. These commands can copy relevant

data structures from the driver to user space where you can examine

them.

Using ioctl this way to get information is

somewhat more difficult than using /proc,

because you need another program to issue the

ioctl and display the results. This program must

be written, compiled, and kept in sync with the module

you're testing. On the other hand, the driver-side

code can be easier than what is needed to implement a

/proc file.

There are times when ioctl is the best way to

get information, because it runs faster than reading

/proc. If some work must be performed on the

data before it's written to the screen, retrieving

the data in binary form is more efficient than reading a text file.

In addition, ioctl doesn't

require splitting data into fragments smaller than a page.

[bookmark: linuxdrive3-CHP-4-ITERM-4847][bookmark: linuxdrive3-CHP-4-ITERM-4848]Another interesting advantage of the

ioctl approach is that information-retrieval

commands can be left in the driver even when debugging would

otherwise be disabled. Unlike a /proc file,

which is visible to anyone who looks in the directory (and too many

people are likely to wonder "what that strange file

is"), undocumented ioctl

commands are likely to remain unnoticed. In addition, they will still

be there should something weird happen to[bookmark: linuxdrive3-CHP-4-ITERM-4849] [bookmark: linuxdrive3-CHP-4-ITERM-4850] [bookmark: linuxdrive3-CHP-4-ITERM-4851] the driver. The

only drawback is that the module will be slightly bigger.







[bookmark: linuxdrive3-CHP-4-SECT-4]
4.4. Debugging by Watching

Sometimes minor

problems[bookmark: linuxdrive3-CHP-4-ITERM-4852]
[bookmark: linuxdrive3-CHP-4-ITERM-4853]
[bookmark: linuxdrive3-CHP-4-ITERM-4854] can be tracked down by watching the

behavior of an application in user space. Watching programs can also

help in building confidence that a driver is working correctly. For

example, we were able to feel confident about

scull after looking at how its

read implementation reacted to read requests for

different amounts of data.

There are various ways to watch a user-space program working. You can

run a debugger on it to step through its functions, add print

statements, or run the program under strace.

Here we'll discuss just the last technique, which is

most interesting when the real goal is examining kernel code.

The strace[bookmark: linuxdrive3-CHP-4-ITERM-4855]
[bookmark: linuxdrive3-CHP-4-ITERM-4856]

command is a powerful tool that shows all the system calls issued by

a user-space program. Not only does it show the calls, but it can

also show the arguments to the calls and their return values in

symbolic form. When a system call fails, both the symbolic value of

the error (e.g., ENOMEM) and the corresponding

string (Out of memory) are

displayed. strace has many command-line options;

the most useful of which are -t to display the

time when each call is executed,

-T to display the time spent in the call,

-e to limit the types of calls traced, and

-o to redirect the output to a file. By default,

strace prints tracing information on

stderr.

strace receives information from the kernel

itself. This means that a program can be traced regardless of whether

or not it was compiled with debugging support (the

-g option to gcc) and

whether or not it is stripped. You can also attach tracing to a

running process, similar to the way a debugger can connect to a

running process and control it.

The trace information is often used to support bug reports sent to

application developers, but it's also invaluable to

kernel programmers. We've seen how driver code

executes by reacting to system calls; strace

allows us to check the consistency of input and output data of each

call.

For example, the following screen dump shows (most of) the last lines

of running the command strace ls /dev >

/dev/scull0 :

open("/dev", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY) = 3

fstat64(3, {st_mode=S_IFDIR|0755, st_size=24576, ...}) = 0

fcntl64(3, F_SETFD, FD_CLOEXEC)         = 0

getdents64(3, /* 141 entries */, 4096)  = 4088

[...]

getdents64(3, /* 0 entries */, 4096)    = 0

close(3)                                = 0

[...]

fstat64(1, {st_mode=S_IFCHR|0664, st_rdev=makedev(254, 0), ...}) = 0

write(1, "MAKEDEV\nadmmidi0\nadmmidi1\nadmmid"..., 4096) = 4000

write(1, "b\nptywc\nptywd\nptywe\nptywf\nptyx0\n"..., 96) = 96

write(1, "b\nptyxc\nptyxd\nptyxe\nptyxf\nptyy0\n"..., 4096) = 3904

write(1, "s17\nvcs18\nvcs19\nvcs2\nvcs20\nvcs21"..., 192) = 192

write(1, "\nvcs47\nvcs48\nvcs49\nvcs5\nvcs50\nvc"..., 673) = 673

close(1)                                = 0

exit_group(0)                           = ?
 

[bookmark: linuxdrive3-CHP-4-ITERM-4857]
[bookmark: linuxdrive3-CHP-4-ITERM-4858]It's apparent from the

first write call that after

ls finished looking in the target directory, it

tried to write 4 KB. Strangely (for ls), only

4000 bytes were written, and the operation was retried. However, we

know that the write implementation in

scull writes a single quantum at a time, so we

could have expected the partial write. After a few steps, everything

sweeps through, and the program exits successfully.

[bookmark: linuxdrive3-CHP-4-ITERM-4859]
[bookmark: linuxdrive3-CHP-4-ITERM-4860]As another example,

let's read the

scull device (using the[bookmark: linuxdrive3-CHP-4-ITERM-4861]
[bookmark: linuxdrive3-CHP-4-ITERM-4862]
wc command):

[...]

open("/dev/scull0", O_RDONLY|O_LARGEFILE) = 3

fstat64(3, {st_mode=S_IFCHR|0664, st_rdev=makedev(254, 0), ...}) = 0

read(3, "MAKEDEV\nadmmidi0\nadmmidi1\nadmmid"..., 16384) = 4000

read(3, "b\nptywc\nptywd\nptywe\nptywf\nptyx0\n"..., 16384) = 4000

read(3, "s17\nvcs18\nvcs19\nvcs2\nvcs20\nvcs21"..., 16384) = 865

read(3, "", 16384)                      = 0

fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 1), ...}) = 0

write(1, "8865 /dev/scull0\n", 17)      = 17

close(3)                                = 0

exit_group(0)                           = ?
 

As expected, read is able to retrieve only 4000

bytes at a time, but the total amount of data is the same that was

written in the previous example. It's interesting to

note how retries are organized in this example, as opposed to the

previous trace. wc is optimized for fast reading

and, therefore, bypasses the standard library, trying to read more

data with a single system call. You can see from the

read lines in the trace how

wc tried to read 16 KB at a time.

Linux experts can find much useful information in the output of

strace. If you're put off by

all the symbols, you can limit yourself to watching how the file

methods (open, read, and so

on) work with the efile flag.

Personally, we find strace most useful for

pinpointing runtime errors from system calls. Often

the[bookmark: linuxdrive3-CHP-4-ITERM-4863]
[bookmark: linuxdrive3-CHP-4-ITERM-4864] perror call in the

application or demo program isn't verbose enough to

be useful for debugging, and being able to tell exactly which

arguments to which system call triggered the error can be a great

help.







[bookmark: linuxdrive3-CHP-4-SECT-5]
4.5. Debugging System Faults

Even if you've used all the[bookmark: linuxdrive3-CHP-4-ITERM-4865]
[bookmark: linuxdrive3-CHP-4-ITERM-4866]
[bookmark: linuxdrive3-CHP-4-ITERM-4867] monitoring and debugging techniques,

sometimes bugs remain in the driver, and the system faults when the

driver is executed. When this happens, it's

important to be able to collect as much information as possible to

solve the problem.

Note that "fault"

doesn't mean

"panic." The Linux code is robust

enough to respond gracefully to most errors: a fault usually results

in the destruction of the current process while the system goes on

working. The system can panic, and it may if a

fault happens outside of a process's context or if

some vital part of the system is compromised. But when the problem is

due to a driver error, it usually results only in the sudden death of

the process unlucky enough to be using the driver. The only

unrecoverable damage when a process is destroyed is that some memory

allocated to the process's context is lost; for

instance, dynamic lists allocated by the driver through

kmalloc might be lost. However, since the kernel

calls the close operation for any open device

when a process dies, your driver can release what was allocated by

the open method.

Even though an oops usually does not bring down the entire system,

you may well find yourself needing to reboot after one happens. A

buggy driver can leave hardware in an unusable state, leave kernel

resources in an inconsistent state, or, in the worst case, corrupt

kernel memory in random places. Often you can simply unload your

buggy driver and try again after an oops. If, however, you see

anything that suggests that the system as a whole is not well, your

best bet is usually to reboot immediately.

We've already said that when kernel code misbehaves,

an informative message is printed on the console. The next section

explains how to decode and use such messages. Even though they appear

rather obscure to the novice, processor dumps are full of interesting

information, often sufficient to pinpoint a program bug without the

need for additional testing.

[bookmark: linuxdrive3-CHP-4-SECT-5.1]
4.5.1. Oops Messages

Most bugs show themselves in[bookmark: linuxdrive3-CHP-4-ITERM-4868]
[bookmark: linuxdrive3-CHP-4-ITERM-4869]
NULL pointer dereferences or by the use of other

incorrect pointer values. The usual outcome of such bugs is an oops

message.

[bookmark: linuxdrive3-CHP-4-ITERM-4870]Almost any address used by

the processor is a virtual address and is mapped to physical

addresses through a complex structure of page tables (the exceptions

are physical addresses used with the memory management subsystem

itself). When an invalid pointer is dereferenced, the paging

mechanism fails to map the pointer to a physical address, and the

processor signals a page fault to the operating

system. If the address is not valid, the kernel is not able to

"page in" the missing address; it

(usually) generates an oops if this happens while the processor is in

supervisor mode.

An oops displays the processor status at the time of the fault,

including the contents of the CPU registers and other seemingly

incomprehensible information. The message is generated by

printk statements in the fault handler

(arch/*/kernel/traps.c) and is dispatched as

described earlier in Section 4.2.1).

Let's look at one such message.

Here's what results from dereferencing a

NULL pointer on a PC running Version 2.6 of the

kernel. The most relevant information here is the instruction pointer

(EIP), the address of the faulty instruction.

Unable to handle kernel NULL pointer dereference at virtual address 00000000

 printing eip:

d083a064

Oops: 0002 [#1]

SMP 

CPU:    0

EIP:    0060:[<d083a064>]    Not tainted

EFLAGS: 00010246   (2.6.6) 

EIP is at faulty_write+0x4/0x10 [faulty]

eax: 00000000   ebx: 00000000   ecx: 00000000   edx: 00000000

esi: cf8b2460   edi: cf8b2480   ebp: 00000005   esp: c31c5f74

ds: 007b   es: 007b   ss: 0068

Process bash (pid: 2086, threadinfo=c31c4000 task=cfa0a6c0)

Stack: c0150558 cf8b2460 080e9408 00000005 cf8b2480 00000000 cf8b2460 cf8b2460 

       fffffff7 080e9408 c31c4000 c0150682 cf8b2460 080e9408 00000005 cf8b2480 

       00000000 00000001 00000005 c0103f8f 00000001 080e9408 00000005 00000005 

Call Trace:

 [<c0150558>] vfs_write+0xb8/0x130

 [<c0150682>] sys_write+0x42/0x70

 [<c0103f8f>] syscall_call+0x7/0xb



Code: 89 15 00 00 00 00 c3 90 8d 74 26 00 83 ec 0c b8 00 a6 83 d0
 

This message was generated by writing to a device owned by the

faulty[bookmark: linuxdrive3-CHP-4-ITERM-4871]
[bookmark: linuxdrive3-CHP-4-ITERM-4872] module, a module built deliberately

to demonstrate failures. The implementation of the

write[bookmark: linuxdrive3-CHP-4-ITERM-4873]
[bookmark: linuxdrive3-CHP-4-ITERM-4874] method of

faulty.c is trivial:

ssize_t faulty_write (struct file *filp, const char _ _user *buf, size_t count,

        loff_t *pos)

{

    /* make a simple fault by dereferencing a NULL pointer */

    *(int *)0 = 0;

    return 0;

}
 

As you can see, what we do here is dereference a

NULL pointer. Since 0 is never

a valid pointer value, a fault occurs, which the kernel turns into

the oops message shown earlier. The calling process is then killed.

The faulty module has a different fault

condition in its[bookmark: linuxdrive3-CHP-4-ITERM-4875]
[bookmark: linuxdrive3-CHP-4-ITERM-4876] read

implementation:

ssize_t faulty_read(struct file *filp, char _ _user *buf,

            size_t count, loff_t *pos)

{

    int ret;

    char stack_buf[4];



    /* Let's try a buffer overflow  */

    memset(stack_buf, 0xff, 20);

    if (count > 4)

        count = 4; /* copy 4 bytes to the user */

    ret = copy_to_user(buf, stack_buf, count);

    if (!ret)

        return count;

    return ret;

}
 

[bookmark: linuxdrive3-CHP-4-ITERM-4877] [bookmark: linuxdrive3-CHP-4-ITERM-4878]
[bookmark: linuxdrive3-CHP-4-ITERM-4879]This method copies a string into a

local variable; unfortunately, the string is longer than the

destination array. The resulting buffer overflow causes an oops when

the function returns. Since the return instruction

brings the instruction pointer to nowhere land, this kind of fault is

much harder to trace, and you can get something such as the

following:

EIP:    0010:[<00000000>]

Unable to handle kernel paging request at virtual address ffffffff

 printing eip:

ffffffff

Oops: 0000 [#5]

SMP 

CPU:    0

EIP:    0060:[<ffffffff>]    Not tainted

EFLAGS: 00010296   (2.6.6) 

EIP is at 0xffffffff

eax: 0000000c   ebx: ffffffff   ecx: 00000000   edx: bfffda7c

esi: cf434f00   edi: ffffffff   ebp: 00002000   esp: c27fff78

ds: 007b   es: 007b   ss: 0068

Process head (pid: 2331, threadinfo=c27fe000 task=c3226150)

Stack: ffffffff bfffda70 00002000 cf434f20 00000001 00000286 cf434f00 fffffff7 

       bfffda70 c27fe000 c0150612 cf434f00 bfffda70 00002000 cf434f20 00000000 

       00000003 00002000 c0103f8f 00000003 bfffda70 00002000 00002000 bfffda70 

Call Trace:

 [<c0150612>] sys_read+0x42/0x70

 [<c0103f8f>] syscall_call+0x7/0xb



Code:  Bad EIP value.
 

In this case, we see only part of the call stack

(vfs_read and faulty_read

are missing), and the kernel complains about a "bad

EIP value." That complaint, and the offending

address (ffffffff) listed at the beginning are

both hints that the kernel stack has been corrupted.

In general, when you are confronted with an oops, the first thing to

do is to look at the location where the problem happened, which is

usually listed separately from the call stack. In the first oops

shown above, the relevant line is:

EIP is at faulty_write+0x4/0x10 [faulty]
 

Here we see that we were in the function

faulty_write[bookmark: linuxdrive3-CHP-4-ITERM-4880]
[bookmark: linuxdrive3-CHP-4-ITERM-4881],

which is located in the faulty module (which is

listed in square brackets). The hex numbers indicate that the

instruction pointer was 4 bytes into the function, which appears to

be 10 (hex) bytes long. Often that is enough to figure out what the

problem is.

If you need more information, the call stack shows you how you got to

where things fell apart. The stack itself is printed in hex form;

with a bit of work, you can often determine the values of local

variables and function parameters from the stack listing. Experienced

kernel developers can benefit from a certain amount of pattern

recognition here; for example, if we look at the stack listing from

the faulty_read[bookmark: linuxdrive3-CHP-4-ITERM-4882]
[bookmark: linuxdrive3-CHP-4-ITERM-4883]

oops:

Stack: ffffffff bfffda70 00002000 cf434f20 00000001 00000286 cf434f00 fffffff7 

       bfffda70 c27fe000 c0150612 cf434f00 bfffda70 00002000 cf434f20 00000000 

       00000003 00002000 c0103f8f 00000003 bfffda70 00002000 00002000 bfffda70
 

The ffffffff at the top of the stack is part of

our string that broke things. On the x86 architecture, by default,

the user-space stack starts just below 0xc0000000;

thus, the recurring value 0xbfffda70 is probably a

user-space stack address; it is, in fact, the address of the buffer

passed to the read system call, replicated each

time it is passed down the kernel call chain. On the x86 (again, by

default), kernel space starts at 0xc0000000, so

values above that are almost certainly kernel-space addresses, and so

on.

Finally, when looking at oops listings, always be on the lookout for

the "slab poisoning" values

discussed at the beginning of this chapter. Thus, for example, if you

get a kernel oops where the offending address is

0xa5a5a5a5, you are almost certainly forgetting to

initialize dynamic memory somewhere.

Please note that you see a symbolic call stack (as shown above) only

if your kernel is built with the CONFIG_KALLSYMS

option turned on. Otherwise, you see a bare, hexadecimal listing,

which is far less [bookmark: linuxdrive3-CHP-4-ITERM-4884] [bookmark: linuxdrive3-CHP-4-ITERM-4885]useful until you have decoded it in

other ways.

[bookmark: linuxdrive3-CHP-4-SECT-5.2]
4.5.2. System Hangs

[bookmark: linuxdrive3-CHP-4-ITERM-4886]
[bookmark: linuxdrive3-CHP-4-ITERM-4887][bookmark: linuxdrive3-CHP-4-ITERM-4888][bookmark: linuxdrive3-CHP-4-ITERM-4889][bookmark: linuxdrive3-CHP-4-ITERM-4890][bookmark: linuxdrive3-CHP-4-ITERM-4891]Although most bugs in kernel code end up

as oops messages, sometimes they can completely hang the system. If

the system hangs, no message is printed. For example, if the code

enters an endless loop, the kernel stops scheduling,[3] and the system

doesn't respond to any action, including the magic

Ctrl-Alt-Del combination. You have two choices for dealing with

system hangs�either prevent them beforehand or be able to debug

them after the fact.
[bookmark: linuxdrive3-CHP-4-FNOTE-3][3] Actually, multiprocessor systems still schedule on the other

processors, and even a uniprocessor machine might reschedule if

kernel preemption is enabled. For the most common case (uniprocessor

with preemption disabled), however, the system stops scheduling

altogether.


[bookmark: linuxdrive3-CHP-4-ITERM-4892][bookmark: linuxdrive3-CHP-4-ITERM-4893][bookmark: linuxdrive3-CHP-4-ITERM-4894][bookmark: linuxdrive3-CHP-4-ITERM-4895]
[bookmark: linuxdrive3-CHP-4-ITERM-4896]You can prevent an endless

loop by inserting schedule invocations at

strategic points. The schedule call (as you

might guess) invokes the scheduler and, therefore, allows other

processes to steal CPU time from the current process. If a process is

looping in kernel space due to a bug in your driver, the

schedule calls enable you to kill the process

after tracing what is happening.

[bookmark: linuxdrive3-CHP-4-ITERM-4897][bookmark: linuxdrive3-CHP-4-ITERM-4898]You should be aware, of course, that

any call to schedule may create an additional

source of reentrant calls to your driver, since it allows other

processes to run. This reentrancy should not normally be a problem,

assuming that you have used suitable locking in your driver. Be sure,

however, not to call schedule any time that your

driver is holding a spinlock.

[bookmark: linuxdrive3-CHP-4-ITERM-4899]If your driver really hangs the system,

and you don't know where to insert

schedule calls, the best way to go may be to add

some print messages and write them to the console (by changing the

console_loglevel value if need be).

[bookmark: linuxdrive3-CHP-4-ITERM-4900][bookmark: linuxdrive3-CHP-4-ITERM-4901][bookmark: linuxdrive3-CHP-4-ITERM-4902]Sometimes the system may appear to be

hung, but it isn't. This can happen, for example, if

the keyboard remains locked in some strange way. These false hangs

can be detected by looking at the output of a program you keep

running for just this purpose. A clock or system load meter on your

display is a good status monitor; as long as it continues to update,

the scheduler is working.

[bookmark: linuxdrive3-CHP-4-ITERM-4903]
[bookmark: linuxdrive3-CHP-4-ITERM-4904][bookmark: linuxdrive3-CHP-4-ITERM-4905]An indispensable tool for many lockups is

the "magic SysRq key," which is

available on most architectures. Magic SysRq is invoked with the

combination of the Alt and SysRq keys on the PC keyboard, or with

other special keys on other platforms (see

Documentation/sysrq.txt for details), and is

available on the serial console as well. A third key, pressed along

with these two, performs one of a number of useful actions:

[bookmark: linuxdrive3-CHP-4-ITERM-4906][bookmark: linuxdrive3-CHP-4-ITERM-4907][bookmark: linuxdrive3-CHP-4-ITERM-4908]

	r

	
Turns off keyboard raw mode; useful in situations where a crashed

application (such as the X server) may have left your keyboard in a

strange state.





	k

	
Invokes the "[bookmark: linuxdrive3-CHP-4-ITERM-4906]
[bookmark: linuxdrive3-CHP-4-ITERM-4907]
[bookmark: linuxdrive3-CHP-4-ITERM-4908]secure attention key"

(SAK) function. SAK kills all processes running on the current

console, leaving you with a clean terminal.





	s

	
Performs an emergency synchronization of all disks.





	u

	
Umount. Attempts to remount all disks in a read-only mode. This

operation, usually invoked immediately after s,

can save a lot of filesystem checking time in cases where the system

is in serious trouble.





	b

	
Boot. Immediately reboots the system. Be sure to synchronize and

remount the disks first.





	p

	
Prints processor registers information.





	t

	
Prints the current task list.





	m

	
Prints memory information.





Other magic SysRq functions exist; see sysrq.txt

in the Documentation directory of the kernel

source for the full list. Note that magic SysRq must be explicitly

enabled in the kernel configuration and that most distributions do

not enable it, for obvious security reasons. For a system used to

develop drivers, however, enabling magic SysRq is worth the trouble

of building a new kernel in itself. Magic SysRq may be disabled at

runtime with a command such as the following:

echo 0 > /proc/sys/kernel/sysrq
 

You should consider disabling it if unprivileged users can reach your

system keyboard, to prevent accidental or willing damages. Some

previous kernel versions had sysrq disabled by

default, so you needed to enable it at runtime by writing 1 to that

same /proc/sys file.

The[bookmark: linuxdrive3-CHP-4-ITERM-4909]
[bookmark: linuxdrive3-CHP-4-ITERM-4910]
[bookmark: linuxdrive3-CHP-4-ITERM-4911]
sysrq operations are exceedingly useful, so they

have been made available to system administrators who

can't reach the console. The file

/proc/sysrq-trigger is a write-only entry point,

where you can trigger a specific sysrq action by

writing the associated command character; you can then collect any

output data from the kernel logs. This entry point to

sysrq is always working, even if

sysrq is disabled on the console.

If you are experiencing a "live

hang," in which your driver is stuck in a loop but

the system as a whole is still functioning, there are a couple of

techniques worth knowing. Often, the SysRq p

function points the finger directly at the guilty routine. Failing

that, you can also use the kernel profiling function. Build a kernel

with profiling enabled, and boot it with profile=2

on the command line. Reset the profile counters with the

readprofile utility, then send your driver into

its loop. After a little while, use readprofile

again to see where the kernel is spending its time. Another more

advanced alternative is oprofile, that you may

consider as well. The file

Documentation/basic_profiling.txt tells you

everything you need to know to get started with the profilers.

One precaution worth using when chasing system hangs is to mount all

your disks as read-only (or unmount them). If the disks are read-only

or unmounted, there's no risk of damaging the

filesystem or leaving it in an inconsistent state. Another

possibility is using a computer that mounts all of its filesystems

via NFS, the network file system. The

"NFS-Root" capability must be

enabled in the kernel, and special parameters must be passed at boot

time. In this case, you'll avoid filesystem

corruption without even resorting to SysRq, because filesystem

coherence is managed by the NFS server, which is not brought

down[bookmark: linuxdrive3-CHP-4-ITERM-4912] by

your device[bookmark: linuxdrive3-CHP-4-ITERM-4913] [bookmark: linuxdrive3-CHP-4-ITERM-4914] driver.







[bookmark: linuxdrive3-CHP-4-SECT-6]
4.6. Debuggers and Related Tools

The last resort in debugging[bookmark: linuxdrive3-CHP-4-ITERM-4915] [bookmark: linuxdrive3-CHP-4-ITERM-4916]
[bookmark: linuxdrive3-CHP-4-ITERM-4917]

modules is [bookmark: linuxdrive3-CHP-4-ITERM-4918]using a

debugger to step through the code, watching the value of variables

and machine registers. This approach is time-consuming and should be

avoided whenever possible. Nonetheless, the fine-grained perspective

on the code that is achieved through a debugger is sometimes

invaluable.

Using an interactive debugger on the kernel is a challenge. The

kernel runs in its own address space on behalf of all the processes

on the system. As a result, a number of common capabilities provided

by user-space debuggers, such as breakpoints and single-stepping, are

harder to come by in the kernel. In this section we look at several

ways of debugging the kernel; each of them has advantages and

disadvantages.

[bookmark: linuxdrive3-CHP-4-SECT-6.1]
4.6.1. Using gdb

gdb can be quite useful for looking at the

system internals. Proficient use of the debugger at this level

requires some confidence with

gdb[bookmark: linuxdrive3-CHP-4-ITERM-4919]
[bookmark: linuxdrive3-CHP-4-ITERM-4920]

commands, some understanding of assembly code for the target

platform, and the ability to match source code and optimized

assembly.

[bookmark: linuxdrive3-CHP-4-ITERM-4921][bookmark: linuxdrive3-CHP-4-ITERM-4922][bookmark: linuxdrive3-CHP-4-ITERM-4923]The debugger must be invoked as though the

kernel were an application. In addition to specifying the filename

for the ELF kernel image, you need to provide the name of a core file

on the command line. For a running kernel, that core file is the

kernel core image, /proc/kcore. A typical

invocation of gdb looks like the following:

gdb /usr/src/linux/vmlinux /proc/kcore
 

The first argument is the name of the uncompressed ELF kernel

executable, not the zImage or

bzImage or anything built specifically for the

boot environment.

The second argument on the gdb command line is

the name of the core file. Like any file in

/proc, /proc/kcore is

generated when it is read. When the read system

call executes in the /proc filesystem, it maps

to a data-generation function rather than a data-retrieval one;

we've already exploited this feature in the section

Section 4.3.1.

kcore is used to represent the kernel

"executable" in the format of a

core file; it is a huge file, because it represents the whole kernel

address space, which corresponds to all physical memory. From within

gdb, you can look at kernel variables by issuing

the standard gdb commands. For example,

p jiffies prints the number of clock ticks from

system boot to the current time.

[bookmark: linuxdrive3-CHP-4-ITERM-4924]When you print

data from gdb, the kernel is still running, and

the various data items have different values at different times;

gdb, however, optimizes access to the core file

by caching data that has already been read. If you try to look at the

jiffies variable once again,

you'll get the same answer as before. Caching values

to avoid extra disk access is a correct behavior for conventional

core files but is inconvenient when a

"dynamic" core image is used. The

solution is to issue the command core-file

/proc/kcore whenever you want to flush the

gdb cache; the debugger gets ready to use a new

core file and discards any old information. You

won't, however, always need to issue

core-file when reading a new datum;

gdb reads the core in chunks of a few kilobytes

and caches only chunks it has already referenced.

Numerous capabilities normally provided by gdb

are not available when you are working with the kernel. For example,

gdb is not able to modify kernel data; it

expects to be running a program to be debugged under its own control

before playing with its memory image. It is also not possible to set

breakpoints or watchpoints, or to single-step through kernel

functions.

Note that, in order to have symbol information available for

gdb, you must compile your kernel with the

CONFIG_DEBUG_INFO option set. The result is a far

larger kernel image on disk, but, without that information, digging

through kernel variables is almost impossible.

With the debugging information available, you can learn a lot about

what is going on inside the kernel. gdb happily

prints out structures, follows pointers, etc. One thing that is

harder, however, is examining modules. Since modules are not part of

the vmlinux image passed to

gdb, the debugger knows nothing about them.

Fortunately, as of kernel 2.6.7, it is possible to teach

gdb what it needs to know to examine loadable

modules.

Linux loadable modules are ELF-format executable images; as such,

they have been divided up into numerous sections. A typical module

can contain a dozen or more sections, but there are typically three

that are relevant in a debugging session:



	.text

	
This section contains the executable code for the module. The

debugger must know where this section is to be able to give

tracebacks or set breakpoints. (Neither of these operations is

relevant when running the debugger on

/proc/kcore, but they can useful when working

with kgdb, described below).





	.bss



	.data

	
These two sections hold the module's variables. Any

variable that is not initialized at compile time ends up in

.bss, while those that are initialized go into

.data.





Making gdb work with loadable modules requires

informing the debugger about where a given module's

sections have been loaded. That information is available in sysfs,

under /sys/module. For example, after loading

the scull module, the directory

/sys/module/scull/sections contains files with

names such as .text; the content of each file is

the base address for that section.

We are now in a position to issue a gdb command

telling it about our module. The command we need is

add-symbol-file; this command takes as parameters

the name of the module object file, the .text

base address, and a series of optional parameters describing where

any other sections of interest have been put. After digging through

the module section data in sysfs, we can construct a command such as:

(gdb) add-symbol-file .../scull.ko 0xd0832000 \
-s .bss 0xd0837100 \
        -s .data 0xd0836be0
 

We have included a small script in the sample source

(gdbline) that can create this command for a

given module.

We can now use gdb to examine variables in our

loadable module. Here is a quick example taken from a

scull debugging session:

(gdb) add-symbol-file scull.ko 0xd0832000 \
-s .bss 0xd0837100 \
      -s .data 0xd0836be0

add symbol table from file "scull.ko" at

        .text_addr = 0xd0832000

        .bss_addr = 0xd0837100

        .data_addr = 0xd0836be0

(y or n) y

Reading symbols from scull.ko...done.

(gdb) p scull_devices[0]

$1 = {data = 0xcfd66c50, 

      quantum = 4000, 

      qset = 1000, 

      size = 20881,

      access_key = 0, 

      ...}
 

Here we see that the first scull device

currently holds 20,881 bytes. If we wanted, we could follow the

data chain, or look at anything else of interest

in the module.

One other useful trick worth knowing about is this:

(gdb) print *(address)
 

Here, fill in a hex address for address; the

output is a file and line number for the code corresponding to that

address. This technique may be useful, for example, to find out where

a function pointer really points.

We still cannot perform typical debugging tasks like setting

breakpoints or modifying data; to perform those operations, we need

to use a tool like kdb (described next) or

kgdb (which we get to shortly).

[bookmark: linuxdrive3-CHP-4-SECT-6.2]
4.6.2. The kdb Kernel Debugger

Many readers may be wondering why the kernel does not have any more

advanced debugging features built into it. The answer, quite simply,

is that Linus does not believe in interactive debuggers. He fears

that they lead to poor fixes, those which patch up symptoms rather

than addressing the real cause of problems. Thus, no built-in

debuggers.

Other kernel developers, however, see an occasional use for

interactive debugging tools. One such tool is the

kdb built-in kernel debugger, available as a

nonofficial patch from oss.sgi.com. To use

kdb, you must obtain the patch (be sure to get a

version that matches your kernel version), apply it, and rebuild and

reinstall the kernel. Note that, as of this writing,

kdb works only on IA-32 (x86) systems (though a

version for the IA-64 existed for a while in the mainline kernel

source before being removed).

Once you are running a kdb-enabled kernel, there

are a couple of ways to enter the debugger. Pressing the Pause (or

Break) key on the console starts up the debugger.

kdb also starts up when a kernel oops happens or

when a breakpoint is hit. In any case, you see a message that looks

something like this:

Entering kdb (0xc0347b80) on processor 0 due to Keyboard Entry

[0]kdb>
 

Note that just about everything the kernel does stops when

kdb is running. Nothing else should be running

on a system where you invoke kdb; in particular,

you should not have networking turned on�unless, of course, you

are debugging a network driver. It is generally a good idea to boot

the system in single-user mode if you will be using

kdb.

As an example, consider a quick scull debugging

session. Assuming that the driver is already loaded, we can tell

kdb to set a breakpoint in

scull_read as follows:

[0]kdb> bp scull_read

Instruction(i) BP #0 at 0xcd087c5dc (scull_read)

    is enabled globally adjust 1

[0]kdb> go
 

The bp command tells kdb to

stop the next time the kernel enters scull_read.

You then type go to continue execution. After

putting something into one of the scull devices,

we can attempt to read it by running cat under a

shell on another terminal, yielding the following:

Instruction(i) breakpoint #0 at 0xd087c5dc (adjusted)

0xd087c5dc scull_read:          int3



Entering kdb (current=0xcf09f890, pid 1575) on processor 0 due to

Breakpoint @ 0xd087c5dc

[0]kdb>
 

We are now positioned at the beginning of

scull_read. To see how we got there, we can get

a stack trace:

[0]kdb> bt

    ESP    EIP        Function (args)

0xcdbddf74 0xd087c5dc [scull]scull_read

0xcdbddf78 0xc0150718 vfs_read+0xb8

0xcdbddfa4 0xc01509c2 sys_read+0x42

0xcdbddfc4 0xc0103fcf syscall_call+0x7

[0]kdb>
 

kdb attempts to print out the arguments to every

function in the call trace. It gets confused, however, by

optimization tricks used by the compiler. Therefore, it fails to

print the arguments to scull_read.

Time to look at some data. The mds command

manipulates data; we can query the value of the

scull_devices pointer with a command such as:

[0]kdb> mds scull_devices 1

0xd0880de8 cf36ac00    ....
 

Here we asked for one (4-byte) word of data starting at the location

of scull_devices; the answer tells us that our

device array is at the address 0xd0880de8; the

first device structure itself is at 0xcf36ac00. To

look at that device structure, we need to use that address:

[0]kdb> mds cf36ac00

0xcf36ac00 ce137dbc ....

0xcf36ac04 00000fa0 ....

0xcf36ac08 000003e8 ....

0xcf36ac0c 0000009b ....

0xcf36ac10 00000000 ....

0xcf36ac14 00000001 ....

0xcf36ac18 00000000 ....

0xcf36ac1c 00000001 ....
 

The eight lines here correspond to the beginning part of the

scull_dev structure. Therefore, we see that the

memory for the first device is allocated at

0xce137dbc, the quantum is 4000 (hex

fa0), the quantum set size is 1000 (hex

3e8), and there are currently 155 (hex

9b) bytes stored in the device.

kdb can change data as well. Suppose we wanted

to trim some of the data from the device:

[0]kdb> mm cf26ac0c 0x50

0xcf26ac0c = 0x50
 

A subsequent cat on the device will now return

less data than before.

kdb has a number of other capabilities,

including single-stepping (by instructions, not lines of C source

code), setting breakpoints on data access, disassembling code,

stepping through linked lists, accessing register data, and more.

After you have applied the kdb patch, a full set

of manual pages can be found in the

Documentation/kdb directory in your kernel

source tree.

[bookmark: linuxdrive3-CHP-4-SECT-6.3]
4.6.3. The kgdb Patches

[bookmark: linuxdrive3-CHP-4-ITERM-4925][bookmark: linuxdrive3-CHP-4-ITERM-4926][bookmark: linuxdrive3-CHP-4-ITERM-4927][bookmark: linuxdrive3-CHP-4-ITERM-4928]The two interactive debugging

approaches we have looked at so far (using gdb

on /proc/kcore and kdb)

both fall short of the sort of environment that user-space

application developers have become used to. Wouldn't

it be nice if there were a true debugger for the kernel that

supported features like changing variables, breakpoints, etc.?

As it turns out, such a solution does exist. There are, as of this

writing, two separate patches in circulation that allow

gdb, with full capabilities, to be run against

the kernel. Confusingly, both of these patches are called

kgdb. They work by separating the system running

the test kernel from the system running the debugger; the two are

typically connected via a serial cable. Therefore, the developer can

run gdb on his or her stable desktop system,

while operating on a kernel running on a sacrificial test box.

Setting up gdb in this mode takes a little time

at the outset, but that investment can pay off quickly when a

difficult bug shows up.

These patches are in a strong state of flux, and may even be merged

at some point, so we avoid saying much about them beyond where they

are and their basic features. Interested readers are encouraged to

look and see the current state of affairs.

The first kgdb patch is currently found in the

-mm kernel tree�the staging area for patches

on their way into the 2.6 mainline. This version of the patch

supports the x86, SuperH, ia64, x86_64, SPARC, and 32-bit PPC

architectures. In addition to the usual mode of operation over a

serial port, this version of kgdb can also

communicate over a local-area network. It is simply a matter of

enabling the Ethernet mode and booting with the

kgdboe parameter set to indicate the IP address

from which debugging commands can originate. The documentation under

Documentation/i386/kgdb describes how to set

things up.[4]
[bookmark: linuxdrive3-CHP-4-FNOTE-4][4] It does neglect to point out that you

should have your network adapter driver built into the kernel,

however, or the debugger fails to find it at boot time and will shut

itself down.


As an alternative, you can use the kgdb patch

found on http://kgdb.sf.net/.

This version of the debugger does not support the network

communication mode (though that is said to be under development), but

it does have some built-in support for working with loadable modules.

It supports the x86, x86_64, PowerPC, and S/390 architectures.

[bookmark: linuxdrive3-CHP-4-SECT-6.4]
4.6.4. The User-Mode Linux Port

[bookmark: linuxdrive3-CHP-4-ITERM-4929][bookmark: linuxdrive3-CHP-4-ITERM-4930]User-Mode Linux (UML) is an interesting

concept. It is structured as a separate port of the Linux kernel with

its own arch/um subdirectory. It does not run on

a new type of hardware, however; instead, it runs on a virtual

machine implemented on the Linux system call interface. Thus, UML

allows the Linux kernel to run as a separate, user-mode process on a

Linux system.

Having a copy of the kernel running as a user-mode process brings a

number of advantages. Because it is running on a constrained, virtual

processor, a buggy kernel cannot damage the

"real" system. Different hardware

and software configurations can be tried easily on the same box. And,

perhaps most significantly for kernel developers, the user-mode

kernel can be easily manipulated with gdb or

another debugger. After all, it is just another process. UML clearly

has the potential to accelerate kernel development.

However, UML has a big shortcoming from the point of view of driver

writers: the user-mode kernel has no access to the host

system's hardware. Thus, while it can be useful for

debugging most of the sample drivers in this book, UML is not yet

useful for debugging drivers that have to deal with real hardware.

See http://user-mode-linux.sf.net/ for more

information on UML.

[bookmark: linuxdrive3-CHP-4-SECT-6.5]
4.6.5. The Linux Trace Toolkit

[bookmark: linuxdrive3-CHP-4-ITERM-4931][bookmark: linuxdrive3-CHP-4-ITERM-4932][bookmark: linuxdrive3-CHP-4-ITERM-4933][bookmark: linuxdrive3-CHP-4-ITERM-4934]
[bookmark: linuxdrive3-CHP-4-ITERM-4935]The

Linux Trace Toolkit (LTT) is a kernel patch and a set of related

utilities that allow the tracing of events in the kernel. The trace

includes timing information and can create a reasonably complete

picture of what happened over a given period of time. Thus, it can be

used not only for debugging but also for tracking down performance

problems.

LTT, along with extensive documentation, can be found at

http://www.opersys.com/LTT.

[bookmark: linuxdrive3-CHP-4-SECT-6.6]
4.6.6. Dynamic Probes

[bookmark: linuxdrive3-CHP-4-ITERM-4936][bookmark: linuxdrive3-CHP-4-ITERM-4937][bookmark: linuxdrive3-CHP-4-ITERM-4938]Dynamic Probes (or DProbes) is a

debugging tool released (under the GPL) by IBM for Linux on the IA-32

architecture. It allows the placement of a

"probe" at almost any place in the

system, in both user and kernel space. The probe consists of some

code (written in a specialized, stack-oriented language) that is

executed when control hits the given point. This code can report

information back to user space, change registers, or do a number of

other things. The useful feature of DProbes is that once the

capability has been built into the kernel, probes can be inserted

anywhere within a running system without kernel builds or reboots.

DProbes can also work with the LTT to insert new tracing events at

arbitrary locations.

The DProbes [bookmark: linuxdrive3-CHP-4-ITERM-4939] [bookmark: linuxdrive3-CHP-4-ITERM-4940]tool can be downloaded from

IBM's open source site:

http://oss.software.ibm.com.
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Chapter 5. Concurrency and Race Conditions

Thus far, we have paid little attention to the problem of

concurrency�i.e., what happens when the system tries to do more

than one thing at once. The management of concurrency is, however,

one of the core problems in operating systems programming.

Concurrency-related bugs are some of the easiest to create and some

of the hardest to find. Even expert Linux kernel programmers end up

creating concurrency-related bugs on occasion.

In early Linux kernels, there were relatively few sources of

concurrency. Symmetric multiprocessing (SMP) systems were not

supported by the kernel, and the only cause of concurrent execution

was the servicing of hardware interrupts. That approach offers

simplicity, but it no longer works in a world that prizes performance

on systems with more and more processors, and that insists that the

system respond to events quickly. In response to the demands of

modern hardware and applications, the Linux kernel has evolved to a

point where many more things are going on simultaneously. This

evolution has resulted in far greater performance and scalability. It

has also, however, significantly complicated the task of kernel

programming. Device driver programmers must now factor concurrency

into their designs from the beginning, and they must have a strong

understanding of the facilities provided by the kernel for

concurrency management.

The purpose of this chapter is to begin the process of creating that

understanding. To that end, we introduce facilities that are

immediately applied to the scull driver from

Chapter 3. Other facilities

presented here are not put to use for some time yet. But first, we

take a look at what could go wrong with

our[bookmark: linuxdrive3-CHP-5-ITERM-4941]

simple scull driver and how to avoid these

potential problems.







[bookmark: linuxdrive3-CHP-5-SECT-1]
5.1. Pitfalls in scull

Let us take a quick look at a

fragment[bookmark: linuxdrive3-CHP-5-ITERM-4942]
[bookmark: linuxdrive3-CHP-5-ITERM-4943]
[bookmark: linuxdrive3-CHP-5-ITERM-4944]
[bookmark: linuxdrive3-CHP-5-ITERM-4945]
[bookmark: linuxdrive3-CHP-5-ITERM-4946]
[bookmark: linuxdrive3-CHP-5-ITERM-4947] of the

scull memory management code. Deep down inside

the write logic, scull must

decide whether the memory it requires has been allocated yet or not.

One piece of the code that handles this task is:

    if (!dptr->data[s_pos]) {

        dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);

        if (!dptr->data[s_pos])

            goto out;

    }
 

Suppose for a moment that two processes (we'll call

them "A" and

"B") are independently attempting

to write to the same offset within the same

scull device. Each process reaches the

if test in the first line of the fragment above at

the same time. If the pointer in question is NULL,

each process will decide to allocate memory, and each will assign the

resulting pointer to dptr->data[s_pos]. Since

both processes are assigning to the same location, clearly only one

of the assignments will prevail.

What will happen, of course, is that the process that completes the

assignment second will "win." If

process A assigns first, its assignment will be overwritten by

process B. At that point, scull will forget

entirely about the memory that A allocated; it only has a pointer to

B's memory. The memory allocated by A, thus, will be

dropped and never returned to the system.

This sequence of events is a demonstration of a race

condition[bookmark: linuxdrive3-CHP-5-ITERM-4948]
[bookmark: linuxdrive3-CHP-5-ITERM-4949]
[bookmark: linuxdrive3-CHP-5-ITERM-4950]
[bookmark: linuxdrive3-CHP-5-ITERM-4951]. Race conditions are a result of

uncontrolled access to shared data. When the wrong access pattern

happens, something unexpected results. For the race condition

discussed here, the result is a memory leak. That is bad enough, but

race conditions can often lead to system crashes, corrupted data, or

security problems as well. Programmers can be tempted to disregard

race conditions as extremely low probability events. But, in the

computing world, one-in-a-million events can happen every few

seconds, and the consequences can be grave.

We will eliminate race conditions from scull

shortly, but first we need to take a more general view of

concurrency.







[bookmark: linuxdrive3-CHP-5-SECT-2]
5.2. Concurrency and Its Management

In a modern Linux system, [bookmark: linuxdrive3-CHP-5-ITERM-4952]
[bookmark: linuxdrive3-CHP-5-ITERM-4953]
[bookmark: linuxdrive3-CHP-5-ITERM-4954]
[bookmark: linuxdrive3-CHP-5-ITERM-4955] [bookmark: linuxdrive3-CHP-5-ITERM-4956]there

are numerous sources of concurrency and, therefore, possible race

conditions. Multiple user-space processes are running, and they can

access your code in surprising combinations of ways. SMP systems can

be executing your code simultaneously on different processors. Kernel

code is preemptible; your driver's code can lose the

processor at any time, and the process that replaces it could also be

running in your driver. Device interrupts are asynchronous events

that can cause concurrent execution of your code. The kernel also

provides various mechanisms for delayed code execution, such as

workqueues, tasklets, and timers, which can cause your code to run at

any time in ways unrelated to what the current process is doing. In

the modern, hot-pluggable world, your device could simply disappear

while you are in the middle of working with it.

Avoidance of race conditions can be an intimidating task. In a world

where anything can happen at any time, how does a driver programmer

avoid the creation of absolute chaos? As it turns out, most race

conditions can be avoided through some thought, the

kernel's concurrency control primitives, and the

application of a few basic principles. We'll start

with the principles first, then get into the specifics of how to

apply them.

Race conditions come about as a result of shared access to resources.

When two threads of execution[1] have a reason to work with the same data

structures (or hardware resources), the potential for mixups always

exists. So the first rule of thumb to keep in mind as you design your

driver is to avoid shared resources whenever possible. If there is no

concurrent access, there can be no race conditions. So

carefully-written kernel code should have a minimum of

[bookmark: linuxdrive3-CHP-5-ITERM-4957]sharing.

The most obvious application of this idea is to avoid the use of

global variables. If you put a resource in a place where more than

one thread of execution can find it, there should be a strong reason

for doing so.
[bookmark: linuxdrive3-CHP-5-FNOTE-1][1] For the purposes of

this chapter, a "thread" of

execution is any context that is running code. Each process is

clearly a thread of execution, but so is an interrupt handler or

other code running in response to an asynchronous kernel

event.


The fact of the matter is, however, that such sharing is often

required. Hardware resources are, by their nature, shared, and

software resources also must often be available to more than one

thread. Bear in mind as well that global variables are far from the

only way to share data; any time your code passes a pointer to some

other part of the kernel, it is potentially creating a new sharing

situation. Sharing is a fact of life.

Here is the hard rule of resource sharing: any time that a hardware

or software resource is shared beyond a single thread of execution,

and the possibility exists that one thread could encounter an

inconsistent view of that resource, you must explicitly manage access

to that resource. In the scull example above,

process B's view of the situation is inconsistent;

unaware that process A has already allocated memory for the (shared)

device, it performs its own allocation and overwrites

A's work. In this case, we must control access to

the scull data structure. We need to arrange

things so that the code either sees memory that has been allocated or

knows that no memory has been or will be

allocated by anybody else. The usual technique for

[bookmark: linuxdrive3-CHP-5-ITERM-4958]
[bookmark: linuxdrive3-CHP-5-ITERM-4959]
[bookmark: linuxdrive3-CHP-5-ITERM-4960]
[bookmark: linuxdrive3-CHP-5-ITERM-4961]access

management is called locking or

mutual exclusion�making sure that only

one thread of execution can manipulate a shared resource at any time.

Much of the rest of this chapter will be devoted to locking.

First, however, we must briefly consider one other important rule.

When kernel code creates an object that will be shared with any other

part of the kernel, that object must continue to exist (and function

properly) until it is known that no outside references to it exist.

The instant that scull makes its devices

available, it must be prepared to handle requests on those devices.

And scull must continue to be able to handle

requests on its devices until it knows that no reference (such as

open user-space files) to those devices exists. Two requirements

[bookmark: linuxdrive3-CHP-5-ITERM-4962]
[bookmark: linuxdrive3-CHP-5-ITERM-4963]come

out of this rule: no object can be made available to the kernel until

it is in a state where it can function properly, and references to

such objects must be tracked. In most cases, you'll

find that the kernel handles reference counting for you, but there

are always exceptions.

Following the above rules requires planning and careful attention to

detail. It is easy to be surprised by concurrent access to resources

you hadn't realized were shared. With some effort,

however, most[bookmark: linuxdrive3-CHP-5-ITERM-4964] [bookmark: linuxdrive3-CHP-5-ITERM-4965] [bookmark: linuxdrive3-CHP-5-ITERM-4966] [bookmark: linuxdrive3-CHP-5-ITERM-4967] [bookmark: linuxdrive3-CHP-5-ITERM-4968] race conditions can be headed

[bookmark: linuxdrive3-CHP-5-ITERM-4969]off

before they bite you�or your users.
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5.3. Semaphores and Mutexes

So let us look at how we

can[bookmark: linuxdrive3-CHP-5-ITERM-4970]
[bookmark: linuxdrive3-CHP-5-ITERM-4971]
[bookmark: linuxdrive3-CHP-5-ITERM-4972]
[bookmark: linuxdrive3-CHP-5-ITERM-4973]
[bookmark: linuxdrive3-CHP-5-ITERM-4974]
[bookmark: linuxdrive3-CHP-5-ITERM-4975]
[bookmark: linuxdrive3-CHP-5-ITERM-4976]
[bookmark: linuxdrive3-CHP-5-ITERM-4977] add locking to

scull. Our goal is to make our operations on the

scull data structure

atomic, meaning that the entire operation

happens at once as far as other threads of execution are concerned.

For our memory leak example, we need to ensure that if one thread

finds that a particular chunk of memory must be allocated, it has the

opportunity to perform that allocation before any other thread can

make that test. To this end, we must set up critical

sections: code that can be executed by only one thread at

any given time.

Not all [bookmark: linuxdrive3-CHP-5-ITERM-4978]
[bookmark: linuxdrive3-CHP-5-ITERM-4979]critical sections are the same, so

the kernel provides different primitives for different needs. In this

case, every access to the scull data structure

happens in process context as a result of a direct user request; no

accesses will be made from interrupt handlers or other asynchronous

contexts. There are no particular latency (response time)

requirements; application programmers understand that I/O requests

are not usually satisfied immediately. Furthermore, the

scull is not holding any other critical system

resource while it is accessing its own data structures. What all this

means is that if the scull driver goes to sleep

while waiting for its turn to access the data structure, nobody is

going to mind.

"Go to sleep" is a well-defined

term in this context. When a Linux process reaches a point where it

cannot make any further processes, it goes to sleep (or

"blocks"), yielding the processor

to somebody else until some future time when it can get work done

again. Processes often sleep when waiting for I/O to complete. As we

get deeper into the kernel, we will encounter a number of situations

where we cannot sleep. The write method in

scull is not one of those situations, however.

So we can use a locking mechanism that might cause the process to

sleep while waiting for access to the critical section.

Just as importantly, we will be performing an operation (memory

allocation with kmalloc) that could

sleep�so

[bookmark: linuxdrive3-CHP-5-ITERM-4980]sleeps

are a possibility in any case. If our critical sections are to work

properly, we must use a locking primitive that works when a thread

that owns the lock sleeps. Not all locking mechanisms can be used

where sleeping is a possibility (we'll see some that

don't later in this chapter). For our present needs,

however, the mechanism that fits best is a

semaphore.

Semaphores are a well-understood concept in computer science. At its

core, a semaphore is a single integer value combined with a pair of

[bookmark: linuxdrive3-CHP-5-ITERM-4981]functions

that are typically called P and

V. A process wishing to enter a critical section

will call P on the relevant semaphore; if the

semaphore's value is greater than zero, that value

is decremented by one and the process continues. If, instead, the

semaphore's value is 0 (or less),

the process must wait until somebody else releases the semaphore.

[bookmark: linuxdrive3-CHP-5-ITERM-4982]
[bookmark: linuxdrive3-CHP-5-ITERM-4983]Unlocking

a semaphore is accomplished by calling V; this

function increments the value of the semaphore and, if necessary,

wakes up processes that are waiting.

When semaphores are used for mutual

exclusion�keeping multiple processes from running

within a critical section simultaneously�their value will be

initially set to 1. Such a semaphore can be held

only by a single process or thread at any given time. A semaphore

used in this mode is sometimes called a mutex,

which is, of course, an abbreviation for "mutual

exclusion." Almost all semaphores found in the Linux

kernel are used for mutual exclusion.

[bookmark: linuxdrive3-CHP-5-SECT-3.1]
5.3.1. The Linux Semaphore Implementation

The Linux kernel [bookmark: linuxdrive3-CHP-5-ITERM-4984]
[bookmark: linuxdrive3-CHP-5-ITERM-4985]
[bookmark: linuxdrive3-CHP-5-ITERM-4986] [bookmark: linuxdrive3-CHP-5-ITERM-4987]provides

an implementation of semaphores that conforms to the above semantics,

although the terminology is a little different. To use semaphores,

kernel code must include

<asm/semaphore.h>. The relevant type is

struct semaphore; actual

semaphores can be declared and initialized in a few ways. One is to

create a semaphore directly, then set it up with

sema_init:

void sema_init(struct semaphore *sem, int val);
 

where val is the initial value to assign to a

semaphore.

Usually, however, semaphores are used in a mutex mode. To make this

common case a little easier, the kernel has provided a set of helper

functions and macros. Thus, a mutex can be declared and initialized

with one of the following:

DECLARE_MUTEX(name);

DECLARE_MUTEX_LOCKED(name);
 

Here, the result is a semaphore variable (called

name) that is initialized to 1

(with DECLARE_MUTEX)

[bookmark: linuxdrive3-CHP-5-ITERM-4988]
[bookmark: linuxdrive3-CHP-5-ITERM-4989]or

0 (with DECLARE_MUTEX_LOCKED).

In the latter case, the mutex starts out in a locked state; it will

have to be explicitly unlocked before any thread will be allowed

access.

If the mutex must be initialized at runtime (which is the case if it

is allocated dynamically, for example), use one of the following:

void init_MUTEX(struct semaphore *sem);

void init_MUTEX_LOCKED(struct semaphore *sem);
 

In the Linux world, the P function is called

down�or some variation of that name. Here,

"down" refers to the fact that the

function decrements the value of the semaphore and, perhaps after

putting the caller to sleep for a while to wait for the semaphore to

become available, grants access to the protected resources. There are

three versions of down:

void down(struct semaphore *sem);

int down_interruptible(struct semaphore *sem);

int down_trylock(struct semaphore *sem);
 

down decrements [bookmark: linuxdrive3-CHP-5-ITERM-4990]
[bookmark: linuxdrive3-CHP-5-ITERM-4991]the

value of the semaphore and waits as long as need be.

down_interruptible does the same, but the

operation is interruptible. The interruptible version is almost

always the one you will want; it allows a user-space process that is

waiting on a semaphore to be interrupted by the user. You do not, as

a general rule, want to use noninterruptible operations unless there

truly is no alternative. Non-interruptible operations are a good way

to create unkillable processes (the dreaded "D

state" seen in ps), and annoy

your users. Using down_interruptible requires

some extra care, however, if the operation is interrupted, the

function returns a nonzero value, and the caller does

not hold the semaphore. Proper use of

down_interruptible requires always checking the

return value and responding accordingly.

The final version (down_trylock) never sleeps;

if the semaphore is not available at the time of the call,

down_trylock returns immediately with a nonzero

return value.

Once a thread has successfully called one of the versions of

down, it is said to be

"holding" the semaphore (or to have

"taken out" or

"acquired" the semaphore). That

thread is now entitled to access the critical section protected by

the semaphore. When the operations requiring mutual exclusion are

complete, the semaphore must be returned. The Linux equivalent to

V is up:

void up(struct semaphore *sem);
 

Once up has been called,[bookmark: linuxdrive3-CHP-5-ITERM-4992]
[bookmark: linuxdrive3-CHP-5-ITERM-4993]

the caller no longer holds the semaphore.

As you would expect, any thread that takes out a semaphore is

required to release it with one (and only one) call to

up. Special care is often required in error

paths; if an error is encountered while a semaphore is held, that

[bookmark: linuxdrive3-CHP-5-ITERM-4994]semaphore

must be released before returning the error status to the caller.

Failure to free a semaphore is an easy error to make; the result

(processes hanging in seemingly unrelated places) can be hard to

reproduce and track down.

[bookmark: linuxdrive3-CHP-5-SECT-3.2]
5.3.2. Using Semaphores in scull

The semaphore mechanism gives scull
[bookmark: linuxdrive3-CHP-5-ITERM-4995]a

tool that can be used to avoid race conditions while accessing the

scull_dev data structure. But it is up to us to

use that tool correctly. The keys to proper use of locking primitives

are to specify exactly which resources are to be protected and to

make sure that every access to those resources uses the proper

locking. In our example driver, everything of interest is contained

within the scull_dev structure, so that is the

logical scope for our locking regime.

Let's look again at that structure:

struct scull_dev {

    struct scull_qset *data;  /* Pointer to first quantum set */

    int quantum;              /* the current quantum size */

    int qset;                 /* the current array size */

    unsigned long size;       /* amount of data stored here */

    unsigned int access_key;  /* used by sculluid and scullpriv */

    struct semaphore sem;     /* mutual exclusion semaphore     */

    struct cdev cdev;     /* Char device structure      */

};
 

Toward the bottom of the structure is a member called

sem which is, of course, our semaphore. We have

chosen to use a separate semaphore for each virtual

scull device. It would have been equally correct

to use a single, global semaphore. The various

scull devices share no resources in common,

however, and there is no reason to make one process wait while

another process is working with a different

scull device. Using a separate semaphore for

each device allows operations on different devices to proceed in

parallel and, therefore, improves performance.

Semaphores must be initialized before use. scull

performs this initialization at load time in this loop:

    for (i = 0; i < scull_nr_devs; i++) {

        scull_devices[i].quantum = scull_quantum;

        scull_devices[i].qset = scull_qset;

        init_MUTEX(&scull_devices[i].sem);

        scull_setup_cdev(&scull_devices[i], i);

    }
 

Note that the semaphore must be initialized

before the scull device is

made available to the rest of the system. Therefore,

init_MUTEX is called before

scull_setup_cdev. Performing these operations in

the opposite order would create a race condition where the semaphore

could be accessed before it is ready.

Next, we must go through the code and make sure that no accesses to

the scull_dev data structure are made without

holding the semaphore. Thus, for example,

scull_write begins with this code:

    if (down_interruptible(&dev->sem))

        return -ERESTARTSYS;
 

Note the check on the return value of

down_interruptible; if it returns nonzero, the

operation was interrupted. The usual thing to do in this situation is

to return -ERESTARTSYS. Upon seeing this return

code, the higher layers of the kernel will either restart the call

from the beginning or return the error to the user. If you return

-ERESTARTSYS, you must first undo any user-visible

changes that might have been made, so that the right thing happens

when the system call is retried. If you cannot undo things in this

manner, you should return -EINTR instead.

scull_write must release the semaphore whether

or not it was able to carry out its other tasks successfully. If all

goes well, execution falls into the final few lines of the function:

out:

  up(&dev->sem);

  return retval;
 

This code frees the semaphore and returns whatever status is called

for. There are several places in scull_write

where things can go wrong; these include memory allocation failures

or a fault while trying to copy data from user space. In those cases,

the code performs a goto out, ensuring that the

proper cleanup is done.

[bookmark: linuxdrive3-CHP-5-SECT-3.3]
5.3.3. Reader/Writer Semaphores

Semaphores perform mutual[bookmark: linuxdrive3-CHP-5-ITERM-4996]
[bookmark: linuxdrive3-CHP-5-ITERM-4997]

exclusion for all callers, regardless of what each thread may want to

do. Many tasks break down into two distinct types of work, however:

tasks that only need to read the protected data structures and those

that must make changes. It is often possible to allow multiple

concurrent readers, as long as nobody is trying to make any changes.

Doing so can optimize performance significantly; read-only tasks can

get their work done in parallel without having to wait for other

readers to exit the critical section.

The Linux kernel provides a special type of semaphore called a

rwsem (or "reader/writer

semaphore") for this situation. The use of

[bookmark: linuxdrive3-CHP-5-ITERM-4998]
[bookmark: linuxdrive3-CHP-5-ITERM-4999]rwsems in drivers is relatively

rare, but they are occasionally useful.

Code using rwsems must include

<linux/rwsem.h>. The relevant data type

for reader/writer semaphores is struct
rw_semaphore; an rwsem must be explicitly

initialized at runtime with:

void init_rwsem(struct rw_semaphore *sem);
 

A newly initialized rwsem is available for the next task (reader or

writer) that comes along. The interface for code needing read-only

access is:

void down_read(struct rw_semaphore *sem);

int down_read_trylock(struct rw_semaphore *sem);

void up_read(struct rw_semaphore *sem);
 

A call to down_read provides read-only access to

the protected resources, possibly concurrently with other readers.

Note that down_read may put the calling process

into an uninterruptible sleep. down_read_trylock

will not wait if read access is unavailable; it returns nonzero if

access was granted, 0 otherwise. Note that the

convention for down_read_trylock differs from

that of most kernel functions, where success is indicated by a return

value of 0. A

r[bookmark: linuxdrive3-CHP-5-ITERM-5000]wsem obtained with

down_read must eventually be freed with

up_read.

The interface for writers is similar:

void down_write(struct rw_semaphore *sem);

int down_write_trylock(struct rw_semaphore *sem);

void up_write(struct rw_semaphore *sem);

void downgrade_write(struct rw_semaphore *sem);
 

down_write,

down_write_trylock, and

up_write all behave just like their reader

counterparts, except, of course, that they provide write access. If

you have a situation where a writer lock is needed for a quick

change, followed by a longer period of read-only access, you can use

downgrade_write to allow other readers in once

you have finished making changes.

An rwsem allows either one writer or an unlimited number of readers

to hold the semaphore. Writers get priority; as soon as a writer

tries to enter the critical section, no readers will be allowed in

until all writers have completed their work. This implementation can

lead to reader starvation�where readers

are denied access for a long time�if you have a large number of

writers contending for the semaphore. For this reason, rwsems are

best used when write access is[bookmark: linuxdrive3-CHP-5-ITERM-5001] [bookmark: linuxdrive3-CHP-5-ITERM-5002] [bookmark: linuxdrive3-CHP-5-ITERM-5003] [bookmark: linuxdrive3-CHP-5-ITERM-5004] required only rarely, and writer

access is held for short periods of time.
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5.4. Completions

A common pattern in[bookmark: linuxdrive3-CHP-5-ITERM-5005]
[bookmark: linuxdrive3-CHP-5-ITERM-5006]
[bookmark: linuxdrive3-CHP-5-ITERM-5007] [bookmark: linuxdrive3-CHP-5-ITERM-5008]

kernel programming involves initiating some activity outside of the

current thread, then waiting for that activity to complete. This

activity can be the creation of a new kernel thread or user-space

process, a request to an existing process, or some sort of

hardware-based action. It such cases, it can be tempting to use a

semaphore for

synchronization[bookmark: linuxdrive3-CHP-5-ITERM-5009]

of the two tasks, with code such as:

struct semaphore sem;



init_MUTEX_LOCKED(&sem);

start_external_task(&sem);

down(&sem);
 

The external task can then call up(&sem) when

its work is done.

As is turns out, semaphores are not the best tool to use in this

situation. In normal use, code attempting to lock a semaphore finds

that semaphore available almost all the time; if there is significant

contention for the semaphore, performance suffers and the locking

scheme needs to be reviewed. So semaphores have been heavily

optimized for the "available" case.

When used to communicate task completion in the way shown above,

however, the thread calling down will almost

always have to wait; performance will suffer accordingly. Semaphores

can also be subject to a (difficult) race condition when used in this

way if they are declared as automatic variables. In some cases, the

semaphore could vanish before the process calling

up is finished with it.

These concerns inspired the addition of the

"completion" interface in the 2.4.7

kernel. Completions are a lightweight mechanism with one task:

allowing one thread to tell another that the job is done. To use

completions, your code must include

<linux/completion.h>. A completion can be

created with:

DECLARE_COMPLETION(my_completion);
 

Or, if the completion must be

created[bookmark: linuxdrive3-CHP-5-ITERM-5010] and initialized dynamically:

struct completion my_completion;

/* ... */

init_completion(&my_completion);
 

Waiting for the completion is a simple matter of calling:

void wait_for_completion(struct completion *c);
 

Note that this function performs an uninterruptible wait. If your

code calls wait_for_completion and nobody ever

completes the task, the result will be an unkillable

process.[2]
[bookmark: linuxdrive3-CHP-5-FNOTE-2][2] As of this writing, patches adding

interruptible versions were in circulation but had not been merged

into the mainline.


On the other side, the actual completion event may be signalled by

calling one of the following:

void complete(struct completion *c);

void complete_all(struct completion *c);
 

The two functions behave differently if more than one thread is

waiting for the same completion event. complete

wakes up only one of the waiting threads while

complete_all allows all of them to proceed. In

most cases, there is only one waiter, and the two functions will

produce an identical result.

A completion is normally a one-shot device; it is used once then

discarded. It is possible, however, to reuse completion structures if

proper care is taken. If complete_all is not

used, a completion structure can be reused without any problems as

long as there is no ambiguity about what event is being signalled. If

you use complete_all, however, you must

reinitialize the completion structure before reusing it.

The[bookmark: linuxdrive3-CHP-5-ITERM-5011]

macro:

INIT_COMPLETION(struct completion c);
 

can be used to quickly perform this reinitialization.

As an example of how completions may be used, consider the

complete[bookmark: linuxdrive3-CHP-5-ITERM-5012]
[bookmark: linuxdrive3-CHP-5-ITERM-5013]

module, which is included in the example source. This module defines

a device with simple semantics: any process trying to read from the

device will wait (using wait_for_completion)

until some other process writes to the device. The code which

implements this behavior is:

DECLARE_COMPLETION(comp);



ssize_t complete_read (struct file *filp, char _ _user *buf, size_t count, loff_t *pos)

{

    printk(KERN_DEBUG "process %i (%s) going to sleep\n",

            current->pid, current->comm);

    wait_for_completion(&comp);

    printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm);

    return 0; /* EOF */

}



ssize_t complete_write (struct file *filp, const char _ _user *buf, size_t count,

        loff_t *pos)

{

    printk(KERN_DEBUG "process %i (%s) awakening the readers...\n",

            current->pid, current->comm);

    complete(&comp);

    return count; /* succeed, to avoid retrial */

}
 

It is possible to have multiple processes

"reading" from this device at the

same time. Each write to the device will cause exactly one read

operation to complete, but there is no way to know which one it will

be.

A typical use of the completion mechanism is with kernel thread

termination at module exit time. In the prototypical case, some of

the driver internal workings is performed by a kernel thread in a

while (1) loop. When the module

is ready to be cleaned up, the exit function tells the thread to exit

and then waits for completion. To this aim, the kernel includes a

specific [bookmark: linuxdrive3-CHP-5-ITERM-5014] [bookmark: linuxdrive3-CHP-5-ITERM-5015] [bookmark: linuxdrive3-CHP-5-ITERM-5016] [bookmark: linuxdrive3-CHP-5-ITERM-5017]function to be used by the thread:

void complete_and_exit(struct completion *c, long retval);
 







[bookmark: linuxdrive3-CHP-5-SECT-5]
5.5. Spinlocks

Semaphores are a useful tool for mutual exclusion,[bookmark: linuxdrive3-CHP-5-ITERM-5018]

but they are not the only such tool provided by the kernel. Instead,

most locking is implemented with a mechanism called a

spinlock. Unlike semaphores, spinlocks may be

used in code that cannot sleep, such as interrupt handlers. When

properly used, spinlocks offer higher performance than semaphores in

general. They do, however, bring a different set of constraints on

their use.

Spinlocks are simple in concept. A spinlock is a mutual exclusion

device that can have only two values:

"locked" and

"unlocked." It is usually

implemented as a single bit in an integer value. Code wishing to take

out a particular lock tests the relevant bit. If the lock is

available, the "locked" bit is set

and the code continues into the critical section. If, instead, the

lock has been taken by somebody else, the code goes into a tight loop

where it repeatedly checks the lock until it becomes available. This

loop is the "spin" part of a

spinlock.

Of course, the real implementation of a spinlock is a bit more

complex than the description above. The "test and

set" operation must be done in an atomic manner so

that only one thread can obtain the lock, even if several are

spinning at any given time. Care must also be taken to avoid

[bookmark: linuxdrive3-CHP-5-ITERM-5019]deadlocks

on

hyperthreaded[bookmark: linuxdrive3-CHP-5-ITERM-5020]

processors�chips that implement multiple, virtual CPUs sharing

a single processor core and cache. So the actual spinlock

implementation is different for every architecture that Linux

supports. The core concept is the same on all systems, however, when

there is contention for a spinlock, the processors that are waiting

execute a tight loop and accomplish no useful work.

Spinlocks are, by their nature, intended for use on multiprocessor

systems, although a uniprocessor workstation running a preemptive

kernel behaves like SMP, as far as concurrency is concerned. If a

nonpreemptive uniprocessor system ever went into a spin on a lock, it

would spin forever; no other thread would ever be able to obtain the

CPU to release the lock. For this reason, spinlock operations on

uniprocessor systems without preemption enabled are optimized to do

nothing, with the exception of the ones that change the IRQ masking

status. Because of preemption, even if you never expect your code to

run on an SMP system, you still need to implement proper locking.

[bookmark: linuxdrive3-CHP-5-SECT-5.1]
5.5.1. Introduction to the Spinlock API

The required include file for

the[bookmark: linuxdrive3-CHP-5-ITERM-5021]
[bookmark: linuxdrive3-CHP-5-ITERM-5022]

spinlock [bookmark: linuxdrive3-CHP-5-ITERM-5023]primitives is

<linux/spinlock.h>. An actual lock has the

type spinlock_t. Like any other data structure, a

spinlock must be initialized. This initialization may be done at

compile time as follows:

spinlock_t my_lock = SPIN_LOCK_UNLOCKED;
 

or at runtime with:

void spin_lock_init(spinlock_t *lock);
 

Before entering a critical section, your code must obtain the

requisite lock with:

void spin_lock(spinlock_t *lock);
 

Note that all spinlock waits are, by their nature, uninterruptible.

Once you call spin_lock, you will spin until the

lock becomes available.

To release a lock that you have obtained, pass it to:

void spin_unlock(spinlock_t *lock);
 

There are many other spinlock functions, and we will look at them all

shortly. But none of them depart from the core idea shown by the

functions listed above. There is very little that one can do with a

lock, other than lock and release it. However, there are a few rules

about how you must work with spinlocks. We will take a moment to look

at those before getting into the full spinlock interface.

[bookmark: linuxdrive3-CHP-5-SECT-5.2]
5.5.2. Spinlocks and Atomic Context

Imagine for a moment that your[bookmark: linuxdrive3-CHP-5-ITERM-5024] driver acquires a spinlock and goes

about its business within its critical section. Somewhere in the

middle, your driver loses the processor. Perhaps it has called a

function (copy_from_user, say) that puts the

process to sleep. Or, perhaps, kernel preemption kicks in, and a

higher-priority process pushes your code aside. Your code is now

holding a lock that it will not release any time in the foreseeable

future. If some other thread tries to obtain the same lock, it will,

in the best case, wait (spinning in the processor) for a very long

time. In the worst case, the system could deadlock entirely.

Most readers would agree that this scenario is best avoided.

Therefore, the core rule that applies to spinlocks is that any code

must, while holding a spinlock, be atomic. It cannot sleep; in fact,

it cannot relinquish the processor for any reason except to service

interrupts (and sometimes not even then).

The kernel preemption case is handled by the spinlock code itself.

Any time kernel code holds a spinlock, preemption is disabled on the

relevant processor. Even uniprocessor systems must disable preemption

in this way to avoid race conditions. That is why proper locking is

required even if you never expect your code to run on a

multiprocessor machine.

Avoiding sleep

while[bookmark: linuxdrive3-CHP-5-ITERM-5025]

holding a lock can be more difficult; many kernel functions can

sleep, and this behavior is not always well documented. Copying data

to or from user space is an obvious example: the required user-space

page may need to be swapped in from the disk before the copy can

proceed, and that operation clearly requires a sleep. Just about any

operation that must allocate memory can sleep;

kmalloc can decide to give up the processor, and

wait for more memory to become available unless it is explicitly told

not to. Sleeps can happen in surprising places; writing code that

will execute under a spinlock requires paying attention to every

function that you call.

Here's another scenario: your driver is executing

and has just taken out a lock that controls access to its device.

While the lock is held, the device issues an interrupt, which causes

your interrupt handler to run. The interrupt handler, before

accessing the device, must also obtain the lock. Taking out a

spinlock in an interrupt handler is a legitimate thing to do; that is

one of the reasons that spinlock operations do not sleep. But what

happens if the interrupt routine executes in the same processor as

the code that took out the lock originally? While the interrupt

handler is spinning, the noninterrupt code will not be able to run to

release the lock. That processor will spin forever.

Avoiding this trap requires disabling interrupts (on the local CPU

only) while the spinlock is held. There are variants of the spinlock

functions that will disable interrupts for you

(we'll see them in the next section). However, a

complete discussion of interrupts must wait until Chapter 10.

The last important rule for spinlock usage is that spinlocks must

always be held for the minimum time possible. The longer you hold a

lock, the longer another processor may have to spin waiting for you

to release it, and the chance of it having to spin at all is greater.

Long lock hold times also keep the current processor from scheduling,

meaning that a higher priority process�which really should be

able to get the CPU�may have to wait. The kernel developers put

a great deal of effort into reducing kernel latency (the time a

process may have to wait to be scheduled) in the 2.5 development

series. A poorly written driver can wipe out all that progress just

by holding a lock for too long. To avoid creating this sort of

problem, make a point of keeping your lock-hold times short.

[bookmark: linuxdrive3-CHP-5-SECT-5.3]
5.5.3. The Spinlock Functions

We have already seen two

[bookmark: linuxdrive3-CHP-5-ITERM-5026]functions,

spin_lock and spin_unlock,

that manipulate spinlocks. There are several other functions,

however, with similar names and purposes. We will now present the

full set. This discussion will take us into ground we will not be

able to cover properly for a few chapters yet; a complete

understanding of the spinlock API requires an understanding of

interrupt handling and related concepts.

There are actually four functions that can lock a spinlock:

void spin_lock(spinlock_t *lock);

void spin_lock_irqsave(spinlock_t *lock, unsigned long flags);

void spin_lock_irq(spinlock_t *lock);

void spin_lock_bh(spinlock_t *lock)
 

We have already seen how spin_lock works.

spin_lock_irqsave disables interrupts (on the

local processor only) before taking the spinlock; the previous

interrupt state is stored in flags. If you are

absolutely sure nothing else might have already disabled interrupts

on your processor (or, in other words, you are sure that you should

enable interrupts when you release your spinlock), you can use

spin_lock_irq instead and not have to keep track

of the flags. Finally, spin_lock_bh disables

software interrupts before taking the lock, but leaves hardware

interrupts enabled.

If you have a spinlock that can be taken by code that runs in

(hardware or software) interrupt context, you must use one of the

forms of spin_lock that disables interrupts.

Doing otherwise can deadlock the system, sooner or later. If you do

not access your lock in a hardware interrupt handler, but you do via

software interrupts (in code that runs out of a tasklet, for example,

a topic covered in Chapter 7),

you can use spin_lock_bh to safely avoid

deadlocks while still allowing hardware interrupts to be serviced.

There are also four ways to[bookmark: linuxdrive3-CHP-5-ITERM-5027]
[bookmark: linuxdrive3-CHP-5-ITERM-5028]

release a spinlock; the one you use must correspond to the function

you used to take the lock:

void spin_unlock(spinlock_t *lock);

void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags);

void spin_unlock_irq(spinlock_t *lock);

void spin_unlock_bh(spinlock_t *lock);
 

Each spin_unlock variant undoes the work

performed by the corresponding spin_lock

function. The flags argument passed to

spin_unlock_irqrestore must be the same variable

passed to spin_lock_irqsave. You must also call

spin_lock_irqsave and

spin_unlock_irqrestore in the same function;

otherwise, your code may break on some architectures.

There is also a set of nonblocking spinlock

[bookmark: linuxdrive3-CHP-5-ITERM-5029]
[bookmark: linuxdrive3-CHP-5-ITERM-5030]operations:

int spin_trylock(spinlock_t *lock);

int spin_trylock_bh(spinlock_t *lock);
 

These functions return nonzero on success (the lock was obtained),

0 otherwise. There is no

"try" version that disables

interrupts.

[bookmark: linuxdrive3-CHP-5-SECT-5.4]
5.5.4. Reader/Writer Spinlocks

The kernel provides a[bookmark: linuxdrive3-CHP-5-ITERM-5031] reader/writer form of spinlocks that

is directly analogous to the reader/writer semaphores we saw earlier

in this chapter. These locks allow any number of readers into a

critical section simultaneously, but writers must have exclusive

access. Reader/writer locks have a type of

rwlock_t, defined in

<linux/spinlock.h>. They can be declared

and initialized in two ways:

rwlock_t my_rwlock = RW_LOCK_UNLOCKED; /* Static way */



rwlock_t my_rwlock;

rwlock_init(&my_rwlock);  /* Dynamic way */
 

The list of functions available should look reasonably familiar by

now. For readers, the following functions are available:

void read_lock(rwlock_t *lock);

void read_lock_irqsave(rwlock_t *lock, unsigned long flags);

void read_lock_irq(rwlock_t *lock);

void read_lock_bh(rwlock_t *lock);



void read_unlock(rwlock_t *lock);

void read_unlock_irqrestore(rwlock_t *lock, unsigned long flags);

void read_unlock_irq(rwlock_t *lock);

void read_unlock_bh(rwlock_t *lock);
 

Interestingly, there is no read_trylock.

The functions for write access are similar:

void write_lock(rwlock_t *lock);

void write_lock_irqsave(rwlock_t *lock, unsigned long flags);

void write_lock_irq(rwlock_t *lock);

void write_lock_bh(rwlock_t *lock);

int write_trylock(rwlock_t *lock);



void write_unlock(rwlock_t *lock);

void write_unlock_irqrestore(rwlock_t *lock, unsigned long flags);

void write_unlock_irq(rwlock_t *lock);

void write_unlock_bh(rwlock_t *lock);
 

Reader/writer locks can starve readers [bookmark: linuxdrive3-CHP-5-ITERM-5032]just as rwsems can. This behavior is

rarely a problem; however, if there is enough lock contention to

bring about starvation, performance is poor anyway.







[bookmark: linuxdrive3-CHP-5-SECT-6]
5.6. Locking Traps

Many years of [bookmark: linuxdrive3-CHP-5-ITERM-5033]
[bookmark: linuxdrive3-CHP-5-ITERM-5034]
[bookmark: linuxdrive3-CHP-5-ITERM-5035] [bookmark: linuxdrive3-CHP-5-ITERM-5036] [bookmark: linuxdrive3-CHP-5-ITERM-5037] [bookmark: linuxdrive3-CHP-5-ITERM-5038]experience

with locks�experience that predates Linux�have shown that

locking can be very hard to get right. Managing concurrency is an

inherently tricky undertaking, and there are many ways of making

mistakes. In this section, we take a quick look at things that can go

wrong.

[bookmark: linuxdrive3-CHP-5-SECT-6.1]
5.6.1. Ambiguous Rules

As has already been said above, a proper locking

[bookmark: linuxdrive3-CHP-5-ITERM-5039]scheme

requires clear and explicit rules. When you create a resource that

can be accessed concurrently, you should define which lock will

control that access. Locking should really be laid out at the

beginning; it can be a hard thing to retrofit in afterward. Time

taken at the outset usually is paid back generously at debugging

time.

As you write your code, you will doubtless encounter several

functions that all require access

to[bookmark: linuxdrive3-CHP-5-ITERM-5040]
[bookmark: linuxdrive3-CHP-5-ITERM-5041]
[bookmark: linuxdrive3-CHP-5-ITERM-5042]
[bookmark: linuxdrive3-CHP-5-ITERM-5043] structures protected by a specific

lock. At this point, you must be careful: if one function acquires a

lock and then calls another function that also attempts to acquire

the lock, your code deadlocks. Neither semaphores nor spinlocks allow

a lock holder to acquire the lock a second time; should you attempt

to do so, things simply hang.

To make your locking work properly, you have to write some functions

with the assumption that their caller has already acquired the

relevant lock(s). Usually, only your internal, static functions can

be written in this way; functions called from outside must handle

locking explicitly. When you write internal functions that make

assumptions about locking, do yourself (and anybody else who works

with your code) a favor and document those assumptions explicitly. It

can be very hard to come back months later and figure out whether you

need to hold a lock to call a particular function or not.

In the case of scull, the design decision taken

was to require all functions invoked directly from system calls to

acquire the semaphore applying to the device structure that is

accessed. All internal functions, which are only called from other

scull functions, can then assume that the

semaphore has been properly acquired.

[bookmark: linuxdrive3-CHP-5-SECT-6.2]
5.6.2. Lock Ordering Rules

In systems with a large

[bookmark: linuxdrive3-CHP-5-ITERM-5044]
[bookmark: linuxdrive3-CHP-5-ITERM-5045]
[bookmark: linuxdrive3-CHP-5-ITERM-5046]number of locks (and the kernel is

becoming such a system), it is not unusual for code to need to hold

more than one lock at once. If some sort of computation must be

performed using two different resources, each of which has its own

lock, there is often no alternative to acquiring both locks.

Taking multiple locks can be dangerous, however. If you have two

locks, called Lock1 and

Lock2, and code needs to acquire both at the

same time, you have a potential deadlock. Just imagine one thread

locking Lock1 while another simultaneously takes

Lock2. Then each thread tries to get the one it

doesn't have. Both

threads[bookmark: linuxdrive3-CHP-5-ITERM-5047] will

deadlock.

The solution to this problem is usually simple: when multiple locks

must be acquired, they should always be acquired in the same order.

As long as this convention is followed, simple deadlocks like the one

described above can be avoided. However, following lock ordering

rules can be easier said than done. It is very rare that such rules

are actually written down anywhere. Often the best you can do is to

see what other code does.

A couple of rules of thumb can help. If you must obtain a lock that

is local to your code (a device lock, say) along with a lock

belonging to a more central part of the kernel, take your lock first.

If you have a combination of semaphores and spinlocks, you must, of

course, obtain the semaphore(s) first; calling

down (which can sleep) while holding a spinlock

is a serious error. But most of all, try to avoid situations where

you need more than one lock.

[bookmark: linuxdrive3-CHP-5-SECT-6.3]
5.6.3. Fine- Versus Coarse-Grained Locking

The first Linux kernel that supported

[bookmark: linuxdrive3-CHP-5-ITERM-5048]
[bookmark: linuxdrive3-CHP-5-ITERM-5049]multiprocessor systems was 2.0; it

contained exactly one spinlock. The big kernel

lock turned the entire kernel into one large critical

section; only one CPU could be executing kernel code at any given

time. This lock solved the concurrency problem well enough to allow

the kernel developers to address all of the other issues involved in

supporting SMP. But it did not scale very well. Even a two-processor

system could spend a significant amount of time simply waiting for

the big kernel lock. The performance of a four-processor system was

not even close to that of four independent machines.

So, subsequent kernel releases have included finer-grained locking.

In 2.2, one spinlock controlled access to the block I/O subsystem;

another worked for networking, and so on. A modern kernel can contain

thousands of locks, each protecting one small resource. This sort of

fine-grained locking can be good for scalability; it allows each

processor to work on its specific task without contending for locks

used by other processors. Very few people miss the big kernel

lock.[3]
[bookmark: linuxdrive3-CHP-5-FNOTE-3][3] This lock still exists in 2.6, though it covers

very little of the kernel now. If you stumble across a

lock_kernel call, you have found the big kernel

lock. Do not even think about using it in any new code,

however.


Fine-grained locking comes at a cost, however. In a kernel with

thousands of locks, it can be very hard to know which locks you

need�and in which order you should acquire them�to

perform a specific operation. Remember that locking bugs can be very

difficult to find; more locks provide more opportunities for truly

nasty locking bugs to creep into the kernel. Fine-grained locking can

bring a level of complexity that, over the long term, can have a

large, adverse effect on the maintainability of the kernel.

Locking in a device driver is usually relatively straightforward; you

can have a single lock that covers everything you do, or you can

create one lock for every device you manage. As a general rule, you

should start with relatively coarse locking unless you have a real

reason to believe that contention could be a problem. Resist the urge

to optimize prematurely; the real performance constraints often show

up in unexpected places.

If you do suspect that lock contention is hurting performance, you

may find the

lockmeter[bookmark: linuxdrive3-CHP-5-ITERM-5050]
[bookmark: linuxdrive3-CHP-5-ITERM-5051]

tool useful. This patch (available at http://oss.sgi.com/projects/lockmeter/)

instruments the kernel to measure time spent waiting in locks. By

looking at the report, you are able to determine quickly whether lock

contention is [bookmark: linuxdrive3-CHP-5-ITERM-5052] [bookmark: linuxdrive3-CHP-5-ITERM-5053] [bookmark: linuxdrive3-CHP-5-ITERM-5054] [bookmark: linuxdrive3-CHP-5-ITERM-5055] [bookmark: linuxdrive3-CHP-5-ITERM-5056] [bookmark: linuxdrive3-CHP-5-ITERM-5057]truly the problem or not.







[bookmark: linuxdrive3-CHP-5-SECT-7]
5.7. Alternatives to Locking

The Linux kernel provides a[bookmark: linuxdrive3-CHP-5-ITERM-5058] [bookmark: linuxdrive3-CHP-5-ITERM-5059] [bookmark: linuxdrive3-CHP-5-ITERM-5060] [bookmark: linuxdrive3-CHP-5-ITERM-5061] [bookmark: linuxdrive3-CHP-5-ITERM-5062] number of powerful locking

primitives that can be used to keep the kernel from tripping over its

own feet. But, as we have seen, the design and implementation of a

locking scheme is not without its pitfalls. Often there is no

alternative to semaphores and spinlocks; they may be the only way to

get the job done properly. There are situations, however, where

atomic access can be set up without the need for full locking. This

section looks at other ways of doing things.

[bookmark: linuxdrive3-CHP-5-SECT-7.1]
5.7.1. Lock-Free Algorithms

Sometimes, you can recast your[bookmark: linuxdrive3-CHP-5-ITERM-5063] [bookmark: linuxdrive3-CHP-5-ITERM-5064] algorithms to avoid the need for

locking altogether. A number of reader/writer situations�if

there is only one writer�can often work in this manner. If the

writer takes care that the view of the data structure, as seen by the

reader, is always consistent, it may be possible to create a

lock-free data structure.

A data structure that can often be useful for lockless

producer/consumer tasks is the circular

buffer[bookmark: linuxdrive3-CHP-5-ITERM-5065]
[bookmark: linuxdrive3-CHP-5-ITERM-5066].

This algorithm involves a producer placing data into one end of an

array, while the consumer removes data from the other. When the end

of the array is reached, the producer wraps back around to the

beginning. So a circular buffer requires an array and two index

values to track where the next new value goes and which value should

be removed from the buffer next.

When carefully implemented, a circular buffer requires no locking in

the absence of multiple producers or consumers. The producer is the

only thread that is allowed to modify the write index and the array

location it points to. As long as the writer stores a new value into

the buffer before updating the write index, the reader will always

see a consistent view. The reader, in turn, is the only thread that

can access the read index and the value it points to. With a bit of

care to ensure that the two pointers do not overrun each other, the

producer and the consumer can access the buffer concurrently with no

race conditions.

Figure 5-1 shows circular

buffer in several states of fill. This buffer has been defined such

that an empty condition is indicated by the read and write pointers

being equal, while a full condition happens whenever the write

pointer is immediately behind the read pointer (being careful to

account for a wrap!). When carefully programmed, this buffer can be

used without locks.

[bookmark: linuxdrive3-CHP-5-FIG-1]
Figure 5-1. A circular buffer

[image: ]

 

Circular buffers show up reasonably often in device drivers.

Networking adaptors, in particular, often use circular buffers to

exchange data (packets) with the processor. Note that, as of 2.6.10,

there is a generic circular buffer implementation available in the

kernel; see <linux/kfifo.h> for

information on how to use it.

[bookmark: linuxdrive3-CHP-5-SECT-7.2]
5.7.2. Atomic Variables

Sometimes, a shared resource [bookmark: linuxdrive3-CHP-5-ITERM-5067]
[bookmark: linuxdrive3-CHP-5-ITERM-5068]
[bookmark: linuxdrive3-CHP-5-ITERM-5069]is a simple integer value. Suppose

your driver maintains a shared variable n_op that

tells how many device operations are currently outstanding. Normally,

even a simple operation such as:

n_op++;
 

would require locking. Some processors might perform that sort of

increment in an atomic manner, but you can't count

on it. But a full locking regime seems like overhead for a simple

integer value. For cases like this, the kernel provides an atomic

integer type called atomic_t, defined in

<asm/atomic.h>.

An atomic_t holds an int value

on all supported architectures. Because of the way this type works on

some processors, however, the full integer range may not be

available; thus, you should not count on an

atomic_t holding more than 24 bits. The following

operations are defined for the type and are guaranteed to be atomic

with respect to all processors of an SMP computer. The operations are

very fast, because they compile to a single machine instruction

whenever possible.
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	void atomic_set(atomic_t *v, int i);



	atomic_t v = ATOMIC_INIT(0);
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the atomic variable v to the integer value

i. You can also initialize atomic values at

compile time with the ATOMIC_INIT macro.





	int atomic_read(atomic_t *v);
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the current value of v.





	void atomic_add(int i, atomic_t *v);
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i to the atomic variable pointed to by

v. The return value is void,

because there is an extra cost to returning the new value, and most

of the time there's no need to know it.





	void atomic_sub(int i, atomic_t *v);
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i from *v.





	void atomic_inc(atomic_t *v);



	void atomic_dec(atomic_t *v);
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or decrement an atomic variable.





	int atomic_inc_and_test(atomic_t *v);



	int atomic_dec_and_test(atomic_t *v);



	int atomic_sub_and_test(int i, atomic_t *v);
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the specified operation and test the result; if, after the operation,

the atomic value is 0, then the return value is

true; otherwise, it is false. Note that there is no

atomic_add_and_test.





	int atomic_add_negative(int i, atomic_t *v);

	
Add the integer variable i to

v. The return value is true if the result is

negative, false otherwise.





	int atomic_add_return(int i, atomic_t *v);



	int atomic_sub_return(int i, atomic_t *v);



	int atomic_inc_return(atomic_t *v);



	int atomic_dec_return(atomic_t *v);

	
Behave just like atomic_add and friends, with

the exception that they return the new value of the atomic variable

to the caller.





As stated earlier, atomic_t data items must be

accessed only through these functions. If you pass an atomic item to

a function that expects an integer argument, you'll

get a compiler error.

You should also bear in mind that atomic_t values

work only when the quantity in question is truly atomic. Operations

requiring multiple atomic_t variables still

require some other sort of locking. Consider the following code:

atomic_sub(amount, &first_atomic);

atomic_add(amount, &second_atomic);
 

There is a period of time where the amount has

been subtracted from the first atomic value but not yet added to the

second. If that state of affairs could create trouble for code that

might run between the two operations, some form of locking must be

employed.
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5.7.3. Bit Operations

The atomic_t type is good for

performing[bookmark: linuxdrive3-CHP-5-ITERM-5097]
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integer arithmetic. It doesn't work as well,

however, when you need to manipulate individual bits in an atomic

manner. For that purpose, instead, the kernel offers a set of

functions that modify or test single bits atomically. Because the

whole operation happens in a single step, no interrupt (or other

processor) can interfere.

Atomic bit operations are very fast, since they perform the operation

using a single machine instruction without disabling interrupts

whenever the underlying platform can do that. The functions are

architecture dependent and are declared in

<asm/bitops.h>. They are guaranteed to be

atomic even on SMP computers and are useful to keep coherence across

processors.

Unfortunately, data typing in these functions is architecture

dependent as well. The nr argument (describing

which bit to manipulate) is usually defined as int

but is unsigned long for a few architectures. The

address to be modified is usually a pointer to unsigned

long, but a few architectures use void *

instead.

The available bit operations are:
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	void set_bit(nr, void *addr);
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bit number nr in the data item pointed to by

addr.





	void clear_bit(nr, void *addr);
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the specified bit in the unsigned long datum that

lives at addr. Its semantics are otherwise the

same as set_bit.





	void change_bit(nr, void *addr);
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the bit.





	test_bit(nr, void *addr);
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function is the only bit operation that doesn't need

to be atomic; it simply returns the current value of the bit.





	int test_and_set_bit(nr, void *addr);



	int test_and_clear_bit(nr, void *addr);



	int test_and_change_bit(nr, void *addr);
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atomically like those listed previously, except that they also return

the previous value of the bit.





When these functions are used to access and modify a shared flag, you

don't have to do anything except call them; they

perform their operations in an atomic manner. Using bit operations to

manage a lock variable that controls access to a shared variable, on

the other hand, is a little more complicated and deserves an example.

Most modern code does not use bit operations in this way, but code

like the following still exists in the kernel.

A code segment that needs to access a shared data item tries to

atomically acquire a lock using either

test_and_set_bit or

test_and_clear_bit. The usual implementation is

shown here; it assumes that the lock lives at bit

nr of address addr. It also

assumes that the bit is 0 when the lock is free or

nonzero when the lock is busy.

/* try to set lock */

while (test_and_set_bit(nr, addr) != 0)

    wait_for_a_while(  );



/* do your work */



/* release lock, and check... */

if (test_and_clear_bit(nr, addr) =  = 0)

    something_went_wrong(  ); /* already released: error */
 

If you read through the kernel source, you find code that works like

this example. It is, however, far better to use spinlocks in new

code; spinlocks are well debugged, they handle issues like interrupts

and kernel preemption, and others reading your code do not have to

work to understand what you are doing.
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5.7.4. seqlocks

The 2.6 kernel contains
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couple of new mechanisms that are intended to provide fast, lockless

access to a shared resource. Seqlocks work in situations where the

resource to be protected is small, simple, and frequently accessed,

and where write access is rare but must be fast. Essentially, they

work by allowing readers free access to the resource but requiring

those readers to check for collisions with writers and, when such a

collision happens, retry their access. Seqlocks generally cannot be

used to protect data structures involving pointers, because the

reader may be following a pointer that is invalid while the writer is

changing the data structure.

Seqlocks are defined in <linux/seqlock.h>.

There are the two usual methods for initializing a

[bookmark: linuxdrive3-CHP-5-ITERM-5124]seqlock

(which has type seqlock_t):

seqlock_t lock1 = SEQLOCK_UNLOCKED;



seqlock_t lock2;

seqlock_init(&lock2);
 

Read access works by obtaining an (unsigned) integer sequence value

on entry into the critical section. On exit, that sequence value is

compared with the current value; if there is a mismatch, the read

access must be retried. As a result, reader code has a form like the

following:

unsigned int seq;



do {

    seq = read_seqbegin(&the_lock);

    /* Do what you need to do */

} while read_seqretry(&the_lock, seq);
 

This sort of lock is usually used to protect some sort of simple

computation that requires multiple, consistent values. If the test at

the end of the computation shows that a concurrent write occurred,

the results can be simply discarded and recomputed.

If your seqlock might be accessed from an interrupt handler, you

should use the IRQ-safe versions instead:

unsigned int read_seqbegin_irqsave(seqlock_t *lock, 

                                   unsigned long flags);

int read_seqretry_irqrestore(seqlock_t *lock, unsigned int seq,

                             unsigned long flags);
 

Writers must obtain an exclusive lock to enter the critical section

protected by a seqlock. To do so, call:

void write_seqlock(seqlock_t *lock);
 

The write lock is implemented with a spinlock, so all the usual

constraints apply. Make a call to:

void write_sequnlock(seqlock_t *lock);
 

to release the lock. Since spinlocks are used to control write

access, all of the usual variants are available:

void write_seqlock_irqsave(seqlock_t *lock, unsigned long flags);

void write_seqlock_irq(seqlock_t *lock);

void write_seqlock_bh(seqlock_t *lock);



void write_sequnlock_irqrestore(seqlock_t *lock, unsigned long flags);

void write_sequnlock_irq(seqlock_t *lock);

void write_sequnlock_bh(seqlock_t *lock);
 

There is also a write_tryseqlock that returns

nonzero if it was able to obtain the lock.
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exclusion scheme that can yield high performance in the right

conditions. Its use in drivers is rare but not unknown, so it is

worth a quick overview here. Those who are interested in the full

details of the RCU algorithm can find them in the white paper

published by its creator (http://www.rdrop.com/users/paulmck/rclock/intro/rclock_intro.html).

RCU places a number of constraints on the sort of data structure that

it can protect. It is optimized for situations where reads are common

and writes are rare. The resources being protected should be accessed

via pointers, and all references to those resources must be held only

by atomic code. When the data structure needs to be changed, the

writing thread makes a copy, changes the copy, then aims the relevant

pointer at the new version�thus, the name of the algorithm.

When the kernel is sure that no references to the old version remain,

it can be freed.

As an example of real-world use of RCU, consider the network routing

tables. Every outgoing packet requires a check of the routing tables

to determine which interface should be used. The check is fast, and,

once the kernel has found the target interface, it no longer needs

the routing table entry. RCU allows route lookups to be performed

without locking, with significant performance benefits. The Starmode

radio IP driver in the kernel also uses RCU to keep track of its list

of devices.

Code using RCU should include

<linux/rcupdate.h>.

On the read side, code using an RCU-protected data structure should

bracket its references with calls to

rcu_read_lock and

rcu_read_unlock. As a result, RCU code tends to

look like:

struct my_stuff *stuff;



rcu_read_lock(  );

stuff = find_the_stuff(args...);

do_something_with(stuff);

rcu_read_unlock(  );
 

The rcu_read_lock call is fast; it disables

kernel preemption but does not wait for anything. The code that

executes while the read "lock" is

held must be atomic. No reference to the protected resource may be

used after the call to rcu_read_unlock.

Code that needs to change the protected structure has to carry out a

few steps. The first part is easy; it allocates a new structure,

copies data from the old one if need be, then replaces the pointer

that is seen by the read code. At this point, for the purposes of the

read side, the change is complete; any code entering the critical

section sees the new version of the data.

All that remains is to free the old version. The problem, of course,

is that code running on other processors may still have a reference

to the older data, so it cannot be freed immediately. Instead, the

write code must wait until it knows that no such reference can exist.

Since all code holding references to this data structure must (by the

rules) be atomic, we know that once every processor on the system has

been scheduled at least once, all references must be gone. So that is

what RCU does; it sets aside a callback that waits until all

processors have scheduled; that callback is then run to perform the

cleanup work.

Code that changes an RCU-protected data structure must get its

cleanup callback by allocating a struct
rcu_head, although it doesn't

need to initialize that structure in any way. Often, that structure

is simply embedded within the larger resource that is protected by

RCU. After the change to that resource is complete, a call should be

made to:

void call_rcu(struct rcu_head *head, void (*func)(void *arg), void *arg);
 

The given func is called when it is safe to free

the resource; it is passed to the same arg that

was passed to call_rcu. Usually, the only thing

func needs to do is to call

kfree.

The full RCU interface is more complex than we have seen here; it
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protected linked lists. See the relevant header files for the full

story.







[bookmark: linuxdrive3-CHP-5-SECT-8]
5.8. Quick Reference

This chapter has introduced a substantial set of symbols for the

management of concurrency. The most important of these are summarized

here:



	#include <asm/semaphore.h>

	
The include file that defines semaphores and the operations on them.





	DECLARE_MUTEX(name);



	DECLARE_MUTEX_LOCKED(name);

	
Two macros for declaring and initializing a semaphore used in mutual

exclusion mode.





	void init_MUTEX(struct semaphore *sem);



	void init_MUTEX_LOCKED(struct semaphore *sem);

	
These two functions can be used to initialize a semaphore at runtime.





	void down(struct semaphore *sem);



	int down_interruptible(struct semaphore *sem);



	int down_trylock(struct semaphore *sem);



	void up(struct semaphore *sem);

	
Lock and unlock a semaphore. down puts the

calling process into an uninterruptible sleep if need be;

down_interruptible, instead, can be interrupted

by a signal. down_trylock does not sleep;

instead, it returns immediately if the semaphore is unavailable. Code

that locks a semaphore must eventually unlock it with

up.





	struct rw_semaphore;



	init_rwsem(struct rw_semaphore *sem);

	
The reader/writer version of semaphores and the function that

initializes it.





	void down_read(struct rw_semaphore *sem);



	int down_read_trylock(struct rw_semaphore *sem);



	void up_read(struct rw_semaphore *sem);

	
Functions for obtaining and releasing read access to a reader/writer

semaphore.





	void down_write(struct rw_semaphore *sem)



	int down_write_trylock(struct rw_semaphore *sem)



	void up_write(struct rw_semaphore *sem)



	void downgrade_write(struct rw_semaphore *sem)

	
Functions for managing write access to a reader/writer semaphore.





	#include <linux/completion.h>



	DECLARE_COMPLETION(name);



	init_completion(struct completion *c);



	INIT_COMPLETION(struct completion c);

	
The include file describing the Linux completion mechanism, and the

normal methods for initializing completions.

INIT_COMPLETION should be used only to

reinitialize a completion that has been previously used.





	void wait_for_completion(struct completion *c);

	
Wait for a completion event to be signalled.





	void complete(struct completion *c);



	void complete_all(struct completion *c);

	
Signal a completion event. complete wakes, at

most, one waiting thread, while complete_all

wakes all waiters.





	void complete_and_exit(struct completion *c, long retval);

	
Signals a completion event by calling complete

and calls exit for the current thread.





	#include <linux/spinlock.h>



	spinlock_t lock = SPIN_LOCK_UNLOCKED;



	spin_lock_init(spinlock_t *lock);

	
The include file defining the spinlock interface and the two ways of

initializing locks.





	void spin_lock(spinlock_t *lock);



	void spin_lock_irqsave(spinlock_t *lock, unsigned long flags);



	void spin_lock_irq(spinlock_t *lock);



	void spin_lock_bh(spinlock_t *lock);

	
The various ways of locking a spinlock and, possibly, disabling

interrupts.





	int spin_trylock(spinlock_t *lock);



	int spin_trylock_bh(spinlock_t *lock);

	
Nonspinning versions of the above functions; these return

0 in case of failure to obtain the lock, nonzero

otherwise.





	void spin_unlock(spinlock_t *lock);



	void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags);



	void spin_unlock_irq(spinlock_t *lock);



	void spin_unlock_bh(spinlock_t *lock);

	
The corresponding ways of releasing a spinlock.





	rwlock_t lock = RW_LOCK_UNLOCKED



	rwlock_init(rwlock_t *lock);

	
The two ways of initializing reader/writer locks.





	void read_lock(rwlock_t *lock);



	void read_lock_irqsave(rwlock_t *lock, unsigned long flags);



	void read_lock_irq(rwlock_t *lock);



	void read_lock_bh(rwlock_t *lock);

	
Functions for obtaining read access to a reader/writer lock.





	void read_unlock(rwlock_t *lock);



	void read_unlock_irqrestore(rwlock_t *lock, unsigned long flags);



	void read_unlock_irq(rwlock_t *lock);



	void read_unlock_bh(rwlock_t *lock);

	
Functions for releasing read access to a reader/writer spinlock.





	void write_lock(rwlock_t *lock);



	void write_lock_irqsave(rwlock_t *lock, unsigned long flags);



	void write_lock_irq(rwlock_t *lock);



	void write_lock_bh(rwlock_t *lock);

	
Functions for obtaining write access to a reader/writer lock.





	void write_unlock(rwlock_t *lock);



	void write_unlock_irqrestore(rwlock_t *lock, unsigned long flags);



	void write_unlock_irq(rwlock_t *lock);



	void write_unlock_bh(rwlock_t *lock);

	
Functions for releasing write access to a reader/writer spinlock.





	#include <asm/atomic.h>



	atomic_t v = ATOMIC_INIT(value);



	void atomic_set(atomic_t *v, int i);



	int atomic_read(atomic_t *v);



	void atomic_add(int i, atomic_t *v);



	void atomic_sub(int i, atomic_t *v);



	void atomic_inc(atomic_t *v);



	void atomic_dec(atomic_t *v);



	int atomic_inc_and_test(atomic_t *v);



	int atomic_dec_and_test(atomic_t *v);



	int atomic_sub_and_test(int i, atomic_t *v);



	int atomic_add_negative(int i, atomic_t *v);



	int atomic_add_return(int i, atomic_t *v);



	int atomic_sub_return(int i, atomic_t *v);



	int atomic_inc_return(atomic_t *v);



	int atomic_dec_return(atomic_t *v);

	
Atomically access integer variables. The atomic_t

variables must be accessed only through these functions.





	#include <asm/bitops.h>



	void set_bit(nr, void *addr);



	void clear_bit(nr, void *addr);



	void change_bit(nr, void *addr);



	test_bit(nr, void *addr);



	int test_and_set_bit(nr, void *addr);



	int test_and_clear_bit(nr, void *addr);



	int test_and_change_bit(nr, void *addr);

	
Atomically access bit values; they can be used for flags or lock

variables. Using these functions prevents any race condition related

to concurrent access to the bit.





	#include <linux/seqlock.h>



	seqlock_t lock = SEQLOCK_UNLOCKED;



	seqlock_init(seqlock_t *lock);

	
The include file defining seqlocks and the two ways of initializing

them.





	unsigned int read_seqbegin(seqlock_t *lock);



	unsigned int read_seqbegin_irqsave(seqlock_t *lock, unsigned long flags);



	int read_seqretry(seqlock_t *lock, unsigned int seq);



	int read_seqretry_irqrestore(seqlock_t *lock, unsigned int seq, unsigned long 



	 flags);

	
Functions for obtaining read access to a seqlock-protected resources.





	void write_seqlock(seqlock_t *lock);



	void write_seqlock_irqsave(seqlock_t *lock, unsigned long flags);



	void write_seqlock_irq(seqlock_t *lock);



	void write_seqlock_bh(seqlock_t *lock);



	int write_tryseqlock(seqlock_t *lock);

	
Functions for obtaining write access to a seqlock-protected resource.





	void write_sequnlock(seqlock_t *lock);



	void write_sequnlock_irqrestore(seqlock_t *lock, unsigned long flags);



	void write_sequnlock_irq(seqlock_t *lock);



	void write_sequnlock_bh(seqlock_t *lock);

	
Functions for releasing write access to a seqlock-protected resource.





	#include <linux/rcupdate.h>

	
The include file required to use the read-copy-update (RCU) mechanism.





	void rcu_read_lock;



	void rcu_read_unlock;

	
Macros for obtaining atomic read access to a resource protected by

RCU.





	void call_rcu(struct rcu_head *head, void (*func)(void *arg), void *arg);

	
Arranges for a callback to run after all processors have been

scheduled and an RCU-protected resource can be safely freed.











[bookmark: linuxdrive3-CHP-6]

Chapter 6. Advanced Char Driver Operations

In Chapter 3, we built a

complete device driver that the user can write to and read from. But

a real device usually offers more functionality than synchronous

read and write. Now that

we're equipped with debugging tools should something

go awry�and a firm understanding of concurrency issues to help

keep things from going awry�we can safely go ahead and create a

more advanced driver.

This chapter examines a few concepts that you need to understand to

write fully featured char device drivers. We start with implementing

the ioctl system call, which is a common

interface used for device control. Then we proceed to various ways of

synchronizing with user space; by the end of this chapter you have a

good idea of how to put processes to sleep (and wake them up),

implement nonblocking I/O, and inform user space when your devices

are available for reading or writing. We finish with a look at how to

implement a few different device access policies within drivers.

The ideas discussed here are demonstrated by way of a couple of

modified versions of the scull driver. Once

again, everything is implemented using in-memory virtual devices, so

you can try out the code yourself without needing to have any

particular hardware. By now, you may be wanting to get your hands

dirty with real hardware, but that will have to wait until Chapter 9.







[bookmark: linuxdrive3-CHP-6-SECT-1]
6.1. ioctl

Most drivers need�in addition[bookmark: linuxdrive3-CHP-6-ITERM-5133]
[bookmark: linuxdrive3-CHP-6-ITERM-5134]
[bookmark: linuxdrive3-CHP-6-ITERM-5135]
[bookmark: linuxdrive3-CHP-6-ITERM-5136] [bookmark: linuxdrive3-CHP-6-ITERM-5137] to the ability to read and write the

device�the ability to perform various types of hardware control

via the device driver. Most devices can perform operations beyond

simple data transfers; user space must often be able to request, for

example, that the device lock its door, eject its media, report error

information, change a baud rate, or self destruct. These operations

are usually supported via the ioctl method,

which implements the system call by the same name.

In user space, the ioctl system call has the

following prototype:

int ioctl(int fd, unsigned long cmd, ...);
 

The prototype stands out in the list of Unix system calls because of

the dots, which usually mark the function as having a variable number

of arguments. In a real system, however, a system call

can't actually have a variable number of arguments.

System calls must have a well-defined prototype, because user

programs can access them only through hardware

"gates." Therefore, the dots in the

prototype represent not a variable number of arguments but a single

optional argument, traditionally identified as char

*argp. The dots are simply there to prevent type checking

during compilation. The actual nature of the third argument depends

on the specific control command being issued (the second argument).

Some commands take no arguments, some take an integer value, and some

take a pointer to other data. Using a pointer is the way to pass

arbitrary data to the ioctl call; the device is

then able to exchange any amount of data with user space.

The unstructured nature of the ioctl

call[bookmark: linuxdrive3-CHP-6-ITERM-5138] has caused it to fall out of favor

among kernel developers. Each ioctl command is,

essentially, a separate, usually undocumented system call, and there

is no way to audit these calls in any sort of comprehensive manner.

It is also difficult to make the unstructured

ioctl arguments work identically on all systems;

for example, consider 64-bit systems with a user-space process

running in 32-bit mode. As a result, there is strong pressure to

implement miscellaneous control operations by just about any other

means. Possible alternatives include embedding commands into the data

stream (we will discuss this approach later in this chapter) or using

virtual filesystems, either sysfs or driver-specific filesystems. (We

will look at sysfs in Chapter 14.) However, the fact remains that ioctl is

often the easiest and most straightforward choice for true device

operations.

[bookmark: linuxdrive3-CHP-6-ITERM-5139][bookmark: linuxdrive3-CHP-6-ITERM-5140]
[bookmark: linuxdrive3-CHP-6-ITERM-5141]
[bookmark: linuxdrive3-CHP-6-ITERM-5142]The ioctl

driver method has a prototype that differs somewhat from the

user-space version:

int (*ioctl) (struct inode *inode, struct file *filp,

              unsigned int cmd, unsigned long arg);
 

The inode and filp pointers are

the values corresponding to the file descriptor fd

passed on by the application and are the same parameters passed to

the open method. The cmd

argument is passed from the user unchanged, and the optional

arg argument is passed in the form of an

unsigned long, regardless of

whether it was given by the user as an integer or a pointer. If the

invoking program doesn't pass a third argument, the

arg value received by the driver operation is

undefined. Because type checking is disabled on the extra argument,

the compiler can't warn you if an invalid argument

is passed to ioctl, and any associated bug would

be difficult to spot.

[bookmark: linuxdrive3-CHP-6-ITERM-5143]
[bookmark: linuxdrive3-CHP-6-ITERM-5144]As you

might imagine, most ioctl implementations

consist of a big switch statement that selects the

correct behavior according to the cmd argument.

Different commands have different numeric values, which are usually

given symbolic names to simplify coding. The symbolic name is

assigned by a preprocessor definition. Custom drivers usually declare

such symbols in their header files; scull.h

declares them for scull. User programs must, of

course, include that header file as well to have access to those

symbols.

[bookmark: linuxdrive3-CHP-6-SECT-1.1]
6.1.1. Choosing the ioctl Commands

Before writing the code for ioctl, you

need[bookmark: linuxdrive3-CHP-6-ITERM-5145]

to choose the numbers that correspond to commands. The first instinct

of many programmers is to choose a set of small numbers starting with

or 1 and going up from there. There are, however, good reasons for

not doing things that way. The ioctl command

numbers should be unique across the system in order to prevent errors

caused by issuing the right command to the wrong device. Such a

mismatch is not unlikely to happen, and a program might find itself

trying to change the baud rate of a non-serial-port input stream,

such as a FIFO or an audio device. If each ioctl

number is unique, the application gets an EINVAL

error rather than succeeding in doing something unintended.

[bookmark: linuxdrive3-CHP-6-ITERM-5146][bookmark: linuxdrive3-CHP-6-ITERM-5147]To help programmers create

unique ioctl command codes, these codes have

been split up into several bitfields. The first versions of Linux

used 16-bit numbers: the top eight were the

"magic" numbers associated with the

device, and the bottom eight were a sequential number, unique within

the device. This happened because Linus was

"clueless" (his own word); a better

division of bitfields was conceived only later. Unfortunately, quite

a few drivers still use the old convention. They have to: changing

the command codes would break no end of binary programs, and that is

not something the kernel developers are willing to do.

[bookmark: linuxdrive3-CHP-6-ITERM-5148][bookmark: linuxdrive3-CHP-6-ITERM-5149][bookmark: linuxdrive3-CHP-6-ITERM-5150]To choose ioctl

numbers for your driver according to the Linux kernel convention, you

should first check include/asm/ioctl.h and

Documentation/ioctl-number.txt. The header

defines the bitfields you will be using: type (magic number), ordinal

number, direction of transfer, and size of argument. The

ioctl-number.txt file lists the magic numbers

used throughout the kernel,[1] so

you'll be able to choose your own magic number and

avoid overlaps. The text file also lists the reasons why the

convention should be used.
[bookmark: linuxdrive3-CHP-6-FNOTE-1][1] Maintenance of this file

has been somewhat scarce as of late, however.


The approved way to define ioctl command numbers

uses four bitfields, which have the following meanings. New symbols

introduced in this list are defined in

<linux/ioctl.h>.



	type

	
The magic number. Just choose one number (after consulting

ioctl-number.txt) and use it throughout the

driver. This field is eight bits wide

(_IOC_TYPEBITS).





	number

	
The ordinal (sequential) number. It's eight bits

(_IOC_NRBITS) wide.





	direction

	
The direction of data transfer, if the particular command involves a

data transfer. The possible values are _IOC_NONE

(no data transfer), _IOC_READ,

_IOC_WRITE, and

_IOC_READ|_IOC_WRITE (data is transferred both

ways). Data transfer is seen from the application's

point of view; _IOC_READ means reading

from the device, so the driver must write to

user space. Note that the field is a bit mask, so

_IOC_READ and _IOC_WRITE can be

extracted using a logical AND operation.





	size

	
The size of user data involved. The width of this field is

architecture dependent, but is usually 13 or 14 bits. You can find

its value for your specific architecture in the macro

_IOC_SIZEBITS. It's not mandatory

that you use the size field�the kernel does

not check it�but it is a good idea. Proper use of this field

can help detect user-space programming errors and enable you to

implement backward compatibility if you ever need to change the size

of the relevant data item. If you need larger data structures,

however, you can just ignore the size field.

We'll see how this field is used soon.





[bookmark: linuxdrive3-CHP-6-ITERM-5151]The header file

<asm/ioctl.h>, which is included by

<linux/ioctl.h>, defines macros that help

set up the command numbers as follows:

_IO(type,nr) (for a command that has no argument),

_IOR(type,nr,datatype) (for reading data from the

driver), _IOW(type,nr,datatype) (for writing

data), and _IOWR(type,nr,datatype) (for

bidirectional transfers). The type and

number fields are passed as arguments, and the

size field is derived by applying

sizeof to the datatype

argument.

The header also defines macros that may be used in your driver to

decode the numbers: _IOC_DIR(nr),

_IOC_TYPE(nr), _IOC_NR(nr), and

_IOC_SIZE(nr). We won't go into

any more detail about these macros because the header file is clear,

and sample code is shown later in this section.

[bookmark: linuxdrive3-CHP-6-ITERM-5152]Here is how some

ioctl commands are defined in

scull. In particular, these commands set and get

the driver's configurable parameters.

/* Use 'k' as magic number */

#define SCULL_IOC_MAGIC  'k'

/* Please use a different 8-bit number in your code */



#define SCULL_IOCRESET    _IO(SCULL_IOC_MAGIC, 0)



/*

 * S means "Set" through a ptr,

 * T means "Tell" directly with the argument value

 * G means "Get": reply by setting through a pointer

 * Q means "Query": response is on the return value

 * X means "eXchange": switch G and S atomically

 * H means "sHift": switch T and Q atomically

 */

#define SCULL_IOCSQUANTUM _IOW(SCULL_IOC_MAGIC,  1, int)

#define SCULL_IOCSQSET    _IOW(SCULL_IOC_MAGIC,  2, int)

#define SCULL_IOCTQUANTUM _IO(SCULL_IOC_MAGIC,   3)

#define SCULL_IOCTQSET    _IO(SCULL_IOC_MAGIC,   4)

#define SCULL_IOCGQUANTUM _IOR(SCULL_IOC_MAGIC,  5, int)

#define SCULL_IOCGQSET    _IOR(SCULL_IOC_MAGIC,  6, int)

#define SCULL_IOCQQUANTUM _IO(SCULL_IOC_MAGIC,   7)

#define SCULL_IOCQQSET    _IO(SCULL_IOC_MAGIC,   8)

#define SCULL_IOCXQUANTUM _IOWR(SCULL_IOC_MAGIC, 9, int)

#define SCULL_IOCXQSET    _IOWR(SCULL_IOC_MAGIC,10, int)

#define SCULL_IOCHQUANTUM _IO(SCULL_IOC_MAGIC,  11)

#define SCULL_IOCHQSET    _IO(SCULL_IOC_MAGIC,  12)



#define SCULL_IOC_MAXNR 14
 

The actual source file defines a few extra commands that have not

been shown here.

We chose to implement both ways of passing integer arguments: by

pointer and by explicit value (although, by an established

convention, ioctl should exchange values by

pointer). Similarly, both ways are used to return an integer number:

by pointer or by setting the return value. This works as long as the

return value is a positive integer; as you know by now, on return

from any system call, a positive value is preserved (as we saw for

read and write), while a

negative value is considered an error and is used to set

errno in user space.[2]
[bookmark: linuxdrive3-CHP-6-FNOTE-2][2] Actually, all

libc implementations currently in use (including

uClibc) consider as error codes only values in the range -4095 to -1.

Unfortunately, being able to return large negative numbers but not

small ones is not very useful.


The "exchange" and

"shift" operations are not

particularly useful for scull. We implemented

"exchange" to show how the driver

can combine separate operations into a single atomic one, and

"shift" to pair

"tell" and

"query." There are times when

atomic test-and-set operations like these are needed, in particular,

when applications need to set or release locks.

The explicit ordinal number of the command has no specific meaning.

It is used only to tell the commands apart. Actually, you could even

use the same ordinal number for a read command and a write command,

since the actual ioctl number is different in

the "direction" bits, but there is

no reason why you would want to do so. We chose not to use the

ordinal number of the command anywhere but in the declaration, so we

didn't assign a symbolic value to it.

That's why explicit numbers appear in the definition

given previously. The example shows one way to use the command

numbers, but you are free to do it differently.

With the exception of a small number of predefined commands (to be

discussed shortly), the value of the ioctl
cmd argument is not currently used by the kernel,

and it's quite unlikely it will be in the future.

Therefore, you could, if you were feeling lazy, avoid the complex

declarations shown earlier and explicitly declare a set of scalar

numbers. On the other hand, if you did, you wouldn't

benefit from using the bitfields, and you would encounter

difficulties if you ever submitted your code for inclusion in the

mainline kernel. The header <linux/kd.h>

is an example of this old-fashioned approach, using 16-bit scalar

values to define the ioctl commands. That source

file relied on scalar numbers because it used the conventions obeyed

at that time, not out of laziness. Changing it now would cause

gratuitous incompatibility.

[bookmark: linuxdrive3-CHP-6-SECT-1.2]
6.1.2. The Return Value

The implementation of ioctl is

usually[bookmark: linuxdrive3-CHP-6-ITERM-5153]
[bookmark: linuxdrive3-CHP-6-ITERM-5154] [bookmark: linuxdrive3-CHP-6-ITERM-5155]
[bookmark: linuxdrive3-CHP-6-ITERM-5156] a switch

statement based on the command number. But what should the

default selection be when the command number

doesn't match a valid operation? The question is

controversial. Several kernel functions return

-EINVAL ("Invalid

argument"), which makes sense because the command

argument is indeed not a valid one. The POSIX standard, however,

states that if an inappropriate ioctl command

has been issued, then -ENOTTY should be returned.

This error code is interpreted by the C library as

"inappropriate ioctl for device,"

which is usually exactly what the programmer needs to hear.

It's still pretty common, though, to return

-EINVAL in response to an invalid

ioctl command.

[bookmark: linuxdrive3-CHP-6-SECT-1.3]
6.1.3. The Predefined Commands

Although the ioctl system call is most often

used to act on devices, a few commands are recognized by the kernel.

Note that these commands, when applied to your device, are decoded

before your own file operations are called.

Thus, if you choose the same number for one of your

ioctl commands, you won't ever

see any request for that command, and the application gets something

[bookmark: linuxdrive3-CHP-6-ITERM-5157]unexpected

because of the conflict between the ioctl

numbers.

The predefined [bookmark: linuxdrive3-CHP-6-ITERM-5158]
[bookmark: linuxdrive3-CHP-6-ITERM-5159]commands

are divided into three groups:

	Those that can be issued on any file (regular, device, FIFO, or

socket)

	Those that are issued only on regular files

	Those specific to the filesystem type



Commands in the last group are executed by the implementation of the

hosting filesystem (this is how the chattr

command works). Device driver writers are interested only in the

first group of commands, whose magic number is

"T." Looking at the workings of the

other groups is left to the reader as an exercise;

ext2_ioctl is a most interesting function (and

easier to understand than one might expect), because it implements

the append-only flag and the immutable flag.

The following ioctl commands are predefined for

any file, including device-special files:

[bookmark: linuxdrive3-CHP-6-ITERM-5160][bookmark: linuxdrive3-CHP-6-ITERM-5161][bookmark: linuxdrive3-CHP-6-ITERM-5162][bookmark: linuxdrive3-CHP-6-ITERM-5163][bookmark: linuxdrive3-CHP-6-ITERM-5164][bookmark: linuxdrive3-CHP-6-ITERM-5165][bookmark: linuxdrive3-CHP-6-ITERM-5166][bookmark: linuxdrive3-CHP-6-ITERM-5167][bookmark: linuxdrive3-CHP-6-ITERM-5168][bookmark: linuxdrive3-CHP-6-ITERM-5169][bookmark: linuxdrive3-CHP-6-ITERM-5170][bookmark: linuxdrive3-CHP-6-ITERM-5171][bookmark: linuxdrive3-CHP-6-ITERM-5172][bookmark: linuxdrive3-CHP-6-ITERM-5173]

	FIOCLEX

	
[bookmark: linuxdrive3-CHP-6-ITERM-5160]
[bookmark: linuxdrive3-CHP-6-ITERM-5161]Set

the close-on-exec flag (File IOctl CLose on EXec). Setting this flag

causes the file descriptor to be closed when the calling process

executes a new program.





	FIONCLEX

	
[bookmark: linuxdrive3-CHP-6-ITERM-5162]
[bookmark: linuxdrive3-CHP-6-ITERM-5163]Clear

the close-on-exec flag (File IOctl Not CLos on EXec). The command

restores the common file behavior, undoing what

FIOCLEX above does.





	FIOASYNC

	
[bookmark: linuxdrive3-CHP-6-ITERM-5164]
[bookmark: linuxdrive3-CHP-6-ITERM-5165]Set

or reset asynchronous notification for the file (as discussed in the

Section 6.4 later in this chapter). Note that

kernel versions up to Linux 2.2.4 incorrectly used this command to

modify the O_SYNC flag. Since both actions can be

accomplished through fcntl, nobody actually uses

the FIOASYNC command, which is reported here only

for completeness.





	FIOQSIZE

	
This [bookmark: linuxdrive3-CHP-6-ITERM-5166]
[bookmark: linuxdrive3-CHP-6-ITERM-5167]command

returns the size of a file or directory; when applied to a device

file, however, it yields an ENOTTY error return.





	FIONBIO

	
[bookmark: linuxdrive3-CHP-6-ITERM-5168]
[bookmark: linuxdrive3-CHP-6-ITERM-5169][bookmark: linuxdrive3-CHP-6-ITERM-5170][bookmark: linuxdrive3-CHP-6-ITERM-5171][bookmark: linuxdrive3-CHP-6-ITERM-5172][bookmark: linuxdrive3-CHP-6-ITERM-5173]"File IOctl Non-Blocking

I/O" (described in Section 6.2.3). This call modifies the

O_NONBLOCK flag in

filp->f_flags. The third argument to the system

call is used to indicate whether the flag is to be set or cleared.

(We'll look at the role of the flag later in this

chapter.) Note that the usual way to change this flag is with the

fcntl system call, using the

F_SETFL command.





The last item in the list introduced a new system call,

fcntl, which looks like

ioctl. In fact, the fcntl

call is very similar to ioctl in that it gets a

command argument and an extra (optional) argument. It is kept

separate from ioctl mainly for historical

reasons: when Unix developers faced the problem of controlling I/O

operations, they decided that files and devices were different. At

the time, the only devices with ioctl

implementations were ttys, which explains why

-ENOTTY is the standard reply for an incorrect

ioctl command. Things have changed, but

fcntl remains a separate system call.

[bookmark: linuxdrive3-CHP-6-SECT-1.4]
6.1.4. Using the ioctl Argument

Another point we need to cover

[bookmark: linuxdrive3-CHP-6-ITERM-5174]before looking at the

ioctl code for the scull

driver is how to use the extra argument. If it is an integer,

it's easy: it can be used directly. If it is a

pointer, however, some care must be taken.

When a pointer is used to refer to user space, we must ensure that

the user address is valid. An attempt to access an unverified

user-supplied pointer can lead to incorrect behavior, a kernel oops,

system corruption, or security problems. It is the

driver's responsibility to make proper checks on

every user-space address it uses and to return an error if it is

invalid.

[bookmark: linuxdrive3-CHP-6-ITERM-5175]
[bookmark: linuxdrive3-CHP-6-ITERM-5176][bookmark: linuxdrive3-CHP-6-ITERM-5177][bookmark: linuxdrive3-CHP-6-ITERM-5178]In Chapter 3, we looked at the

copy_from_user and

copy_to_user functions, which can be used to

safely move data to and from user space. Those functions can be used

in ioctl methods as well, but

ioctl calls often involve small data items that

can be more efficiently manipulated through other means. To start,

address verification (without transferring data) is implemented by

the function access_ok, which is declared in

<asm/uaccess.h>:

int access_ok(int type, const void *addr, unsigned long size);
 

[bookmark: linuxdrive3-CHP-6-ITERM-5179]The first argument should be either

VERIFY_READ or VERIFY_WRITE,

depending on whether the action to be performed is reading the

user-space memory area or writing it. The addr

argument holds a user-space address, and size is a

byte count. If ioctl, for instance, needs to

read an integer value from user space, size is

sizeof(int). If you need to both read and write at

the given address, use VERIFY_WRITE, since it is a

superset of VERIFY_READ.

Unlike most kernel functions, access_ok returns

a boolean value: 1 for success (access is OK) and

0 for failure (access is not OK). If it returns

false, the driver should usually return -EFAULT to

the caller.

There are a couple of interesting things to note about

access_ok. First, it does not do the complete

job of verifying memory access; it only checks to see that the memory

reference is in a region of memory that the process might reasonably

have access to. In particular, access_ok ensures

that the address does not point to kernel-space memory. Second, most

driver code need not actually call access_ok.

The memory-access routines described later take care of that for you.

Nonetheless, we demonstrate its use so that you can see how it is

done.

The scull source exploits the bitfields in the

ioctl number to check the arguments before the

switch:

int err = 0, tmp;

int retval = 0;

    

/*

 * extract the type and number bitfields, and don't decode

 * wrong cmds: return ENOTTY (inappropriate ioctl) before access_ok(  )

 */

 if (_IOC_TYPE(cmd) != SCULL_IOC_MAGIC) return -ENOTTY;

 if (_IOC_NR(cmd) > SCULL_IOC_MAXNR) return -ENOTTY;



/*

 * the direction is a bitmask, and VERIFY_WRITE catches R/W

 * transfers. `Type' is user-oriented, while

 * access_ok is kernel-oriented, so the concept of "read" and

 * "write" is reversed

 */

if (_IOC_DIR(cmd) & _IOC_READ)

    err = !access_ok(VERIFY_WRITE, (void _ _user *)arg, _IOC_SIZE(cmd));

else if (_IOC_DIR(cmd) & _IOC_WRITE)

    err =  !access_ok(VERIFY_READ, (void _ _user *)arg, _IOC_SIZE(cmd));

if (err) return -EFAULT;
 

After calling access_ok, the driver can safely

perform the actual transfer. In addition to the

copy_from_user and

copy_to_user functions, the programmer can

exploit a set of functions that are optimized for the most used data

sizes (one, two, four, and eight bytes). These functions are

described in the following list and are defined in

<asm/uaccess.h>:

[bookmark: linuxdrive3-CHP-6-ITERM-5180][bookmark: linuxdrive3-CHP-6-ITERM-5181]

	put_user(datum, ptr)



	_ _put_user(datum, ptr)

	
[bookmark: linuxdrive3-CHP-6-ITERM-5180]
[bookmark: linuxdrive3-CHP-6-ITERM-5181]These

macros write the datum to user space; they are relatively fast and

should be called instead of copy_to_user

whenever single values are being transferred. The macros have been

written to allow the passing of any type of pointer to

put_user, as long as it is a user-space address.

The size of the data transfer depends on the type of the

ptr argument and is determined at compile time

using the sizeof and typeof

compiler builtins. As a result, if ptr is a char

pointer, one byte is transferred, and so on for two, four, and

possibly eight bytes.





put_user checks to ensure that the process is

able to write to the given memory address. It returns

0 on success, and -EFAULT on

error. _ _put_user performs less checking (it

does not call access_ok), but can still fail if

the memory pointed to is not writable by the user. Thus, _

_put_user should only be used if the memory region has

already been verified with access_ok.

As a general rule, you call _ _put_user to save

a few cycles when you are implementing a read

method, or when you copy several items and, thus, call

access_ok just once before the first data

transfer, as shown above for ioctl.

[bookmark: linuxdrive3-CHP-6-ITERM-5182][bookmark: linuxdrive3-CHP-6-ITERM-5183][bookmark: linuxdrive3-CHP-6-ITERM-5184]

	get_user(local, ptr)



	_ _get_user(local, ptr)

	
[bookmark: linuxdrive3-CHP-6-ITERM-5182]
[bookmark: linuxdrive3-CHP-6-ITERM-5183][bookmark: linuxdrive3-CHP-6-ITERM-5184]These macros are used to retrieve a

single datum from user space. They behave like

put_user and _ _put_user,

but transfer data in the opposite direction. The value retrieved is

stored in the local variable local; the return

value indicates whether the operation succeeded. Again, _

_get_user should only be used if the address has already

been verified with access_ok.





If an attempt is made to use one of the listed functions to transfer

a value that does not fit one of the specific sizes, the result is

usually a strange message from the compiler, such as

"conversion to non-scalar type

requested." In such cases,

copy_to_user or

copy_from_user must be used.

[bookmark: linuxdrive3-CHP-6-SECT-1.5]
6.1.5. Capabilities and Restricted Operations

[bookmark: linuxdrive3-CHP-6-ITERM-5185][bookmark: linuxdrive3-CHP-6-ITERM-5186][bookmark: linuxdrive3-CHP-6-ITERM-5187][bookmark: linuxdrive3-CHP-6-ITERM-5188][bookmark: linuxdrive3-CHP-6-ITERM-5189]Access to a device

is controlled by the permissions on the device file(s), and the

driver is not normally involved in permissions checking. There are

situations, however, where any user is granted read/write permission

on the device, but some control operations should still be denied.

For example, not all users of a tape drive should be able to set its

default block size, and a user who has been granted read/write access

to a disk device should probably still be denied the ability to

format it. In cases like these, the driver must perform additional

checks to be sure that the user is capable of performing the

requested operation.

Unix systems have traditionally restricted privileged operations to

the superuser account. This meant that privilege was an

all-or-nothing thing�the superuser can do absolutely anything,

but all other users are highly restricted. The Linux kernel provides

a more flexible system called capabilities. A

capability-based system leaves the all-or-nothing mode behind and

breaks down privileged operations into separate subgroups. In this

way, a particular user (or program) can be empowered to perform a

specific privileged operation without giving away the ability to

perform other, unrelated operations. The kernel uses capabilities

exclusively for permissions management and exports two system calls

capget and capset, to allow

them to be managed from user space.

[bookmark: linuxdrive3-CHP-6-ITERM-5190]
[bookmark: linuxdrive3-CHP-6-ITERM-5191]The full set of capabilities can be found

in <linux/capability.h>. These are the

only capabilities known to the system; it is not possible for driver

authors or system administrators to define new ones without modifying

the kernel source. A subset of those capabilities that might be of

interest to device driver writers includes the following:

[bookmark: linuxdrive3-CHP-6-ITERM-5192][bookmark: linuxdrive3-CHP-6-ITERM-5193][bookmark: linuxdrive3-CHP-6-ITERM-5194][bookmark: linuxdrive3-CHP-6-ITERM-5195][bookmark: linuxdrive3-CHP-6-ITERM-5196][bookmark: linuxdrive3-CHP-6-ITERM-5197]

	CAP_DAC_OVERRIDE

	
[bookmark: linuxdrive3-CHP-6-ITERM-5192]The ability to override access

restrictions (data access control, or DAC) on files and directories.





	CAP_NET_ADMIN

	
[bookmark: linuxdrive3-CHP-6-ITERM-5193]The

ability to perform network administration tasks, including those that

affect network interfaces.





	CAP_SYS_MODULE

	
[bookmark: linuxdrive3-CHP-6-ITERM-5194]The ability to load or remove kernel

modules.





	CAP_SYS_RAWIO

	
[bookmark: linuxdrive3-CHP-6-ITERM-5195]The

ability to perform "raw" I/O

operations. Examples include accessing device ports or communicating

directly with USB devices.





	CAP_SYS_ADMIN

	
[bookmark: linuxdrive3-CHP-6-ITERM-5196]A

catch-all capability that provides access to many system

administration operations.





	CAP_SYS_TTY_CONFIG

	
[bookmark: linuxdrive3-CHP-6-ITERM-5197]The ability to perform tty

configuration tasks.





[bookmark: linuxdrive3-CHP-6-ITERM-5198]
[bookmark: linuxdrive3-CHP-6-ITERM-5199]Before

performing a privileged operation, a device driver should check that

the calling process has the appropriate capability; failure to do so

could result user processes performing unauthorized operations with

bad results on system stability or security. Capability checks are

performed with the capable function (defined in

<linux/sched.h>):

 int capable(int capability);
 

In the scull sample driver, any user is allowed

to query the quantum and quantum set sizes. Only privileged users,

however, may change those values, since inappropriate values could

badly affect system performance. When needed, the

scull implementation of

ioctl checks a user's privilege

level as follows:

 if (! capable (CAP_SYS_ADMIN))

        return -EPERM;
 

In the absence of a more specific capability for this task,

CAP_SYS_ADMIN was chosen for this test.

[bookmark: linuxdrive3-CHP-6-SECT-1.6]
6.1.6. The Implementation of the ioctl Commands

The scull implementation

[bookmark: linuxdrive3-CHP-6-ITERM-5200]
[bookmark: linuxdrive3-CHP-6-ITERM-5201]of ioctl only

transfers the configurable parameters of the device and turns out to

be as easy as the following:

switch(cmd) {



  case SCULL_IOCRESET:

    scull_quantum = SCULL_QUANTUM;

    scull_qset = SCULL_QSET;

    break;

    

  case SCULL_IOCSQUANTUM: /* Set: arg points to the value */

    if (! capable (CAP_SYS_ADMIN))

        return -EPERM;

    retval = _ _get_user(scull_quantum, (int _ _user *)arg);

    break;



  case SCULL_IOCTQUANTUM: /* Tell: arg is the value */

    if (! capable (CAP_SYS_ADMIN))

        return -EPERM;

    scull_quantum = arg;

    break;



  case SCULL_IOCGQUANTUM: /* Get: arg is pointer to result */

    retval = _ _put_user(scull_quantum, (int _ _user *)arg);

    break;



  case SCULL_IOCQQUANTUM: /* Query: return it (it's positive) */

    return scull_quantum;



  case SCULL_IOCXQUANTUM: /* eXchange: use arg as pointer */

    if (! capable (CAP_SYS_ADMIN))

        return -EPERM;

    tmp = scull_quantum;

    retval = _ _get_user(scull_quantum, (int _ _user *)arg);

    if (retval =  = 0)

        retval = _ _put_user(tmp, (int _ _user *)arg);

    break;



  case SCULL_IOCHQUANTUM: /* sHift: like Tell + Query */

    if (! capable (CAP_SYS_ADMIN))

        return -EPERM;

    tmp = scull_quantum;

    scull_quantum = arg;

    return tmp;



  default:  /* redundant, as cmd was checked against MAXNR */

    return -ENOTTY;

}

return retval;
 

scull also includes six entries that act on

scull_qset. These entries are identical to the

ones for scull_quantum and are not worth showing

in print.

The six ways to pass and receive arguments look like the following

from the caller's point of view (i.e., from user

space):

int quantum;



ioctl(fd,SCULL_IOCSQUANTUM, &quantum);          /* Set by pointer */

ioctl(fd,SCULL_IOCTQUANTUM, quantum);           /* Set by value */



ioctl(fd,SCULL_IOCGQUANTUM, &quantum);          /* Get by pointer */

quantum = ioctl(fd,SCULL_IOCQQUANTUM);          /* Get by return value */



ioctl(fd,SCULL_IOCXQUANTUM, &quantum);          /* Exchange by pointer */

quantum = ioctl(fd,SCULL_IOCHQUANTUM, quantum); /* Exchange by value */
 

Of course, a normal driver would not implement such a mix of calling

modes. We have done so here only to demonstrate the different ways in

which things could be done. Normally, however, data exchanges would

be consistently performed, either through pointers or by value, and

mixing of the two techniques would be avoided.

[bookmark: linuxdrive3-CHP-6-SECT-1.7]
6.1.7. Device Control Without ioctl

[bookmark: linuxdrive3-CHP-6-ITERM-5202][bookmark: linuxdrive3-CHP-6-ITERM-5203][bookmark: linuxdrive3-CHP-6-ITERM-5204][bookmark: linuxdrive3-CHP-6-ITERM-5205][bookmark: linuxdrive3-CHP-6-ITERM-5206][bookmark: linuxdrive3-CHP-6-ITERM-5207]Sometimes

controlling the device is better accomplished by writing control

sequences to the device itself. For example, this technique is used

in the console driver, where so-called escape sequences are used to

move the cursor, change the default color, or perform other

configuration tasks. The benefit of implementing device control this

way is that the user can control the device just by writing data,

without needing to use (or sometimes write) programs built just for

configuring the device. When devices can be controlled in this

manner, the program issuing commands often need not even be running

on the same system as the device it is controlling.

[bookmark: linuxdrive3-CHP-6-ITERM-5208]
[bookmark: linuxdrive3-CHP-6-ITERM-5209]For

example, the setterm program acts on the console

(or another terminal) configuration by printing escape sequences. The

controlling program can live on a different computer from the

controlled device, because a simple redirection of the data stream

does the configuration job. This is what happens every time you run a

remote tty session: escape sequences are printed remotely but affect

the local tty; the technique is not restricted to ttys, though.

[bookmark: linuxdrive3-CHP-6-ITERM-5210][bookmark: linuxdrive3-CHP-6-ITERM-5211][bookmark: linuxdrive3-CHP-6-ITERM-5212][bookmark: linuxdrive3-CHP-6-ITERM-5213][bookmark: linuxdrive3-CHP-6-ITERM-5214]The drawback of

controlling by printing is that it adds policy constraints to the

device; for example, it is viable only if you are sure that the

control sequence can't appear in the data being

written to the device during normal operation. This is only partly

true for ttys. Although a text display is meant to display only ASCII

characters, sometimes control characters can slip through in the data

being written and can, therefore, affect the console setup. This can

happen, for example, when you cat a binary file

to the screen; the resulting mess can contain anything, and you often

end up with the wrong font on your console.

Controlling by write is definitely the way to go

for those devices that don't transfer data but just

respond to commands, such as robotic devices.

For instance, a driver written for fun by one of your authors moves a

camera on two axes. In this driver, the

"device" is simply a pair of old

stepper motors, which can't really be read from or

written to. The concept of "sending a data

stream" to a stepper motor makes little or no sense.

In this case, the driver interprets what is being written as ASCII

commands and converts the requests to sequences of impulses that

manipulate the stepper motors. The idea is similar, somewhat, to the

AT commands you send to the modem in order to set up communication,

the main difference being that the serial port used to communicate

with the modem must transfer real data as well. The advantage of

direct device control is that you can use cat to

move the camera without writing and compiling special code to issue

the ioctl calls.

When writing command-oriented drivers, there's no

reason to implement the ioctl method. An

additional command in the interpreter is easier to implement and use.

Sometimes, though, you might choose to act the other way around:

instead of turning the write method into an

interpreter and avoiding ioctl, you might choose

to avoid write altogether and use

ioctl commands exclusively, while accompanying

the driver with a specific command-line tool to send those commands

to the driver. This approach moves the complexity from kernel space

to user space, where it may be easier to deal with, and helps keep

the driver small while denying[bookmark: linuxdrive3-CHP-6-ITERM-5215] [bookmark: linuxdrive3-CHP-6-ITERM-5216] [bookmark: linuxdrive3-CHP-6-ITERM-5217] [bookmark: linuxdrive3-CHP-6-ITERM-5218] [bookmark: linuxdrive3-CHP-6-ITERM-5219] use of simple

cat or echo commands.







[bookmark: linuxdrive3-CHP-6-SECT-2]
6.2. Blocking I/O

Back in Chapter 3, we looked at

how to[bookmark: linuxdrive3-CHP-6-ITERM-5220] [bookmark: linuxdrive3-CHP-6-ITERM-5221]
[bookmark: linuxdrive3-CHP-6-ITERM-5222]
[bookmark: linuxdrive3-CHP-6-ITERM-5223]
[bookmark: linuxdrive3-CHP-6-ITERM-5224]

implement the read and

write driver methods. At that point, however, we

skipped over one important issue: how does a driver respond if it

cannot immediately satisfy the request? A call to

read may come when no data is available, but

more is expected in the future. Or a process could attempt to

write, but your device is not ready to accept

the data, because your output buffer is full. The calling process

usually does not care about such issues; the programmer simply

expects to call read or

write and have the call return after the

necessary work has been done. So, in such cases, your driver should

(by default) block the process, putting it to

sleep until the request can proceed.

This section shows how to put a process to sleep and wake it up again

later on. As usual, however, we have to explain a few concepts first.

[bookmark: linuxdrive3-CHP-6-SECT-2.1]
6.2.1. Introduction to Sleeping

What does it mean for a process to

"sleep"? When a process is put to

sleep, it is marked as being in a special state and removed from the

scheduler's run queue. Until something comes along

to change that state, the process will not be scheduled on any CPU

and, therefore, will not run. A sleeping process has been shunted off

to the side of the system, waiting for some future event to happen.

Causing a process to sleep is an easy thing for a Linux device driver

to do. There are, however, a couple of rules that you must keep in

mind to be able to code sleeps in a safe manner.

The first of these rules is: never sleep when you are running in an

atomic context. 

An atomic context is

simply a state where multiple steps must be performed without any

sort of concurrent access. What that means, with regard to sleeping,

is that your driver cannot sleep while holding a spinlock, seqlock,

or RCU lock. You also cannot sleep if you have disabled interrupts.

It is legal to sleep while holding a semaphore,

but you should look very carefully at any code that does so. If code

sleeps while holding a semaphore, any other thread waiting for that

semaphore also sleeps. So any sleeps that happen while holding

semaphores should be short, and you should convince yourself that, by

holding the semaphore, you are not blocking the process that will

eventually wake you up.

Another thing to remember with sleeping is that, when you wake up,

you never know how long your process may have been out of the CPU or

what may have changed in the mean time. You also do not usually know

if another process may have been sleeping for the same event; that

process may wake before you and grab whatever resource you were

waiting for. The end result is that you can make no assumptions about

the state of the system after you wake up, and you must check to

ensure that the condition you were waiting for is, indeed, true.

One other relevant point, of course, is that your process cannot

sleep unless it is assured that somebody else, somewhere, will wake

it up. The code doing the awakening must also be able to find your

process to be able to do its job. Making sure that a wakeup happens

is a matter of thinking through your code and knowing, for each

sleep, exactly what series of events will bring that sleep to an end.

Making it possible for your sleeping process to be found is, instead,

accomplished through a data structure called a wait

queue[bookmark: linuxdrive3-CHP-6-ITERM-5225]
[bookmark: linuxdrive3-CHP-6-ITERM-5226].

A wait queue is just what it sounds like: a list of processes, all

waiting for a specific event.

In Linux, a wait queue is managed by means of a

"wait queue head," a structure of

type wait_queue_head_t, which is defined in

<linux/wait.h>. A wait queue head can be

defined and initialized statically with:

DECLARE_WAIT_QUEUE_HEAD(name);
 

or dynamicly as follows:

wait_queue_head_t my_queue;

init_waitqueue_head(&my_queue);
 

We will return to the structure of wait queues shortly, but we know

enough now to take a first look at sleeping and waking up.

[bookmark: linuxdrive3-CHP-6-SECT-2.2]
6.2.2. Simple Sleeping

When a process sleeps, it does so[bookmark: linuxdrive3-CHP-6-ITERM-5227] in expectation that some condition

will become true in the future. As we noted before, any process that

sleeps must check to be sure that the condition it was waiting for is

really true when it wakes up again. The simplest way of sleeping in

the Linux kernel is a macro called

wait_event[bookmark: linuxdrive3-CHP-6-ITERM-5228]
[bookmark: linuxdrive3-CHP-6-ITERM-5229]

(with a few variants); it combines handling the details of sleeping

with a check on the condition a process is waiting for. The forms of

wait_event are:

wait_event(queue, condition)

wait_event_interruptible(queue, condition)

wait_event_timeout(queue, condition, timeout)

wait_event_interruptible_timeout(queue, condition, timeout)
 

In all of the above forms, queue is the wait queue

head to use. Notice that it is passed "by

value." The condition is an

arbitrary boolean expression that is evaluated by the macro before

and after sleeping; until condition evaluates to a

true value, the process continues to sleep. Note that

condition may be evaluated an arbitrary number of

times, so it should not have any side effects.

If you use wait_event, your process is put into

an uninterruptible sleep which, as we have mentioned before, is

usually not what you want. The preferred alternative is

wait_event_interruptible, which can be

interrupted by signals. This version returns an integer value that

you should check; a nonzero value means your sleep was interrupted by

some sort of signal, and your driver should probably return

-ERESTARTSYS. The final versions

(wait_event_timeout and

wait_event_interruptible_timeout) wait for a

limited time; after that time period (expressed in jiffies, which we

will discuss in Chapter 7)

expires, the macros return with a value of 0

regardless of how condition evaluates.

The other half of the picture, of course, is waking up. Some other

thread of execution (a different process, or an interrupt handler,

perhaps) has to perform the wakeup for you, since your process is, of

course, asleep. The basic function that wakes up sleeping processes

is called wake_up[bookmark: linuxdrive3-CHP-6-ITERM-5230]
[bookmark: linuxdrive3-CHP-6-ITERM-5231].

It comes in several forms (but we look at only two of them now):

void wake_up(wait_queue_head_t *queue);

void wake_up_interruptible(wait_queue_head_t *queue);
 

wake_up wakes up all processes waiting on the

given queue (though the situation is a little more

complicated than that, as we will see later). The other form

(wake_up_interruptible) restricts itself to

processes performing an interruptible sleep. In general, the two are

indistinguishable (if you are using interruptible sleeps); in

practice, the convention is to use wake_up if

you are using wait_event and

wake_up_interruptible if you use

wait_event_interruptible.

We now know enough to look at a simple example of sleeping and waking

up. In the sample source, you can find a module called

sleepy. It implements a device with simple

behavior: any process that attempts to read from the device is put to

sleep. Whenever a process writes to the device, all sleeping

processes are awakened. This behavior is implemented with the

following read and write

methods:

static DECLARE_WAIT_QUEUE_HEAD(wq);

static int flag = 0;



ssize_t sleepy_read (struct file *filp, char _ _user *buf, size_t count, loff_t *pos)

{

    printk(KERN_DEBUG "process %i (%s) going to sleep\n",

            current->pid, current->comm);

    wait_event_interruptible(wq, flag != 0);

    flag = 0;

    printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm);

    return 0; /* EOF */

}



ssize_t sleepy_write (struct file *filp, const char _ _user *buf, size_t count,

        loff_t *pos)

{

    printk(KERN_DEBUG "process %i (%s) awakening the readers...\n",

            current->pid, current->comm);

    flag = 1;

    wake_up_interruptible(&wq);

    return count; /* succeed, to avoid retrial */

}
 

Note the use of the flag variable in this example.

Since wait_event_interruptible checks for a

condition that must become true, we use flag to

create that condition.

It is interesting to consider what happens if

two processes are waiting when

sleepy_write is called. Since

sleepy_read resets flag to

0 once it wakes up, you might think that the

second process to wake up would immediately go back to sleep. On a

single-processor system, that is almost always what happens. But it

is important to understand why you cannot count on that behavior. The

wake_up_interruptible call

will cause both sleeping processes to wake up.

It is entirely possible that they will both note that

flag is nonzero before either has the opportunity

to reset it. For this trivial module, this race condition is

unimportant. In a real driver, this kind of race can create rare

crashes that are difficult to diagnose. If correct operation required

that exactly one process see the nonzero value, it would have to be

tested in an atomic manner. We will see how a real driver handles

such situations shortly. But first we have to cover one other topic.

[bookmark: linuxdrive3-CHP-6-SECT-2.3]
6.2.3. Blocking and Nonblocking Operations

[bookmark: linuxdrive3-CHP-6-ITERM-5232][bookmark: linuxdrive3-CHP-6-ITERM-5233][bookmark: linuxdrive3-CHP-6-ITERM-5234][bookmark: linuxdrive3-CHP-6-ITERM-5235][bookmark: linuxdrive3-CHP-6-ITERM-5236][bookmark: linuxdrive3-CHP-6-ITERM-5237][bookmark: linuxdrive3-CHP-6-ITERM-5238]One last point we need to touch

on[bookmark: linuxdrive3-CHP-6-ITERM-5239]
[bookmark: linuxdrive3-CHP-6-ITERM-5240]
[bookmark: linuxdrive3-CHP-6-ITERM-5241]
[bookmark: linuxdrive3-CHP-6-ITERM-5242]
[bookmark: linuxdrive3-CHP-6-ITERM-5243]

before we look at the implementation of full-featured

read and write methods is

deciding when to put a process to sleep. There are times when

implementing proper Unix semantics requires that an operation not

block, even if it cannot be completely carried out.

There are also times when the calling process informs you that it

does not want to block, whether or not its I/O

can make any progress at all. Explicitly nonblocking I/O is indicated

by the O_NONBLOCK flag in

filp->f_flags. The flag is defined in

<linux/fcntl.h>, which is automatically

included by <linux/fs.h>. The flag gets

its name from "open-nonblock,"

because it can be specified at open time (and originally could be

specified only there). If you browse the source code, you find some

references to an O_NDELAY flag; this is an

alternate name for O_NONBLOCK, accepted for

compatibility with System V code. The flag is cleared by default,

because the normal behavior of a process waiting for data is just to

sleep. In the case of a blocking operation, which is the default, the

following behavior should be implemented in order to adhere to the

standard semantics:

	If a process calls read but no data is (yet)

available, the process must block. The process is awakened as soon as

some data arrives, and that data is returned to the caller, even if

there is less than the amount requested in the

count argument to the method.

	[bookmark: linuxdrive3-CHP-6-ITERM-5244]If a process calls

write and there is no space in the buffer, the

process must block, and it must be on a different wait queue from the

one used for reading. When some data has been written to the hardware

device, and space becomes free in the output buffer, the process is

awakened and the write call succeeds, although

the data may be only partially written if there

isn't room in the buffer for the

count bytes that were requested.



Both these statements assume that there are

[bookmark: linuxdrive3-CHP-6-ITERM-5245]both

input and output buffers; in practice, almost every device driver has

them. The input buffer is required to avoid losing data that arrives

when nobody is reading. In contrast, data can't be

lost on write, because if the system call

doesn't accept data bytes, they remain in the

user-space buffer. Even so, the output buffer is almost always useful

for squeezing more performance out of the hardware.

[bookmark: linuxdrive3-CHP-6-ITERM-5246]
[bookmark: linuxdrive3-CHP-6-ITERM-5247][bookmark: linuxdrive3-CHP-6-ITERM-5248]The performance gain of

implementing an output buffer in the driver results from the reduced

number of context switches and user-level/kernel-level transitions.

Without an output buffer (assuming a slow device), only one or a few

characters are accepted by each system call, and while one process

sleeps in write, another process runs

(that's one context switch). When the first process

is awakened, it resumes (another context switch),

write returns (kernel/user transition), and the

process reiterates the system call to write more data (user/kernel

transition); the call blocks and the loop continues. The addition of

an output buffer allows the driver to accept larger chunks of data

with each write call, with a corresponding

increase in performance. If that buffer is big enough, the

write call succeeds on the first

attempt�the buffered data will be pushed out to the device

later�without control needing to go back to user space for a

second or third write call. The choice of a

suitable size for the output buffer is clearly device-specific.

We don't use an input buffer in

scull, because data is already available when

read is issued. Similarly, no output buffer is

used, because data is simply copied to the memory area associated

with the device. Essentially, the device is a

buffer, so the implementation of additional buffers would be

superfluous. We'll see the use of buffers in Chapter 10.

The behavior of read and

write is different if

O_NONBLOCK is specified. In this case, the calls

simply return -EAGAIN ("TRy it

again") if a process calls read

when no data is available or if it calls write

when there's no space in the buffer.

As you might expect, nonblocking operations return immediately,

allowing the application to poll for data. Applications must be

careful when using the stdio functions while

dealing with nonblocking files, because they can easily mistake a

nonblocking return for EOF. They always have to

check errno.

Naturally, O_NONBLOCK is meaningful in the

open method also. This happens when the call can

actually block for a long time; for example, when opening (for read

access) a FIFO that has no writers (yet), or accessing a disk file

with a pending lock. Usually, opening a device either succeeds or

fails, without the need to wait for external events. Sometimes,

however, opening the device requires a long initialization, and you

may choose to support O_NONBLOCK in your

open method by returning immediately with

-EAGAIN if the flag is set, after starting the

device initialization process. The driver may also implement a

blocking open to support access policies in a

way similar to file locks. We'll see one such

implementation in Section 6.6.3 later in this chapter.

Some drivers may also implement special semantics for

O_NONBLOCK; for example, an open of a tape device

usually blocks until a tape has been inserted. If the tape drive is

opened with O_NONBLOCK, the open succeeds

immediately regardless of whether the media is present or not.

Only the read, write, and

open file operations are affected by the

nonblocking flag.

[bookmark: linuxdrive3-CHP-6-SECT-2.4]
6.2.4. A Blocking I/O Example

Finally, we get to an example of a [bookmark: linuxdrive3-CHP-6-ITERM-5249] [bookmark: linuxdrive3-CHP-6-ITERM-5250]real driver method that implements

blocking I/O. This example is taken from the

scullpipe driver; it is a special form of

scull that implements a pipe-like device.

Within a driver, a process blocked in a read

call is awakened when data arrives; usually the hardware issues an

interrupt to signal such an event, and the driver awakens waiting

processes as part of handling the interrupt. The

scullpipe driver works differently, so that it

can be run without requiring any particular hardware or an interrupt

handler. We chose to use another process to generate the data and

wake the reading process; similarly, reading processes are used to

wake writer processes that are waiting for buffer space to become

available.

The device driver uses a device structure that contains two wait

queues and a buffer. The size of the buffer is configurable in the

usual ways (at compile time, load time, or runtime).

struct scull_pipe {

        wait_queue_head_t inq, outq;       /* read and write queues */

        char *buffer, *end;                /* begin of buf, end of buf */

        int buffersize;                    /* used in pointer arithmetic */

        char *rp, *wp;                     /* where to read, where to write */

        int nreaders, nwriters;            /* number of openings for r/w */

        struct fasync_struct *async_queue; /* asynchronous readers */

        struct semaphore sem;              /* mutual exclusion semaphore */

        struct cdev cdev;                  /* Char device structure */

};
 

The read implementation manages both blocking

and nonblocking input and looks like this:

static ssize_t scull_p_read (struct file *filp, char _ _user *buf, size_t count,

                loff_t *f_pos)

{

    struct scull_pipe *dev = filp->private_data;



    if (down_interruptible(&dev->sem))

        return -ERESTARTSYS;



    while (dev->rp =  = dev->wp) { /* nothing to read */

        up(&dev->sem); /* release the lock */

        if (filp->f_flags & O_NONBLOCK)

            return -EAGAIN;

        PDEBUG("\"%s\" reading: going to sleep\n", current->comm);

        if (wait_event_interruptible(dev->inq, (dev->rp != dev->wp)))

            return -ERESTARTSYS; /* signal: tell the fs layer to handle it */

        /* otherwise loop, but first reacquire the lock */

        if (down_interruptible(&dev->sem))

            return -ERESTARTSYS;

    }

    /* ok, data is there, return something */

    if (dev->wp > dev->rp)

        count = min(count, (size_t)(dev->wp - dev->rp));

    else /* the write pointer has wrapped, return data up to dev->end */

        count = min(count, (size_t)(dev->end - dev->rp));

    if (copy_to_user(buf, dev->rp, count)) {

        up (&dev->sem);

        return -EFAULT;

    }

    dev->rp += count;

    if (dev->rp =  = dev->end)

        dev->rp = dev->buffer; /* wrapped */

    up (&dev->sem);



    /* finally, awake any writers and return */

    wake_up_interruptible(&dev->outq);

    PDEBUG("\"%s\" did read %li bytes\n",current->comm, (long)count);

    return count;

}
 

As you can see, we left some PDEBUG statements in

the code. When you compile the driver, you can enable messaging to

make it easier to follow the interaction of different processes.

Let us look carefully at how scull_p_read

handles waiting for data. The while loop tests the

buffer with the device semaphore held. If there is data there, we

know we can return it to the user immediately without sleeping, so

the entire body of the loop is skipped. If, instead, the buffer is

empty, we must sleep. Before we can do that, however, we must drop

the device semaphore; if we were to sleep holding it, no writer would

ever have the opportunity to wake us up. Once the semaphore has been

dropped, we make a quick check to see if the user has requested

non-blocking I/O, and return if so. Otherwise, it is time to call

wait_event_interruptible.

Once we get past that call, something has woken us up, but we do not

know what. One possibility is that the process received a signal.

[bookmark: linuxdrive3-CHP-6-ITERM-5251]The

if statement that contains the

wait_event_interruptible call checks for this

case. This statement ensures the proper and expected reaction to

signals, which could have been responsible for waking up the process

(since we were in an interruptible sleep). If a signal has arrived

and it has not been blocked by the process, the proper behavior is to

let upper layers of the kernel handle the event. To this end, the

driver returns -ERESTARTSYS to the caller; this

value is used internally by the virtual filesystem (VFS) layer, which

either restarts the system call or returns -EINTR

to user space. We use the same type of check to deal with signal

handling for every read and

write implementation.

However, even in the absence of a signal, we do not yet know for sure

that there is data there for the taking. Somebody else could have

been waiting for data as well, and they might win the race and get

the data first. So we must acquire the device semaphore again; only

then can we test the read buffer again (in the

while loop) and truly know that we can return the

data in the buffer to the user. The end result of all this code is

that, when we exit from the while loop, we know

that the semaphore is held and the buffer contains data that we can

use.

Just for completeness, let us note that

scull_p_read can sleep in another spot after we

take the device semaphore: the call to

copy_to_user. If scull

sleeps while copying data between kernel and user space, it sleeps

with the device semaphore held. Holding the semaphore in this case is

justified since it does not deadlock the system (we know that the

kernel will perform the copy to user space and wakes us up without

trying to lock the same semaphore in the process), and since it is

important that the device memory array not change while the driver

sleeps.

[bookmark: linuxdrive3-CHP-6-SECT-2.5]
6.2.5. Advanced Sleeping

Many drivers are able to meet their sleeping requirements with the

functions we have covered so far. There are situations, however, that

call for a deeper understanding of how the Linux wait queue mechanism

works. Complex locking or performance requirements can force a driver

to use lower-level functions to effect a sleep. In this section, we

look at the lower level to get an understanding of what is really

going on when a process sleeps.

[bookmark: linuxdrive3-CHP-6-SECT-2.5.1]
6.2.5.1 How a process sleeps

If you look inside <linux/wait.h>, you see

that the data structure behind the

wait_queue_head_t type is quite simple; it

consists of a spinlock and a linked list. What goes on to that list

is a wait queue entry, which is declared with the type

wait_queue_t. This structure contains information

about the sleeping process and exactly how it would like to be woken

up.

The first step in putting a process to sleep is usually the

allocation and initialization of a wait_queue_t

structure, followed by its addition to the proper wait queue. When

everything is in place, whoever is charged with doing the wakeup will

be able to find the right processes.

The next step is to set the state of the process to mark it as being

asleep. There are several task states defined in

<linux/sched.h>.

TASK_RUNNING means that the process is able to

run, although it is not necessarily executing in the processor at any

specific moment. There are two states that indicate that a process is

asleep: TASK_INTERRUPTIBLE and

TASK_UNINTERRUPTIBLE; they correspond, of course,

to the two types of sleep. The other states are not normally of

concern to driver writers.

In the 2.6 kernel, it is not normally necessary for driver code to

manipulate the process state directly. However, should you need to do

so, the call to use is:

void set_current_state(int new_state);
 

In older code, you often see something like this instead:

current->state = TASK_INTERRUPTIBLE;
 

But changing current directly in that manner is

discouraged; such code breaks easily when data structures change. The

above code does show, however, that changing the current state of a

process does not, by itself, put it to sleep. By changing the current

state, you have changed the way the scheduler treats a process, but

you have not yet yielded the processor.

Giving up the processor is the final step, but there is one thing to

do first: you must check the condition you are sleeping for first.

Failure to do this check invites a race condition; what happens if

the condition came true while you were engaged in the above process,

and some other thread has just tried to wake you up? You could miss

the wakeup altogether and sleep longer than you had intended.

Consequently, down inside code that sleeps, you typically see

something such as:

if (!condition)

    schedule(  );
 

By checking our condition after setting the

process state, we are covered against all possible sequences of

events. If the condition we are waiting for had come about before

setting the process state, we notice in this check and not actually

sleep. If the wakeup happens thereafter, the process is made runnable

whether or not we have actually gone to sleep yet.

The call to schedule is, of course, the way to

invoke the scheduler and yield the CPU. Whenever you call this

function, you are telling the kernel to consider which process should

be running and to switch control to that process if necessary. So you

never know how long it will be before schedule

returns to your code.

After the if test and possible call to (and return

from) schedule, there is some cleanup to be

done. Since the code no longer intends to sleep, it must ensure that

the task state is reset to TASK_RUNNING. If the

code just returned from schedule, this step is

unnecessary; that function does not return until the process is in a

runnable state. But if the call to schedule was

skipped because it was no longer necessary to sleep, the process

state will be incorrect. It is also necessary to remove the process

from the wait queue, or it may be awakened more than once.

[bookmark: linuxdrive3-CHP-6-SECT-2.5.2]
6.2.5.2 Manual sleeps

In previous versions of[bookmark: linuxdrive3-CHP-6-ITERM-5252]
[bookmark: linuxdrive3-CHP-6-ITERM-5253]

the Linux kernel, nontrivial sleeps required the programmer to handle

all of the above steps manually. It was a tedious process involving a

fair amount of error-prone boilerplate code. Programmers can still

code a manual sleep in that manner if they want to;

<linux/sched.h> contains all the requisite

definitions, and the kernel source abounds with examples. There is an

easier way, however.

The first step is the creation and initialization of a

[bookmark: linuxdrive3-CHP-6-ITERM-5254] [bookmark: linuxdrive3-CHP-6-ITERM-5255]
[bookmark: linuxdrive3-CHP-6-ITERM-5256]wait

queue entry. That is usually done with this macro:

DEFINE_WAIT(my_wait);
 

in which name is the name of the wait queue entry

variable. You can also do things in two steps:

wait_queue_t my_wait;

init_wait(&my_wait);
 

But it is usually easier to put a DEFINE_WAIT line

at the top of the loop that implements your sleep.

The next step is to add your wait queue entry to the queue, and set

the process state. Both of those tasks are handled by this function:

void prepare_to_wait(wait_queue_head_t *queue,

                     wait_queue_t *wait,

                     int state);
 

Here, queue and wait are the

wait queue head and the process entry, respectively.

state is the new state for the process; it should

be either TASK_INTERRUPTIBLE (for interruptible

sleeps, which is usually what you want) or

TASK_UNINTERRUPTIBLE (for uninterruptible

sleeps)[bookmark: linuxdrive3-CHP-6-ITERM-5257].

After calling prepare_to_wait, the process can

call schedule�after it has checked to be

sure it still needs to wait. Once schedule

returns, it is cleanup time. That task, too, is handled by a special

function:

void finish_wait(wait_queue_head_t *queue, wait_queue_t *wait);
 

Thereafter, your code can test its state and see if it needs to wait

again.

We are far past due for an example. Previously we looked at the

read method for scullpipe,

which uses wait_event. The

write method in the same driver does its waiting

with prepare_to_wait and

finish_wait, instead. Normally you would not mix

methods within a single driver in this way, but we did so in order to

be able to show both ways of handling sleeps.

First, for completeness, let's look at the

write method itself:

/* How much space is free? */

static int spacefree(struct scull_pipe *dev)

{

    if (dev->rp =  = dev->wp)

        return dev->buffersize - 1;

    return ((dev->rp + dev->buffersize - dev->wp) % dev->buffersize) - 1;

}



static ssize_t scull_p_write(struct file *filp, const char _ _user *buf, size_t count,

                loff_t *f_pos)

{

    struct scull_pipe *dev = filp->private_data;

    int result;



    if (down_interruptible(&dev->sem))

        return -ERESTARTSYS;



    /* Make sure there's space to write */

    result = scull_getwritespace(dev, filp);

    if (result)

        return result; /* scull_getwritespace called up(&dev->sem) */



    /* ok, space is there, accept something */

    count = min(count, (size_t)spacefree(dev));

    if (dev->wp >= dev->rp)

        count = min(count, (size_t)(dev->end - dev->wp)); /* to end-of-buf */

    else /* the write pointer has wrapped, fill up to rp-1 */

        count = min(count, (size_t)(dev->rp - dev->wp - 1));

    PDEBUG("Going to accept %li bytes to %p from %p\n", (long)count, dev->wp, buf);

    if (copy_from_user(dev->wp, buf, count)) {

        up (&dev->sem);

        return -EFAULT;

    }

    dev->wp += count;

    if (dev->wp =  = dev->end)

        dev->wp = dev->buffer; /* wrapped */

    up(&dev->sem);



    /* finally, awake any reader */

    wake_up_interruptible(&dev->inq);  /* blocked in read(  ) and select(  ) */



    /* and signal asynchronous readers, explained late in chapter 5 */

    if (dev->async_queue)

        kill_fasync(&dev->async_queue, SIGIO, POLL_IN);

    PDEBUG("\"%s\" did write %li bytes\n",current->comm, (long)count);

    return count;

}
 

This code looks similar to the read method,

except that we have pushed the code that sleeps into a separate

function called

scull_getwritespace[bookmark: linuxdrive3-CHP-6-ITERM-5258]
[bookmark: linuxdrive3-CHP-6-ITERM-5259].

Its job is to ensure that there is space in the buffer for new data,

sleeping if need be until that space comes available. Once the space

is there, scull_p_write can simply copy the

user's data there, adjust the pointers, and wake up

any processes that may have been waiting to read data.

The code that handles

the[bookmark: linuxdrive3-CHP-6-ITERM-5260]

actual sleep is:

/* Wait for space for writing; caller must hold device semaphore.  On

 * error the semaphore will be released before returning. */

static int scull_getwritespace(struct scull_pipe *dev, struct file *filp)

{

    while (spacefree(dev) =  = 0) { /* full */

        DEFINE_WAIT(wait);

        

        up(&dev->sem);

        if (filp->f_flags & O_NONBLOCK)

            return -EAGAIN;

        PDEBUG("\"%s\" writing: going to sleep\n",current->comm);

        prepare_to_wait(&dev->outq, &wait, TASK_INTERRUPTIBLE);

        if (spacefree(dev) =  = 0)

            schedule(  );

        finish_wait(&dev->outq, &wait);

        if (signal_pending(current))

            return -ERESTARTSYS; /* signal: tell the fs layer to handle it */

        if (down_interruptible(&dev->sem))

            return -ERESTARTSYS;

    }

    return 0;

}
 

Note once again the containing while loop. If

space is available without sleeping, this function simply returns.

Otherwise, it must drop the device semaphore and wait. The code uses

DEFINE_WAIT to set up a wait queue entry and

prepare_to_wait to get ready for the actual

sleep. Then comes the obligatory check on the buffer; we must handle

the case in which space becomes available in the buffer after we have

entered the while loop (and dropped the semaphore)

but before we put ourselves onto the wait queue. Without that check,

if the reader processes were able to completely empty the buffer in

that time, we could miss the only wakeup we would ever get and sleep

forever. Having satisfied ourselves that we must sleep, we can call

schedule.

It is worth looking again at this case: what happens if the wakeup

happens between the test in the if statement and

the call to schedule? In that case, all is well.

The wakeup resets the process state to

TASK_RUNNING and schedule

returns�although not necessarily right away. As long as the

test happens after the process has put itself on the wait queue and

changed its state, things will work.

To finish up, we call finish_wait. The call to

signal_pending tells us whether we were awakened

by a signal; if so, we need to return to the user and let them try

again later. Otherwise, we reacquire the semaphore, and test again

for free space as usual.

[bookmark: linuxdrive3-CHP-6-SECT-2.5.3]
6.2.5.3 Exclusive waits

We have seen [bookmark: linuxdrive3-CHP-6-ITERM-5261]that when a process calls

wake_up[bookmark: linuxdrive3-CHP-6-ITERM-5262]
[bookmark: linuxdrive3-CHP-6-ITERM-5263]

on a wait queue, all processes waiting on that queue are made

runnable. In many cases, that is the correct behavior. In others,

however, it is possible to know ahead of time that only one of the

processes being awakened will succeed in obtaining the desired

resource, and the rest will simply have to sleep again. Each one of

those processes, however, has to obtain the processor, contend for

the resource (and any governing locks), and explicitly go back to

sleep. If the number of processes in the wait queue is large, this

"thundering herd" behavior can

seriously degrade the performance of the system.

In response to real-world thundering herd problems, the

kernel[bookmark: linuxdrive3-CHP-6-ITERM-5264] developers added an

"exclusive wait" option to the

kernel. An exclusive wait acts very much like a normal sleep, with

two important differences:

	When a wait queue entry has the

WQ_FLAG_EXCLUSIVE[bookmark: linuxdrive3-CHP-6-ITERM-5265] flag set, it is added to the end of

the wait queue. Entries without that flag are, instead, added to the

beginning.

	When wake_up is called on a wait queue, it stops

after waking the first process that has the

WQ_FLAG_EXCLUSIVE flag set.



The end result is that processes performing exclusive waits are

awakened one at a time, in an orderly manner, and do not create

thundering herds. The kernel still wakes up all nonexclusive waiters

every time, however.

Employing exclusive waits within a driver is worth considering if two

conditions are met: you expect significant contention for a resource,

and waking a single process is sufficient to completely consume the

resource when it becomes available. Exclusive waits work well for the

Apache web server, for example; when a new connection comes in,

exactly one of the (often many) Apache processes on the system should

wake up to deal with it. We did not use exclusive waits in the

scullpipe driver, however; it is rare to see

readers contending for data (or writers for buffer space), and we

cannot know that one reader, once awakened, will consume all of the

available data.

Putting a process into an interruptible wait is a simple matter of

calling prepare_to_wait_exclusive:

void prepare_to_wait_exclusive(wait_queue_head_t *queue,

                               wait_queue_t *wait,

                               int state);
 

This call, when used in place of

prepare_to_wait, sets the

"exclusive" flag in the wait queue

entry and adds the process to the end of the wait queue. Note that

there is no way to perform exclusive waits with

wait_event and its variants.

[bookmark: linuxdrive3-CHP-6-SECT-2.5.4]
6.2.5.4 The details of waking up

The view we have presented of the wakeup process is simpler than what

really happens inside the kernel. The actual behavior that results

when a process is awakened is controlled by a function in the wait

queue entry. The default wakeup function[3] sets the process into a runnable state and, possibly,

performs a context switch to that process if it has a higher

priority. Device drivers should never need to supply a different wake

function; should yours prove to be the exception, see

<linux/wait.h> for information on how to

do it.
[bookmark: linuxdrive3-CHP-6-FNOTE-3][3] It has the

imaginative name default_wake_function.


We have not yet seen all the variations of

wake_up. Most driver writers never need the

others, but, for completeness, here is the full set:



	wake_up(wait_queue_head_t *queue);



	wake_up_interruptible(wait_queue_head_t *queue);

	
wake_up awakens every process on the queue that

is not in an exclusive wait, and exactly one exclusive waiter, if it

exists. wake_up_interruptible does the same,

with the exception that it skips over processes in an uninterruptible

sleep. These functions can, before returning, cause one or more of

the processes awakened to be scheduled (although this does not happen

if they are called from an atomic context).





	wake_up_nr(wait_queue_head_t *queue, int nr);



	wake_up_interruptible_nr(wait_queue_head_t *queue, int nr);

	
These functions perform similarly to wake_up,

except they can awaken up to nr exclusive waiters,

instead of just one. Note that passing 0 is interpreted as asking for

all of the exclusive waiters to be awakened,

rather than none of them.





	wake_up_all(wait_queue_head_t *queue);



	wake_up_interruptible_all(wait_queue_head_t *queue);

	
This form of wake_up awakens all processes

whether they are performing an exclusive wait or not (though the

interruptible form still skips processes doing uninterruptible

waits).





	wake_up_interruptible_sync(wait_queue_head_t *queue);

	
Normally, a process that is awakened may preempt the current process

and be scheduled into the processor before

wake_up returns. In other words, a call to

wake_up may not be atomic. If the process

calling wake_up is running in an atomic context

(it holds a spinlock, for example, or is an interrupt handler), this

rescheduling does not happen. Normally, that protection is adequate.

If, however, you need to explicitly ask to not be scheduled out of

the processor at this time, you can use the

"sync" variant of

wake_up_interruptible. This function is most

often used when the caller is about to reschedule anyway, and it is

more efficient to simply finish what little work remains first.





If all of the above is not entirely clear on a first reading,

don't worry. Very few drivers ever need to call

anything except wake_up_interruptible.

[bookmark: linuxdrive3-CHP-6-SECT-2.5.5]
6.2.5.5 Ancient history: sleep_on

If you spend any time digging through the kernel source, you will

likely encounter two functions that we have neglected to discuss so

far:

void sleep_on(wait_queue_head_t *queue);

void interruptible_sleep_on(wait_queue_head_t *queue);
 

As you might expect, these functions unconditionally put the current

process to sleep on the given queue. These

functions are strongly deprecated, however, and you should never use

them. The problem is obvious if you think about it:

sleep_on[bookmark: linuxdrive3-CHP-6-ITERM-5266]
[bookmark: linuxdrive3-CHP-6-ITERM-5267]

offers no way to protect against race conditions. There is always a

window between when your code decides it must sleep and when

sleep_on actually effects that sleep. A wakeup

that arrives during that window is missed. For this reason, code that

calls sleep_on is never entirely safe.

Current plans call for sleep_on and its variants

(there are a couple of time-out forms we haven't

shown) to be removed from the kernel in the not-too-distant future.

[bookmark: linuxdrive3-CHP-6-SECT-2.6]
6.2.6. Testing the Scullpipe Driver

We have seen

how[bookmark: linuxdrive3-CHP-6-ITERM-5268] the scullpipe

driver implements blocking I/O. If you wish to try it out, the source

to this driver can be found with the rest of the book examples.

Blocking I/O in action can be seen by opening two windows. The first

can run a command such as cat
/dev/scullpipe. If you then, in another window,

copy a file to /dev/scullpipe, you should see

that file's contents appear in the first window.

Testing nonblocking activity is trickier, because the conventional

programs available to a shell don't perform

nonblocking operations. The

misc-progs[bookmark: linuxdrive3-CHP-6-ITERM-5269]
[bookmark: linuxdrive3-CHP-6-ITERM-5270] source directory contains the

following simple program, called

nbtest[bookmark: linuxdrive3-CHP-6-ITERM-5271]
[bookmark: linuxdrive3-CHP-6-ITERM-5272],

for testing nonblocking operations. All it does is copy its input to

its output, using nonblocking I/O and delaying between retries. The

delay time is passed on the command line and is one second by

default.

int main(int argc, char **argv)

{

    int delay = 1, n, m = 0;



    if (argc > 1)

        delay=atoi(argv[1]);

    fcntl(0, F_SETFL, fcntl(0,F_GETFL) | O_NONBLOCK); /* stdin */

    fcntl(1, F_SETFL, fcntl(1,F_GETFL) | O_NONBLOCK); /* stdout */



    while (1) {

        n = read(0, buffer, 4096);

        if (n >= 0)

            m = write(1, buffer, n);

        if ((n < 0 || m < 0) && (errno != EAGAIN))

            break;

        sleep(delay);

    }

    perror(n < 0 ? "stdin" : "stdout");

    exit(1);

}
 

If you run this program under a process tracing utility such

as[bookmark: linuxdrive3-CHP-6-ITERM-5273]
[bookmark: linuxdrive3-CHP-6-ITERM-5274]
strace, you can see the success or failure of

each operation,[bookmark: linuxdrive3-CHP-6-ITERM-5275] [bookmark: linuxdrive3-CHP-6-ITERM-5276] [bookmark: linuxdrive3-CHP-6-ITERM-5277] [bookmark: linuxdrive3-CHP-6-ITERM-5278] [bookmark: linuxdrive3-CHP-6-ITERM-5279] depending on[bookmark: linuxdrive3-CHP-6-ITERM-5280] [bookmark: linuxdrive3-CHP-6-ITERM-5281] whether data is

available when the operation is tried.







[bookmark: linuxdrive3-CHP-6-SECT-3]
6.3. poll and select

Applications that use nonblocking I/O [bookmark: linuxdrive3-CHP-6-ITERM-5282]
[bookmark: linuxdrive3-CHP-6-ITERM-5283] [bookmark: linuxdrive3-CHP-6-ITERM-5284]
[bookmark: linuxdrive3-CHP-6-ITERM-5285] [bookmark: linuxdrive3-CHP-6-ITERM-5286]
[bookmark: linuxdrive3-CHP-6-ITERM-5287]often

use the poll, select, and

epoll system calls as well.

poll, select, and

epoll have essentially the same functionality:

each allow a process to determine whether it can read from or write

to one or more open files without blocking. These calls can also

block a process until any of a given set of file descriptors becomes

available for reading or writing. Therefore, they are often used in

applications that must use multiple input or output streams without

getting stuck on any one of them. The same functionality is offered

by multiple functions, because two were implemented in Unix almost at

the same time by two different groups: select

was introduced in BSD Unix, whereas poll was the

System V solution. The epoll call[4] was added in 2.5.45 as a way of making the polling

function scale to thousands of file descriptors.
[bookmark: linuxdrive3-CHP-6-FNOTE-4][4] Actually, epoll is a set of three calls

that together can be used to achieve the polling functionality. For

our purposes, though, we can think of it as a single call.


Support for any of these calls requires support from the device

driver. This support (for all three calls) is provided through the

driver's poll method. This

method has the following prototype:

unsigned int (*poll) (struct file *filp, poll_table *wait);
 

The driver method is called whenever the user-space program performs

a poll, select, or

epoll system call involving a file descriptor

associated with the driver. The device method is in charge of these

two steps:

	[bookmark: linuxdrive3-CHP-6-ITERM-5288]
[bookmark: linuxdrive3-CHP-6-ITERM-5289]Call

poll_wait on one or more wait queues that could

indicate a change in the poll status. If no file descriptors are

currently available for I/O, the kernel causes the process to wait on

the wait queues for all file descriptors passed to the system call.


	Return a bit mask describing the operations (if any) that could be

immediately performed without blocking.





Both of these operations are usually straightforward and tend to look

very similar from one driver to the next. They rely, however, on

information that only the driver can provide and, therefore, must be

implemented individually by each driver.

[bookmark: linuxdrive3-CHP-6-ITERM-5290]
[bookmark: linuxdrive3-CHP-6-ITERM-5291][bookmark: linuxdrive3-CHP-6-ITERM-5292]The poll_table

structure, the second argument to the poll

method, is used within the kernel to implement the

poll, select, and

epoll calls; it is declared in

<linux/poll.h>, which must be included by

the driver source. Driver writers do not need to know anything about

its internals and must use it as an opaque object; it is passed to

the driver method so that the driver can load it with every wait

queue that could wake up the process and change the status of the

poll operation. The driver adds a wait queue to

the poll_table structure by calling the function

poll_wait:

 void poll_wait (struct file *, wait_queue_head_t *, poll_table *);
 

The second task performed by the poll method is

returning the bit mask describing which operations could be completed

immediately; this is also straightforward. For example, if the device

has data available, a read would complete

without sleeping; the poll method should

indicate this state of affairs. Several flags (defined via

<linux/poll.h>) are used to indicate the

possible operations:

[bookmark: linuxdrive3-CHP-6-ITERM-5293][bookmark: linuxdrive3-CHP-6-ITERM-5294][bookmark: linuxdrive3-CHP-6-ITERM-5295][bookmark: linuxdrive3-CHP-6-ITERM-5296][bookmark: linuxdrive3-CHP-6-ITERM-5297][bookmark: linuxdrive3-CHP-6-ITERM-5298][bookmark: linuxdrive3-CHP-6-ITERM-5299][bookmark: linuxdrive3-CHP-6-ITERM-5300][bookmark: linuxdrive3-CHP-6-ITERM-5301][bookmark: linuxdrive3-CHP-6-ITERM-5302][bookmark: linuxdrive3-CHP-6-ITERM-5303][bookmark: linuxdrive3-CHP-6-ITERM-5304][bookmark: linuxdrive3-CHP-6-ITERM-5305][bookmark: linuxdrive3-CHP-6-ITERM-5306][bookmark: linuxdrive3-CHP-6-ITERM-5307][bookmark: linuxdrive3-CHP-6-ITERM-5308][bookmark: linuxdrive3-CHP-6-ITERM-5309][bookmark: linuxdrive3-CHP-6-ITERM-5310]

	POLLIN

	
[bookmark: linuxdrive3-CHP-6-ITERM-5293]
[bookmark: linuxdrive3-CHP-6-ITERM-5294]This

bit must be set if the device can be read without blocking.





	POLLRDNORM

	
[bookmark: linuxdrive3-CHP-6-ITERM-5295]
[bookmark: linuxdrive3-CHP-6-ITERM-5296]This

bit must be set if "normal" data is

available for reading. A readable device returns

(POLLIN |
POLLRDNORM).





	POLLRDBAND

	
[bookmark: linuxdrive3-CHP-6-ITERM-5297]
[bookmark: linuxdrive3-CHP-6-ITERM-5298]This

bit indicates that out-of-band data is available for reading from the

device. It is currently used only in one place in the Linux kernel

(the DECnet code) and is not generally applicable to device drivers.





	POLLPRI

	
[bookmark: linuxdrive3-CHP-6-ITERM-5299]
[bookmark: linuxdrive3-CHP-6-ITERM-5300]High-priority

data (out-of-band) can be read without blocking. This bit causes

select to report that an exception condition

occurred on the file, because select reports

out-of-band data as an exception condition.





	POLLHUP

	
[bookmark: linuxdrive3-CHP-6-ITERM-5301]
[bookmark: linuxdrive3-CHP-6-ITERM-5302]When

a process reading this device sees end-of-file, the driver must set

POLLHUP (hang-up). A process calling

select is told that the device is readable, as

dictated by the select functionality.





	POLLERR

	
[bookmark: linuxdrive3-CHP-6-ITERM-5303]
[bookmark: linuxdrive3-CHP-6-ITERM-5304]An

error condition has occurred on the device. When

poll is invoked, the device is reported as both

readable and writable, since both read and

write return an error code without blocking.





	POLLOUT

	
[bookmark: linuxdrive3-CHP-6-ITERM-5305]
[bookmark: linuxdrive3-CHP-6-ITERM-5306]This

bit is set in the return value if the device can be written to

without blocking.





	POLLWRNORM

	
[bookmark: linuxdrive3-CHP-6-ITERM-5307]
[bookmark: linuxdrive3-CHP-6-ITERM-5308]This

bit has the same meaning as POLLOUT, and sometimes

it actually is the same number. A writable device returns

(POLLOUT | POLLWRNORM).





	POLLWRBAND

	
[bookmark: linuxdrive3-CHP-6-ITERM-5309]
[bookmark: linuxdrive3-CHP-6-ITERM-5310]Like

POLLRDBAND, this bit means that data with nonzero

priority can be written to the device. Only the datagram

implementation of poll uses this bit, since a

datagram can transmit out-of-band data.





It's worth repeating that

POLLRDBAND and POLLWRBAND are

meaningful only with file descriptors associated with sockets: device

drivers won't normally use these flags.

The description of poll takes up a lot of space

for something that is relatively simple to use in practice. Consider

the scullpipe implementation of the

poll method:

static unsigned int scull_p_poll(struct file *filp, poll_table *wait)

{

    struct scull_pipe *dev = filp->private_data;

    unsigned int mask = 0;



    /*

     * The buffer is circular; it is considered full

     * if "wp" is right behind "rp" and empty if the

     * two are equal.

     */

    down(&dev->sem);

    poll_wait(filp, &dev->inq,  wait);

    poll_wait(filp, &dev->outq, wait);

    if (dev->rp != dev->wp)

        mask |= POLLIN | POLLRDNORM;    /* readable */

    if (spacefree(dev))

        mask |= POLLOUT | POLLWRNORM;   /* writable */

    up(&dev->sem);

    return mask;

}
 

This code simply adds the two scullpipe wait

queues to the poll_table, then sets the

appropriate mask bits depending on whether data can be read or

written.

[bookmark: linuxdrive3-CHP-6-ITERM-5311]The poll code as

shown is missing end-of-file support, because

scullpipe does not support an end-of-file

condition. For most real devices, the poll

method should return POLLHUP if no more data is

(or will become) available. If the caller used the

select system call, the file is reported as

readable. Regardless of whether poll or

select is used, the application knows that it

can call read without waiting forever, and the

read method returns, 0 to

signal end-of-file.

[bookmark: linuxdrive3-CHP-6-ITERM-5312]With real FIFOs, for example, the reader

sees an end-of-file when all the writers close the file, whereas in

scullpipe the reader never sees end-of-file. The

behavior is different because a FIFO is intended to be a

communication channel between two processes, while

scullpipe is a trash can where everyone can put

data as long as there's at least one reader.

Moreover, it makes no sense to reimplement what is already available

in the kernel, so we chose to implement a different behavior in our

example.

Implementing end-of-file in the same way as FIFOs do would mean

checking dev->nwriters, both in

read and in poll, and

reporting end-of-file (as just described) if no process has the

device opened for writing. Unfortunately, though, with this

implementation, if a reader opened the scullpipe

device before the writer, it would see end-of-file without having a

chance to wait for data. The best way to fix this problem would be to

implement blocking within open like real FIFOs

do; this task is left as an exercise for the reader.

[bookmark: linuxdrive3-CHP-6-SECT-3.1]
6.3.1. Interaction with read and write

The purpose of the poll and

select calls is to determine in advance if an

I/O operation will block. In that respect, they complement

read and write. More

important, poll and select

are useful, because they let the application wait simultaneously for

several data streams, although we are not exploiting this feature in

the scull examples.

A correct implementation of the three calls is essential to make

applications work correctly: although the following rules have more

or less already been stated, we summarize them here.

[bookmark: linuxdrive3-CHP-6-SECT-3.1.1]
6.3.1.1 Reading data from the device

	[bookmark: linuxdrive3-CHP-6-ITERM-5313]
[bookmark: linuxdrive3-CHP-6-ITERM-5314][bookmark: linuxdrive3-CHP-6-ITERM-5315]If there is data in the input

buffer, the read call should return immediately,

with no noticeable delay, even if less data is available than the

application requested, and the driver is sure the remaining data will

arrive soon. You can always return less data than

you're asked for if this is convenient for any

reason (we did it in scull), provided you return

at least one byte. In this case, poll should

return POLLIN|POLLRDNORM.

	[bookmark: linuxdrive3-CHP-6-ITERM-5316]
[bookmark: linuxdrive3-CHP-6-ITERM-5317]If there is no data in the input

buffer, by default read must block until at

least one byte is there. If O_NONBLOCK is set, on

the other hand, read returns immediately with a

return value of -EAGAIN (although some old

versions of System V return 0 in this case). In

these cases, poll must report that the device is

unreadable until at least one byte arrives. As soon as there is some

data in the buffer, we fall back to the previous case.

	If we are at end-of-file, read should return

immediately with a return value of 0, independent

of O_NONBLOCK. poll should

report POLLHUP in this case.



[bookmark: linuxdrive3-CHP-6-SECT-3.1.2]
6.3.1.2 Writing to the device

	[bookmark: linuxdrive3-CHP-6-ITERM-5318]
[bookmark: linuxdrive3-CHP-6-ITERM-5319][bookmark: linuxdrive3-CHP-6-ITERM-5320][bookmark: linuxdrive3-CHP-6-ITERM-5321]If there is space in the output buffer,

write should return without delay. It can accept

less data than the call requested, but it must accept at least one

byte. In this case, poll reports that the device

is writable by returning POLLOUT|POLLWRNORM.

	If the output buffer is full, by default write

blocks until some space is freed. If O_NONBLOCK is

set, write returns immediately with a return

value of -EAGAIN (older System V Unices returned

0). In these cases, poll

should report that the file is not writable. If, on the other hand,

the device is not able to accept any more data,

write returns -ENOSPC

("No space left on device"),

independently of the setting of O_NONBLOCK.

	Never make a write call wait for data

transmission before returning, even if O_NONBLOCK

is clear. This is because many applications use

select to find out whether a

write will block. If the device is reported as

writable, the call must not block. If the program using the device

wants to ensure that the data it enqueues in the output buffer is

actually transmitted, the driver must provide an

fsync method. For instance, a removable device

should have an fsync entry point.



Although this is a good set of general rules, one should also

recognize that each device is unique and that sometimes the rules

must be bent slightly. For example, record-oriented devices (such as

tape drives) cannot execute partial writes.

[bookmark: linuxdrive3-CHP-6-SECT-3.1.3]
6.3.1.3 Flushing pending output

[bookmark: linuxdrive3-CHP-6-ITERM-5322]
[bookmark: linuxdrive3-CHP-6-ITERM-5323]
[bookmark: linuxdrive3-CHP-6-ITERM-5324]
[bookmark: linuxdrive3-CHP-6-ITERM-5325] [bookmark: linuxdrive3-CHP-6-ITERM-5326][bookmark: linuxdrive3-CHP-6-ITERM-5327][bookmark: linuxdrive3-CHP-6-ITERM-5328][bookmark: linuxdrive3-CHP-6-ITERM-5329][bookmark: linuxdrive3-CHP-6-ITERM-5330]We've seen how

the write method by itself

doesn't account for all data output needs. The

fsync function, invoked by the system call of

the same name, fills the gap. This method's

prototype is

 int (*fsync) (struct file *file, struct dentry *dentry, int datasync);
 

[bookmark: linuxdrive3-CHP-6-ITERM-5331]If

some application ever needs to be assured that data has been sent to

the device, the fsync method must be implemented

regardless of whether O_NONBLOCK is set. A call to

fsync should return only when the device has

been completely flushed (i.e., the output buffer is empty), even if

that takes some time. The datasync argument is

used to distinguish between the fsync and

fdatasync system calls; as such, it is only of

interest to filesystem code and can be ignored by drivers.

[bookmark: linuxdrive3-CHP-6-ITERM-5332]
[bookmark: linuxdrive3-CHP-6-ITERM-5333]The

fsync method has no unusual features. The call

isn't time critical, so every device driver can

implement it to the author's taste. Most of the

time, char drivers just have a NULL pointer in

their fops. Block devices, on the other hand,

always implement the method with the general-purpose

block_fsync, which, in turn, flushes all the

blocks of the device, waiting for I/O to complete.

[bookmark: linuxdrive3-CHP-6-SECT-3.2]
6.3.2. The Underlying Data Structure

[bookmark: linuxdrive3-CHP-6-ITERM-5334][bookmark: linuxdrive3-CHP-6-ITERM-5335][bookmark: linuxdrive3-CHP-6-ITERM-5336]The actual implementation of the

poll and select system

calls is reasonably simple, for those who are interested in how it

works; epoll is a bit more complex but is built

on the same mechanism. Whenever a user application calls

poll, select, or

epoll_ctl,[5] the kernel

invokes the poll method of all files referenced

by the system call, passing the same poll_table to

each of them. The poll_table structure is just a

wrapper around a function that builds the actual data structure. That

structure, for poll and

select, is a linked list of memory pages

containing poll_table_entry structures. Each

poll_table_entry holds the

struct file and

wait_queue_head_t pointers passed to

poll_wait, along with an associated wait queue

entry. The call to poll_wait sometimes also adds

the process to the given wait queue. The whole structure must be

maintained by the kernel so that the process can be removed from all

of those queues before poll or

select returns.
[bookmark: linuxdrive3-CHP-6-FNOTE-5][5] This is the function

that sets up the internal data structure for future calls to

epoll_wait.


If none of the drivers being polled indicates that I/O can occur

without blocking, the poll call simply sleeps

until one of the (perhaps many) wait queues it is on wakes it up.

What's interesting in the implementation of

poll is that the driver's

poll method may be called with a

NULL pointer as a poll_table

argument. This situation can come about for a couple of reasons. If

the application calling poll has provided a

timeout value of 0 (indicating that no wait should

be done), there is no reason to accumulate wait queues, and the

system simply does not do it. The poll_table

pointer is also set to NULL immediately after any

driver being polled indicates that I/O is

possible. Since the kernel knows at that point that no wait will

occur, it does not build up a list of wait queues.

When the poll call completes, the

poll_table structure is deallocated, and all wait

queue entries previously added to the poll table (if any) are removed

from the table and their wait queues.

We tried to show the data structures involved in polling in Figure 6-1; the figure is a

simplified representation of the real data structures, because it

ignores the multipage nature of a poll table and disregards the file

pointer that is part of each poll_table_entry. The

reader interested in the actual implementation is urged to look in

<linux/poll.h> and

fs/select.c.

[bookmark: linuxdrive3-CHP-6-FIG-1]
Figure 6-1. The data structures behind poll

[image: ]

 

At this point, it is possible to understand the motivation behind the

new epoll system call. In a typical case, a call

to poll or select involves

only a handful of file descriptors, so the cost of setting up the

data structure is small. There are applications out there, however,

that work with thousands of file descriptors. At that point, setting

up and tearing down this data structure between every I/O operation

becomes prohibitively expensive. The epoll

system call family allows this sort of application to set up the

internal kernel data [bookmark: linuxdrive3-CHP-6-ITERM-5337] [bookmark: linuxdrive3-CHP-6-ITERM-5338] [bookmark: linuxdrive3-CHP-6-ITERM-5339] [bookmark: linuxdrive3-CHP-6-ITERM-5340] [bookmark: linuxdrive3-CHP-6-ITERM-5341] [bookmark: linuxdrive3-CHP-6-ITERM-5342]structure exactly once and to use it

many times.







[bookmark: linuxdrive3-CHP-6-SECT-4]
6.4. Asynchronous Notification

Although the combination[bookmark: linuxdrive3-CHP-6-ITERM-5343] [bookmark: linuxdrive3-CHP-6-ITERM-5344] [bookmark: linuxdrive3-CHP-6-ITERM-5345] of blocking and nonblocking

operations and the select method are sufficient

for querying the device most of the time, some situations

aren't efficiently managed by the techniques

we've seen so far.

Let's imagine a process that executes a long

computational loop at low priority but needs to process incoming data

as soon as possible. If this process is responding to new

observations available from some sort of data acquisition peripheral,

it would like to know immediately when new data is available. This

application could be written to call poll

regularly to check for data, but, for many situations, there is a

better way. By enabling asynchronous notification, this application

can receive a signal whenever data becomes available and need not

concern itself with polling.

[bookmark: linuxdrive3-CHP-6-ITERM-5346][bookmark: linuxdrive3-CHP-6-ITERM-5347][bookmark: linuxdrive3-CHP-6-ITERM-5348][bookmark: linuxdrive3-CHP-6-ITERM-5349]User programs

have to execute two steps to enable asynchronous notification from an

input file. First, they specify a process as the

"owner" of the file. When a process

invokes the F_SETOWN[bookmark: linuxdrive3-CHP-6-ITERM-5350]
[bookmark: linuxdrive3-CHP-6-ITERM-5351]

command using the fcntl system call, the process

ID of the owner process is saved in

filp->f_owner for later use. This step is

necessary for the kernel to know just whom to notify. In order to

actually enable asynchronous notification, the user programs must set

the FASYNC[bookmark: linuxdrive3-CHP-6-ITERM-5352]
[bookmark: linuxdrive3-CHP-6-ITERM-5353]

flag in the device by means of the

F_SETFL[bookmark: linuxdrive3-CHP-6-ITERM-5354]
[bookmark: linuxdrive3-CHP-6-ITERM-5355] fcntl command.

[bookmark: linuxdrive3-CHP-6-ITERM-5356]After these two

calls have been executed,

[bookmark: linuxdrive3-CHP-6-ITERM-5357]the input file can

request delivery of a SIGIO signal whenever new

data arrives. The signal is sent to the process (or process group, if

the value is negative) stored in filp->f_owner.

For example, the following lines of code in a user program enable

asynchronous notification to the current process for the

stdin input file:

signal(SIGIO, &input_handler); /* dummy sample; sigaction(  ) is better */

fcntl(STDIN_FILENO, F_SETOWN, getpid(  ));

oflags = fcntl(STDIN_FILENO, F_GETFL);

fcntl(STDIN_FILENO, F_SETFL, oflags | FASYNC);
 

The program named

asynctest[bookmark: linuxdrive3-CHP-6-ITERM-5358]
[bookmark: linuxdrive3-CHP-6-ITERM-5359]

in the sources is a simple program that reads

stdin as shown. It can be used to test the

asynchronous capabilities of scullpipe. The

program is similar to cat but

doesn't terminate on end-of-file; it responds only

to input, not to the absence of input.

[bookmark: linuxdrive3-CHP-6-ITERM-5360]Note, however, that not all the

devices support asynchronous notification, and you can choose not to

offer it. Applications usually assume that the asynchronous

capability is available only for sockets and ttys.

There is one remaining problem with input notification. When a

process receives a SIGIO, it

doesn't know which input file has new input to

offer. If more than one file is enabled to asynchronously notify the

process of pending input, the application must still resort to

poll or select to find out

what happened.

[bookmark: linuxdrive3-CHP-6-SECT-4.1]
6.4.1. The Driver's Point of View

[bookmark: linuxdrive3-CHP-6-ITERM-5361]A more relevant topic for us

is how the device driver can implement asynchronous signaling. The

following list details the sequence of operations from the

kernel's point of view:

	When F_SETOWN is invoked, nothing happens, except

that a value is assigned to filp->f_owner.


	When F_SETFL is executed to turn on

FASYNC, the driver's

fasync method is called. This method is called

whenever the value of FASYNC is changed in

filp->f_flags to notify the driver of the

change, so it can respond properly. The flag is cleared by default

when the file is opened. We'll look at the standard

implementation of the driver method later in this section.


	When data arrives, all the processes registered for asynchronous

notification must be sent a SIGIO signal.





While implementing the first step is

trivial�there's nothing to do on the

driver's part�the other steps involve

maintaining a dynamic data structure to keep track of the different

asynchronous readers; there might be several. This dynamic data

structure, however, doesn't depend on the particular

device involved, and the kernel offers a suitable general-purpose

implementation so that you don't have to rewrite the

same code in every driver.

[bookmark: linuxdrive3-CHP-6-ITERM-5362][bookmark: linuxdrive3-CHP-6-ITERM-5363]The general implementation offered by

Linux is based on one data structure and two functions (which are

called in the second and third steps described earlier). The header

that declares related material is

<linux/fs.h> (nothing new here), and the

data structure is called struct
fasync_struct. As with wait queues, we need to

insert a pointer to the structure in the device-specific data

structure.

[bookmark: linuxdrive3-CHP-6-ITERM-5364]
[bookmark: linuxdrive3-CHP-6-ITERM-5365][bookmark: linuxdrive3-CHP-6-ITERM-5366]
[bookmark: linuxdrive3-CHP-6-ITERM-5367]The

two functions that the driver calls correspond to the following

prototypes:

int fasync_helper(int fd, struct file *filp,

       int mode, struct fasync_struct **fa);

void kill_fasync(struct fasync_struct **fa, int sig, int band);
 

fasync_helper is invoked to add or remove entries

from the list of interested processes when the

FASYNC flag changes for an open file. All of its

arguments except the last are provided to the

fasync method and can be passed through

directly. kill_fasync is used to signal the

interested processes when data arrives. Its arguments are the signal

to send (usually SIGIO) and the band, which is

almost always POLL_IN[6] (but that

may be used to send "urgent" or

out-of-band data in the networking code).
[bookmark: linuxdrive3-CHP-6-FNOTE-6][6] POLL_IN is a symbol used in the asynchronous

notification code; it is equivalent to

POLLIN|POLLRDNORM.


Here's how scullpipe implements

the fasync method:

static int scull_p_fasync(int fd, struct file *filp, int mode)

{

    struct scull_pipe *dev = filp->private_data;



    return fasync_helper(fd, filp, mode, &dev->async_queue);

}
 

It's clear that all the work is performed by

fasync_helper. It wouldn't be

possible, however, to implement the functionality without a method in

the driver, because the helper function needs to access the correct

pointer to struct fasync_struct
* (here

&dev->async_queue), and only the driver can

provide the information.

When data arrives, then, the following statement must be executed to

signal asynchronous readers. Since new data for the

scullpipe reader is generated by a process

issuing a write, the statement appears in the

write method of scullpipe.

if (dev->async_queue)

    kill_fasync(&dev->async_queue, SIGIO, POLL_IN);
 

Note that some devices also implement asynchronous notification to

indicate when the device can be written; in this case, of course,

kill_fasync must be called with a mode of

POLL_OUT.

It might appear that we're done, but

there's still one thing missing. We must invoke our

fasync method when the file is closed to remove

the file from the list of active asynchronous readers. Although this

call is required only if filp->f_flags has

FASYNC set, calling the function anyway

doesn't hurt and is the usual implementation. The

following lines, for example, are part of the

release method for

scullpipe:

/* remove this filp from the asynchronously notified filp's */

scull_p_fasync(-1, filp, 0);
 

The data structure underlying asynchronous notification is almost

identical to the structure struct
wait_queue, because both situations involve

waiting on an event. The difference is that struct
file is used in place of struct
task_struct. The struct
file in the queue is then used to retrieve

f_owner, in[bookmark: linuxdrive3-CHP-6-ITERM-5368] [bookmark: linuxdrive3-CHP-6-ITERM-5369] [bookmark: linuxdrive3-CHP-6-ITERM-5370] order to signal the process.







[bookmark: linuxdrive3-CHP-6-SECT-5]
6.5. Seeking a Device

One of the last things we need to[bookmark: linuxdrive3-CHP-6-ITERM-5371]
[bookmark: linuxdrive3-CHP-6-ITERM-5372]
[bookmark: linuxdrive3-CHP-6-ITERM-5373]
[bookmark: linuxdrive3-CHP-6-ITERM-5374]
[bookmark: linuxdrive3-CHP-6-ITERM-5375]
[bookmark: linuxdrive3-CHP-6-ITERM-5376] cover in

this chapter is the llseek method, which is

useful (for some devices) and easy to implement.

[bookmark: linuxdrive3-CHP-6-SECT-5.1]
6.5.1. The llseek Implementation

The llseek method implements the

lseek and llseek system

calls. We have already stated that if the llseek

method is missing from the device's operations, the

default implementation in the kernel performs seeks by modifying

filp->f_pos, the current reading/writing

position within the file. Please note that for the

lseek system call to work correctly, the

read and write methods must

cooperate by using and updating the offset item they receive as an

argument.

[bookmark: linuxdrive3-CHP-6-ITERM-5377]You may need to provide your own

llseek method if the seek operation corresponds

to a physical operation on the device. A simple example can be seen

in the scull driver:

loff_t scull_llseek(struct file *filp, loff_t off, int whence)

{

    struct scull_dev *dev = filp->private_data;

    loff_t newpos;



    switch(whence) {

      case 0: /* SEEK_SET */

        newpos = off;

        break;



      case 1: /* SEEK_CUR */

        newpos = filp->f_pos + off;

        break;



      case 2: /* SEEK_END */

        newpos = dev->size + off;

        break;



      default: /* can't happen */

        return -EINVAL;

    }

    if (newpos < 0) return -EINVAL;

    filp->f_pos = newpos;

    return newpos;

}
 

The only device-specific operation here is retrieving the file length

from the device. In scull the

read and write methods

cooperate as needed, as shown in Chapter 3.

Although the implementation just shown makes sense for

scull, which handles a well-defined data area,

most devices offer a data flow rather than a data area (just think

about the serial ports or the keyboard), and seeking those devices

does not make sense. If this is the case for your device, you

can't just refrain from declaring the

llseek operation, because the default method

allows seeking. Instead, you should inform the kernel that your

device does not support llseek by calling

nonseekable_open in your

open method:

int nonseekable_open(struct inode *inode; struct file *filp);
 

This call marks the given filp as being

nonseekable; the kernel never allows an lseek

call on such a file to succeed. By marking the file in this way, you

can also be assured that no attempts will be made to seek the file by

way of the pread and pwrite

system calls.

For completeness, you should also set the llseek

method in your file_operations structure to the

special helper function no_llseek, which is

defined in <linux/fs.h>.







[bookmark: linuxdrive3-CHP-6-SECT-6]
6.6. Access Control on a Device File

[bookmark: linuxdrive3-CHP-6-ITERM-5378] [bookmark: linuxdrive3-CHP-6-ITERM-5379] [bookmark: linuxdrive3-CHP-6-ITERM-5380] [bookmark: linuxdrive3-CHP-6-ITERM-5381]Offering

access control is sometimes vital for the reliability of a device

node. Not only should unauthorized users not be permitted to use the

device (a restriction is enforced by the filesystem permission bits),

but sometimes only one authorized user should be allowed to open the

device at a time.

The problem is similar to that of using ttys. In that case, the

login[bookmark: linuxdrive3-CHP-6-ITERM-5382]
[bookmark: linuxdrive3-CHP-6-ITERM-5383]

process changes the ownership of the device node whenever a user logs

into the system, in order to prevent other users from interfering

with or sniffing the tty data flow. However, it's

impractical to use a privileged program to change the ownership of a

device every time it is opened just to grant unique access to it.

None of the code shown up to now implements any access control beyond

the filesystem permission bits. If the open

system call forwards the request to the driver,

open succeeds. We now introduce a few techniques

for implementing some additional checks.

Every device shown in this section has the same behavior as the bare

scull device (that is, it implements a

persistent memory area) but differs from scull

in access control, which is implemented in the

open and release

operations.

[bookmark: linuxdrive3-CHP-6-SECT-6.1]
6.6.1. Single-Open Devices

[bookmark: linuxdrive3-CHP-6-ITERM-5384]
[bookmark: linuxdrive3-CHP-6-ITERM-5385][bookmark: linuxdrive3-CHP-6-ITERM-5386][bookmark: linuxdrive3-CHP-6-ITERM-5387]The brute-force way

to provide access control is to permit a device to be opened by only

one process at a time (single openness). This technique is best

avoided because it inhibits user ingenuity. A user might want to run

different processes on the same device, one reading status

information while the other is writing data. In some cases, users can

get a lot done by running a few simple programs through a shell

script, as long as they can access the device concurrently. In other

words, implementing a single-open behavior amounts to creating

policy, which may get in the way of what your users want to do.

Allowing only a single process to open a device has undesirable

properties, but it is also the easiest access control to implement

for a device driver, so it's shown here. The source

code is extracted from a device called

scullsingle.

[bookmark: linuxdrive3-CHP-6-ITERM-5388]
[bookmark: linuxdrive3-CHP-6-ITERM-5389]The

scullsingle[bookmark: linuxdrive3-CHP-6-ITERM-5390]
[bookmark: linuxdrive3-CHP-6-ITERM-5391]

device maintains an atomic_t variable called

scull_s_available; that variable is initialized to

a value of one, indicating that the device is indeed available. The

open call decrements and tests

scull_s_available and refuses access if somebody

else already has the device open:

static atomic_t scull_s_available = ATOMIC_INIT(1);



static int scull_s_open(struct inode *inode, struct file *filp)

{

    struct scull_dev *dev = &scull_s_device; /* device information */



    if (! atomic_dec_and_test (&scull_s_available)) {

        atomic_inc(&scull_s_available);

        return -EBUSY; /* already open */

    }



    /* then, everything else is copied from the bare scull device */

    if ( (filp->f_flags & O_ACCMODE) =  = O_WRONLY)

        scull_trim(dev);

    filp->private_data = dev;

    return 0;          /* success */

}
 

[bookmark: linuxdrive3-CHP-6-ITERM-5392]
[bookmark: linuxdrive3-CHP-6-ITERM-5393]The

release call, on the other hand, marks the

device as no longer busy:

static int scull_s_release(struct inode *inode, struct file *filp)

{

    atomic_inc(&scull_s_available); /* release the device */

    return 0;

}
 

Normally, we recommend that you put the open flag

scull_s_available within the device structure

(Scull_Dev here) because, conceptually, it belongs

to the device. The scull driver, however, uses

standalone variables to hold the flag so it can use the same device

structure and methods as the bare scull device

and minimize code duplication.

[bookmark: linuxdrive3-CHP-6-SECT-6.2]
6.6.2. Restricting Access to a Single User at a Time

The next step beyond a[bookmark: linuxdrive3-CHP-6-ITERM-5394]
[bookmark: linuxdrive3-CHP-6-ITERM-5395] single-open device is to let a single user

open a device in multiple processes but allow only one user to have

the device open at a time. This solution makes it easy to test the

device, since the user can read and write from several processes at

once, but assumes that the user takes some responsibility for

maintaining the integrity of the data during multiple accesses. This

is accomplished by adding checks in the open

method; such checks are performed after the

normal permission checking and can only make access more restrictive

than that specified by the owner and group permission bits. This is

the same access policy as that used for ttys, but it

doesn't resort to an external privileged program.

Those access policies are a little trickier to implement than

single-open policies. In this case, two items are needed: an open

count and the uid of the "owner" of

the device. Once again, the best place for such items is within the

device structure; our example uses global variables instead, for the

reason explained earlier for scullsingle. The

name of the device is sculluid.

[bookmark: linuxdrive3-CHP-6-ITERM-5396]
[bookmark: linuxdrive3-CHP-6-ITERM-5397]The

open call grants access on first open but

remembers the owner of the device. This means that a user can open

the device multiple times, thus allowing cooperating processes to

work concurrently on the device. At the same time, no other user can

open it, thus avoiding external interference. Since this version of

the function is almost identical to the preceding one, only the

relevant part is reproduced here:

    spin_lock(&scull_u_lock);

    if (scull_u_count && 

            (scull_u_owner != current->uid) &&  /* allow user */

            (scull_u_owner != current->euid) && /* allow whoever did su */

            !capable(CAP_DAC_OVERRIDE)) { /* still allow root */

        spin_unlock(&scull_u_lock);

        return -EBUSY;   /* -EPERM would confuse the user */

    }



    if (scull_u_count =  = 0)

        scull_u_owner = current->uid; /* grab it */



    scull_u_count++;

    spin_unlock(&scull_u_lock);
 

Note that the

sculluid[bookmark: linuxdrive3-CHP-6-ITERM-5398]
[bookmark: linuxdrive3-CHP-6-ITERM-5399]

code has two variables (scull_u_owner and

scull_u_count) that control access to the device

and that could be accessed concurrently by multiple processes. To

make these variables safe, we control access to them with a spinlock

(scull_u_lock). Without that locking, two (or

more) processes could test scull_u_count at the

same time, and both could conclude that they were entitled to take

ownership of the device. A spinlock is indicated here, because the

lock is held for a very short time, and the driver does nothing that

could sleep while holding the lock.

We chose to return -EBUSY and not

-EPERM, even though the code is performing a

permission check, in order to point a user who is denied access in

the right direction. The reaction to "Permission

denied" is usually to check the mode and owner of

the /dev file, while "Device

busy" correctly suggests that the user should look

for a process already using the device.

[bookmark: linuxdrive3-CHP-6-ITERM-5400]This code also checks to see if the

process attempting the open has the ability to override file access

permissions; if so, the open is allowed even if the opening process

is not the owner of the device. The

CAP_DAC_OVERRIDE capability fits the task well in

this case.

The release method looks like the following:

static int scull_u_release(struct inode *inode, struct file *filp)

{

    spin_lock(&scull_u_lock);

    scull_u_count--; /* nothing else */

    spin_unlock(&scull_u_lock);

    return 0;

}
 

Once again, we must obtain the lock prior to modifying the count to

ensure that we do not race with another process.

[bookmark: linuxdrive3-CHP-6-SECT-6.3]
6.6.3. Blocking open as an Alternative to EBUSY

[bookmark: linuxdrive3-CHP-6-ITERM-5401]
[bookmark: linuxdrive3-CHP-6-ITERM-5402]
[bookmark: linuxdrive3-CHP-6-ITERM-5403][bookmark: linuxdrive3-CHP-6-ITERM-5404][bookmark: linuxdrive3-CHP-6-ITERM-5405][bookmark: linuxdrive3-CHP-6-ITERM-5406][bookmark: linuxdrive3-CHP-6-ITERM-5407]When

the device isn't accessible, returning an error is

usually the most sensible approach, but there are situations in which

the user would prefer to wait for the device.

For example, if a data communication channel is used both to transmit

reports on a regular, scheduled basis (using

crontab) and for casual usage according to

people's needs, it's much better

for the scheduled operation to be slightly delayed rather than fail

just because the channel is currently busy.

This is one of the choices that the programmer must make when

designing a device driver, and the right answer depends on the

particular problem being solved.

The alternative to EBUSY, as you may have guessed,

is to implement blocking open. The

scullwuid device is a version of

sculluid that waits for the device on

open instead of returning

-EBUSY. It differs from

sculluid only in the following part of the

open operation:

spin_lock(&scull_w_lock);

while (! scull_w_available(  )) {

    spin_unlock(&scull_w_lock);

    if (filp->f_flags & O_NONBLOCK) return -EAGAIN;

    if (wait_event_interruptible (scull_w_wait, scull_w_available(  )))

        return -ERESTARTSYS; /* tell the fs layer to handle it */

    spin_lock(&scull_w_lock);

}

if (scull_w_count =  = 0)

    scull_w_owner = current->uid; /* grab it */

scull_w_count++;

spin_unlock(&scull_w_lock);
 

The implementation is based once again on a wait queue. If the device

is not currently available, the process attempting to open it is

placed on the wait queue until the owning process closes the device.

[bookmark: linuxdrive3-CHP-6-ITERM-5408]
[bookmark: linuxdrive3-CHP-6-ITERM-5409]
[bookmark: linuxdrive3-CHP-6-ITERM-5410]The release

method, then, is in charge of awakening any pending process:

static int scull_w_release(struct inode *inode, struct file *filp)

{

    int temp;



    spin_lock(&scull_w_lock);

    scull_w_count--;

    temp = scull_w_count;

    spin_unlock(&scull_w_lock);



    if (temp =  = 0)

        wake_up_interruptible_sync(&scull_w_wait); /* awake other uid's */

    return 0;

}
 

Here is an example of where calling

wake_up_interruptible_sync makes sense. When we

do the wakeup, we are just about to return to user space, which is a

natural scheduling point for the system. Rather than potentially

reschedule when we do the wakeup, it is better to just call the

"sync" version and finish our job.

The problem with a blocking-open implementation is that it is really

unpleasant for the interactive user, who has to keep guessing what is

going wrong. The interactive user usually invokes standard commands,

such as cp and tar, and

can't just add O_NONBLOCK to the

open call. Someone who's making

a backup using the tape drive in the next room would prefer to get a

plain "device or resource busy"

message instead of being left to guess why the hard drive is so

silent today, while tar should be scanning it.

This kind of problem (a need for different, incompatible policies for

the same device) is often best solved by implementing one device node

for each access policy. An example of this practice can be found in

the Linux tape driver, which provides multiple device files for the

same device. Different device files will, for example, cause the

drive to record with or without compression, or to automatically

rewind the tape when the device is closed.

[bookmark: linuxdrive3-CHP-6-SECT-6.4]
6.6.4. Cloning the Device on open

Another [bookmark: linuxdrive3-CHP-6-ITERM-5411]
[bookmark: linuxdrive3-CHP-6-ITERM-5412]technique

to manage access control is to create different private copies of the

device, depending on the process opening it.

Clearly, this is possible only if the device is not bound to a

hardware object; scull is an example of such a

"software" device. The internals of

/dev/tty use a similar technique in order to

give its process a different "view"

of what the /dev entry point represents. When

copies of the device are created by the software driver, we call them

virtual devices�just as virtual consoles

use a single physical tty device.

Although this kind of access control is rarely needed, the

implementation can be enlightening in showing how easily kernel code

can change the application's perspective of the

surrounding world (i.e., the computer).

The /dev/scullpriv device node implements

virtual devices within the scull package. The

scullpriv implementation uses the device number

of the process's controlling tty as a key to access

the virtual device. Nonetheless, you can easily modify the sources to

use any integer value for the key; each choice leads to a different

policy. For example, using the uid leads to a

different virtual device for each user, while using a

pid key creates a new device for each process

accessing it.

The decision to use the controlling terminal is meant to enable easy

testing of the device using I/O redirection: the device is shared by

all commands run on the same virtual terminal and is kept separate

from the one seen by commands run on another terminal.

The open method looks like the following code.

It must look for the right virtual device and possibly create one.

The final part of the function is not shown because it is copied from

the bare scull, which we've

already seen.

/* The clone-specific data structure includes a key field */



struct scull_listitem {

    struct scull_dev device;

    dev_t key;

    struct list_head list;

    

};



/* The list of devices, and a lock to protect it */

static LIST_HEAD(scull_c_list);

static spinlock_t scull_c_lock = SPIN_LOCK_UNLOCKED;



/* Look for a device or create one if missing */

static struct scull_dev *scull_c_lookfor_device(dev_t key)

{

    struct scull_listitem *lptr;



    list_for_each_entry(lptr, &scull_c_list, list) {

        if (lptr->key =  = key)

            return &(lptr->device);

    }



    /* not found */

    lptr = kmalloc(sizeof(struct scull_listitem), GFP_KERNEL);

    if (!lptr)

        return NULL;



    /* initialize the device */

    memset(lptr, 0, sizeof(struct scull_listitem));

    lptr->key = key;

    scull_trim(&(lptr->device)); /* initialize it */

    init_MUTEX(&(lptr->device.sem));



    /* place it in the list */

    list_add(&lptr->list, &scull_c_list);



    return &(lptr->device);

}



static int scull_c_open(struct inode *inode, struct file *filp)

{

    struct scull_dev *dev;

    dev_t key;

 

    if (!current->signal->tty) { 

        PDEBUG("Process \"%s\" has no ctl tty\n", current->comm);

        return -EINVAL;

    }

    key = tty_devnum(current->signal->tty);



    /* look for a scullc device in the list */

    spin_lock(&scull_c_lock);

    dev = scull_c_lookfor_device(key);

    spin_unlock(&scull_c_lock);



    if (!dev)

        return -ENOMEM;



    /* then, everything else is copied from the bare scull device */
 

[bookmark: linuxdrive3-CHP-6-ITERM-5413]
[bookmark: linuxdrive3-CHP-6-ITERM-5414]The release method

does nothing special. It would normally release the device on last

close, but we chose not to maintain an open count in order to

simplify the testing of the driver. If the device were released on

last close, you wouldn't be able to read the same

data after writing to the device, unless a background process were to

keep it open. The sample driver takes the easier approach of keeping

the data, so that at the next open,

you'll find it there. The devices are released when

scull_cleanup[bookmark: linuxdrive3-CHP-6-ITERM-5415]
[bookmark: linuxdrive3-CHP-6-ITERM-5416]

is called.

This code uses the generic Linux linked list mechanism in preference

to reimplementing the same capability from scratch. Linux lists are

discussed in Chapter 11.

Here's the release

implementation for /dev/scullpriv, which closes

the discussion of device methods.

[bookmark: linuxdrive3-CHP-6-ITERM-5417][bookmark: linuxdrive3-CHP-6-ITERM-5418][bookmark: linuxdrive3-CHP-6-ITERM-5419][bookmark: linuxdrive3-CHP-6-ITERM-5420]static int scull_c_release(struct inode *inode, struct file *filp)

{

    /*

     * Nothing to do, because the device is persistent.

     * A `real' cloned device should be freed on last close

     */

    return 0;







}
 







[bookmark: linuxdrive3-CHP-6-SECT-7]
6.7. Quick Reference

This chapter introduced the following symbols and header files:

[bookmark: linuxdrive3-CHP-6-ITERM-5421][bookmark: linuxdrive3-CHP-6-ITERM-5422][bookmark: linuxdrive3-CHP-6-ITERM-5423][bookmark: linuxdrive3-CHP-6-ITERM-5424][bookmark: linuxdrive3-CHP-6-ITERM-5425][bookmark: linuxdrive3-CHP-6-ITERM-5426][bookmark: linuxdrive3-CHP-6-ITERM-5427][bookmark: linuxdrive3-CHP-6-ITERM-5428][bookmark: linuxdrive3-CHP-6-ITERM-5429][bookmark: linuxdrive3-CHP-6-ITERM-5430][bookmark: linuxdrive3-CHP-6-ITERM-5431][bookmark: linuxdrive3-CHP-6-ITERM-5432][bookmark: linuxdrive3-CHP-6-ITERM-5433][bookmark: linuxdrive3-CHP-6-ITERM-5434][bookmark: linuxdrive3-CHP-6-ITERM-5435][bookmark: linuxdrive3-CHP-6-ITERM-5436][bookmark: linuxdrive3-CHP-6-ITERM-5437][bookmark: linuxdrive3-CHP-6-ITERM-5438][bookmark: linuxdrive3-CHP-6-ITERM-5439][bookmark: linuxdrive3-CHP-6-ITERM-5440][bookmark: linuxdrive3-CHP-6-ITERM-5441][bookmark: linuxdrive3-CHP-6-ITERM-5442][bookmark: linuxdrive3-CHP-6-ITERM-5443][bookmark: linuxdrive3-CHP-6-ITERM-5444][bookmark: linuxdrive3-CHP-6-ITERM-5445][bookmark: linuxdrive3-CHP-6-ITERM-5446][bookmark: linuxdrive3-CHP-6-ITERM-5447][bookmark: linuxdrive3-CHP-6-ITERM-5448][bookmark: linuxdrive3-CHP-6-ITERM-5449][bookmark: linuxdrive3-CHP-6-ITERM-5450][bookmark: linuxdrive3-CHP-6-ITERM-5451][bookmark: linuxdrive3-CHP-6-ITERM-5452][bookmark: linuxdrive3-CHP-6-ITERM-5453][bookmark: linuxdrive3-CHP-6-ITERM-5454][bookmark: linuxdrive3-CHP-6-ITERM-5455][bookmark: linuxdrive3-CHP-6-ITERM-5456][bookmark: linuxdrive3-CHP-6-ITERM-5457][bookmark: linuxdrive3-CHP-6-ITERM-5458][bookmark: linuxdrive3-CHP-6-ITERM-5459][bookmark: linuxdrive3-CHP-6-ITERM-5460][bookmark: linuxdrive3-CHP-6-ITERM-5461][bookmark: linuxdrive3-CHP-6-ITERM-5462][bookmark: linuxdrive3-CHP-6-ITERM-5463][bookmark: linuxdrive3-CHP-6-ITERM-5464][bookmark: linuxdrive3-CHP-6-ITERM-5465]

	#include <linux/ioctl.h>

	
[bookmark: linuxdrive3-CHP-6-ITERM-5421]
[bookmark: linuxdrive3-CHP-6-ITERM-5422][bookmark: linuxdrive3-CHP-6-ITERM-5423]Declares all the macros used to define

ioctl commands. It is currently included by

<linux/fs.h>.





	_IOC_NRBITS



	_IOC_TYPEBITS



	_IOC_SIZEBITS



	_IOC_DIRBITS

	
[bookmark: linuxdrive3-CHP-6-ITERM-5424][bookmark: linuxdrive3-CHP-6-ITERM-5425][bookmark: linuxdrive3-CHP-6-ITERM-5426][bookmark: linuxdrive3-CHP-6-ITERM-5427][bookmark: linuxdrive3-CHP-6-ITERM-5428]The number of

bits available for the different bitfields of

ioctl commands. There are also four macros that

specify the MASKs and four that specify the

SHIFTs, but they're mainly for

internal use. _IOC_SIZEBITS is an important value

to check, because it changes across architectures.





	_IOC_NONE



	_IOC_READ



	_IOC_WRITE

	
The possible values for the

"direction" bitfield.

"Read" and

"write" are different bits and can

be ORed to specify read/write. The values are 0-based.





	_IOC(dir,type,nr,size)



	_IO(type,nr)



	_IOR(type,nr,size)



	_IOW(type,nr,size)



	_IOWR(type,nr,size)

	
Macros used to

create[bookmark: linuxdrive3-CHP-6-ITERM-5429] [bookmark: linuxdrive3-CHP-6-ITERM-5430]
[bookmark: linuxdrive3-CHP-6-ITERM-5431]

an ioctl command.





	_IOC_DIR(nr)



	_IOC_TYPE(nr)



	_IOC_NR(nr)



	_IOC_SIZE(nr)

	
Macros used to decode a command. In particular,

_IOC_TYPE(nr) is an OR combination of

_IOC_READ and _IOC_WRITE.





	#include <asm/uaccess.h>



	int access_ok(int type, const void *addr, unsigned long size);

	
[bookmark: linuxdrive3-CHP-6-ITERM-5432]
[bookmark: linuxdrive3-CHP-6-ITERM-5433]Checks that a pointer to user space is

actually usable. access_ok returns a nonzero

value if the access should be allowed.





	VERIFY_READ



	VERIFY_WRITE

	
[bookmark: linuxdrive3-CHP-6-ITERM-5434]The possible values for the

type argument in access_ok.

VERIFY_WRITE is a superset of

VERIFY_READ.





	#include <asm/uaccess.h>



	int put_user(datum,ptr);



	int get_user(local,ptr);



	int _ _put_user(datum,ptr);



	int _ _get_user(local,ptr);

	
[bookmark: linuxdrive3-CHP-6-ITERM-5435]
[bookmark: linuxdrive3-CHP-6-ITERM-5436][bookmark: linuxdrive3-CHP-6-ITERM-5437]
[bookmark: linuxdrive3-CHP-6-ITERM-5438]Macros

used to store or retrieve a datum to or from user space. The number

of bytes being transferred depends on

sizeof(*ptr). The regular versions call

access_ok first, while the qualified versions

(_ _put_user and _

_get_user) assume that access_ok has

already been called.





	#include <linux/capability.h>

	
[bookmark: linuxdrive3-CHP-6-ITERM-5439]
[bookmark: linuxdrive3-CHP-6-ITERM-5440]Defines the various

CAP_ symbols describing the capabilities a

user-space process may have.





	int capable(int capability);

	
[bookmark: linuxdrive3-CHP-6-ITERM-5441]
[bookmark: linuxdrive3-CHP-6-ITERM-5442]Returns

nonzero if the process has the given capability.





	#include <linux/wait.h>



	typedef struct { /* ... */ } wait_queue_head_t;



	void init_waitqueue_head(wait_queue_head_t *queue);



	DECLARE_WAIT_QUEUE_HEAD(queue);

	
The defined type [bookmark: linuxdrive3-CHP-6-ITERM-5443]
[bookmark: linuxdrive3-CHP-6-ITERM-5444]for

Linux wait queues. A wait_queue_head_t must be

explicitly initialized with either

init_waitqueue_head at runtime or

DECLARE_WAIT_QUEUE_HEAD at compile time.





	void wait_event(wait_queue_head_t q, int condition);



	int wait_event_interruptible(wait_queue_head_t q, int condition);



	int wait_event_timeout(wait_queue_head_t q, int condition, int time);



	int wait_event_interruptible_timeout(wait_queue_head_t q, int condition, 



	 int time);

	
Cause the process to sleep on the given queue until the given

condition evaluates to a true value.





	void wake_up(struct wait_queue **q);



	void wake_up_interruptible(struct wait_queue **q);



	void wake_up_nr(struct wait_queue **q, int nr);



	void wake_up_interruptible_nr(struct wait_queue **q, int nr);



	void wake_up_all(struct wait_queue **q);



	void wake_up_interruptible_all(struct wait_queue **q);



	void wake_up_interruptible_sync(struct wait_queue **q);

	
[bookmark: linuxdrive3-CHP-6-ITERM-5445]
[bookmark: linuxdrive3-CHP-6-ITERM-5446][bookmark: linuxdrive3-CHP-6-ITERM-5447]
[bookmark: linuxdrive3-CHP-6-ITERM-5448][bookmark: linuxdrive3-CHP-6-ITERM-5449]
[bookmark: linuxdrive3-CHP-6-ITERM-5450][bookmark: linuxdrive3-CHP-6-ITERM-5451]
[bookmark: linuxdrive3-CHP-6-ITERM-5452][bookmark: linuxdrive3-CHP-6-ITERM-5453]
[bookmark: linuxdrive3-CHP-6-ITERM-5454]Wake

processes that are sleeping on the queue q. The

_interruptible form wakes only interruptible

processes. Normally, only one exclusive waiter is awakened, but that

behavior can be changed with the _nr or

_all forms. The _sync

version does not reschedule the CPU before returning.





	#include <linux/sched.h>



	set_current_state(int state);

	
Sets the execution state of the current process.

TASK_RUNNING means it is ready to run, while the

sleep states are TASK_INTERRUPTIBLE and

TASK_UNINTERRUPTIBLE.





	void schedule(void);

	
[bookmark: linuxdrive3-CHP-6-ITERM-5455]
[bookmark: linuxdrive3-CHP-6-ITERM-5456]Selects

a runnable process from the run queue. The chosen process can be

current or a different one.





	typedef struct { /* ... */ } wait_queue_t;



	init_waitqueue_entry(wait_queue_t *entry, struct task_struct *task);

	
The wait_queue_t type is used to place a process

onto a wait queue.





	void prepare_to_wait(wait_queue_head_t *queue, wait_queue_t *wait, int state);



	void prepare_to_wait_exclusive(wait_queue_head_t *queue, wait_queue_t *wait, 



	 int state);



	void finish_wait(wait_queue_head_t *queue, wait_queue_t *wait);

	
Helper functions that can be used to code a manual sleep.





	void sleep_on(wiat_queue_head_t *queue);



	void interruptible_sleep_on(wiat_queue_head_t *queue);

	
Obsolete and deprecated functions that unconditionally put the

current process to sleep.





	#include <linux/poll.h>



	void poll_wait(struct file *filp, wait_queue_head_t *q, poll_table *p)

	
[bookmark: linuxdrive3-CHP-6-ITERM-5457]
[bookmark: linuxdrive3-CHP-6-ITERM-5458][bookmark: linuxdrive3-CHP-6-ITERM-5459]
[bookmark: linuxdrive3-CHP-6-ITERM-5460][bookmark: linuxdrive3-CHP-6-ITERM-5461]Places the current process into a wait

queue without scheduling immediately. It is designed to be used by

the poll method of device drivers.





	int fasync_helper(struct inode *inode, struct file *filp, int mode, struct 



	 fasync_struct **fa); 

	
[bookmark: linuxdrive3-CHP-6-ITERM-5462]
[bookmark: linuxdrive3-CHP-6-ITERM-5463]A

"helper" for implementing the

fasync device method. The

mode argument is the same value that is passed to

the method, while fa points to a device-specific

fasync_struct *.





	void kill_fasync(struct fasync_struct *fa, int sig, int band);

	
[bookmark: linuxdrive3-CHP-6-ITERM-5464]
[bookmark: linuxdrive3-CHP-6-ITERM-5465]If

the driver supports asynchronous notification, this function can be

used to send a signal to processes registered in

fa.





	int nonseekable_open(struct inode *inode, struct file *filp);



	loff_t no_llseek(struct file *file, loff_t offset, int whence);

	
nonseekable_open should be called in the

open method of any device that does not support

seeking. Such devices should also use no_llseek

as their llseek method.











[bookmark: linuxdrive3-CHP-7]

Chapter 7. Time, Delays, and Deferred Work

At this point, we know the basics of how to write a full-featured

char module. Real-world drivers, however, need to do more than

implement the operations that control a device; they have to deal

with issues such as timing, memory management, hardware access, and

more. Fortunately, the kernel exports a number of facilities to ease

the task of the driver writer. In the next few chapters,

we'll describe some of the kernel resources you can

use. This chapter leads the way by describing how timing issues are

addressed. Dealing with time involves the following tasks, in order

of increasing complexity:

	Measuring time lapses and comparing times

	Knowing the current time

	Delaying operation for a specified amount of time

	Scheduling asynchronous functions to happen at a later time









[bookmark: linuxdrive3-CHP-7-SECT-1]
7.1. Measuring Time Lapses

The kernel keeps track [bookmark: linuxdrive3-CHP-7-ITERM-5466] [bookmark: linuxdrive3-CHP-7-ITERM-5467] [bookmark: linuxdrive3-CHP-7-ITERM-5468] [bookmark: linuxdrive3-CHP-7-ITERM-5469]of the flow of time by means of timer

interrupts. Interrupts are covered in detail in Chapter 10.

[bookmark: linuxdrive3-CHP-7-ITERM-5470][bookmark: linuxdrive3-CHP-7-ITERM-5471][bookmark: linuxdrive3-CHP-7-ITERM-5472]Timer interrupts are generated by

[bookmark: linuxdrive3-CHP-7-ITERM-5473]
[bookmark: linuxdrive3-CHP-7-ITERM-5474]the

system's timing hardware at regular intervals; this

interval is programmed at boot time by the kernel according to the

value of HZ, which is an architecture-dependent

value defined in <linux/param.h> or a

subplatform file included by it. Default values in the distributed

kernel source range from 50 to 1200 ticks per second on real

hardware, down to 24 for software simulators. Most platforms run at

100 or 1000 interrupts per second; the popular x86 PC defaults to

1000, although it used to be 100 in previous versions (up to and

including 2.4). As a general rule, even if you know the value of

HZ, you should never count on that specific value

when programming.

It is possible to change the value of HZ for those

who want systems with a different clock interrupt frequency. If you

change HZ in the header file, you need to

recompile the kernel and all modules with the new value. You might

want to raise HZ to get a more fine-grained

resolution in your asynchronous tasks, if you are willing to pay the

overhead of the extra timer interrupts to achieve your goals.

Actually, raising HZ to 1000 was pretty common

with x86 industrial systems using Version 2.4 or 2.2 of the kernel.

With current versions, however, the best approach to the timer

interrupt is to keep the default value for HZ, by

virtue of our complete trust in the kernel developers, who have

certainly chosen the best value. Besides, some internal calculations

are currently implemented only for HZ in the range

from 12 to 1535 (see <linux/timex.h> and

RFC-1589).

[bookmark: linuxdrive3-CHP-7-ITERM-5475]
[bookmark: linuxdrive3-CHP-7-ITERM-5476]
[bookmark: linuxdrive3-CHP-7-ITERM-5477]
[bookmark: linuxdrive3-CHP-7-ITERM-5478][bookmark: linuxdrive3-CHP-7-ITERM-5479]Every time a timer interrupt occurs,

the value of an internal kernel counter is incremented. The counter

is initialized to 0 at system boot, so it

represents the number of clock ticks since last boot. The counter is

a 64-bit variable (even on 32-bit architectures) and is called

jiffies_64. However, driver writers normally

access the jiffies variable, an

unsigned long that is the same

as either jiffies_64 or its least significant

bits. Using jiffies is usually preferred because

it is faster, and accesses to the 64-bit

jiffies_64 value are not necessarily atomic on all

architectures.

In addition to the low-resolution kernel-managed jiffy mechanism,

some CPU platforms feature a high-resolution counter that software

can read. Although its actual use varies somewhat across platforms,

it's sometimes a very powerful tool.

[bookmark: linuxdrive3-CHP-7-SECT-1.1]
7.1.1. Using the jiffies Counter

The counter and the utility functions to read it live in

<linux/jiffies.h>, although

you'll usually just include

<linux/sched.h>, that automatically pulls

jiffies.h in. Needless to say, both

jiffies and jiffies_64 must be

considered read-only.

Whenever your code needs to remember the current value of

jiffies, it can simply access the

unsigned long variable, which

is declared as volatile to tell the compiler not to optimize memory

reads. You need to read the current counter whenever your code needs

to calculate a future time stamp, as shown in the following example:

#include <linux/jiffies.h>

unsigned long j, stamp_1, stamp_half, stamp_n;



j = jiffies;                      /* read the current value */

stamp_1    = j + HZ;              /* 1 second in the future */

stamp_half = j + HZ/2;            /* half a second */

stamp_n    = j + n * HZ / 1000;   /* n milliseconds */
 

This code has no problem with jiffies wrapping

around, as long as different values are compared in the right way.

Even though on 32-bit platforms the counter wraps around only once

every 50 days when HZ is 1000, your code should be

prepared to face that event. To compare your cached value (like

stamp_1 above) and the current value, you should

use one of the following macros:

#include <linux/jiffies.h>

int time_after(unsigned long a, unsigned long b);

int time_before(unsigned long a, unsigned long b);

int time_after_eq(unsigned long a, unsigned long b);

int time_before_eq(unsigned long a, unsigned long b);
 

The first evaluates true when a, as a snapshot

of jiffies, represents a time after

b, the second evaluates true when time

a is before time b, and the

last two compare for "after or

equal" and "before or

equal." The code works by converting the values to

signed long, subtracting them, and comparing the result. If you need

to know the difference between two instances of

jiffies in a safe way, you can use the same trick:

diff = (long)t2 - (long)t1;.

You can convert a jiffies difference to milliseconds trivially

through:

msec = diff * 1000 / HZ;
 

Sometimes, however, you need to exchange time representations with

user space programs that tend to represent time values with

struct timeval and

struct timespec. The two

structures represent a precise time quantity with two numbers:

seconds and microseconds are used in the older and popular

struct timeval, and seconds and

nanoseconds are used in the newer struct
timespec. The kernel exports four helper functions

to convert time values expressed as jiffies to and from those

structures:

#include <linux/time.h>



unsigned long timespec_to_jiffies(struct timespec *value);

void jiffies_to_timespec(unsigned long jiffies, struct timespec *value);

unsigned long timeval_to_jiffies(struct timeval *value);

void jiffies_to_timeval(unsigned long jiffies, struct timeval *value);
 

Accessing the 64-bit jiffy count is not as straightforward as

accessing jiffies. While on 64-bit computer

architectures the two variables are actually one, access to the value

is not atomic for 32-bit processors. This means you might read the

wrong value if both halves of the variable get updated while you are

reading them. It's extremely unlikely

you'll ever need to read the 64-bit counter, but in

case you do, you'll be glad to know that the kernel

exports a specific helper function that does the proper locking for

you:

#include <linux/jiffies.h>

u64 get_jiffies_64(void);
 

In the above prototype, the u64 type is used. This

is one of the types defined by

<linux/types.h>

and represents an

unsigned 64-bit type.

If you're wondering how 32-bit platforms update both

the 32-bit and 64-bit counters at the same time, read the linker

script for your platform (look for a file whose name matches

vmlinux*.lds*). There, the

jiffies symbol is defined to access the least

significant word of the 64-bit value, according to whether the

platform is little-endian or big-endian. Actually, the same trick is

used for 64-bit platforms, so that the unsigned

long and u64 variables are accessed at

the same address.

Finally, note that the actual clock frequency is almost completely

hidden from user space. The macro HZ always

expands to 100 when user-space programs include

param.h, and every counter reported to user

space is converted accordingly. This applies to

clock(3), times(2), and any

related function. The only evidence available to users of the

HZ value is how fast timer interrupts happen, as

shown in /proc/interrupts. For example, you can

obtain HZ by dividing this count by the system

uptime reported in /proc/uptime.

[bookmark: linuxdrive3-CHP-7-SECT-1.2]
7.1.2. Processor-Specific Registers

If you need to measure [bookmark: linuxdrive3-CHP-7-ITERM-5480]
[bookmark: linuxdrive3-CHP-7-ITERM-5481]very

short time intervals or you need extremely high precision in your

figures, you can resort to platform-dependent resources, a choice of

precision over portability.

[bookmark: linuxdrive3-CHP-7-ITERM-5482]
[bookmark: linuxdrive3-CHP-7-ITERM-5483][bookmark: linuxdrive3-CHP-7-ITERM-5484]In modern processors, the pressing

demand for empirical performance figures is thwarted by the intrinsic

unpredictability of instruction timing in most CPU designs due to

cache memories, instruction scheduling, and branch prediction. As a

response, CPU manufacturers introduced a way to count clock cycles as

an easy and reliable way to measure time lapses. Therefore, most

modern processors include a counter register that is steadily

incremented once at each clock cycle. Nowadays, this clock counter is

the only reliable way to carry out high-resolution timekeeping tasks.

The details differ from platform to platform: the register may or may

not be readable from user space, it may or may not be writable, and

it may be 64 or 32 bits wide. In the last case, you must be prepared

to handle overflows just like we did with the jiffy counter. The

register may even not exist for your platform, or it can be

implemented in an external device by the hardware designer, if the

CPU lacks the feature and you are dealing with a special-purpose

computer.

Whether or not the register can be zeroed, we strongly discourage

resetting it, even when hardware permits. You might not, after all,

be the only user of the counter at any given time; on some platforms

supporting SMP, for example, the kernel depends on such a counter to

be synchronized across processors. Since you can always measure

differences between values, as long as that difference

doesn't exceed the overflow time, you can get the

work done without claiming exclusive ownership of the register by

modifying its current value.

[bookmark: linuxdrive3-CHP-7-ITERM-5485]
[bookmark: linuxdrive3-CHP-7-ITERM-5486][bookmark: linuxdrive3-CHP-7-ITERM-5487]The most renowned counter register

is the TSC (timestamp counter), introduced in x86 processors with the

Pentium and present in all CPU designs ever since�including the

x86_64 platform. It is a 64-bit register that counts CPU clock

cycles; it can be read from both kernel space and user space.

After including <asm/msr.h> (an

x86-specific header whose name stands for

"machine-specific registers"), you

can use one of these macros:

rdtsc(low32,high32);

rdtscl(low32);

rdtscll(var64);
 

The first macro atomically reads the 64-bit value into two 32-bit

variables; the next one ("read low

half") reads the low half of the register into a

32-bit variable, discarding the high half; the last reads the 64-bit

value into a long long variable, hence, the name.

All of these macros store values into their arguments.

Reading the low half of the counter is enough for most common uses of

the TSC. A 1-GHz CPU overflows it only once every 4.2 seconds, so you

won't need to deal with multiregister variables if

the time lapse you are benchmarking reliably takes less time.

However, as CPU frequencies rise over time and as timing requirements

increase, you'll most likely need to read the 64-bit

counter more often in the future.

As an example using only the low half of the register, the following

lines measure the execution of the instruction itself:

unsigned long ini, end;

rdtscl(ini); rdtscl(end);

printk("time lapse: %li\n", end - ini);
 

[bookmark: linuxdrive3-CHP-7-ITERM-5488]
[bookmark: linuxdrive3-CHP-7-ITERM-5489]Some

of the other platforms offer similar functionality, and kernel

headers offer an architecture-independent function that you can use

instead of rdtsc. It is called

get_cycles, defined in

<asm/timex.h> (included by

<linux/timex.h>). Its prototype is:

 #include <linux/timex.h>

 cycles_t get_cycles(void);
 

[bookmark: linuxdrive3-CHP-7-ITERM-5490]This function

is defined for every platform, and it always returns

0 on the platforms that have no cycle-counter

register. The cycles_t type is an appropriate

unsigned type to hold the value read.

[bookmark: linuxdrive3-CHP-7-ITERM-5491]
[bookmark: linuxdrive3-CHP-7-ITERM-5492][bookmark: linuxdrive3-CHP-7-ITERM-5493][bookmark: linuxdrive3-CHP-7-ITERM-5494]Despite the availability of

an architecture-independent function, we'd like to

take the opportunity to show an example of inline assembly code. To

this aim, we implement a

rdtscl[bookmark: linuxdrive3-CHP-7-ITERM-5495]
[bookmark: linuxdrive3-CHP-7-ITERM-5496]

function for MIPS processors that works in the same way as the x86

one.

We base the example on MIPS because most MIPS processors feature a

32-bit counter as register 9 of their internal

"coprocessor 0." To access the

register, readable only from kernel space, you can define the

following macro that executes a "move from

coprocessor 0" assembly instruction:[1]
[bookmark: linuxdrive3-CHP-7-FNOTE-1][1] The trailing nop instruction is required

to prevent the compiler from accessing the target register in the

instruction immediately following mfc0. This

kind of interlock is typical of RISC processors, and the compiler can

still schedule useful instructions in the delay slots. In this case,

we use nop because inline assembly is a black

box for the compiler and no optimization can be performed.


#define rdtscl(dest) \

   _ _asm_ _ _ _volatile_ _("mfc0 %0,$9; nop" : "=r" (dest))
 

With this macro in place, the MIPS processor can execute the same

code shown earlier for the x86.

[bookmark: linuxdrive3-CHP-7-ITERM-5497]
[bookmark: linuxdrive3-CHP-7-ITERM-5498]With

gcc inline assembly, the allocation of

general-purpose registers is left to the compiler. The macro just

shown uses %0 as a placeholder for

"argument 0," which is later

specified as "any register (r)

used as output (=)." The macro

also states that the output register must correspond to the C

expression dest. The syntax for inline assembly is

very powerful but somewhat complex, especially for architectures that

have constraints on what each register can do (namely, the x86

family). The syntax is described in the gcc

documentation, usually available in the info

documentation tree.

The short C-code fragment shown in this section has been run on a

K7-class x86 processor and a MIPS VR4181 (using the macro just

described). The former reported a time lapse of 11 clock ticks and

the latter just 2 clock ticks. The small figure was expected, since

RISC processors usually execute one instruction per clock cycle.

There is one other thing worth knowing about timestamp counters: they

are not necessarily synchronized across processors in an SMP system.

To be sure of getting a coherent value, you should disable preemption

[bookmark: linuxdrive3-CHP-7-ITERM-5499]
[bookmark: linuxdrive3-CHP-7-ITERM-5500]
[bookmark: linuxdrive3-CHP-7-ITERM-5501]
[bookmark: linuxdrive3-CHP-7-ITERM-5502]for code

that is querying the counter.







[bookmark: linuxdrive3-CHP-7-SECT-2]
7.2. Knowing the Current Time

[bookmark: linuxdrive3-CHP-7-ITERM-5503] [bookmark: linuxdrive3-CHP-7-ITERM-5504] [bookmark: linuxdrive3-CHP-7-ITERM-5505] [bookmark: linuxdrive3-CHP-7-ITERM-5506]Kernel code can always retrieve a

representation of the current time by looking at the value of

jiffies. Usually, the fact that the value

represents only the time since the last boot is not relevant to the

driver, because its life is limited to the system uptime. As shown,

drivers can use the current value of jiffies to

calculate time intervals across events (for example, to tell

double-clicks from single-clicks in input device drivers or calculate

timeouts). In short, looking at jiffies is almost

always sufficient when you need to measure time intervals. If you

need very precise measurements for short time lapses,

processor-specific registers come to the rescue (although they bring

in serious portability issues).

It's quite unlikely that a driver will ever need to

know the wall-clock time, expressed in months, days, and hours; the

information is usually needed only by user programs such as

cron and syslogd. Dealing

with real-world time is usually best left to user space, where the C

library offers better support; besides, such code is often too

policy-related to belong in the kernel. There is

a kernel function that turns a wall-clock time into a

jiffies value, however:

#include <linux/time.h>

unsigned long mktime (unsigned int year, unsigned int mon,

                      unsigned int day, unsigned int hour,

                      unsigned int min, unsigned int sec);
 

To repeat: dealing directly with wall-clock time in a driver is often

a sign that policy is being implemented and should therefore be

questioned.

[bookmark: linuxdrive3-CHP-7-ITERM-5507]
[bookmark: linuxdrive3-CHP-7-ITERM-5508][bookmark: linuxdrive3-CHP-7-ITERM-5509]While you won't

have to deal with human-readable representations of the time,

sometimes you need to deal with absolute timestamp even in kernel

space. To this aim, <linux/time.h> exports

the do_gettimeofday function. When called, it

fills a struct timeval

pointer�the same one used in the

gettimeofday system call�with the familiar

seconds and microseconds values. The prototype for

do_gettimeofday is:

 #include <linux/time.h>

 void do_gettimeofday(struct timeval *tv);
 

[bookmark: linuxdrive3-CHP-7-ITERM-5510]
[bookmark: linuxdrive3-CHP-7-ITERM-5511][bookmark: linuxdrive3-CHP-7-ITERM-5512][bookmark: linuxdrive3-CHP-7-ITERM-5513][bookmark: linuxdrive3-CHP-7-ITERM-5514]
[bookmark: linuxdrive3-CHP-7-ITERM-5515]The

source states that do_gettimeofday has

"near microsecond resolution,"

because it asks the timing hardware what fraction of the current

jiffy has already elapsed. The precision varies from one architecture

to another, however, since it depends on the actual hardware

mechanisms in use. For example, some m68knommu

processors, Sun3 systems, and other m68k systems

cannot offer more than jiffy resolution. Pentium systems, on the

other hand, offer very fast and precise subtick measures by reading

the timestamp counter described earlier in this chapter.

The current time is also available [bookmark: linuxdrive3-CHP-7-ITERM-5516](though with jiffy granularity)

from the xtime variable, a struct

timespec value. Direct use of this variable is discouraged

because it is difficult to atomically access both the fields.

Therefore, the kernel offers the utility function

current_kernel_time:

#include <linux/time.h>

struct timespec current_kernel_time(void);
 

[bookmark: linuxdrive3-CHP-7-ITERM-5517]Code for retrieving the current time in

the various ways it is available within the jit

("just in time") module in the

source files provided on O'Reilly's

FTP site. jit creates a file called

/proc/currentime, which returns the following

items in ASCII when read:

	The current jiffies and

jiffies_64 values as hex numbers

	The current time as returned by do_gettimeofday

	The timespec returned by

current_kernel_time



We chose to use a dynamic /proc file to keep the

boilerplate code to a minimum�it's not worth

creating a whole device just to return a little textual information.

The file returns text lines continuously as long as the module is

loaded; each read system call collects and

returns one set of data, organized in two lines for better

readability. Whenever you read multiple data sets in less than a

timer tick, you'll see the difference between

do_gettimeofday, which queries the hardware, and

the other values that are updated only when the timer ticks.

phon% head -8 /proc/currentime

0x00bdbc1f 0x0000000100bdbc1f 1062370899.630126

                              1062370899.629161488

0x00bdbc1f 0x0000000100bdbc1f 1062370899.630150

                              1062370899.629161488

0x00bdbc20 0x0000000100bdbc20 1062370899.630208

                              1062370899.630161336

0x00bdbc20 0x0000000100bdbc20 1062370899.630233

                              1062370899.630161336
 

In the screenshot above, there are two interesting things to note.

First, the current_kernel_time value, though

expressed in nanoseconds, has only clock-tick granularity;

do_gettimeofday consistently reports a later

time but not later than the next timer tick. Second, the 64-bit

jiffies counter has the least-significant bit of the upper 32-bit

word set. This happens because the default value for

INITIAL_JIFFIES, used at boot time to initialize

the counter, forces a low-word overflow a few minutes after boot time

to help detect problems related to that very overflow. This initial

bias in the counter has no effect, because jiffies

is unrelated to wall-clock time. In

/proc/uptime, where the kernel extracts the

uptime from [bookmark: linuxdrive3-CHP-7-ITERM-5518] [bookmark: linuxdrive3-CHP-7-ITERM-5519] [bookmark: linuxdrive3-CHP-7-ITERM-5520] [bookmark: linuxdrive3-CHP-7-ITERM-5521]the counter, the initial bias is

removed before conversion.







[bookmark: linuxdrive3-CHP-7-SECT-3]
7.3. Delaying Execution

Device drivers often [bookmark: linuxdrive3-CHP-7-ITERM-5522]
[bookmark: linuxdrive3-CHP-7-ITERM-5523]
[bookmark: linuxdrive3-CHP-7-ITERM-5524] [bookmark: linuxdrive3-CHP-7-ITERM-5525]need to delay the execution

of a particular piece of code for a period of time, usually to allow

the hardware to accomplish some task. In this section we cover a

number of different techniques for achieving delays. The

circumstances of each situation determine which technique is best to

use; we go over them all, and point out the advantages and

disadvantages of each.

One important thing to consider is how the delay you need compares

with the clock tick, considering the range of HZ

across the various platforms. Delays that are reliably longer than

the clock tick, and don't suffer from its coarse

granularity, can make use of the system clock. Very short delays

typically must be implemented with software loops. In between these

two cases lies a gray area. In this chapter, we use the phrase

"long" delay to refer to a

multiple-jiffy delay, which can be as low as a few milliseconds on

some platforms, but is still long as seen by the CPU and the kernel.

The following sections talk about the different delays by taking a

somewhat long path from various intuitive but inappropriate solutions

to the right solution. We chose this path because it allows a more

in-depth discussion of kernel issues related to timing. If you are

eager to find the right code, just skim through the section.

[bookmark: linuxdrive3-CHP-7-SECT-3.1]
7.3.1. Long Delays

Occasionally a driver needs to[bookmark: linuxdrive3-CHP-7-ITERM-5526] delay execution for relatively

long periods�more than one clock tick. There are a few ways of

accomplishing this sort of delay; we start with the simplest

technique, then proceed to the more advanced techniques.

[bookmark: linuxdrive3-CHP-7-SECT-3.1.1]
7.3.1.1 Busy waiting

If you want to delay execution by a multiple of the clock tick,

allowing some slack in the value, the easiest (though not

recommended) implementation is a loop that monitors the jiffy

counter. The

busy-waiting[bookmark: linuxdrive3-CHP-7-ITERM-5527]
[bookmark: linuxdrive3-CHP-7-ITERM-5528]

implementation usually looks like the following code, where

j1 is the value of jiffies at

the expiration of the delay:

while (time_before(jiffies, j1))

    cpu_relax(  );
 

The call to cpu_relax invokes an

architecture-specific way of saying that you're not

doing much with the processor at the moment. On many systems it does

nothing at all; on symmetric multithreaded

("hyperthreaded") systems, it may

yield the core to the other thread. In any case, this approach should

definitely be avoided whenever possible. We show it here because on

occasion you might want to run this code to better understand the

internals of other code.

[bookmark: linuxdrive3-CHP-7-ITERM-5529][bookmark: linuxdrive3-CHP-7-ITERM-5530][bookmark: linuxdrive3-CHP-7-ITERM-5531]So

let's look at how this code works. The loop is

guaranteed to work because jiffies is declared as

volatile by the kernel headers and, therefore, is

fetched from memory any time some C code accesses it. Although

technically correct (in that it works as designed), this busy loop

severely degrades system performance. If you didn't

configure your kernel for preemptive operation, the loop completely

locks the processor for the duration of the delay; the scheduler

never preempts a process that is running in kernel space, and the

computer looks completely dead until time j1 is

reached. The problem is less serious if you are running a preemptive

kernel, because, unless the code is holding a lock, some of the

processor's time can be recovered for other uses.

Busy waits are still expensive on preemptive systems, however.

Still worse, if interrupts happen to be disabled when you enter the

loop, jiffies won't be updated,

and the while condition remains true forever.

Running a preemptive kernel won't help either, and

you'll be forced to hit the big red button.

[bookmark: linuxdrive3-CHP-7-ITERM-5532]
[bookmark: linuxdrive3-CHP-7-ITERM-5533]This

implementation of delaying code is available, like the following

ones, in the jit module. The

/proc/jit* files created by the module delay a

whole second each time you read a line of text, and lines are

guaranteed to be 20 bytes each. If you want to test the busy-wait

code, you can read /proc/jitbusy, which

busy-loops for one second for each line it returns.

		[image: ]	
Be sure to read, at most, one line (or a few lines) at a time from

/proc/jitbusy. The simplified kernel mechanism

to register /proc files invokes the

read method over and over to fill the data

buffer the user requested. Therefore, a command such as cat

/proc/jitbusy, if it reads 4 KB at a time, freezes the

computer for 205 seconds.






 

[bookmark: linuxdrive3-CHP-7-ITERM-5534]The suggested command to read

/proc/jitbusy is dd bs=20 <

/proc/jitbusy, optionally specifying the number of blocks

as well. Each 20-byte line returned by the file represents the value

the jiffy counter had before and after the delay. This is a sample

run on an otherwise unloaded computer:

phon% dd bs=20 count=5 < /proc/jitbusy

  1686518   1687518

  1687519   1688519

  1688520   1689520

  1689520   1690520

  1690521   1691521
 

All looks good: delays are exactly one second (1000 jiffies), and the

next read system call starts immediately after

the previous one is over. But let's see what happens

on a system with a large number of CPU-intensive processes running

(and nonpreemptive kernel):

phon% dd bs=20 count=5 < /proc/jitbusy

  1911226   1912226

  1913323   1914323

  1919529   1920529

  1925632   1926632

  1931835   1932835
 

Here, each read system call delays exactly one

second, but the kernel can take more than 5 seconds before scheduling

the dd process so it can issue the next system

call. That's expected in a multitasking system; CPU

time is shared between all running processes, and a CPU-intensive

process has its dynamic priority reduced. (A discussion of scheduling

policies is outside the scope of this book.)

The test under load shown above has been performed while running the

load50 sample program. This program forks a

number of processes that do nothing, but do it in a CPU-intensive

way. The program is part of the sample files accompanying this book,

and forks 50 processes by default, although the number can be

specified on the command line. In this chapter, and elsewhere in the

book, the tests with a loaded system have been performed with

load50 running in an otherwise idle computer.

If you repeat the command while running a preemptible kernel,

you'll find no noticeable difference on an otherwise

idle CPU and the following behavior under load:

phon% dd bs=20 count=5 < /proc/jitbusy

 14940680  14942777

 14942778  14945430

 14945431  14948491

 14948492  14951960

 14951961  14955840
 

Here, there is no significant delay between the end of a system call

and the beginning of the next one, but the individual delays are far

longer than one second: up to 3.8 seconds in the example shown and

increasing over time. These values demonstrate that the process has

been interrupted during its delay, scheduling other processes. The

gap between system calls is not the only scheduling option for this

process, so no special delay can be seen there.

[bookmark: linuxdrive3-CHP-7-SECT-3.1.2]
7.3.1.2 Yielding the processor

As we have seen, busy waiting imposes a heavy load on the system as a

whole; we would like to find a better technique. The first change

that comes to mind is to explicitly release the CPU when

we're not interested in it. This is accomplished by

calling the schedule function, declared in

<linux/sched.h>:

while (time_before(jiffies, j1)) {

    schedule(  );

}
 

[bookmark: linuxdrive3-CHP-7-ITERM-5535]
[bookmark: linuxdrive3-CHP-7-ITERM-5536]This loop can be tested by

reading /proc/jitsched as we read

/proc/jitbusy above. However, is still

isn't optimal. The current process does nothing but

release the CPU, but it remains in the run queue. If it is the only

runnable process, it actually runs (it calls the scheduler, which

selects the same process, which calls the scheduler, which . . . ).

In other words, the load of the machine (the average number of

running processes) is at least one, and the idle task (process number

0, also called

swapper[bookmark: linuxdrive3-CHP-7-ITERM-5537]

for historical reasons) never runs. Though this issue may seem

irrelevant, running the idle task when the computer is idle relieves

the processor's workload, decreasing its temperature

and increasing its lifetime, as well as the duration of the batteries

if the computer happens to be your laptop. Moreover, since the

process is actually executing during the delay, it is accountable for

all the time it consumes.

The behavior of /proc/jitsched is actually

similar to running /proc/jitbusy under a

preemptive kernel. This is a sample run, on an unloaded system:

phon% dd bs=20 count=5 < /proc/jitsched

  1760205   1761207

  1761209   1762211

  1762212   1763212

  1763213   1764213

  1764214   1765217
 

It's interesting to note that each

read sometimes ends up waiting a few clock ticks

more than requested. This problem gets worse and worse as the system

gets busy, and the driver could end up waiting longer than expected.

Once a process releases the processor with

schedule, there are no guarantees that the

process will get the processor back anytime soon. Therefore, calling

schedule in this manner is not a safe solution

to the driver's needs, in addition to being bad for

the computing system as a whole. If you test

jitsched while running

load50, you can see that the delay associated to

each line is extended by a few seconds, because other processes are

using the CPU when the timeout expires.

[bookmark: linuxdrive3-CHP-7-SECT-3.1.3]
7.3.1.3 Timeouts

[bookmark: linuxdrive3-CHP-7-ITERM-5538]
[bookmark: linuxdrive3-CHP-7-ITERM-5539]The

suboptimal delay loops shown up to now work by watching the jiffy

counter without telling anyone. But the best way to implement a

delay, as you may imagine, is usually to ask the kernel to do it for

you. There are two ways of setting up jiffy-based timeouts, depending

on whether your driver is waiting for other events or not.

[bookmark: linuxdrive3-CHP-7-ITERM-5540]
[bookmark: linuxdrive3-CHP-7-ITERM-5541][bookmark: linuxdrive3-CHP-7-ITERM-5542]If your driver uses a wait queue to

wait for some other event, but you also want to be sure that it runs

within a certain period of time, it can use

wait_event_timeout or

wait_event_interruptible_timeout:

#include <linux/wait.h>

long wait_event_timeout(wait_queue_head_t q, condition, long timeout);

long wait_event_interruptible_timeout(wait_queue_head_t q,

                      condition, long timeout);
 

These functions sleep on the given wait queue, but they return after

the timeout (expressed in jiffies) expires. Thus, they implement a

bounded sleep that does not go on forever. Note that the timeout

value represents the number of jiffies to wait, not an absolute time

value. The value is represented by a signed number, because it

sometimes is the result of a subtraction, although the functions

complain through a printk statement if the

provided timeout is negative. If the timeout expires, the functions

return 0; if the process is awakened by another

event, it returns the remaining delay expressed in jiffies. The

return value is never negative, even if the delay is greater than

expected because of system load.

The /proc/jitqueue file shows a delay based on

wait_event_interruptible_timeout, although the

module has no event to wait for, and uses 0 as a

condition:

wait_queue_head_t wait;

init_waitqueue_head (&wait);

wait_event_interruptible_timeout(wait, 0, delay);
 

The observed behaviour, when reading

/proc/jitqueue, is nearly optimal, even under

load:

phon% dd bs=20 count=5 < /proc/jitqueue

  2027024   2028024

  2028025   2029025

  2029026   2030026

  2030027   2031027

  2031028   2032028
 

Since the reading process (dd above) is not in

the run queue while waiting for the timeout, you see no difference in

behavior whether the code is run in a preemptive kernel or not.

[bookmark: linuxdrive3-CHP-7-ITERM-5543]
[bookmark: linuxdrive3-CHP-7-ITERM-5544][bookmark: linuxdrive3-CHP-7-ITERM-5545]wait_event_timeout

and wait_event_interruptible_timeout were

designed with a hardware driver in mind, where execution could be

resumed in either of two ways: either somebody calls

wake_up on the wait queue, or the timeout

expires. This doesn't apply to

jitqueue, as nobody ever calls

wake_up on the wait queue (after all, no other

code even knows about it), so the process always wakes up when the

timeout expires. To accommodate for this very situation, where you

want to delay execution waiting for no specific event, the kernel

offers the schedule_timeout function so you can

avoid declaring and using a superfluous wait queue head:

#include <linux/sched.h>

signed long schedule_timeout(signed long timeout);
 

Here, timeout is the number of jiffies to delay.

The return value is 0 unless the function returns

before the given timeout has elapsed (in response to a signal).

schedule_timeout requires that the caller first

set the current process state, so a typical call looks like:

set_current_state(TASK_INTERRUPTIBLE);

schedule_timeout (delay);
 

The previous lines (from /proc/jitschedto )

cause the process to sleep until the given time has passed. Since

wait_event_interruptible_timeout relies on

schedule_timeout internally, we

won't bother showing the numbers

jitschedto returns, because they are the same as

those of jitqueue. Once again, it is worth

noting that an extra time interval could pass between the expiration

of the timeout and when your process is actually scheduled to

execute.

In the example just shown, the first line calls

set_current_state to set things up so that the

scheduler won't run the current process again until

the timeout places it back in TASK_RUNNING state.

To achieve an uninterruptible delay, use

TASK_UNINTERRUPTIBLE instead. If you forget to

change the state of the current process, a call to

schedule_timeout behaves like a call to

schedule (i.e., the

jitsched behavior), setting up a timer that is

not used.

If you want to play with the four jit files

under different system situations or different kernels, or try other

ways to delay execution, you may want to configure the amount of the

delay when loading the module by setting the

delay module parameter.

[bookmark: linuxdrive3-CHP-7-SECT-3.2]
7.3.2. Short Delays

[bookmark: linuxdrive3-CHP-7-ITERM-5546]When a device driver needs to deal with

latencies[bookmark: linuxdrive3-CHP-7-ITERM-5547] in its hardware, the delays involved are

usually a few dozen microseconds at most. In this case, relying on

the clock tick is definitely not the way to go.

The kernel functions ndelay,

udelay, and mdelay serve

well for short delays, delaying execution for the specified number of

nanoseconds, microseconds, or milliseconds respectively.[2] Their prototypes are:
[bookmark: linuxdrive3-CHP-7-FNOTE-2][2] The u in udelay

represents the Greek letter mu and stands for

micro.


#include <linux/delay.h>

void ndelay(unsigned long nsecs);

void udelay(unsigned long usecs);

void mdelay(unsigned long msecs);
 

[bookmark: linuxdrive3-CHP-7-ITERM-5548]
[bookmark: linuxdrive3-CHP-7-ITERM-5549][bookmark: linuxdrive3-CHP-7-ITERM-5550][bookmark: linuxdrive3-CHP-7-ITERM-5551]The

actual implementations of the functions are in

<asm/delay.h>, being

architecture-specific, and sometimes build on an external function.

Every architecture implements udelay, but the

other functions may or may not be defined; if they are not,

<linux/delay.h> offers a default version

based on udelay. In all cases, the delay

achieved is at least the requested value but could be more; actually,

no platform currently achieves nanosecond precision, although several

ones offer submicrosecond precision. Delaying more than the requested

value is usually not a problem, as short delays in a driver are

usually needed to wait for the hardware, and the requirements are to

wait for at least a given time lapse.

[bookmark: linuxdrive3-CHP-7-ITERM-5552]
[bookmark: linuxdrive3-CHP-7-ITERM-5553]The

implementation of

udelay[bookmark: linuxdrive3-CHP-7-ITERM-5554]

(and possibly ndelay too) uses a software loop

based on the processor speed calculated at boot time, using the

integer variable loops_per_jiffy. If you want to

look at the actual code, however, be aware that the

x86 implementation is quite a complex one

because of the different timing sources it uses, based on what CPU

type is running the code.

To avoid integer overflows in loop calculations,

udelay and ndelay impose an

upper bound in the value passed to them. If your module fails to load

and displays an unresolved symbol, _

_bad_udelay, it means you called

udelay with too large an argument. Note,

however, that the compile-time check can be performed only on

constant values and that not all platforms implement it. As a general

rule, if you are trying to delay for thousands of nanoseconds, you

should be using udelay rather than

ndelay; similarly, millisecond-scale delays

should be done with

mdelay[bookmark: linuxdrive3-CHP-7-ITERM-5555]

and not one of the finer-grained functions.

It's important to remember that the three delay

functions are busy-waiting; other tasks can't be run

during the time lapse. Thus, they replicate, though on a different

scale, the behavior of jitbusy. Thus, these

functions should only be used when there is no practical alternative.

There is another way of achieving millisecond (and longer) delays

that does not involve busy waiting. The file

<linux/delay.h> declares these functions:

void msleep(unsigned int millisecs);

unsigned long msleep_interruptible(unsigned int millisecs);

void ssleep(unsigned int seconds)
 

The first two functions puts the calling process to sleep for the

given number of millisecs. A call to

msleep is uninterruptible; you can be sure that

the process sleeps for at least the given number of milliseconds. If

your driver is sitting on a wait queue and you want a wakeup to break

the[bookmark: linuxdrive3-CHP-7-ITERM-5556] [bookmark: linuxdrive3-CHP-7-ITERM-5557] sleep, use

msleep_interruptible. The return value from

msleep_interruptible is normally

0; if, however, the process is awakened early, the

return value is the number of milliseconds remaining in the

originally requested sleep period. A call to

ssleep puts the process into an uninterruptible

sleep for the given number of seconds.

In general, if you [bookmark: linuxdrive3-CHP-7-ITERM-5558] [bookmark: linuxdrive3-CHP-7-ITERM-5559] [bookmark: linuxdrive3-CHP-7-ITERM-5560] [bookmark: linuxdrive3-CHP-7-ITERM-5561]can tolerate longer delays than

requested, you should use schedule_timeout,

msleep, or

ssleep.[bookmark: linuxdrive3-CHP-7-ITERM-5562]







[bookmark: linuxdrive3-CHP-7-SECT-4]
7.4. Kernel Timers

Whenever you need to schedule an [bookmark: linuxdrive3-CHP-7-ITERM-5563]
[bookmark: linuxdrive3-CHP-7-ITERM-5564]
[bookmark: linuxdrive3-CHP-7-ITERM-5565]
[bookmark: linuxdrive3-CHP-7-ITERM-5566]action to happen later, without blocking

the current process until that time arrives, kernel timers are the

tool for you. These timers are used to schedule execution of a

function at a particular time in the future, based on the clock tick,

and can be used for a variety of tasks; for example, polling a device

by checking its state at regular intervals when the hardware

can't fire interrupts. Other typical uses of kernel

timers are turning off the floppy motor or finishing another lengthy

shut down operation. In such cases, delaying the return from

close would impose an unnecessary (and

surprising) cost on the application program. Finally, the kernel

itself uses the timers in several situations, including the

implementation of schedule_timeout.

A kernel timer is a data structure that instructs the kernel to

execute a user-defined function with a user-defined argument at a

user-defined time. The implementation resides in

<linux/timer.h> and

kernel/timer.c and is described in detail in the

Section 7.4.2

[bookmark: linuxdrive3-CHP-7-ITERM-5567]The functions scheduled to run almost

certainly do not run while the process that

registered them is executing. They are, instead, run asynchronously.

Until now, everything we have done in our sample drivers has run in

the context of a process executing system calls. When a timer runs,

however, the process that scheduled it could be asleep, executing on

a different processor, or quite possibly has exited altogether.

[bookmark: linuxdrive3-CHP-7-ITERM-5568]
[bookmark: linuxdrive3-CHP-7-ITERM-5569]
[bookmark: linuxdrive3-CHP-7-ITERM-5570]This asynchronous execution

resembles what happens when a hardware interrupt happens (which is

discussed in detail in Chapter 10). In fact, kernel timers are run as the result of a

"software interrupt." When running

in this sort of atomic context, your code is subject to a number of

constraints. Timer functions must be atomic in all the ways we

discussed 

in Chapter 5, but there are some

additional issues brought about by the lack of a process context. We

will introduce these constraints now; they will be seen again in

several places in later chapters. Repetition is called for because

the rules for atomic contexts must be followed assiduously, or the

system will find itself in deep trouble.

A number of actions require the context of a process in order to be

executed. When you are outside of process context (i.e., in interrupt

context), you must observe the following rules:

	No access to user space is allowed. Because there is no process

context, there is no path to the user space associated with any

particular process.

	The current pointer is not meaningful in atomic

mode and cannot be used since the relevant code has no connection

with the process that has been interrupted.

	No sleeping or scheduling may be performed. Atomic code may not call

schedule or a form of

wait_event, nor may it call any other function

that could sleep. For example, calling kmalloc(...,

GFP_KERNEL) is against the rules. Semaphores also must not

be used since they can sleep.



[bookmark: linuxdrive3-CHP-7-ITERM-5571]
[bookmark: linuxdrive3-CHP-7-ITERM-5572]Kernel

code can tell if it is running in interrupt context by calling the

function in_interrupt( ), which takes no

parameters and returns nonzero if the processor is currently running

in interrupt context, either hardware interrupt or software

interrupt.

[bookmark: linuxdrive3-CHP-7-ITERM-5573]
[bookmark: linuxdrive3-CHP-7-ITERM-5574]A

function related to in_interrupt( ) is

in_atomic( ). Its return value is nonzero

whenever scheduling is not allowed; this includes hardware and

software interrupt contexts as well as any time when a spinlock is

held. In the latter case, current may be valid,

but access to user space is forbidden, since it can cause scheduling

to happen. Whenever you are using in_interrupt(

), you should really consider whether in_atomic(

) is what you actually mean. Both functions are declared

in <asm/hardirq.h>

[bookmark: linuxdrive3-CHP-7-ITERM-5575]One other important feature of kernel

timers is that a task can reregister itself to run again at a later

time. This is possible because each timer_list

structure is unlinked from the list of active timers before being run

and can, therefore, be immediately re-linked elsewhere. Although

rescheduling the same task over and over might appear to be a

pointless operation, it is sometimes useful. For example, it can be

used to implement the polling of devices.

It's also worth knowing that in an SMP system, the

timer function is executed by the same CPU that registered it, to

achieve better cache locality whenever possible. Therefore, a timer

that reregisters itself always runs on the same CPU.

[bookmark: linuxdrive3-CHP-7-ITERM-5576]An important feature of timers that should

not be forgotten, though, is that they are a potential source of race

conditions, even on uniprocessor systems. This is a direct result of

their being asynchronous with other code. Therefore, any data

structures accessed by the timer function should be protected from

concurrent access, either by being atomic types 





or by using

spinlocks.

[bookmark: linuxdrive3-CHP-7-SECT-4.1]
7.4.1. The Timer API

The kernel provides drivers[bookmark: linuxdrive3-CHP-7-ITERM-5577]
[bookmark: linuxdrive3-CHP-7-ITERM-5578]

with a number of functions to declare, register, and remove kernel

timers. The following excerpt shows the basic building

blocks:[bookmark: linuxdrive3-CHP-7-ITERM-5579][bookmark: linuxdrive3-CHP-7-ITERM-5580]

#include <linux/timer.h>

struct timer_list {

        /* ... */

        unsigned long expires;

        void (*function)(unsigned long);

        unsigned long data;

};



void init_timer(struct timer_list *timer);

struct timer_list TIMER_INITIALIZER(_function, _expires, _data);



void add_timer(struct timer_list * timer);

int del_timer(struct timer_list * timer);
 

The data structure includes more fields than the ones shown, but

those three are the ones that are meant to be accessed from outside

the timer code iteslf. The expires field

represents the jiffies value when the timer is

expected to run; at that time, the function

function is called with data

as an argument. If you need to pass multiple items in the argument,

you can bundle them as a single data structure and pass a pointer

cast to unsigned long, a safe

practice on all supported architectures and pretty common in memory

management (as discussed in Chapter 15). The

expires value is not a

jiffies_64 item because timers are not expected to

expire very far in the future, and 64-bit operations are slow on

32-bit platforms.

The structure must be initialized before use. This step ensures that

all the fields are properly set up, including the ones that are

opaque to the caller. Initialization can be performed by calling

init_timer or assigning

TIMER_INITIALIZER to a static structure, according

to your needs. After initialization, you can change the three public

fields before calling add_timer. To disable a

registered timer before it expires, call

del_timer.

The jit module includes a sample file,

/proc/jitimer (for "just in

timer"), that returns one header line and six data

lines. The data lines represent the current environment where the

code is running; the first one is generated by the

read file operation and the others by a timer.

The following output was recorded while compiling a kernel:

phon% cat /proc/jitimer

   time   delta  inirq    pid   cpu command

 33565837    0     0      1269   0   cat

 33565847   10     1      1271   0   sh

 33565857   10     1      1273   0   cpp0

 33565867   10     1      1273   0   cpp0

 33565877   10     1      1274   0   cc1

 33565887   10     1      1274   0   cc1
 

In this output, the time field is the value of

jiffies when the code runs,

delta is the change in jiffies

since the previous line, inirq is the Boolean

value returned by in_interrupt,

pid and command refer to the

current process, and cpu is the number of the CPU

being used (always 0 on uniprocessor systems).

If you read /proc/jitimer while the system is

unloaded, you'll find that the context of the timer

is process 0, the idle task, which is called

"swapper" mainly for historical

reasons.

The timer used to generate /proc/jitimer data is

run every 10 jiffies by default, but you can change the value by

setting the tdelay (timer delay) parameter when

loading the module.

The following code excerpt shows the part of jit

related to the jitimer timer. When a process

attempts to read our file, we set up the timer as follows:

unsigned long j = jiffies;



/* fill the data for our timer function */

data->prevjiffies = j;

data->buf = buf2;

data->loops = JIT_ASYNC_LOOPS;

    

/* register the timer */

data->timer.data = (unsigned long)data;

data->timer.function = jit_timer_fn;

data->timer.expires = j + tdelay; /* parameter */

add_timer(&data->timer);



/* wait for the buffer to fill */

wait_event_interruptible(data->wait, !data->loops);
 

The actual timer function looks like this:

void jit_timer_fn(unsigned long arg)

{

    struct jit_data *data = (struct jit_data *)arg;

    unsigned long j = jiffies;

    data->buf += sprintf(data->buf, "%9li  %3li     %i    %6i   %i   %s\n",

                 j, j - data->prevjiffies, in_interrupt(  ) ? 1 : 0,

                 current->pid, smp_processor_id(  ), current->comm);



    if (--data->loops) {

        data->timer.expires += tdelay;

        data->prevjiffies = j;

        add_timer(&data->timer);

    } else {

        wake_up_interruptible(&data->wait);

    }

}
 

The timer API includes a few more functions than the ones introduced

above. The following set completes the list of kernel offerings:

[bookmark: linuxdrive3-CHP-7-ITERM-5581][bookmark: linuxdrive3-CHP-7-ITERM-5582][bookmark: linuxdrive3-CHP-7-ITERM-5583][bookmark: linuxdrive3-CHP-7-ITERM-5584]

	int mod_timer(struct timer_list *timer, unsigned long expires);

	
[bookmark: linuxdrive3-CHP-7-ITERM-5581]
[bookmark: linuxdrive3-CHP-7-ITERM-5582]Updates

the expiration time of a timer, a common task for which a timeout

timer is used (again, the motor-off floppy timer is a typical

example). mod_timer can be called on inactive

timers as well, where you normally use

add_timer.





	int del_timer_sync(struct timer_list *timer);

	
[bookmark: linuxdrive3-CHP-7-ITERM-5583]
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like del_timer, but also guarantees that when it

returns, the timer function is not running on any CPU.

del_timer_sync is used to avoid race conditions

on SMP systems and is the same as del_timer in

UP kernels. This function should be preferred over

del_timer in most situations. This function can

sleep if it is called from a nonatomic context but busy waits in

other situations. Be very careful about calling

del_timer_sync while holding locks; if the timer

function attempts to obtain the same lock, the system can deadlock.

If the timer function reregisters itself, the caller must first

ensure that this reregistration will not happen; this is usually

accomplished by setting a "shutting

down" flag, which is checked by the timer function.





	int timer_pending(const struct timer_list * timer);

	
Returns true or false to indicate whether the timer is currently

scheduled to run by reading one of the opaque fields of the

structure.





[bookmark: linuxdrive3-CHP-7-SECT-4.2]
7.4.2. The Implementation of Kernel Timers

Although

you[bookmark: linuxdrive3-CHP-7-ITERM-5585]

won't need to know how kernel timers are implemented

in order to use them, the implementation is interesting, and a look

at its internals is worthwhile.

The implementation of the timers has been designed to meet the

following requirements and assumptions:

	Timer management must be as lightweight as possible.

	The design should scale well as the number of active timers increases.

	Most timers expire within a few seconds or minutes at most, while

timers with long delays are pretty rare.

	A timer should run on the same CPU that registered it.



The solution devised by kernel developers is based on a per-CPU data

structure. The timer_list structure includes a

pointer to that data structure in its base field.

If base is NULL, the timer is

not scheduled to run; otherwise, the pointer tells which data

structure (and, therefore, which CPU) runs it. Per-CPU data items are

described in Section 8.5 in Section 7.1.1.

Whenever kernel code registers a timer (via

add_timer or mod_timer),

the operation is eventually performed by

internal_add_timer (in

kernel/timer.c) which, in turn, adds the new timer

to a double-linked list of timers within a

"cascading table" associated to the

current CPU.

The cascading table works like this: if the timer expires in the next

to 255 jiffies, it is added to one of the 256 lists devoted to

short-range timers using the least significant bits of the

expires field. If it expires farther in the future

(but before 16,384 jiffies), it is added to one of 64 lists based on

bits 9-14 of the expires field. For timers

expiring even farther, the same trick is used for bits 15-20, 21-26,

and 27-31. Timers with an expire field pointing still farther in the

future (something that can happen only on 64-bit platforms) are

hashed with a delay value of 0xffffffff, and

timers with expires in the past are scheduled to

run at the next timer tick. (A timer that is already expired may

sometimes be registered in high-load situations, especially if you

run a preemptible kernel.)

When _ _run_timers is fired, it executes all

pending timers for the current timer tick. If

jiffies is currently a multiple of 256, the

function also rehashes one of the next-level lists of timers into the

256 short-term lists, possibly cascading one or more of the other

levels as well, according to the bit representation of

jiffies.

This approach, while exceedingly complex at first sight, performs

very well both with few timers and with a large number of them. The

time required to manage each active timer is independent of the

number of timers already registered and is limited to a few logic

operations on the binary representation of its

expires field. The only cost associated with this

implementation is the memory for the 512 list heads (256 short-term

lists and 4 groups of 64 more lists)�i.e., 4 KB of storage.

The function _ _run_timers, as shown by

/proc/jitimer, is run in atomic context. In

addition to the limitations we already described, this brings in an

interesting feature: the timer expires at just the right time, even

if you are not running a preemptible kernel, and the CPU is busy in

kernel space. You can see what happens when you read

/proc/jitbusy in the background and

/proc/jitimer in the foreground. Although the

system appears to be locked solid by the busy-waiting system call,

the kernel timers still work fine.

Keep in mind, however, that a kernel timer is far from perfect, as it

suffers from jitter and other artifacts induced by hardware

interrupts, as well as other timers and other asynchronous tasks.

While a timer associated with simple digital I/O can be enough for

simple tasks like running a stepper motor or other amateur

electronics, it is usually not suitable for production systems in

industrial environments. For such tasks, you'll most

likely need to[bookmark: linuxdrive3-CHP-7-ITERM-5586] [bookmark: linuxdrive3-CHP-7-ITERM-5587] [bookmark: linuxdrive3-CHP-7-ITERM-5588] [bookmark: linuxdrive3-CHP-7-ITERM-5589] resort to a real-time kernel
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7.5. Tasklets

Another kernel facility related to[bookmark: linuxdrive3-CHP-7-ITERM-5595]
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timing issues is the tasklet mechanism. It is

mostly used in interrupt management (we'll see it

again in Chapter 10.)

Tasklets resemble kernel timers in some ways. They are always run at

interrupt time, they always run on the same CPU that schedules them,

and they receive an unsigned
long argument. Unlike kernel timers, however, you

can't ask to execute the function at a specific

time. By scheduling a tasklet, you simply ask for it to be executed

at a later time chosen by the kernel. This behavior is especially

useful with interrupt handlers, where the hardware interrupt must be

managed as quickly as possible, but most of the data management can

be safely delayed to a later time. Actually, a tasklet, just like a

kernel timer, is executed (in atomic mode) in the context of a

"soft interrupt," a kernel

mechanism that executes asynchronous tasks with hardware interrupts

enabled.

A tasklet exists as a data structure that must be initialized before

use. Initialization can be performed by calling a specific function

or by declaring the structure using certain macros:

#include <linux/interrupt.h>



struct tasklet_struct {

      /* ... */

      void (*func)(unsigned long);

      unsigned long data;

};



void tasklet_init(struct tasklet_struct *t,

      void (*func)(unsigned long), unsigned long data);

DECLARE_TASKLET(name, func, data);

DECLARE_TASKLET_DISABLED(name, func, data);
 

Tasklets offer a number of interesting features:

	A tasklet can be disabled and re-enabled later; it

won't be executed until it is enabled as many times

as it has been disabled.

	Just like timers, a tasklet can reregister itself.

	A tasklet can be scheduled to execute at normal priority or high

priority. The latter group is always executed first.

	Tasklets may be run immediately if the system is not under heavy load

but never later than the next timer tick.

	A tasklets can be concurrent with other tasklets but is strictly

serialized with respect to itself�the same tasklet never runs

simultaneously on more than one processor. Also, as already noted, a

tasklet always runs on the same CPU that schedules it.



The jit module includes two files,

/proc/jitasklet and

/proc/jitasklethi, that return the same data as

/proc/jitimer, introduced in Section 7.4 When you read one of the files, you get

back a header and six data lines. The first data line describes the

context of the calling process, and the other lines describe the

context of successive runs of a tasklet procedure. This is a sample

run while compiling a kernel:

phon% cat /proc/jitasklet

   time   delta  inirq    pid   cpu command

  6076139    0     0      4370   0   cat

  6076140    1     1      4368   0   cc1

  6076141    1     1      4368   0   cc1

  6076141    0     1         2   0   ksoftirqd/0

  6076141    0     1         2   0   ksoftirqd/0

  6076141    0     1         2   0   ksoftirqd/0
 

As confirmed by the above data, the tasklet is run at the next timer

tick as long as the CPU is busy running a process, but it is run

immediately when the CPU is otherwise idle. The kernel provides a set

of ksoftirqd kernel threads, one per CPU, just

to run "soft interrupt" handlers,

such as the tasklet_action function. Thus, the

final three runs of the tasklet take place in the context of the

ksoftirqd kernel thread associated to CPU

0. The jitasklethi

implementation uses a high-priority tasklet, explained in an upcoming

list of functions.

The actual code in jit that implements

/proc/jitasklet and

/proc/jitasklethi is almost identical to the

code that implements /proc/jitimer, but it uses

the tasklet calls instead of the timer ones. The following list lays

out in detail the kernel interface to tasklets after the tasklet

structure has been initialized:
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	void tasklet_disable(struct tasklet_struct *t);[bookmark: linuxdrive3-CHP-7-ITERM-5601]
[bookmark: linuxdrive3-CHP-7-ITERM-5602]

	
This function disables the given tasklet. The tasklet may still be

scheduled with tasklet_schedule, but its

execution is deferred until the tasklet has been enabled again. If

the tasklet is currently running, this function busy-waits until the

tasklet exits; thus, after calling

tasklet_disable, you can be sure that the

tasklet is not running anywhere in the system.





	void tasklet_disable_nosync(struct tasklet_struct *t);[bookmark: linuxdrive3-CHP-7-ITERM-5603]
[bookmark: linuxdrive3-CHP-7-ITERM-5604]

	
Disable the tasklet, but without waiting for any currently-running

function to exit. When it returns, the tasklet is disabled and

won't be scheduled in the future until re-enabled,

but it may be still running on another CPU when the function returns.





	void tasklet_enable(struct tasklet_struct *t);[bookmark: linuxdrive3-CHP-7-ITERM-5605]
[bookmark: linuxdrive3-CHP-7-ITERM-5606]

	
Enables a tasklet that had been previously disabled. If the tasklet

has already been scheduled, it will run soon. A call to

tasklet_enable must match each call to

tasklet_disable, as the kernel keeps track of

the "disable count" for each

tasklet.





	void tasklet_schedule(struct tasklet_struct *t);[bookmark: linuxdrive3-CHP-7-ITERM-5607]
[bookmark: linuxdrive3-CHP-7-ITERM-5608]

	
Schedule the tasklet for execution. If a tasklet is scheduled again

before it has a chance to run, it runs only once. However, if it is

scheduled while it runs, it runs again after it

completes; this ensures that events occurring while other events are

being processed receive due attention. This behavior also allows a

tasklet to reschedule itself.





	void tasklet_hi_schedule(struct tasklet_struct *t);[bookmark: linuxdrive3-CHP-7-ITERM-5609]
[bookmark: linuxdrive3-CHP-7-ITERM-5610]

	
Schedule the tasklet for execution with higher priority. When the

soft interrupt handler runs, it deals with high-priority tasklets

before other soft interrupt tasks, including

"normal" tasklets. Ideally, only

tasks with low-latency requirements (such as filling the audio

buffer) should use this function, to avoid the additional latencies

introduced by other soft interrupt handlers. Actually,

/proc/jitasklethi shows no human-visible

difference from /proc/jitasklet.





	void tasklet_kill(struct tasklet_struct *t);[bookmark: linuxdrive3-CHP-7-ITERM-5611]
[bookmark: linuxdrive3-CHP-7-ITERM-5612]

	
This function ensures that the tasklet is not scheduled to run again;

it is usually called when a device is being closed or the module

removed. If the tasklet is scheduled to run, the function waits until

it has executed. If the tasklet reschedules itself, you must prevent

it from rescheduling itself before calling

tasklet_kill, as with

del_timer_sync.





Tasklets [bookmark: linuxdrive3-CHP-7-ITERM-5613] [bookmark: linuxdrive3-CHP-7-ITERM-5614] [bookmark: linuxdrive3-CHP-7-ITERM-5615] [bookmark: linuxdrive3-CHP-7-ITERM-5616] [bookmark: linuxdrive3-CHP-7-ITERM-5617] [bookmark: linuxdrive3-CHP-7-ITERM-5618]are implemented in

kernel/softirq.c. The two tasklet lists (normal

and high-priority) are declared as per-CPU data structures, using the

same CPU-affinity mechanism used by kernel timers. The data structure

used in tasklet management is a simple linked list, because tasklets

have none of the sorting requirements of kernel timers.
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7.6. Workqueues

Workqueues are, superficially, similar to

tasklets; they allow kernel code to request that a function be

called[bookmark: linuxdrive3-CHP-7-ITERM-5619]
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at some future time. There are, however, some significant differences

between the two, including:

	Tasklets run in software interrupt context with the result that all

tasklet code must be atomic. Instead, workqueue functions run in the

context of a special kernel process; as a result, they have more

flexibility. In particular, workqueue functions can sleep.

	Tasklets always run on the processor from which they were originally

submitted. Workqueues work in the same way, by default.

	Kernel code can request that the execution of workqueue functions be

delayed for an explicit interval.



The key difference between the two is that tasklets execute quickly,

for a short period of time, and in atomic mode, while workqueue

functions may have higher latency but need not be atomic. Each

mechanism has situations where it is appropriate.

Workqueues have a type of struct
workqueue_struct, which is defined in

<linux/workqueue.h>. A workqueue must be

explicitly created before use, using one of the following two

functions:

struct workqueue_struct *create_workqueue(const char *name);

struct workqueue_struct *create_singlethread_workqueue(const char *name);
 

Each workqueue has one or more dedicated processes

("kernel threads"), which run

functions submitted to the queue. If you use

create_workqueue, you get a workqueue that has a

dedicated thread for each processor on the system. In many cases, all

those threads are simply overkill; if a single worker thread will

suffice, create the workqueue with

create_singlethread_workqueue instead.

To submit a task to a workqueue, you need to fill in a

work_struct structure. This can be done at compile

time as follows:

DECLARE_WORK(name, void (*function)(void *), void *data);
 

Where name is the name of the structure to be

declared, function is the function that is to be

called from the workqueue, and data is a value to

pass to that function. If you need to set up the

work_struct structure at runtime, use the

following two macros:

INIT_WORK(struct work_struct *work, void (*function)(void *), void *data);

PREPARE_WORK(struct work_struct *work, void (*function)(void *), void *data);
 

INIT_WORK does a more thorough job of

initializing the structure; you should use it the first time that

structure is set up. PREPARE_WORK does almost

the same job, but it does not initialize the pointers used to link

the work_struct structure into the workqueue. If

there is any possibility that the structure may currently be

submitted to a workqueue, and you need to change that structure, use

PREPARE_WORK rather than

INIT_WORK.

There are two functions

for[bookmark: linuxdrive3-CHP-7-ITERM-5623]

submitting work to a workqueue:

int queue_work(struct workqueue_struct *queue, struct work_struct *work);

int queue_delayed_work(struct workqueue_struct *queue, 

                       struct work_struct *work, unsigned long delay);
 

Either one adds work to the given

queue. If queue_delayed_work

is used, however, the actual work is not performed until at least

delay jiffies have passed. The return value from

these functions is 0 if the work was successfully

added to the queue; a nonzero result means that this

work_struct structure was already waiting in the

queue, and was not added a second time.

At some time in the future, the work function will be called with the

given data value. The function will be running in

the context of the worker thread, so it can sleep if need

be�although you should be aware of how that sleep might affect

any other tasks submitted to the same workqueue. What the function

cannot do, however, is access user space. Since it is running inside

a kernel thread, there simply is no user space to access.

Should you need to cancel a pending workqueue entry, you may call:

int cancel_delayed_work(struct work_struct *work);
 

The return value is nonzero if the entry was canceled before it began

execution. The kernel guarantees that execution of the given entry

will not be initiated after a call to

cancel_delayed_work. If

cancel_delayed_work returns

0, however, the entry may have already been

running on a different processor, and might still be running after a

call to cancel_delayed_work. To be absolutely

sure that the work function is not running anywhere in the system

after cancel_delayed_work returns

0, you must follow that call with a call to:

void flush_workqueue(struct workqueue_struct *queue);
 

After flush_workqueue returns, no work function

submitted prior to the call is running anywhere in the system.

When you are done with a workqueue, you can get rid of it with:

void destroy_workqueue(struct workqueue_struct *queue);
 

[bookmark: linuxdrive3-CHP-7-SECT-6.1]
7.6.1. The Shared Queue

A device driver, in many cases, does not need its own workqueue. If

you only submit tasks to the queue occasionally, it may be more

efficient to simply use the shared, default workqueue that is

provided by the kernel. If you use this queue, however, you must be

aware that you will be sharing it with others. Among other things,

that means that you should not monopolize the queue for long periods

of time (no long sleeps), and it may take longer for your tasks to

get their turn in the processor.

The jiq ("just in

queue") module exports two files that demonstrate

the use of the shared workqueue. They use a single

work_struct structure, which is set up this way:

static struct work_struct jiq_work;



    /* this line is in jiq_init(  ) */

    INIT_WORK(&jiq_work, jiq_print_wq, &jiq_data);
 

When a

process[bookmark: linuxdrive3-CHP-7-ITERM-5624]

reads /proc/jiqwq, the module initiates a series

of trips through the shared workqueue with no delay. The function it

uses is:

int schedule_work(struct work_struct *work);
 

Note that a different function is used when working with the shared

queue; it requires only the work_struct structure

for an argument. The actual code in jiq looks

like this:

prepare_to_wait(&jiq_wait, &wait, TASK_INTERRUPTIBLE);

schedule_work(&jiq_work);

schedule(  );

finish_wait(&jiq_wait, &wait);
 

The actual work function prints out a line just like the

jit module does, then, if need be, resubmits the

work_struct structure into the workqueue. Here is

jiq_print_wq in its entirety:

static void jiq_print_wq(void *ptr)

{

    struct clientdata *data = (struct clientdata *) ptr;

    

    if (! jiq_print (ptr))

        return;

    

    if (data->delay)

        schedule_delayed_work(&jiq_work, data->delay);

    else

        schedule_work(&jiq_work);

}
 

If the user is reading the delayed device

(/proc/jiqwqdelay), the work function resubmits

itself in the delayed mode with

schedule_delayed_work:

int schedule_delayed_work(struct work_struct *work, unsigned long delay);
 

If you look at the output from these two devices, it looks something

like:

% cat /proc/jiqwq

    time  delta preempt   pid cpu command

  1113043     0       0     7   1 events/1

  1113043     0       0     7   1 events/1

  1113043     0       0     7   1 events/1

  1113043     0       0     7   1 events/1

  1113043     0       0     7   1 events/1

% cat /proc/jiqwqdelay

    time  delta preempt   pid cpu command

  1122066     1       0     6   0 events/0

  1122067     1       0     6   0 events/0

  1122068     1       0     6   0 events/0

  1122069     1       0     6   0 events/0

  1122070     1       0     6   0 events/0
 

When /proc/jiqwq is read, there is no obvious

delay between the printing of each line. When, instead,

/proc/jiqwqdelay is read, there is a delay of

exactly one jiffy between each line. In either case, we see the same

process name printed; it is the name of the kernel thread that

implements the shared workqueue. The CPU number is printed after the

slash; we never know which CPU will be running when the

/proc file is read, but the work function will

always run on the same processor thereafter.

If you need to cancel a work entry submitted to the shared queue, you

may use cancel_delayed_work, as described above.

Flushing the shared workqueue requires a separate function, however:

void flush_scheduled_work(void);
 

Since you do not know who[bookmark: linuxdrive3-CHP-7-ITERM-5625] [bookmark: linuxdrive3-CHP-7-ITERM-5626] [bookmark: linuxdrive3-CHP-7-ITERM-5627] [bookmark: linuxdrive3-CHP-7-ITERM-5628] else might be using this queue, you

never really know how long it might take for

flush_scheduled_work to return.
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7.7. Quick Reference

This chapter introduced the following symbols.

[bookmark: linuxdrive3-CHP-7-SECT-7.1]
7.7.1. Timekeeping
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	#include <linux/param.h>



	HZ

	
The HZ symbol specifies the number

[bookmark: linuxdrive3-CHP-7-ITERM-5629]
[bookmark: linuxdrive3-CHP-7-ITERM-5630]of clock ticks

generated per second.





	#include <linux/jiffies.h>



	volatile unsigned long jiffies



	u64 jiffies_64

	
The jiffies_64 variable

is[bookmark: linuxdrive3-CHP-7-ITERM-5631] incremented

[bookmark: linuxdrive3-CHP-7-ITERM-5632]once for each clock tick;

thus, it's incremented HZ times

per second. Kernel code most often refers to

jiffies, which is the same as

jiffies_64 on 64-bit platforms and the least

significant half of it on 32-bit platforms.





	int time_after(unsigned long a, unsigned long b);



	int time_before(unsigned long a, unsigned long b);



	int time_after_eq(unsigned long a, unsigned long b);



	int time_before_eq(unsigned long a, unsigned long b);

	
These Boolean expressions compare jiffies in a safe way, without

problems in case of counter overflow and without the need to access

jiffies_64.





	u64 get_jiffies_64(void);

	
Retrieves jiffies_64 without race conditions.





	#include <linux/time.h>



	unsigned long timespec_to_jiffies(struct timespec *value);



	void jiffies_to_timespec(unsigned long jiffies, struct timespec *value);



	unsigned long timeval_to_jiffies(struct timeval *value);



	void jiffies_to_timeval(unsigned long jiffies, struct timeval *value);

	
Converts time representations between jiffies and other

representations.





	#include <asm/msr.h>



	rdtsc(low32,high32);



	rdtscl(low32);



	rdtscll(var32);

	
x86-specific macros to read the timestamp counter. They read it as

two 32-bit halves, read only the lower half, or read all of it into a

long long variable.





	#include <linux/timex.h>



	cycles_t get_cycles(void);

	
Returns the timestamp counter in a platform-independent way. If the

CPU offers no timestamp feature, 0 is returned.





	#include <linux/time.h>



	unsigned long mktime(year, mon, day, h, m, s);

	
Returns the number of seconds since the Epoch, based on the six

unsigned int arguments.





	void do_gettimeofday(struct timeval *tv);

	
Returns the current time, as seconds and microseconds since the

Epoch, with the best resolution the hardware can offer. On most

platforms the resolution is one microsecond or better, although some

platforms offer only jiffies resolution.





	struct timespec current_kernel_time(void);

	
Returns the current time with the resolution of one jiffy.
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7.7.2. Delays
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	#include <linux/wait.h>



	long wait_event_interruptible_timeout(wait_queue_head_t *q, condition, signed 



	 long timeout);

	
Puts the current process to sleep on the wait queue, installing a

timeout value expressed in jiffies. Use

schedule_timeout (below) for noninterruptible

sleeps.





	#include <linux/sched.h>



	signed long schedule_timeout(signed long timeout);

	
Calls the scheduler
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process is awakened at timeout expiration. The caller must invoke

set_current_state first to put itself in an

interruptible or noninterruptible sleep state.





	#include <linux/delay.h>



	void ndelay(unsigned long nsecs);



	void udelay(unsigned long usecs);



	void mdelay(unsigned long msecs);

	
Introduces delays of an integer number of nanoseconds, microseconds,

and milliseconds. The delay achieved is at least the requested value,

but it can be more. The argument to each function must not exceed a

platform-specific limit (usually a few thousands).





	void msleep(unsigned int millisecs);



	unsigned long msleep_interruptible(unsigned int millisecs);



	void ssleep(unsigned int seconds);

	
Puts the process to sleep for the given number of milliseconds (or

seconds, in the case of ssleep).





[bookmark: linuxdrive3-CHP-7-SECT-7.3]
7.7.3. Kernel Timers

[bookmark: linuxdrive3-CHP-7-ITERM-5637][bookmark: linuxdrive3-CHP-7-ITERM-5638]

	#include <asm/hardirq.h>



	int in_interrupt(void);



	int in_atomic(void);

	
Returns a

Boolean[bookmark: linuxdrive3-CHP-7-ITERM-5637]
[bookmark: linuxdrive3-CHP-7-ITERM-5638]

value telling whether the calling code is executing in interrupt

context or atomic context. Interrupt context is outside of a process

context, either during hardware or software interrupt processing.

Atomic context is when you can't schedule either an

interrupt context or a process's context with a

spinlock held.





	#include <linux/timer.h>



	void init_timer(struct timer_list * timer);



	struct timer_list TIMER_INITIALIZER(_function, _expires, _data);

	
This function and the static declaration of the timer structure are

the two ways to initialize a timer_list data

structure.





	void add_timer(struct timer_list * timer);

	
Registers the timer structure to run on the current CPU.





	int mod_timer(struct timer_list *timer, unsigned long expires);

	
Changes the expiration time of an already scheduled timer structure.

It can also act as an alternative to add_timer.





	int timer_pending(struct timer_list * timer);

	
Macro that returns a Boolean value stating whether the timer

structure is already registered to run.





	void del_timer(struct timer_list * timer);



	void del_timer_sync(struct timer_list * timer);

	
Removes a timer from the list of active timers. The latter function

ensures that the timer is not currently running on another CPU.





[bookmark: linuxdrive3-CHP-7-SECT-7.4]
7.7.4. Tasklets

[bookmark: linuxdrive3-CHP-7-ITERM-5639][bookmark: linuxdrive3-CHP-7-ITERM-5640]

	#include <linux/interrupt.h>



	DECLARE_TASKLET(name, func, data);



	DECLARE_TASKLET_DISABLED(name, func, data);



	void tasklet_init(struct tasklet_struct *t, void (*func)(unsigned long), 



	 unsigned long data);

	
The first two macros declare a tasklet structure, while the

tasklet_init function initializes a tasklet

[bookmark: linuxdrive3-CHP-7-ITERM-5639]
[bookmark: linuxdrive3-CHP-7-ITERM-5640]structure that has

been obtained by allocation or other means. The second

DECLARE macro marks the tasklet as disabled.





	void tasklet_disable(struct tasklet_struct *t);



	void tasklet_disable_nosync(struct tasklet_struct *t);



	void tasklet_enable(struct tasklet_struct *t);

	
Disables and reenables a tasklet. Each disable

must be matched with an enable (you can disable

the tasklet even if it's already disabled). The

function tasklet_disable waits for the tasklet

to terminate if it is running on another CPU. The

nosync version doesn't take

this extra step.





	void tasklet_schedule(struct tasklet_struct *t);



	void tasklet_hi_schedule(struct tasklet_struct *t);

	
Schedules a tasklet to run, either as a

"normal" tasklet or a high-priority

one. When soft interrupts are executed, high-priority tasklets are

dealt with first, while normal tasklets run last.





	void tasklet_kill(struct tasklet_struct *t);

	
Removes the tasklet from the list of active ones, if

it's scheduled to run. Like

tasklet_disable, the function may block on SMP

systems waiting for the tasklet to terminate if it's

currently running on another CPU.





[bookmark: linuxdrive3-CHP-7-SECT-7.5]
7.7.5. Workqueues

[bookmark: linuxdrive3-CHP-7-ITERM-5641][bookmark: linuxdrive3-CHP-7-ITERM-5642][bookmark: linuxdrive3-CHP-7-ITERM-5643]

	#include <linux/workqueue.h>



	struct workqueue_struct;



	struct work_struct;

	
The structures

[bookmark: linuxdrive3-CHP-7-ITERM-5641]
[bookmark: linuxdrive3-CHP-7-ITERM-5642]
[bookmark: linuxdrive3-CHP-7-ITERM-5643]representing

a workqueue and a work entry, respectively.





	struct workqueue_struct *create_workqueue(const char *name);



	struct workqueue_struct *create_singlethread_workqueue(const char *name);



	void destroy_workqueue(struct workqueue_struct *queue);

	
Functions for creating and destroying workqueues. A call to

create_workqueue creates a queue with a worker

thread on each processor in the system; instead,

create_singlethread_workqueue creates a

workqueue with a single worker process.





	DECLARE_WORK(name, void (*function)(void *), void *data);



	INIT_WORK(struct work_struct *work, void (*function)(void *), void *data);



	PREPARE_WORK(struct work_struct *work, void (*function)(void *), void *data);

	
Macros that declare and initialize workqueue entries.





	int queue_work(struct workqueue_struct *queue, struct work_struct *work);



	int queue_delayed_work(struct workqueue_struct *queue, struct work_struct 



	 *work, unsigned long delay);

	
Functions that queue work for execution from a workqueue.





	int cancel_delayed_work(struct work_struct *work);



	void flush_workqueue(struct workqueue_struct *queue);

	
Use cancel_delayed_work to remove an entry from

a workqueue; flush_workqueue ensures that no

workqueue entries are running anywhere in the system.





	int schedule_work(struct work_struct *work);



	int schedule_delayed_work(struct work_struct *work, unsigned long delay);



	void flush_scheduled_work(void);

	
Functions for working with the shared workqueue.











[bookmark: linuxdrive3-CHP-8]

Chapter 8. Allocating Memory

[bookmark: linuxdrive3-CHP-8-ITERM-5644]Thus

far, we have used kmalloc and

kfree for the allocation and freeing of memory.

The Linux kernel offers a richer set of memory allocation primitives,

however. In this chapter, we look at other ways of using memory in

device drivers and how to optimize your system's

memory resources. We do not get into how the different architectures

actually administer memory. Modules are not involved in issues of

segmentation, paging, and so on, since the kernel offers a unified

memory management interface to the drivers. In addition, we

won't describe the internal details of memory

management in this chapter, but defer it to Chapter 15.







[bookmark: linuxdrive3-CHP-8-SECT-1]
8.1. The Real Story of kmalloc

The kmalloc[bookmark: linuxdrive3-CHP-8-ITERM-5645] [bookmark: linuxdrive3-CHP-8-ITERM-5646] [bookmark: linuxdrive3-CHP-8-ITERM-5647] [bookmark: linuxdrive3-CHP-8-ITERM-5648] allocation engine is a powerful tool

and easily learned because of its similarity to

malloc. The function is fast (unless it blocks)

and doesn't clear the memory it obtains; the

allocated region still holds its previous content.[1] The allocated region is also

contiguous in physical memory. In the next few sections, we talk in

detail about kmalloc, so you can compare it with

the memory allocation techniques that we discuss later.
[bookmark: linuxdrive3-CHP-8-FNOTE-1][1] Among other things, this implies that you should explicitly

clear any memory that might be exposed to user space or written to a

device; otherwise, you risk disclosing information that should be

kept private.


[bookmark: linuxdrive3-CHP-8-SECT-1.1]
8.1.1. The Flags Argument

[bookmark: linuxdrive3-CHP-8-ITERM-5649]
[bookmark: linuxdrive3-CHP-8-ITERM-5650][bookmark: linuxdrive3-CHP-8-ITERM-5651]Remember that the prototype for

kmalloc is:

#include <linux/slab.h>



void *kmalloc(size_t size, int flags);
 

The first argument to kmalloc is the size of the

block to be allocated. The second argument, the allocation flags, is

much more interesting, because it controls the behavior of

kmalloc in a number of ways.

[bookmark: linuxdrive3-CHP-8-ITERM-5652]
[bookmark: linuxdrive3-CHP-8-ITERM-5653][bookmark: linuxdrive3-CHP-8-ITERM-5654]
[bookmark: linuxdrive3-CHP-8-ITERM-5655]The

most commonly used flag, GFP_KERNEL, means that

the allocation (internally performed by calling, eventually,

_ _get_free_pages, which is the source of the

GFP_ prefix) is performed on behalf of a process

running in kernel space. In other words, this means that the calling

function is executing a system call on behalf of a process. Using

GFP_KERNEL means that kmalloc

can put the current process to sleep waiting for a page when called

in low-memory situations. A function that allocates memory using

GFP_KERNEL must, therefore, be reentrant and

cannot be running in atomic context. While the current process

sleeps, the kernel takes proper action to locate some free memory,

either by flushing buffers to disk or by swapping out memory from a

user process.

[bookmark: linuxdrive3-CHP-8-ITERM-5656]
[bookmark: linuxdrive3-CHP-8-ITERM-5657]GFP_KERNEL

isn't always the right allocation flag to use;

sometimes kmalloc is called from outside a

process's context. This type of call can happen, for

instance, in interrupt handlers, tasklets, and kernel timers. In this

case, the current process should not be put to

sleep, and the driver should use a flag of

GFP_ATOMIC instead. The kernel normally tries to

keep some free pages around in order to fulfill atomic allocation.

When GFP_ATOMIC is used,

kmalloc can use even the last free page. If that

last page does not exist, however, the allocation fails.

[bookmark: linuxdrive3-CHP-8-ITERM-5658]Other

flags can be used in place of or in addition to

GFP_KERNEL and GFP_ATOMIC,

although those two cover most of the needs of device drivers. All the

flags are defined in <linux/gfp.h>, and

individual flags are prefixed with a double underscore, such as

_ _GFP_DMA. In addition, there are symbols that

represent frequently used combinations of flags; these lack the

prefix and are sometimes called allocation

priorities[bookmark: linuxdrive3-CHP-8-ITERM-5659].

The latter include:

[bookmark: linuxdrive3-CHP-8-ITERM-5660][bookmark: linuxdrive3-CHP-8-ITERM-5661][bookmark: linuxdrive3-CHP-8-ITERM-5662][bookmark: linuxdrive3-CHP-8-ITERM-5663][bookmark: linuxdrive3-CHP-8-ITERM-5664][bookmark: linuxdrive3-CHP-8-ITERM-5665][bookmark: linuxdrive3-CHP-8-ITERM-5666][bookmark: linuxdrive3-CHP-8-ITERM-5667]

	GFP_ATOMIC

	
Used to allocate memory from interrupt handlers and other code

outside of a process context. Never sleeps.





	GFP_KERNEL

	
Normal allocation of kernel memory. May sleep.





	GFP_USER

	
[bookmark: linuxdrive3-CHP-8-ITERM-5660]
[bookmark: linuxdrive3-CHP-8-ITERM-5661]Used

to allocate memory for user-space pages; it may sleep.





	GFP_HIGHUSER

	
[bookmark: linuxdrive3-CHP-8-ITERM-5662]
[bookmark: linuxdrive3-CHP-8-ITERM-5663]Like

GFP_USER, but allocates from high memory, if any.

High memory is described in the next subsection.





	GFP_NOIO



	GFP_NOFS[bookmark: linuxdrive3-CHP-8-ITERM-5664]
[bookmark: linuxdrive3-CHP-8-ITERM-5665]

	
These flags function like GFP_KERNEL, but they add

restrictions on what the kernel can do to satisfy the request. A

GFP_NOFS allocation is not allowed to perform any

filesystem calls, while

GFP_NOIO[bookmark: linuxdrive3-CHP-8-ITERM-5666]
[bookmark: linuxdrive3-CHP-8-ITERM-5667]

disallows the initiation of any I/O at all. They are used primarily

in the filesystem and virtual memory code where an allocation may be

allowed to sleep, but recursive filesystem calls would be a bad idea.





The allocation flags listed above can be augmented by an ORing in any

of the following flags, which change how the allocation is carried

out:

[bookmark: linuxdrive3-CHP-8-ITERM-5668][bookmark: linuxdrive3-CHP-8-ITERM-5669][bookmark: linuxdrive3-CHP-8-ITERM-5670][bookmark: linuxdrive3-CHP-8-ITERM-5671][bookmark: linuxdrive3-CHP-8-ITERM-5672][bookmark: linuxdrive3-CHP-8-ITERM-5673][bookmark: linuxdrive3-CHP-8-ITERM-5674][bookmark: linuxdrive3-CHP-8-ITERM-5675][bookmark: linuxdrive3-CHP-8-ITERM-5676][bookmark: linuxdrive3-CHP-8-ITERM-5677][bookmark: linuxdrive3-CHP-8-ITERM-5678][bookmark: linuxdrive3-CHP-8-ITERM-5679][bookmark: linuxdrive3-CHP-8-ITERM-5680][bookmark: linuxdrive3-CHP-8-ITERM-5681][bookmark: linuxdrive3-CHP-8-ITERM-5682][bookmark: linuxdrive3-CHP-8-ITERM-5683][bookmark: linuxdrive3-CHP-8-ITERM-5684][bookmark: linuxdrive3-CHP-8-ITERM-5685][bookmark: linuxdrive3-CHP-8-ITERM-5686]

	_ _GFP_DMA[bookmark: linuxdrive3-CHP-8-ITERM-5668]
[bookmark: linuxdrive3-CHP-8-ITERM-5669]

	
This flag requests allocation to happen in the DMA-capable memory

zone. The exact meaning is platform-dependent and is explained in the

following section.





	_ _GFP_HIGHMEM[bookmark: linuxdrive3-CHP-8-ITERM-5670]
[bookmark: linuxdrive3-CHP-8-ITERM-5671]

	
This flag indicates that the allocated memory may be located in high

memory.





	_ _GFP_COLD[bookmark: linuxdrive3-CHP-8-ITERM-5672]
[bookmark: linuxdrive3-CHP-8-ITERM-5673]

	
Normally, the memory

[bookmark: linuxdrive3-CHP-8-ITERM-5674]
[bookmark: linuxdrive3-CHP-8-ITERM-5675]
[bookmark: linuxdrive3-CHP-8-ITERM-5676]allocator

tries to return "cache warm"

pages�pages that are likely to be found in the processor cache.

Instead, this flag requests a

"cold" page, which has not been

used in some time. It is useful for allocating pages for DMA reads,

where presence in the processor cache is not useful. See 

Chapter 15 for a full discussion

of how to allocate DMA buffers.





	_ _GFP_NOWARN[bookmark: linuxdrive3-CHP-8-ITERM-5677]
[bookmark: linuxdrive3-CHP-8-ITERM-5678]

	
This rarely used flag prevents the kernel from issuing warnings (with

printk) when an allocation cannot be satisfied.





	_ _GFP_HIGH[bookmark: linuxdrive3-CHP-8-ITERM-5679]
[bookmark: linuxdrive3-CHP-8-ITERM-5680]

	
This flag marks a high-priority request, which is allowed to consume

even the last pages of memory set aside by the kernel for

emergencies.





	_ _GFP_REPEAT[bookmark: linuxdrive3-CHP-8-ITERM-5681]
[bookmark: linuxdrive3-CHP-8-ITERM-5682]



	_ _GFP_NOFAIL[bookmark: linuxdrive3-CHP-8-ITERM-5683]
[bookmark: linuxdrive3-CHP-8-ITERM-5684]



	_ _GFP_NORETRY[bookmark: linuxdrive3-CHP-8-ITERM-5685]
[bookmark: linuxdrive3-CHP-8-ITERM-5686]

	
These flags modify how the allocator behaves when it has difficulty

satisfying an allocation. _ _GFP_REPEAT means

"try a little harder" by repeating

the attempt�but the allocation can still fail. The _

_GFP_NOFAIL flag tells the allocator never to fail; it

works as hard as needed to satisfy the request. Use of _

_GFP_NOFAIL is very strongly discouraged; there will

probably never be a valid reason to use it in a device driver.

Finally, _ _GFP_NORETRY tells the allocator to

give up immediately if the requested memory is not available.





[bookmark: linuxdrive3-CHP-8-SECT-1.1.1]
8.1.1.1 Memory zones

[bookmark: linuxdrive3-CHP-8-ITERM-5687]
[bookmark: linuxdrive3-CHP-8-ITERM-5688]Both

_ _GFP_DMA and _ _GFP_HIGHMEM

have a platform-dependent role, although their use is valid for all

platforms.

[bookmark: linuxdrive3-CHP-8-ITERM-5689][bookmark: linuxdrive3-CHP-8-ITERM-5690]The Linux kernel knows about a minimum of

three memory zones: DMA-capable memory, normal

memory, and high memory. While allocation normally happens in the

normal zone, setting either of the bits just

mentioned requires memory to be allocated from a different zone. The

idea is that every computer platform that must know about special

memory ranges (instead of considering all RAM equivalents) will fall

into this abstraction.

DMA-capable memory is memory that lives in a

preferential address range, where peripherals can perform DMA access.

On most sane platforms, all memory lives in this zone. On the x86,

the DMA zone is used for the first 16 MB of RAM, where legacy ISA

devices can perform DMA; PCI devices have no such limit.

High memory[bookmark: linuxdrive3-CHP-8-ITERM-5691] is a mechanism used to allow access to

(relatively) large amounts of memory on 32-bit platforms. This memory

cannot be directly accessed from the kernel without first setting up

a special mapping and is generally harder to work with. If your

driver uses large amounts of memory, however, it will work better on

large systems if it can use high memory. See the Section 1.8 in Chapter 15 for a detailed

description of how high memory works and how to use it.

Whenever a new page is allocated to fulfill a memory allocation

request, the kernel builds a list of zones that can be used in the

search. If _ _GFP_DMA is specified, only the DMA

zone is searched: if no memory is available at low addresses,

allocation fails. If no special flag is present, both normal and DMA

memory are searched; if _ _GFP_HIGHMEM is set, all

three zones are used to search a free page. (Note, however, that

kmalloc cannot allocate high memory.)

The situation is more complicated on [bookmark: linuxdrive3-CHP-8-ITERM-5692]
[bookmark: linuxdrive3-CHP-8-ITERM-5693]nonuniform memory access (NUMA)

systems. As a general rule, the allocator attempts to locate memory

local to the processor performing the allocation, although there are

ways of changing that behavior.

The mechanism behind memory [bookmark: linuxdrive3-CHP-8-ITERM-5694]zones is

implemented in mm/page_alloc.c, while

initialization of the zone resides in platform-specific files,

usually in mm/init.c within the

arch tree. We'll revisit these

topics in Chapter 15.

[bookmark: linuxdrive3-CHP-8-SECT-1.2]
8.1.2. The Size Argument

The kernel

manages[bookmark: linuxdrive3-CHP-8-ITERM-5695]
[bookmark: linuxdrive3-CHP-8-ITERM-5696] the system's

physical[bookmark: linuxdrive3-CHP-8-ITERM-5697]
[bookmark: linuxdrive3-CHP-8-ITERM-5698] memory, which is available only in

page-sized chunks. As a result, kmalloc looks

rather different from a typical user-space

malloc implementation. A simple, heap-oriented

allocation technique would quickly run into trouble; it would have a

hard time working around the page boundaries. Thus, the kernel uses a

special page-oriented allocation technique to get the best use from

the system's RAM.

Linux handles memory allocation by creating a set of pools of memory

objects of fixed sizes. Allocation requests are handled by going to a

pool that holds sufficiently large objects and handing an entire

memory chunk back to the requester. The memory management scheme is

quite complex, and the details of it are not normally all that

interesting to device driver writers.

The one thing driver developers should keep in mind, though, is that

the kernel can allocate only certain predefined, fixed-size byte

arrays. If you ask for an arbitrary amount of memory,

you're likely to get slightly more than you asked

for, up to twice as much. Also, programmers should remember that the

smallest allocation that kmalloc can handle is

as big as 32 or 64 bytes, depending on the page size used by the

system's architecture.

There is an upper limit to the [bookmark: linuxdrive3-CHP-8-ITERM-5699] [bookmark: linuxdrive3-CHP-8-ITERM-5700] [bookmark: linuxdrive3-CHP-8-ITERM-5701] [bookmark: linuxdrive3-CHP-8-ITERM-5702]size of memory chunks that can be

allocated by kmalloc. That limit varies

depending on architecture and kernel configuration options. If your

code is to be completely portable, it cannot count on being able to

allocate anything larger than 128 KB. If you need more than a few

kilobytes, however, there are better ways than

kmalloc to obtain memory, which we describe

later in this chapter.







[bookmark: linuxdrive3-CHP-8-SECT-2]
8.2. Lookaside Caches

A device driver often ends up [bookmark: linuxdrive3-CHP-8-ITERM-5703] [bookmark: linuxdrive3-CHP-8-ITERM-5704] [bookmark: linuxdrive3-CHP-8-ITERM-5705] [bookmark: linuxdrive3-CHP-8-ITERM-5706]allocating

many objects of the same size, over and over. Given that the kernel

already maintains a set of memory pools of objects that are all the

same size, why not add some special pools for these high-volume

objects? In fact, the kernel does implement a facility to create this

sort of pool, which is often called a lookaside

cache. Device drivers normally do not exhibit the sort of

memory behavior that justifies using a lookaside cache, but there can

be exceptions; the USB and SCSI drivers in Linux 2.6 use caches.

[bookmark: linuxdrive3-CHP-8-ITERM-5707]
[bookmark: linuxdrive3-CHP-8-ITERM-5708][bookmark: linuxdrive3-CHP-8-ITERM-5709]
[bookmark: linuxdrive3-CHP-8-ITERM-5710]The

cache manager in the Linux kernel is sometimes called the

"slab allocator." For that reason,

its functions and types are declared in

<linux/slab.h>. The slab allocator

implements caches that have a type of

kmem_cache_t; they are created with a call to

kmem_cache_create:

kmem_cache_t *kmem_cache_create(const char *name, size_t size,

                                size_t offset, 

                                unsigned long flags,

                                void (*constructor)(void *, kmem_cache_t *,

                                                    unsigned long flags),

                                void (*destructor)(void *, kmem_cache_t *,

                                                   unsigned long flags));
 

The function creates a new cache object that can host any number of

memory areas all of the same size, specified by the

size argument. The name

argument is associated with this cache and functions as housekeeping

information usable in tracking problems; usually, it is set to the

name of the type of structure that is cached. The cache keeps a

pointer to the name, rather than copying it, so the driver should

pass in a pointer to a name in static storage (usually the name is

just a literal string). The name cannot contain blanks.

The offset is the offset of the first object in

the page; it can be used to ensure a particular alignment for the

allocated objects, but you most likely will use 0

to request the default value. flags controls how

allocation is done and is a bit mask of the following flags:

[bookmark: linuxdrive3-CHP-8-ITERM-5711][bookmark: linuxdrive3-CHP-8-ITERM-5712][bookmark: linuxdrive3-CHP-8-ITERM-5713][bookmark: linuxdrive3-CHP-8-ITERM-5714][bookmark: linuxdrive3-CHP-8-ITERM-5715][bookmark: linuxdrive3-CHP-8-ITERM-5716][bookmark: linuxdrive3-CHP-8-ITERM-5717][bookmark: linuxdrive3-CHP-8-ITERM-5718][bookmark: linuxdrive3-CHP-8-ITERM-5719][bookmark: linuxdrive3-CHP-8-ITERM-5720]

	SLAB_NO_REAP

	
[bookmark: linuxdrive3-CHP-8-ITERM-5711]
[bookmark: linuxdrive3-CHP-8-ITERM-5712]Setting

this flag protects the cache from being reduced when the system is

looking for memory. Setting this flag is normally a bad idea; it is

important to avoid restricting the memory

allocator's freedom of action unnecessarily.





	SLAB_HWCACHE_ALIGN

	
[bookmark: linuxdrive3-CHP-8-ITERM-5713]
[bookmark: linuxdrive3-CHP-8-ITERM-5714]This

flag requires each data object to

be[bookmark: linuxdrive3-CHP-8-ITERM-5715]
[bookmark: linuxdrive3-CHP-8-ITERM-5716]
[bookmark: linuxdrive3-CHP-8-ITERM-5717]

aligned to a cache line; actual alignment depends on the cache layout

of the host platform. This option can be a good choice if your cache

contains items that are frequently accessed on SMP machines. The

padding required to achieve cache line alignment can end up wasting

significant amounts of memory, however.





	SLAB_CACHE_DMA

	
[bookmark: linuxdrive3-CHP-8-ITERM-5718]
[bookmark: linuxdrive3-CHP-8-ITERM-5719][bookmark: linuxdrive3-CHP-8-ITERM-5720]This flag requires each data object to be

allocated in the DMA memory zone.





There is also a set of flags that can be used during the debugging of

cache allocations; see mm/slab.c for the

details. Usually, however, these flags are set globally via a kernel

configuration option on systems used for development.

[bookmark: linuxdrive3-CHP-8-ITERM-5721]
[bookmark: linuxdrive3-CHP-8-ITERM-5722][bookmark: linuxdrive3-CHP-8-ITERM-5723]The

constructor and destructor

arguments to the function are optional functions (but there can be no

destructor without a constructor); the former can be used to

initialize newly allocated objects, and the latter can be used to

"clean up" objects prior to their

memory being released back to the system as a whole.

[bookmark: linuxdrive3-CHP-8-ITERM-5724]Constructors and destructors can be useful,

but there are a few constraints that you should keep in mind. A

constructor is called when the memory for a set of objects is

allocated; because that memory may hold several objects, the

constructor may be called multiple times. You cannot assume that the

constructor will be called as an immediate effect of allocating an

object. Similarly, destructors can be called at some unknown future

time, not immediately after an object has been freed. Constructors

and destructors may or may not be allowed to sleep, according to

whether they are passed the SLAB_CTOR_ATOMIC flag

(where CTOR is short for

constructor).

[bookmark: linuxdrive3-CHP-8-ITERM-5725]
[bookmark: linuxdrive3-CHP-8-ITERM-5726]For

convenience, a programmer can use the same function for both the

constructor and destructor; the slab allocator always passes the

SLAB_CTOR_CONSTRUCTOR flag when the callee is a

constructor.

[bookmark: linuxdrive3-CHP-8-ITERM-5727]
[bookmark: linuxdrive3-CHP-8-ITERM-5728]Once

a cache of objects is created, you can allocate objects from it by

calling kmem_cache_alloc:

void *kmem_cache_alloc(kmem_cache_t *cache, int flags);
 

Here, the

cache[bookmark: linuxdrive3-CHP-8-ITERM-5729]
[bookmark: linuxdrive3-CHP-8-ITERM-5730]

argument is the cache you have created previously; the flags are the

same as you would pass to kmalloc and are

consulted if kmem_cache_alloc needs to go out

and allocate more memory itself.

To free an object, use kmem_cache_free:

 void kmem_cache_free(kmem_cache_t *cache, const void *obj);
 

When driver code is finished with the cache, typically when the

module is unloaded, it should free its cache as follows:

 int kmem_cache_destroy(kmem_cache_t *cache);
 

The destroy operation succeeds only if all objects allocated from the

cache have been returned to it. Therefore, a module should check the

return status from kmem_cache_destroy; a failure

indicates some sort of memory leak within the module (since some of

the objects have been dropped).

[bookmark: linuxdrive3-CHP-8-ITERM-5731][bookmark: linuxdrive3-CHP-8-ITERM-5732]One

side benefit to using lookaside caches is that the kernel maintains

statistics on cache usage. These statistics may be obtained from

/proc/slabinfo.

[bookmark: linuxdrive3-CHP-8-SECT-2.1]
8.2.1. A scull Based on the Slab Caches: scullc

[bookmark: linuxdrive3-CHP-8-ITERM-5733]
[bookmark: linuxdrive3-CHP-8-ITERM-5734]Time for an example.

scullc is a cut-down version of the

scull module that implements only the bare

device�the persistent memory region. Unlike

scull, which uses kmalloc,

scullc uses memory caches. The size of the

quantum can be modified at compile time and at load time, but not at

runtime�that would require creating a new memory cache, and we

didn't want to deal with these unneeded details.

scullc is a complete example that can be used to

try out the slab allocator. It differs from

scull only in a few lines of code. First, we

must declare our own slab cache:

/* declare one cache pointer: use it for all devices */

kmem_cache_t *scullc_cache;
 

The creation of the slab cache is handled (at module load time) in

this way:

/* scullc_init: create a cache for our quanta */

scullc_cache = kmem_cache_create("scullc", scullc_quantum,

        0, SLAB_HWCACHE_ALIGN, NULL, NULL); /* no ctor/dtor */

if (!scullc_cache) {

    scullc_cleanup(  );

    return -ENOMEM;

}
 

This is how it allocates memory quanta:

/* Allocate a quantum using the memory cache */

if (!dptr->data[s_pos]) {

    dptr->data[s_pos] = kmem_cache_alloc(scullc_cache, GFP_KERNEL);

    if (!dptr->data[s_pos])

        goto nomem;

    memset(dptr->data[s_pos], 0, scullc_quantum);

}
 

And these lines release memory:

for (i = 0; i < qset; i++)

if (dptr->data[i])

        kmem_cache_free(scullc_cache, dptr->data[i]);
 

Finally, at module unload time, we have to return the cache to the

system:

/* scullc_cleanup: release the cache of our quanta */

if (scullc_cache)

    kmem_cache_destroy(scullc_cache);
 

The main differences in passing from scull to

scullc are a slight speed improvement and better

memory use. Since quanta are allocated from a pool of memory

fragments of exactly the right size, their placement in memory is as

dense as possible, as opposed to scull quanta,

which bring in an unpredictable memory fragmentation.

[bookmark: linuxdrive3-CHP-8-SECT-2.2]
8.2.2. Memory Pools

There are places in

the[bookmark: linuxdrive3-CHP-8-ITERM-5735]
[bookmark: linuxdrive3-CHP-8-ITERM-5736]

kernel where memory allocations cannot be allowed to fail. As a way

of guaranteeing allocations in those situations, the kernel

developers created an abstraction known as a memory

pool (or "mempool"). A

memory pool is really just a form of a lookaside cache that tries to

always keep a list of free memory around for use in emergencies.

A memory pool has a type of mempool_t (defined in

<linux/mempool.h>); you can create one

with mempool_create:

mempool_t *mempool_create(int min_nr, 

                          mempool_alloc_t *alloc_fn,

                          mempool_free_t *free_fn, 

                          void *pool_data);
 

The min_nr argument is the minimum number of

allocated objects that the pool should always keep around. The actual

allocation and freeing of objects is handled by

alloc_fn and free_fn, which

have these prototypes:

typedef void *(mempool_alloc_t)(int gfp_mask, void *pool_data);

typedef void (mempool_free_t)(void *element, void *pool_data);
 

The final parameter to mempool_create

(pool_data) is passed to

alloc_fn and free_fn.

If need be, you can write special-purpose functions to handle memory

allocations for mempools. Usually, however, you just want to let the

kernel slab allocator handle that task for you. There are two

functions (mempool_alloc_slab and

mempool_free_slab) that perform the impedance

matching between the memory pool allocation prototypes and

kmem_cache_alloc and

kmem_cache_free. Thus, code that sets up memory

pools often looks like the following:

cache = kmem_cache_create(. . .);

pool = mempool_create(MY_POOL_MINIMUM,

                      mempool_alloc_slab, mempool_free_slab,

                      cache);
 

Once the pool has been created, objects can be allocated and freed

with:

void *mempool_alloc(mempool_t *pool, int gfp_mask);

void mempool_free(void *element, mempool_t *pool);
 

When the mempool is created, the allocation function will be called

enough times to create a pool of preallocated objects. Thereafter,

calls to mempool_alloc attempt to acquire

additional objects from the allocation function; should that

allocation fail, one of the preallocated objects (if any remain) is

returned. When an object is freed with

mempool_free, it is kept in the pool if the

number of preallocated objects is currently below the minimum;

otherwise, it is to be returned to the system.

A mempool can be resized with:

int mempool_resize(mempool_t *pool, int new_min_nr, int gfp_mask);
 

This call, if successful, resizes the pool to have at least

new_min_nr objects.

If you no longer need a memory pool, return it to the system with:

void mempool_destroy(mempool_t *pool);
 

You must return all allocated objects before destroying the mempool,

or a kernel oops results.

If you are considering using a mempool in your driver, please keep

one thing in mind: mempools allocate a chunk of memory that sits in a

list, idle and unavailable for any real use. It is easy to consume a

great deal of memory with mempools. In almost every case, the

preferred alternative is to do without the mempool and simply deal

with the possibility of allocation failures instead. If there is any

way for your driver to respond to an allocation failure in a way that

does not endanger the integrity of the system, do things that way.

Use of mempools in driver code should be rare.







[bookmark: linuxdrive3-CHP-8-SECT-3]
8.3. get_free_page and Friends

[bookmark: linuxdrive3-CHP-8-ITERM-5737]
[bookmark: linuxdrive3-CHP-8-ITERM-5738]
[bookmark: linuxdrive3-CHP-8-ITERM-5739][bookmark: linuxdrive3-CHP-8-ITERM-5740]If a module needs to allocate big chunks

of memory, it is usually better to use a

[bookmark: linuxdrive3-CHP-8-ITERM-5741]page-oriented technique.

Requesting whole pages also has other advantages, which are

introduced in Chapter 15.

To allocate pages, the following functions are available:

[bookmark: linuxdrive3-CHP-8-ITERM-5742][bookmark: linuxdrive3-CHP-8-ITERM-5743][bookmark: linuxdrive3-CHP-8-ITERM-5744][bookmark: linuxdrive3-CHP-8-ITERM-5745][bookmark: linuxdrive3-CHP-8-ITERM-5746][bookmark: linuxdrive3-CHP-8-ITERM-5747]

	get_zeroed_page(unsigned int flags);

	
[bookmark: linuxdrive3-CHP-8-ITERM-5742]
[bookmark: linuxdrive3-CHP-8-ITERM-5743]Returns

a pointer to a new page and fills the page with zeros.





	_ _get_free_page(unsigned int flags);[bookmark: linuxdrive3-CHP-8-ITERM-5744]
[bookmark: linuxdrive3-CHP-8-ITERM-5745]

	
Similar to get_zeroed_page, but

doesn't clear the page.





	_ _get_free_pages(unsigned int flags, unsigned int order);[bookmark: linuxdrive3-CHP-8-ITERM-5746]
[bookmark: linuxdrive3-CHP-8-ITERM-5747]

	
Allocates and returns a pointer to the first byte of a memory area

that is potentially several (physically contiguous) pages long but

doesn't zero the area.





[bookmark: linuxdrive3-CHP-8-ITERM-5748]
[bookmark: linuxdrive3-CHP-8-ITERM-5749][bookmark: linuxdrive3-CHP-8-ITERM-5750]The flags

argument works in the same way as with kmalloc;

usually either GFP_KERNEL or

GFP_ATOMIC is used, perhaps with the addition of

the _ _GFP_DMA flag (for memory that can be used

for ISA direct-memory-access operations) or _

_GFP_HIGHMEM when high memory can be used.[2]
order is the base-two logarithm of the number of

pages you are requesting or freeing (i.e.,

log2N). For example,

order is 0 if you want one page

and 3 if you request eight pages. If

order is too big (no contiguous area of that size

is available), the page allocation fails. The

get_order function, which takes an integer

argument, can be used to extract the order from a size (that must be

a power of two) for the hosting platform. The maximum allowed value

for order is 10 or

11 (corresponding to 1024 or 2048 pages),

depending on the architecture. The chances of an order-10 allocation

succeeding on anything other than a freshly booted system with a lot

of memory are small, however.
[bookmark: linuxdrive3-CHP-8-FNOTE-2][2] Although alloc_pages (described shortly)

should really be used for allocating high-memory pages, for reasons

we can't really get into until Chapter 15.


If you are curious, /proc/buddyinfo tells you

how many blocks of each order are available for each memory zone on

the system.

[bookmark: linuxdrive3-CHP-8-ITERM-5751]
[bookmark: linuxdrive3-CHP-8-ITERM-5752]When

a program is done with the pages, it can free them with one of the

following functions. The first function is a macro that falls back on

the second:

void free_page(unsigned long addr);

void free_pages(unsigned long addr, unsigned long order);
 

If you try to free a different number of pages from what you

allocated, the memory map becomes corrupted, and the system gets in

trouble at a later time.

[bookmark: linuxdrive3-CHP-8-ITERM-5753]
[bookmark: linuxdrive3-CHP-8-ITERM-5754]It's

worth stressing that _ _get_free_pages and the

other functions can be called at any time, subject to the same rules

we saw for kmalloc. The functions can fail to

allocate memory in certain circumstances, particularly when

GFP_ATOMIC is used. Therefore, the program calling

these allocation functions must be prepared to handle an allocation

failure.

[bookmark: linuxdrive3-CHP-8-ITERM-5755][bookmark: linuxdrive3-CHP-8-ITERM-5756][bookmark: linuxdrive3-CHP-8-ITERM-5757]
[bookmark: linuxdrive3-CHP-8-ITERM-5758]Although

kmalloc(GFP_KERNEL) sometimes fails when there is

no available memory, the kernel does its best to fulfill allocation

requests. Therefore, it's easy to degrade system

responsiveness by allocating too much memory. For example, you can

bring the computer down by pushing too much data into a

scull device; the system starts crawling while

it tries to swap out as much as possible in order to fulfill the

kmalloc request. Since every resource is being

sucked up by the growing device, the computer is soon rendered

unusable; at that point, you can no longer even start a new process

to try to deal with the problem. We don't address

this issue in scull, since it is just a sample

module and not a real tool to put into a multiuser system. As a

programmer, you must be careful nonetheless, because a module is

privileged code and can open new security holes in the system (the

most likely is a denial-of-service hole like the one just outlined).

[bookmark: linuxdrive3-CHP-8-SECT-3.1]
8.3.1. A scull Using Whole Pages: scullp

[bookmark: linuxdrive3-CHP-8-ITERM-5759]
[bookmark: linuxdrive3-CHP-8-ITERM-5760]In order to test page allocation for

real, we have released the scullp module

together with other sample code. It is a reduced

scull, just like scullc

introduced earlier.

Memory quanta allocated by scullp are whole

pages or page sets: the scullp_order variable

defaults to 0 but can be changed at either compile

or load time.

The following lines show how it allocates memory:

/* Here's the allocation of a single quantum */

if (!dptr->data[s_pos]) {

    dptr->data[s_pos] =

        (void *)_ _get_free_pages(GFP_KERNEL, dptr->order);

    if (!dptr->data[s_pos])

        goto nomem;

    memset(dptr->data[s_pos], 0, PAGE_SIZE << dptr->order);

}
 

The code to deallocate memory in scullp looks

like this:

/* This code frees a whole quantum-set */

for (i = 0; i < qset; i++)

    if (dptr->data[i])

        free_pages((unsigned long)(dptr->data[i]),

                dptr->order);
 

At the user level, the perceived difference is primarily a speed

improvement and better memory use, because there is no internal

fragmentation of memory. We ran some tests copying 4 MB from

scull0 to scull1 and then

from scullp0 to scullp1;

the results showed a slight improvement in kernel-space processor

usage.

The performance improvement is not dramatic, because

kmalloc is designed to be fast. The main

advantage of page-level allocation isn't actually

speed, but rather more efficient memory usage. Allocating by pages

wastes no memory, whereas using kmalloc wastes

an unpredictable amount of memory because of allocation granularity.

But the biggest advantage of the _

_get_free_page functions is that the pages obtained are

completely yours, and you could, in theory, assemble the pages into a

linear area by appropriate tweaking of the page tables. For example,

you can allow a user process to mmap memory

areas obtained as single unrelated pages. We discuss this kind of

operation in Chapter 15, where

we show how scullp offers memory mapping,

something that scull cannot offer.

[bookmark: linuxdrive3-CHP-8-SECT-3.2]
8.3.2. The alloc_pages Interface

For completeness, we introduce [bookmark: linuxdrive3-CHP-8-ITERM-5761]
[bookmark: linuxdrive3-CHP-8-ITERM-5762]another

interface for memory allocation, even though we will not be prepared

to use it until after Chapter 15. For now, suffice it to say that struct page

is an internal kernel structure that describes a page of memory. As

we will see, there are many places in the kernel where it is

necessary to work with page structures; they are

especially useful in any situation where you might be dealing with

high memory, which does not have a constant address in kernel space.

The real core of the Linux

[bookmark: linuxdrive3-CHP-8-ITERM-5763]page

allocator is a function called alloc_pages_node:

struct page *alloc_pages_node(int nid, unsigned int flags, 

                              unsigned int order);
 

This function also has two variants (which are simply macros); these

are the versions that you will most likely use:

struct page *alloc_pages(unsigned int flags, unsigned int order);

struct page *alloc_page(unsigned int flags);
 

The core function, alloc_pages_node, takes three

arguments. nid is the NUMA node ID[3]

whose memory should be allocated, flags is the

usual GFP_ allocation flags, and

order is the size of the allocation. The return

value is a pointer to the first of (possibly many)

page structures describing the allocated memory,

or, as usual, NULL on failure.
[bookmark: linuxdrive3-CHP-8-FNOTE-3][3] NUMA (nonuniform memory access) computers are multiprocessor

systems where memory is "local" to

specific groups of processors

("nodes"). Access to local memory

is faster than access to nonlocal memory. On such systems, allocating

memory on the correct node is important. Driver authors do not

normally have to worry about NUMA issues, however.


alloc_pages simplifies the situation by

allocating the memory on the current NUMA node (it calls

alloc_pages_node with the return value from

numa_node_id as the nid

parameter). And, of course, alloc_page omits the

order parameter and allocates a single page.

To release pages allocated in this manner, you should use one of the

following:

void _ _free_page(struct page *page);

void _ _free_pages(struct page *page, unsigned int order);

void free_hot_page(struct page *page);

void free_cold_page(struct page *page);
 

If you have specific knowledge of whether a single

page's contents are likely to be resident in the

processor cache, you should communicate that to the kernel with

free_hot_page (for cache-resident pages) or

free_cold_page. This information helps the

memory allocator[bookmark: linuxdrive3-CHP-8-ITERM-5764] [bookmark: linuxdrive3-CHP-8-ITERM-5765] [bookmark: linuxdrive3-CHP-8-ITERM-5766] [bookmark: linuxdrive3-CHP-8-ITERM-5767] optimize its use of memory across the

system.







[bookmark: linuxdrive3-CHP-8-SECT-4]
8.4. vmalloc and Friends

The next memory allocation[bookmark: linuxdrive3-CHP-8-ITERM-5768] [bookmark: linuxdrive3-CHP-8-ITERM-5769] [bookmark: linuxdrive3-CHP-8-ITERM-5770] [bookmark: linuxdrive3-CHP-8-ITERM-5771] function that we show you is

vmalloc, which allocates a contiguous memory

region in the virtual address space. Although

the pages are not consecutive in physical memory (each page is

retrieved with a separate call to alloc_page),

the kernel sees them as a contiguous range of addresses.

vmalloc returns 0 (the

NULL address) if an error occurs, otherwise, it

returns a pointer to a linear memory area of size at least

size.

We describe vmalloc here because it is one of

the fundamental Linux memory allocation mechanisms. We should note,

however, that use of vmalloc is discouraged in

most situations. Memory obtained from vmalloc is

slightly less efficient to work with, and, on some architectures, the

amount of address space set aside for vmalloc is

relatively small. Code that uses vmalloc is

likely to get a chilly reception if submitted for inclusion in the

kernel. If possible, you should work directly with individual pages

rather than trying to smooth things over with

vmalloc.

That said, let's see how

vmalloc works. The prototypes of the function

and its relatives (ioremap, which is not

strictly an allocation function, is discussed later in this section)

are as follows:

#include <linux/vmalloc.h>



void *vmalloc(unsigned long size);

void vfree(void * addr);

void *ioremap(unsigned long offset, unsigned long size);

void iounmap(void * addr);
 

[bookmark: linuxdrive3-CHP-8-ITERM-5772]
[bookmark: linuxdrive3-CHP-8-ITERM-5773][bookmark: linuxdrive3-CHP-8-ITERM-5774][bookmark: linuxdrive3-CHP-8-ITERM-5775]
[bookmark: linuxdrive3-CHP-8-ITERM-5776][bookmark: linuxdrive3-CHP-8-ITERM-5777][bookmark: linuxdrive3-CHP-8-ITERM-5778][bookmark: linuxdrive3-CHP-8-ITERM-5779]
[bookmark: linuxdrive3-CHP-8-ITERM-5780][bookmark: linuxdrive3-CHP-8-ITERM-5781]It's worth stressing

that memory addresses returned by kmalloc and

_ get_free_pages are also virtual addresses.

Their actual value is still massaged by the MMU (the memory

management unit, usually part of the CPU) before it is used to

address physical memory.[4]
vmalloc is not different in how it uses the

hardware, but rather in how the kernel performs the allocation task.
[bookmark: linuxdrive3-CHP-8-FNOTE-4][4] Actually, some architectures

define ranges of "virtual"

addresses as reserved to address physical memory. When this happens,

the Linux kernel takes advantage of the feature, and both the kernel

and _ _get_free_pages addresses lie in one of

those memory ranges. The difference is transparent to device drivers

and other code that is not directly involved with the

memory-management kernel subsystem.


The (virtual) address range used by kmalloc and

_ _get_free_pages features a one-to-one mapping

to physical memory, possibly shifted by a constant

PAGE_OFFSET value; the functions

don't need to modify the page tables for that

address range. The address range used by vmalloc

and ioremap, on the other hand, is completely

synthetic, and each allocation builds the (virtual) memory area by

suitably setting up the page tables.

This difference can be perceived by comparing the pointers returned

by the allocation functions. On some platforms (for example, the

x86), addresses returned by vmalloc are just

beyond the addresses that kmalloc uses. On other

platforms (for example, MIPS, IA-64, and x86_64), they belong to a

completely different address range. Addresses available for

vmalloc are in the range from

VMALLOC_START to VMALLOC_END.

Both symbols are defined in

<asm/pgtable.h>.

Addresses allocated by vmalloc

can't be used outside of the microprocessor, because

they make sense only on top of the processor's MMU.

When a driver needs a real physical address (such as a DMA address,

used by peripheral hardware to drive the system's

bus), you can't easily use

vmalloc. The right time to call

vmalloc is when you are allocating memory for a

large sequential buffer that exists only in software.

It's important to note that

vmalloc has more overhead than _

_get_free_pages, because it must both retrieve the memory

and build the page tables. Therefore, it doesn't

make sense to call vmalloc to allocate just one

page.

An example of a function in the kernel that uses

vmalloc is the

create_module[bookmark: linuxdrive3-CHP-8-ITERM-5782] system call, which uses

vmalloc to get space for the module being

created. Code and data of the module are later copied to the

allocated space using copy_from_user. In this

way, the module appears to be loaded into contiguous memory. You can

verify, by looking in /proc/kallsyms, that

kernel symbols exported by modules lie in a different memory range

from symbols exported by the kernel proper.

Memory allocated with vmalloc is released by

vfree, in [bookmark: linuxdrive3-CHP-8-ITERM-5783]the same

way that kfree releases memory allocated by

kmalloc.

Like vmalloc, ioremap

builds new page tables; unlike vmalloc, however,

it doesn't actually allocate any memory. The return

value of ioremap is a special virtual address

that can be used to access the specified physical address range; the

virtual address obtained is eventually released by calling

iounmap.

[bookmark: linuxdrive3-CHP-8-ITERM-5784]ioremap is

most useful for mapping the (physical) address of a PCI buffer to

(virtual) kernel space. For example, it can be used to access the

frame buffer of a PCI video device; such buffers are usually mapped

at high physical addresses, outside of the address range for which

the kernel builds page tables at boot time. PCI issues are explained

in more detail in Chapter 12.

It's worth noting that for the sake of portability,

you should not directly access addresses returned by

ioremap[bookmark: linuxdrive3-CHP-8-ITERM-5785]
[bookmark: linuxdrive3-CHP-8-ITERM-5786]

as if they were pointers to memory. Rather, you should always use

readb and the other I/O functions introduced in

Chapter 9. This requirement

applies because some platforms, such as the Alpha, are unable to

directly map PCI memory regions to the processor address space

because of differences between PCI specs and Alpha processors in how

data is transferred.

Both ioremap and vmalloc

are page oriented (they work by modifying the page tables);

consequently, the relocated or allocated size is rounded up to the

nearest page boundary. ioremap simulates an

unaligned mapping by "rounding

down" the address to be remapped and by returning an

offset into the first remapped page.

One minor drawback of vmalloc is that it

can't be used in atomic context because, internally,

it uses kmalloc(GFP_KERNEL) to acquire storage

for the page tables, and therefore could sleep. This

shouldn't be a problem�if the use of

_ _get_free_page isn't good

enough for an interrupt handler, the software design needs some

cleaning up.

[bookmark: linuxdrive3-CHP-8-SECT-4.1]
8.4.1. A scull Using Virtual Addresses: scullv

[bookmark: linuxdrive3-CHP-8-ITERM-5787]
[bookmark: linuxdrive3-CHP-8-ITERM-5788]Sample code using

vmalloc is provided in the

scullv module. Like scullp,

this module is a stripped-down version of scull

that uses a different allocation function to obtain space for the

device to store data.

The module allocates memory 16 pages at a time. The allocation is

done in large chunks to achieve better performance than

scullp and to show something that takes too long

with other allocation techniques to be feasible. Allocating more than

one page with _ _get_free_pages is failure

prone, and even when it succeeds, it can be slow. As we saw earlier,

vmalloc is faster than other functions in

allocating several pages, but somewhat slower when retrieving a

single page, because of the overhead of page-table building.

scullv is designed like

scullp. order specifies the

"order" of each allocation and

defaults to 4. The only difference between

scullv and scullp is in

allocation management. These lines use vmalloc

to obtain new memory:

/* Allocate a quantum using virtual addresses */

if (!dptr->data[s_pos]) {

    dptr->data[s_pos] =

        (void *)vmalloc(PAGE_SIZE << dptr->order);

    if (!dptr->data[s_pos])

        goto nomem;

    memset(dptr->data[s_pos], 0, PAGE_SIZE << dptr->order);

}
 

and these lines release memory:

/* Release the quantum-set */

for (i = 0; i < qset; i++)

    if (dptr->data[i])

        vfree(dptr->data[i]);
 

If you compile both modules with debugging enabled, you can look at

their data allocation by reading the files they create in

/proc. This snapshot was taken on an x86_64

system:

salma% cat /tmp/bigfile > /dev/scullp0; head -5 /proc/scullpmem

Device 0: qset 500, order 0, sz 1535135

  item at 000001001847da58, qset at 000001001db4c000

       0:1001db56000

       1:1003d1c7000

   

salma% cat /tmp/bigfile > /dev/scullv0; head -5 /proc/scullvmem



Device 0: qset 500, order 4, sz 1535135

  item at 000001001847da58, qset at 0000010013dea000

       0:ffffff0001177000

       1:ffffff0001188000
 

The following output, instead, came from an x86 system:

rudo% cat /tmp/bigfile > /dev/scullp0; head -5 /proc/scullpmem



Device 0: qset 500, order 0, sz 1535135

  item at ccf80e00, qset at cf7b9800

       0:ccc58000

       1:cccdd000



rudo%  cat /tmp/bigfile > /dev/scullv0; head -5 /proc/scullvmem



Device 0: qset 500, order 4, sz 1535135

  item at cfab4800, qset at cf8e4000

       0:d087a000

       1:d08d2000
 

The values show two different behaviors. On x86_64, physical

addresses and virtual addresses are mapped to completely different

address ranges (0x100 and 0xffffff00), while on x86 computers,

vmalloc returns[bookmark: linuxdrive3-CHP-8-ITERM-5789] [bookmark: linuxdrive3-CHP-8-ITERM-5790] [bookmark: linuxdrive3-CHP-8-ITERM-5791] [bookmark: linuxdrive3-CHP-8-ITERM-5792] virtual addresses just above the

mapping used for physical memory.
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8.5. Per-CPU Variables

Per-CPU variables are an interesting 2.6 kernel feature. When you

create a per-CPU variable, each processor on the system gets its own

copy of that variable. This may seem like a strange thing to want to

do, but it has its advantages. Access to per-CPU variables requires

(almost) no locking, because each processor works with its own copy.

Per-CPU variables can also remain in their respective

processors' caches, which leads to significantly

better performance for frequently updated quantities.

A good example of per-CPU variable use can be found in the networking

subsystem. The kernel maintains no end of counters tracking how many

of each type of packet was received; these counters can be

u[bookmark: linuxdrive3-CHP-8-ITERM-5793] [bookmark: linuxdrive3-CHP-8-ITERM-5794] [bookmark: linuxdrive3-CHP-8-ITERM-5795] [bookmark: linuxdrive3-CHP-8-ITERM-5796]pdated

thousands of times per second. Rather than deal with the caching and

locking issues, the networking developers put the statistics counters

into per-CPU variables. Updates are now lockless and fast. On the

rare occasion that user space requests to see the values of the

counters, it is a simple matter to add up each

processor's version and return the total.

The declarations for per-CPU variables can be found in

<linux/percpu.h>. To create a per-CPU

variable at compile time, use this macro:

DEFINE_PER_CPU(type, name);
 

If the variable (to be called name) is an array,

include the dimension information with the type.

Thus, a per-CPU array of three integers would be created with:

DEFINE_PER_CPU(int[3], my_percpu_array);
 

Per-CPU variables can be manipulated without explicit

locking�almost. Remember that the 2.6 kernel is preemptible; it

would not do for a processor to be preempted in the middle of a

critical section that modifies a per-CPU variable. It also would not

be good if your process were to be moved to another processor in the

middle of a per-CPU variable access. For this reason, you must

explicitly use the get_cpu_var macro to access

the current processor's copy of a given variable,

and call put_cpu_var when you are done. The call

to get_cpu_var returns an lvalue for the current

processor's version of the variable and disables

preemption. Since an lvalue is returned, it can be assigned to or

operated on directly. For example, one counter in the networking code

is incremented with these two statements:

get_cpu_var(sockets_in_use)++;

put_cpu_var(sockets_in_use);
 

You can access another processor's copy of the

variable with:

per_cpu(variable, int cpu_id);
 

If you write code that involves processors reaching into each

other's per-CPU variables, you, of course, have to

implement a locking scheme that makes that access safe.

Dynamically allocated per-CPU variables are also possible. These

variables can be allocated with:

void *alloc_percpu(type);

void *_ _alloc_percpu(size_t size, size_t align);
 

In most cases, alloc_percpu does the job; you

can call _ _alloc_percpu in cases where a

particular alignment is required. In either case, a per-CPU variable

can be returned to the system with free_percpu.

Access to a dynamically allocated per-CPU variable is done via

per_cpu_ptr:

per_cpu_ptr(void *per_cpu_var, int cpu_id);
 

This macro returns a pointer to the version of

per_cpu_var corresponding to the given

cpu_id. If you are simply reading another

CPU's version of the variable, you can dereference

that pointer and be done with it. If, however, you are manipulating

the current processor's version, you probably need

to ensure that you cannot be moved out of that processor first. If

the entirety of your access to the per-CPU variable happens with a

spinlock held, all is well. Usually, however, you need to use

get_cpu to block preemption while working with

the variable. Thus, code using dynamic per-CPU variables tends to

look like this:

int cpu;



cpu = get_cpu(  )

ptr = per_cpu_ptr(per_cpu_var, cpu);

/* work with ptr */

put_cpu(  );
 

When using compile-time per-CPU variables, the

get_cpu_var and put_cpu_var

macros take care of these details. Dynamic per-CPU variables require

more explicit protection.

Per-CPU variables can be exported to modules, but you must use a

special version of the macros:

EXPORT_PER_CPU_SYMBOL(per_cpu_var);

EXPORT_PER_CPU_SYMBOL_GPL(per_cpu_var);
 

To access such a variable within a module, declare it with:

DECLARE_PER_CPU(type, name);
 

The use of DECLARE_PER_CPU (instead of

DEFINE_PER_CPU) tells the compiler that an

external reference is being made.

If you want to use per-CPU variables to create a simple integer

counter, take a look at the canned implementation in

<linux/percpu_counter.h>. Finally, note

that some architectures have a limited amount of address space

available for per-CPU variables. If you create per-CPU[bookmark: linuxdrive3-CHP-8-ITERM-5797] [bookmark: linuxdrive3-CHP-8-ITERM-5798] [bookmark: linuxdrive3-CHP-8-ITERM-5799] [bookmark: linuxdrive3-CHP-8-ITERM-5800] variables in your

code, you should try to keep them small.
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8.6. Obtaining Large Buffers

[bookmark: linuxdrive3-CHP-8-ITERM-5801]
[bookmark: linuxdrive3-CHP-8-ITERM-5802]
[bookmark: linuxdrive3-CHP-8-ITERM-5803]
[bookmark: linuxdrive3-CHP-8-ITERM-5804]
[bookmark: linuxdrive3-CHP-8-ITERM-5805]As we have noted in previous

sections, allocations of large, contiguous memory buffers are prone

to failure. System memory fragments over time, and chances are that a

truly large region of memory will simply not be available. Since

there are usually ways of getting the job done without huge buffers,

the kernel developers have not put a high priority on making large

allocations work. Before you try to obtain a large memory area, you

should really consider the alternatives. By far the best way of

performing large I/O operations is through scatter/gather operations,

which we discuss 

in Chapter 15.

[bookmark: linuxdrive3-CHP-8-SECT-6.1]
8.6.1. Acquiring a Dedicated Buffer at Boot Time

If you really need a huge buffer of physically contiguous memory, the

best approach is often to allocate it by requesting memory at boot

time. Allocation at boot time is the only way to retrieve consecutive

memory pages while bypassing the limits imposed by _

_get_free_pages on the buffer size, both in terms of

maximum allowed size and limited choice of sizes. Allocating memory

at boot time is a "dirty"

technique, because it bypasses all memory management policies by

reserving a private memory pool. This technique is inelegant and

inflexible, but it is also the least prone to failure. Needless to

say, a module can't allocate memory at boot time;

only drivers directly linked to the kernel can do that.

One noticeable problem with boot-time allocation is that it is not a

feasible option for the average user, since this mechanism is

available only for code linked in the kernel image. A device driver

using this kind of allocation can be installed or replaced only by

rebuilding the kernel and rebooting the computer.

When the kernel is booted, it gains access to all the physical memory

available in the system. It then initializes each of its subsystems

by calling that subsystem's initialization function,

allowing initialization code to allocate a memory buffer for private

use by reducing the amount of RAM left for normal system operation.

Boot-time memory allocation is performed by calling one of these

functions:

#include <linux/bootmem.h>

void *alloc_bootmem(unsigned long size);

void *alloc_bootmem_low(unsigned long size);

void *alloc_bootmem_pages(unsigned long size);

void *alloc_bootmem_low_pages(unsigned long size);
 

The functions allocate either whole pages (if they end with

_pages) or non-page-aligned memory areas. The

allocated memory may be high memory unless one of the

_low versions is used. If you are allocating this

buffer for a device driver, you probably want to use it for DMA

operations, and that is not always possible with high memory; thus,

you probably want to use one of the _low variants.

It is rare to free memory allocated at boot time; you will almost

certainly be unable to get it back later if you want it. There is an

interface to free this memory, however:

void free_bootmem(unsigned long addr, unsigned long size);
 

Note that partial pages freed in this manner are not returned to the

system�but, if you are using this technique, you have probably

allocated a fair number of whole pages to begin with.

If you must use boot-time allocation, you need to link your driver

directly into the kernel. See the files in the kernel source under

Documentation/kbuild for more information on how

this should be done.
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8.7. Quick Reference

The functions and symbols related to memory allocation are:
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	#include <linux/slab.h>



	void *kmalloc(size_t size, int flags);



	void kfree(void *obj);

	
The most frequently used interface to memory allocation.





	#include <linux/mm.h>



	GFP_USER



	GFP_KERNEL



	GFP_NOFS



	GFP_NOIO



	GFP_ATOMIC

	
Flags that control

how[bookmark: linuxdrive3-CHP-8-ITERM-5806]
[bookmark: linuxdrive3-CHP-8-ITERM-5807]
[bookmark: linuxdrive3-CHP-8-ITERM-5808]

memory allocations are performed, from the least restrictive to the

most. The GFP_USER and

GFP_KERNEL priorities allow the current process to

be put to sleep to satisfy the request. GFP_NOFS

and GFP_NOIO disable filesystem operations and all

I/O operations, respectively, while GFP_ATOMIC

allocations cannot sleep at all.





	_ _GFP_DMA



	_ _GFP_HIGHMEM



	_ _GFP_COLD



	_ _GFP_NOWARN



	_ _GFP_HIGH



	_ _GFP_REPEAT



	_ _GFP_NOFAIL



	_ _GFP_NORETRY

	
These flags modify the kernel's behavior when

allocating memory.





	#include <linux/malloc.h>



	kmem_cache_t *kmem_cache_create(char *name, size_t size, size_t offset, 



	 unsigned long flags, constructor(  ), destructor(  ));



	int kmem_cache_destroy(kmem_cache_t *cache);

	
Create and destroy a slab cache. The cache can be used to allocate

several objects of the same size.





	SLAB_NO_REAP



	SLAB_HWCACHE_ALIGN



	SLAB_CACHE_DMA

	
Flags that can be specified while creating a cache.





	SLAB_CTOR_ATOMIC



	SLAB_CTOR_CONSTRUCTOR

	
Flags that the allocator [bookmark: linuxdrive3-CHP-8-ITERM-5809]
[bookmark: linuxdrive3-CHP-8-ITERM-5810]
[bookmark: linuxdrive3-CHP-8-ITERM-5811]
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pass to the constructor and the destructor functions.





	void *kmem_cache_alloc(kmem_cache_t *cache, int flags);



	void kmem_cache_free(kmem_cache_t *cache, const void *obj);

	
Allocate and release a single object from the cache.





	/proc/slabinfo

	
A virtual file containing statistics on slab cache usage.





	#include <linux/mempool.h>



	mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t 



	 *free_fn, void *data);



	void mempool_destroy(mempool_t *pool);

	
Functions for the creation

of[bookmark: linuxdrive3-CHP-8-ITERM-5813]
[bookmark: linuxdrive3-CHP-8-ITERM-5814]

memory pools, which try to avoid memory allocation failures by

keeping an "emergency list" of

allocated items.





	void *mempool_alloc(mempool_t *pool, int gfp_mask);



	void mempool_free(void *element, mempool_t *pool);

	
Functions for allocating items from (and returning them to) memory

pools.





	unsigned long get_zeroed_page(int flags);



	unsigned long _ _get_free_page(int flags);



	unsigned long _ _get_free_pages(int flags, unsigned long order);

	
The page-oriented allocation functions.

get_zeroed_page returns a single, zero-filled

page. All the other versions of the call do not initialize the

contents of the returned page(s).





	int get_order(unsigned long size);

	
Returns the allocation order[bookmark: linuxdrive3-CHP-8-ITERM-5815]
[bookmark: linuxdrive3-CHP-8-ITERM-5816]
[bookmark: linuxdrive3-CHP-8-ITERM-5817] associated to

size in the current platform, according to

PAGE_SIZE. The argument must be a power of two,

and the return value is at least 0.





	void free_page(unsigned long addr);



	void free_pages(unsigned long addr, unsigned long order);

	
Functions that release page-oriented allocations.





	struct page *alloc_pages_node(int nid, unsigned int flags, unsigned int order);



	struct page *alloc_pages(unsigned int flags, unsigned int order);



	struct page *alloc_page(unsigned int flags);

	
All variants of the lowest-level page allocator in the Linux kernel.





	void _ _free_page(struct page *page);



	void _ _free_pages(struct page *page, unsigned int order);



	void free_hot_page(struct page *page);



	void free_cold_page(struct page *page);

	
Various ways of freeing pages allocated with one of the forms of

alloc_page.





	#include <linux/vmalloc.h>



	void * vmalloc(unsigned long size);



	void vfree(void * addr);



	#include <asm/io.h>



	void * ioremap(unsigned long offset, unsigned long size);



	void iounmap(void *addr);

	
Functions that allocate or free a contiguous

virtual address space.

ioremap accesses physical memory through virtual

addresses, while vmalloc allocates free pages.

Regions mapped with ioremap are freed

[bookmark: linuxdrive3-CHP-8-ITERM-5818]
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while pages obtained from vmalloc are released

with vfree.





	#include <linux/percpu.h>



	DEFINE_PER_CPU(type, name);



	DECLARE_PER_CPU(type, name);

	
Macros that define and declare per-CPU variables.





	per_cpu(variable, int cpu_id)



	get_cpu_var(variable)



	put_cpu_var(variable)

	
Macros that provide access to statically declared per-CPU variables.





	void *alloc_percpu(type);



	void *_ _alloc_percpu(size_t size, size_t align);



	void free_percpu(void *variable);

	
Functions that perform runtime allocation and freeing of per-CPU

variables.





	int get_cpu(  );



	void put_cpu(  );



	per_cpu_ptr(void *variable, int cpu_id)

	
get_cpu obtains a reference to the current

processor (therefore, preventing preemption and movement to another

processor) and returns the ID number of the processor;

put_cpu returns that reference. To access a

dynamically allocated per-CPU variable, use

per_cpu_ptr with the ID of the CPU whose version

should be accessed. Manipulations of the current

CPU's version of a dynamic, per-CPU variable should

probably be surrounded by calls to get_cpu and

put_cpu.





	#include <linux/bootmem.h>



	void *alloc_bootmem(unsigned long size);



	void *alloc_bootmem_low(unsigned long size);



	void *alloc_bootmem_pages(unsigned long size);



	void *alloc_bootmem_low_pages(unsigned long size);



	void free_bootmem(unsigned long addr, unsigned long size);

	
Functions (which can be used only by drivers directly linked into the

kernel) that perform allocation and freeing of memory at

[bookmark: linuxdrive3-CHP-8-ITERM-5820]
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Chapter 9. Communicating with Hardware

Although playing with scull and similar toys is

a good introduction to the software interface of a Linux device

driver, implementing a real device requires

hardware. The driver is the abstraction layer between software

concepts and hardware circuitry; as such, it needs to talk with both

of them. Up until now, we have examined the internals of software

concepts; this chapter completes the picture by showing you how a

driver can access I/O ports and I/O memory while being portable

across Linux platforms.

This chapter continues in the tradition of staying as independent of

specific hardware as possible. However, where specific examples are

needed, we use simple digital I/O ports (such as the standard PC

parallel port) to show how the I/O instructions work and normal

frame-buffer video memory to show memory-mapped I/O.

[bookmark: linuxdrive3-CHP-9-ITERM-5825]
[bookmark: linuxdrive3-CHP-9-ITERM-5826][bookmark: linuxdrive3-CHP-9-ITERM-5827]We chose simple digital I/O because it is

the easiest form of an input/output port. Also, the parallel port

implements raw I/O and is available in most computers: data bits

written to the device appear on the output pins, and voltage levels

on the input pins are directly accessible by the processor. In

practice, you have to connect LEDs or a printer to the port to

actually see the results of a digital I/O

operation, but the underlying hardware is extremely easy to use.
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9.1. I/O Ports and I/O Memory

Every peripheral device is [bookmark: linuxdrive3-CHP-9-ITERM-5828]
[bookmark: linuxdrive3-CHP-9-ITERM-5829] [bookmark: linuxdrive3-CHP-9-ITERM-5830]
[bookmark: linuxdrive3-CHP-9-ITERM-5831]
[bookmark: linuxdrive3-CHP-9-ITERM-5832]controlled by writing and reading

its registers. Most of the time a device has several registers, and

they are accessed at consecutive addresses, either in the memory

address space or in the I/O address space.

At the hardware level, there is no conceptual difference between

memory regions and I/O regions: both of them are accessed by

asserting electrical signals on the address bus and control bus

(i.e., the read and write

signals)[1] and by reading from or writing to the data bus.
[bookmark: linuxdrive3-CHP-9-FNOTE-1][1] Not all computer platforms use a

read and a write signal;

some have different means to address external circuits. The

difference is irrelevant at software level, however, and

we'll assume all have read and

write to simplify the discussion.


While some CPU manufacturers implement a single address space in

their chips, others decided that peripheral devices are different

from memory and, therefore, deserve a separate address space. Some

processors (most notably the x86 family) have separate

read and write electrical

lines for I/O ports and special CPU instructions to access ports.

Because peripheral devices are built to fit a peripheral bus, and the

most popular I/O buses are modeled on the personal computer, even

processors that do not have a separate address space for I/O ports

must fake reading and writing I/O ports when accessing some

peripheral devices, usually by means of external chipsets or extra

circuitry in the CPU core. The latter solution is common within tiny

processors meant for embedded use.

For the same reason, Linux implements the concept of I/O ports on all

computer platforms it runs on, even on platforms where the CPU

implements a single address space. The implementation of port access

sometimes depends on the specific make and model of the host computer

(because different models use different chipsets to map bus

transactions into memory address space).

Even if the peripheral bus has a separate address space for I/O

ports, not all devices map their registers to I/O ports. While use of

I/O ports is common for ISA peripheral boards, most PCI devices map

registers into a memory address region. This I/O memory approach is

generally preferred, because it doesn't require the

use of special-purpose processor instructions; CPU cores access

memory much more efficiently, and the compiler has much more freedom

in register allocation and addressing-mode selection when accessing

memory.

[bookmark: linuxdrive3-CHP-9-SECT-1.1]
9.1.1. I/O Registers and Conventional Memory

[bookmark: linuxdrive3-CHP-9-ITERM-5833]
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similarity between[bookmark: linuxdrive3-CHP-9-ITERM-5843] hardware

registers and memory, a programmer accessing I/O registers must be

careful to avoid being tricked by CPU (or compiler) optimizations

that can modify the expected I/O behavior.

The main difference between I/O registers and RAM is that I/O

operations have side effects, while memory operations have none: the

only effect of a memory write is storing a value to a location, and a

memory read returns the last value written there. Because memory

access speed is so critical to CPU performance, the no-side-effects

case has been optimized in several ways: values are cached and

read/write instructions are reordered.

The compiler can cache data values into CPU registers without writing

them to memory, and even if it stores them, both write and read

operations can operate on cache memory without ever reaching physical

RAM. Reordering can also happen both at the compiler level and at the

hardware level: often a sequence of instructions can be executed more

quickly if it is run in an order different from that which appears in

the program text, for example, to prevent interlocks in the RISC

pipeline. On CISC processors, operations that take a significant

amount of time can be executed concurrently with other, quicker ones.

These optimizations are transparent and benign when applied to

conventional memory (at least on uniprocessor systems), but they can

be fatal to correct I/O operations, because they interfere with those

"side effects" that are the main

reason why a driver accesses I/O registers. The processor cannot

anticipate a situation in which some other process (running on a

separate processor, or something happening inside an I/O controller)

depends on the order of memory access. The compiler or the CPU may

just try to outsmart you and reorder the operations you request; the

result can be strange errors that are very difficult to debug.

Therefore, a driver must ensure that no caching is performed and no

read or write reordering takes place when accessing registers.

[bookmark: linuxdrive3-CHP-9-ITERM-5844]
[bookmark: linuxdrive3-CHP-9-ITERM-5845][bookmark: linuxdrive3-CHP-9-ITERM-5846]
[bookmark: linuxdrive3-CHP-9-ITERM-5847]The

problem with hardware caching is the easiest to face: the underlying

hardware is already configured (either automatically or by Linux

initialization code) to disable any hardware cache when accessing I/O

regions (whether they are memory or port regions).

[bookmark: linuxdrive3-CHP-9-ITERM-5848]
[bookmark: linuxdrive3-CHP-9-ITERM-5849]The

solution to compiler optimization and hardware reordering is to place

a memory barrier between operations that must

be visible to the hardware (or to another processor) in a particular

order. Linux provides four macros to cover all possible ordering

needs:
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	#include <linux/kernel.h>



	void barrier(void)[bookmark: linuxdrive3-CHP-9-ITERM-5850]
[bookmark: linuxdrive3-CHP-9-ITERM-5851]

	
This function tells the compiler to insert a memory barrier but has

no effect on the hardware. Compiled code stores to memory all values

that are currently modified and resident in CPU registers, and

rereads them later when they are needed. A call to

barrier prevents compiler optimizations across

the barrier but leaves the hardware free to do its own reordering.





	#include <asm/system.h>



	void rmb(void);[bookmark: linuxdrive3-CHP-9-ITERM-5852]
[bookmark: linuxdrive3-CHP-9-ITERM-5853]



	void read_barrier_depends(void);[bookmark: linuxdrive3-CHP-9-ITERM-5854]
[bookmark: linuxdrive3-CHP-9-ITERM-5855]



	void wmb(void);[bookmark: linuxdrive3-CHP-9-ITERM-5856]
[bookmark: linuxdrive3-CHP-9-ITERM-5857]



	void mb(void);[bookmark: linuxdrive3-CHP-9-ITERM-5858]
[bookmark: linuxdrive3-CHP-9-ITERM-5859]

	
These functions insert hardware memory barriers in the compiled

instruction flow; their actual instantiation is platform dependent.

An rmb (read memory barrier) guarantees that any

reads appearing before the barrier are completed prior to the

execution of any subsequent read. wmb guarantees

ordering in write operations, and the mb

instruction guarantees both. Each of these functions is a superset of

barrier.





read_barrier_depends is a special, weaker form

of read barrier. Whereas rmb prevents the

reordering of all reads across the barrier,

read_barrier_depends blocks only the reordering

of reads that depend on data from other reads. The distinction is

subtle, and it does not exist on all architectures. Unless you

understand exactly what is going on, and you have a reason to believe

that a full read barrier is exacting an excessive performance cost,

you should probably stick to using rmb.
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	void smp_rmb(void);[bookmark: linuxdrive3-CHP-9-ITERM-5860]
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	void smp_read_barrier_depends(void);[bookmark: linuxdrive3-CHP-9-ITERM-5862]



	void smp_wmb(void);[bookmark: linuxdrive3-CHP-9-ITERM-5863]
[bookmark: linuxdrive3-CHP-9-ITERM-5864]



	void smp_mb(void);[bookmark: linuxdrive3-CHP-9-ITERM-5865]
[bookmark: linuxdrive3-CHP-9-ITERM-5866]

	
These versions of the barrier macros insert hardware barriers only

when the kernel is compiled for SMP systems; otherwise, they all

expand to a simple barrier call.





A typical usage of memory barriers in a device driver

[bookmark: linuxdrive3-CHP-9-ITERM-5867]may have this sort of form:

writel(dev->registers.addr, io_destination_address);

writel(dev->registers.size, io_size);

writel(dev->registers.operation, DEV_READ);

wmb(  );

writel(dev->registers.control, DEV_GO);
 

In this case, it is important to be sure that all of the device

registers controlling a particular operation have been properly set

prior to telling it to begin. The memory barrier enforces the

completion of the writes in the necessary order.

[bookmark: linuxdrive3-CHP-9-ITERM-5868]
[bookmark: linuxdrive3-CHP-9-ITERM-5869]
[bookmark: linuxdrive3-CHP-9-ITERM-5870][bookmark: linuxdrive3-CHP-9-ITERM-5871]Because memory barriers affect

performance, they should be used only where they are really needed.

The different types of barriers can also have different performance

characteristics, so it is worthwhile to use the most specific type

possible. For example, on the x86 architecture, wmb(

) currently does nothing, since writes outside the

processor are not reordered. Reads are reordered, however, so

mb( ) is slower than wmb(

).

It is worth noting that most of the other kernel primitives dealing

with synchronization, such as spinlock and

atomic_t operations, also function as memory

barriers. Also worthy of note is that some peripheral buses (such as

the PCI bus) have caching issues of their own; we discuss those when

we get to them in later chapters.

[bookmark: linuxdrive3-CHP-9-ITERM-5872]
[bookmark: linuxdrive3-CHP-9-ITERM-5873][bookmark: linuxdrive3-CHP-9-ITERM-5874]
[bookmark: linuxdrive3-CHP-9-ITERM-5875][bookmark: linuxdrive3-CHP-9-ITERM-5876]
[bookmark: linuxdrive3-CHP-9-ITERM-5877]Some

architectures allow the efficient combination of an assignment and a

memory barrier. The kernel provides a few macros that perform this

combination; in the default case, they are defined as follows:

#define set_mb(var, value)  do {var = value; mb(  );}  while 0

#define set_wmb(var, value) do {var = value; wmb(  );} while 0

#define set_rmb(var, value) do {var = value; rmb(  );} while 0
 

Where appropriate, <asm/system.h> defines

these macros to use architecture-specific instructions that

accomplish the task more quickly. Note that

set_rmb is defined only by a small number of

architectures. (The use of a do...while construct

is a standard C idiom that causes the expanded macro to work as a

normal C statement in all contexts.)







[bookmark: linuxdrive3-CHP-9-SECT-2]
9.2. Using I/O Ports

I/O ports are the means by which drivers communicate with many

devices, at least part of the time. This section covers the various

functions available for making use of I/O ports; we also touch on

some portability issues.

[bookmark: linuxdrive3-CHP-9-SECT-2.1]
9.2.1. I/O Port Allocation

As you might expect, you

[bookmark: linuxdrive3-CHP-9-ITERM-5878]should not go off and

start pounding on I/O ports without first ensuring that you have

exclusive access to those ports. The kernel provides a registration

interface that allows your driver to claim the ports it needs. The

core function in that interface is

request_region:

#include <linux/ioport.h>

struct resource *request_region(unsigned long first, unsigned long n, 

                                const char *name);
 

This function tells the kernel that you would like to make use of

n ports, starting with first.

The name parameter should be the name of your

device. The return value is non-NULL if the

allocation succeeds. If you get NULL back from

request_region, you will not be able to use the

desired ports.

All port allocations show up in /proc/ioports.

If you are unable to allocate a needed set of ports, that is the

place to look to see who got there first.

When you are done with a set of I/O ports (at module unload time,

perhaps), they should be returned to the system with:

void release_region(unsigned long start, unsigned long n);
 

There is also a function that allows your driver to check to see

whether a given set of I/O ports is available:

int check_region(unsigned long first, unsigned long n);
 

Here, the return value is a negative error code if the given ports

are not available. This function is deprecated because its return

value provides no guarantee of whether an allocation would succeed;

checking and later allocating are not an atomic operation. We list it

here because several drivers are still using it, but you should

always use request_region, which performs the

required locking to ensure that the allocation is done in a safe,

atomic manner.

[bookmark: linuxdrive3-CHP-9-SECT-2.2]
9.2.2. Manipulating I/O ports

[bookmark: linuxdrive3-CHP-9-ITERM-5879]
[bookmark: linuxdrive3-CHP-9-ITERM-5880]
[bookmark: linuxdrive3-CHP-9-ITERM-5881][bookmark: linuxdrive3-CHP-9-ITERM-5882][bookmark: linuxdrive3-CHP-9-ITERM-5883][bookmark: linuxdrive3-CHP-9-ITERM-5884]After a driver has requested the range of

I/O ports it needs to use in its activities, it must read and/or

write to those ports. To this end, most hardware differentiates

between 8-bit, 16-bit, and 32-bit ports. Usually you

can't mix them like you normally do with system

memory access.[2]
[bookmark: linuxdrive3-CHP-9-FNOTE-2][2] Sometimes I/O ports are arranged like

memory, and you can (for example) bind two 8-bit writes into a single

16-bit operation. This applies, for instance, to PC video boards. But

generally, you can't count on this feature.


A C program, therefore, must call different functions to access

different size ports. As suggested in the previous section, computer

architectures that support only memory-mapped I/O registers fake port

I/O by remapping port addresses to memory addresses, and the kernel

hides the details from the driver in order to ease portability. The

Linux kernel headers (specifically, the architecture-dependent header

<asm/io.h>) define the following inline

functions to access I/O ports:

[bookmark: linuxdrive3-CHP-9-ITERM-5885][bookmark: linuxdrive3-CHP-9-ITERM-5886][bookmark: linuxdrive3-CHP-9-ITERM-5887][bookmark: linuxdrive3-CHP-9-ITERM-5888][bookmark: linuxdrive3-CHP-9-ITERM-5889][bookmark: linuxdrive3-CHP-9-ITERM-5890][bookmark: linuxdrive3-CHP-9-ITERM-5891][bookmark: linuxdrive3-CHP-9-ITERM-5892][bookmark: linuxdrive3-CHP-9-ITERM-5893][bookmark: linuxdrive3-CHP-9-ITERM-5894][bookmark: linuxdrive3-CHP-9-ITERM-5895][bookmark: linuxdrive3-CHP-9-ITERM-5896][bookmark: linuxdrive3-CHP-9-ITERM-5897][bookmark: linuxdrive3-CHP-9-ITERM-5898]

	unsigned inb(unsigned port);



	void outb(unsigned char byte, unsigned port);

	
[bookmark: linuxdrive3-CHP-9-ITERM-5885]
[bookmark: linuxdrive3-CHP-9-ITERM-5886][bookmark: linuxdrive3-CHP-9-ITERM-5887]
[bookmark: linuxdrive3-CHP-9-ITERM-5888][bookmark: linuxdrive3-CHP-9-ITERM-5889]Read

or write byte ports (eight bits wide). The port

argument is defined as unsigned long for some

platforms and unsigned short for others. The

return type of inb is also different across

architectures.





	unsigned inw(unsigned port);



	void outw(unsigned short word, unsigned port);

	
[bookmark: linuxdrive3-CHP-9-ITERM-5890]
[bookmark: linuxdrive3-CHP-9-ITERM-5891][bookmark: linuxdrive3-CHP-9-ITERM-5892]
[bookmark: linuxdrive3-CHP-9-ITERM-5893]These

functions access 16-bit ports (one word wide); they are not available

when compiling for the S390 platform, which supports only byte I/O.





	unsigned inl(unsigned port);



	void outl(unsigned longword, unsigned port);

	
[bookmark: linuxdrive3-CHP-9-ITERM-5894]
[bookmark: linuxdrive3-CHP-9-ITERM-5895][bookmark: linuxdrive3-CHP-9-ITERM-5896]
[bookmark: linuxdrive3-CHP-9-ITERM-5897][bookmark: linuxdrive3-CHP-9-ITERM-5898]These

functions access 32-bit ports. longword is

declared as either unsigned long or

unsigned int, according to the

platform. Like word I/O, "long" I/O

is not available on S390.





[bookmark: linuxdrive3-CHP-9-NOTE-21]		[image: ]	






		[image: ]	
[bookmark: linuxdrive3-CHP-9-ITERM-5899]From now on,

when we use unsigned without further type

specifications, we are referring to an architecture-dependent

definition whose exact nature is not relevant. The functions are

almost always portable, because the compiler automatically casts the

values during assignment�their being unsigned helps prevent

compile-time warnings. No information is lost with such casts as long

as the programmer assigns sensible values to avoid overflow. We stick

to this convention of "incomplete

typing" throughout this chapter.






 

Note that no 64-bit port I/O operations are defined. Even on 64-bit

architectures, the port address space uses a 32-bit (maximum) data

path.

[bookmark: linuxdrive3-CHP-9-SECT-2.3]
9.2.3. I/O Port Access from User Space

The functions just described are [bookmark: linuxdrive3-CHP-9-ITERM-5900]
[bookmark: linuxdrive3-CHP-9-ITERM-5901]primarily

meant to be used by device drivers, but they can also be used from

user space, at least on PC-class computers. The GNU C library defines

them in <sys/io.h>. The following

conditions should apply in order for inb and

friends to be used in user-space code:

	The program must be compiled with the -O option

to force expansion of inline functions.

	The ioperm or iopl system

calls must be used to get permission to perform I/O operations on

ports. ioperm gets permission for individual

ports, while iopl gets permission for the entire

I/O space. Both of these functions are x86-specific.

	The program must run as root to invoke ioperm or

iopl.[3]

Alternatively, one of its ancestors must have gained port access

running as root.
[bookmark: linuxdrive3-CHP-9-FNOTE-3][3] Technically, it must have

the CAP_SYS_RAWIO capability, but that is the same

as running as root on most current systems.




If the host platform has no ioperm and no

iopl system calls, user space can still access

I/O ports by using the /dev/port device file.

Note, however, that the meaning of the file is very platform-specific

and not likely useful for anything but the PC.

The sample sources misc-progs/inp.c and

misc-progs/outp.c are a minimal tool for reading

and writing ports from the command line, in user space. They expect

to be installed under multiple names (e.g., inb,

inw, and inl and

manipulates byte, word, or long ports depending on which name was

invoked by the user). They use ioperm or

iopl under x86, /dev/port

on other platforms.

The programs can be made setuid root, if you want to live dangerously

and play with your hardware without acquiring explicit privileges.

Please do not install them setuid on a production system, however;

they are a security hole by design.

[bookmark: linuxdrive3-CHP-9-SECT-2.4]
9.2.4. String Operations

[bookmark: linuxdrive3-CHP-9-ITERM-5902]
[bookmark: linuxdrive3-CHP-9-ITERM-5903]
[bookmark: linuxdrive3-CHP-9-ITERM-5904][bookmark: linuxdrive3-CHP-9-ITERM-5905][bookmark: linuxdrive3-CHP-9-ITERM-5906]In addition to the single-shot

in and out operations, some processors implement special instructions

to transfer a sequence of bytes, words, or longs to and from a single

I/O port or the same size. These are the so-called string

instructions, and they perform the task more quickly than

a C-language loop can do. The following macros implement the concept

of string I/O either by using a single machine instruction or by

executing a tight loop if the target processor has no instruction

that performs string I/O. The macros are not defined at all when

compiling for the S390 platform. This should not be a portability

problem, since this platform doesn't usually share

device drivers with other platforms, because its peripheral buses are

different.

The prototypes for string functions are:

[bookmark: linuxdrive3-CHP-9-ITERM-5907][bookmark: linuxdrive3-CHP-9-ITERM-5908][bookmark: linuxdrive3-CHP-9-ITERM-5909][bookmark: linuxdrive3-CHP-9-ITERM-5910][bookmark: linuxdrive3-CHP-9-ITERM-5911][bookmark: linuxdrive3-CHP-9-ITERM-5912][bookmark: linuxdrive3-CHP-9-ITERM-5913][bookmark: linuxdrive3-CHP-9-ITERM-5914][bookmark: linuxdrive3-CHP-9-ITERM-5915][bookmark: linuxdrive3-CHP-9-ITERM-5916][bookmark: linuxdrive3-CHP-9-ITERM-5917][bookmark: linuxdrive3-CHP-9-ITERM-5918][bookmark: linuxdrive3-CHP-9-ITERM-5919][bookmark: linuxdrive3-CHP-9-ITERM-5920][bookmark: linuxdrive3-CHP-9-ITERM-5921]

	void insb(unsigned port, void *addr, unsigned long count);



	void outsb(unsigned port, void *addr, unsigned long count);

	
[bookmark: linuxdrive3-CHP-9-ITERM-5907]
[bookmark: linuxdrive3-CHP-9-ITERM-5908][bookmark: linuxdrive3-CHP-9-ITERM-5909]
[bookmark: linuxdrive3-CHP-9-ITERM-5910][bookmark: linuxdrive3-CHP-9-ITERM-5911]Read or write count

bytes starting at the memory address addr. Data is

read from or written to the single port port.





	void insw(unsigned port, void *addr, unsigned long count);



	void outsw(unsigned port, void *addr, unsigned long count);

	
[bookmark: linuxdrive3-CHP-9-ITERM-5912]
[bookmark: linuxdrive3-CHP-9-ITERM-5913][bookmark: linuxdrive3-CHP-9-ITERM-5914]
[bookmark: linuxdrive3-CHP-9-ITERM-5915][bookmark: linuxdrive3-CHP-9-ITERM-5916]Read or write 16-bit values to a single

16-bit port.





	void insl(unsigned port, void *addr, unsigned long count);



	void outsl(unsigned port, void *addr, unsigned long count);

	
[bookmark: linuxdrive3-CHP-9-ITERM-5917]
[bookmark: linuxdrive3-CHP-9-ITERM-5918][bookmark: linuxdrive3-CHP-9-ITERM-5919]
[bookmark: linuxdrive3-CHP-9-ITERM-5920][bookmark: linuxdrive3-CHP-9-ITERM-5921]Read or write 32-bit values to a single

32-bit port.





There is one thing to keep in mind when using the string functions:

they move a straight byte stream to or from the port. When the port

and the host system have different byte ordering rules, the results

can be surprising. Reading a port with inw swaps

the bytes, if need be, to make the value read match the host

ordering. The string functions, instead, do not perform this

swapping.

[bookmark: linuxdrive3-CHP-9-SECT-2.5]
9.2.5. Pausing I/O

[bookmark: linuxdrive3-CHP-9-ITERM-5922]
[bookmark: linuxdrive3-CHP-9-ITERM-5923][bookmark: linuxdrive3-CHP-9-ITERM-5924][bookmark: linuxdrive3-CHP-9-ITERM-5925]
[bookmark: linuxdrive3-CHP-9-ITERM-5926][bookmark: linuxdrive3-CHP-9-ITERM-5927]
[bookmark: linuxdrive3-CHP-9-ITERM-5928][bookmark: linuxdrive3-CHP-9-ITERM-5929]Some platforms�most

notably the i386�can have problems when the processor tries to

transfer data too quickly to or from the bus. The problems can arise

when the processor is overclocked with respect to the peripheral bus

(think ISA here) and can show up when the device board is too slow.

The solution is to insert a small delay after each I/O instruction if

another such instruction follows. On the x86, the pause is achieved

by performing an out b

instruction to port 0x80 (normally but not always unused), or by busy

waiting. See the io.h file under your

platform's asm subdirectory for

details.

If your device misses some data, or if you fear it might miss some,

you can use pausing functions in place of the normal ones. The

pausing functions are exactly like those listed previously, but their

names end in _p; they are called

inb_p, outb_p, and so on.

The functions are defined for most supported architectures, although

they often expand to the same code as nonpausing I/O, because there

is no need for the extra pause if the architecture runs with a

reasonably modern peripheral bus.

[bookmark: linuxdrive3-CHP-9-SECT-2.6]
9.2.6. Platform Dependencies

[bookmark: linuxdrive3-CHP-9-ITERM-5930][bookmark: linuxdrive3-CHP-9-ITERM-5931][bookmark: linuxdrive3-CHP-9-ITERM-5932][bookmark: linuxdrive3-CHP-9-ITERM-5933]I/O instructions are, by their

nature, highly processor dependent. Because they work with the

details of how the processor handles moving data in and out, it is

very hard to hide the differences between systems. As a consequence,

much of the source code related to port I/O is platform-dependent.

You can see one of the incompatibilities, data typing, by looking

back at the list of functions, where the arguments are typed

differently based on the architectural differences between platforms.

For example, a port is unsigned short on the x86

(where the processor supports a 64-KB I/O space), but

unsigned long on other platforms, whose ports are

just special locations in the same address space as memory.

Other platform dependencies arise from basic structural differences

in the processors and are, therefore, unavoidable. We

won't go into detail about the differences, because

we assume that you won't be writing a device driver

for a particular system without understanding the underlying

hardware. Instead, here is an overview of the capabilities of the

architectures supported by the kernel:

[bookmark: linuxdrive3-CHP-9-ITERM-5934][bookmark: linuxdrive3-CHP-9-ITERM-5935][bookmark: linuxdrive3-CHP-9-ITERM-5936][bookmark: linuxdrive3-CHP-9-ITERM-5937][bookmark: linuxdrive3-CHP-9-ITERM-5938][bookmark: linuxdrive3-CHP-9-ITERM-5939][bookmark: linuxdrive3-CHP-9-ITERM-5940][bookmark: linuxdrive3-CHP-9-ITERM-5941][bookmark: linuxdrive3-CHP-9-ITERM-5942][bookmark: linuxdrive3-CHP-9-ITERM-5943][bookmark: linuxdrive3-CHP-9-ITERM-5944][bookmark: linuxdrive3-CHP-9-ITERM-5945][bookmark: linuxdrive3-CHP-9-ITERM-5946][bookmark: linuxdrive3-CHP-9-ITERM-5947]

	IA-32 (x86)



	x86_64

	
[bookmark: linuxdrive3-CHP-9-ITERM-5934]The architecture supports all the

functions described in this chapter. Port numbers are of type

unsigned short.





	IA-64 (Itanium)

	
[bookmark: linuxdrive3-CHP-9-ITERM-5935]All functions are supported; ports are

unsigned long (and

memory-mapped). String functions are implemented in C.





	Alpha

	
[bookmark: linuxdrive3-CHP-9-ITERM-5936]All the functions are supported, and ports

are memory-mapped. The implementation of port I/O is different in

different Alpha platforms, according to the chipset they use. String

functions are implemented in C and defined in

arch/alpha/lib/io.c. Ports are

unsigned long.





	ARM

	
[bookmark: linuxdrive3-CHP-9-ITERM-5937]Ports are memory-mapped, and all functions

are supported; string functions are implemented in C. Ports are of

type unsigned int.





	Cris

	
This architecture does not support the I/O port abstraction even in

an emulated mode; the various port operations are defined to do

nothing at all.





	M68k



	M68k-nommu

	
[bookmark: linuxdrive3-CHP-9-ITERM-5938]
[bookmark: linuxdrive3-CHP-9-ITERM-5939]Ports are memory-mapped. String functions

are supported, and the port type is unsigned char

*.





	MIPS



	MIPS64

	
[bookmark: linuxdrive3-CHP-9-ITERM-5940]The MIPS port supports all the functions.

String operations are implemented with tight assembly loops, because

the processor lacks machine-level string I/O. Ports are

memory-mapped; they are unsigned long.





	PA-RISC

	
All of the functions are supported; ports are int

on PCI-based systems and unsigned short on EISA

systems, except for string operations, which use unsigned

long port numbers.





	PowerPC



	PowerPC64

	
[bookmark: linuxdrive3-CHP-9-ITERM-5941]
[bookmark: linuxdrive3-CHP-9-ITERM-5942]All the functions are supported; ports

have type unsigned char * on 32-bit systems and

unsigned long on 64-bit systems.





	S390

	
[bookmark: linuxdrive3-CHP-9-ITERM-5943]Similar to the M68k, the header for this

platform supports only byte-wide port I/O with no string operations.

Ports are char pointers and are memory-mapped.





	Super-H

	
[bookmark: linuxdrive3-CHP-9-ITERM-5944]
[bookmark: linuxdrive3-CHP-9-ITERM-5945]Ports

are unsigned int (memory-mapped), and all the

functions are supported.





	SPARC



	SPARC64

	
[bookmark: linuxdrive3-CHP-9-ITERM-5946]
[bookmark: linuxdrive3-CHP-9-ITERM-5947]Once

again, I/O space is memory-mapped. Versions of the port functions are

defined to work with unsigned long ports.





The curious reader can extract more information from the

io.h files, which sometimes define a few

architecture-specific functions in addition to those we describe in

this chapter. Be warned that some of these files are rather difficult

reading, however.

It's interesting to note that no processor outside

the x86 family features a different address space for ports, even

though several of the supported families are shipped with ISA and/or

PCI slots (and both buses implement separate I/O and memory address

spaces).

Moreover, some processors (most notably the early Alphas) lack

instructions that move one or two bytes at a time.[4] Therefore,

their peripheral chipsets simulate 8-bit and 16-bit I/O accesses by

mapping them to special address ranges in the memory address space.

Thus, an inb and an inw

instruction that act on the same port are implemented by two 32-bit

memory reads that operate on different addresses. Fortunately, all of

this is hidden from the device driver writer by the internals of the

macros described in this section, but we feel it's

an interesting feature to note. If you want to probe further, look

for examples in include/asm-alpha/core_lca.h.
[bookmark: linuxdrive3-CHP-9-FNOTE-4][4] Single-byte I/O is not as important as one may imagine, because

it is a rare operation. To read/write a single byte to any address

space, you need to implement a data path connecting the low bits of

the register-set data bus to any byte position in the external data

bus. These data paths require additional logic gates that get in the

way of every data transfer. Dropping byte-wide loads and stores can

benefit overall system performance.


How I/O operations are performed on each platform is well described

in the programmer's manual for each platform; those

manuals are usually available for download as PDFs on the Web.







[bookmark: linuxdrive3-CHP-9-SECT-3]
9.3. An I/O Port Example

The sample code we use to show port I/O from within a device driver

acts on general-purpose digital I/O ports; such ports are found in

most computer systems.

[bookmark: linuxdrive3-CHP-9-ITERM-5948]
[bookmark: linuxdrive3-CHP-9-ITERM-5949][bookmark: linuxdrive3-CHP-9-ITERM-5950]A digital I/O port, in its most common

incarnation, is a byte-wide I/O location, either memory-mapped or

port-mapped. When you write a value to an output location, the

electrical signal seen on output pins is changed according to the

individual bits being written. When you read a value from the input

location, the current logic level seen on input pins is returned as

individual bit values.

The actual implementation and software interface of such I/O ports

varies from system to system. Most of the time, I/O pins are

controlled by two I/O locations: one that allows selecting what pins

are used as input and what pins are used as output and one in which

you can actually read or write logic levels. Sometimes, however,

things are even simpler, and the bits are hardwired as either input

or output (but, in this case, they're no longer

called "general-purpose I/O"); the

parallel port found on all personal computers is one such

not-so-general-purpose I/O port. Either way, the I/O pins are usable

by the sample code we introduce shortly.

[bookmark: linuxdrive3-CHP-9-SECT-3.1]
9.3.1. An Overview of the Parallel Port

[bookmark: linuxdrive3-CHP-9-ITERM-5951]
[bookmark: linuxdrive3-CHP-9-ITERM-5952][bookmark: linuxdrive3-CHP-9-ITERM-5953]Because we expect most

readers to be using an x86 platform in the form called

"personal computer," we feel it is

worth explaining how the PC parallel port is designed. The parallel

port is the peripheral interface of choice for running digital I/O

sample code on a personal computer. Although most readers probably

have parallel port specifications available, we summarize them here

for your convenience.

The parallel interface, in its minimal configuration (we overlook the

ECP and EPP modes) is made up of three 8-bit ports. The PC standard

starts the I/O ports for the first parallel interface at

0x378 and for the second at

0x278. The first port is a bidirectional data

register; it connects directly to pins 2-9 on the physical connector.

The second port is a read-only status register; when the parallel

port is being used for a printer, this register reports several

aspects of printer status, such as being online, out of paper, or

busy. The third port is an output-only control register, which, among

other things, controls whether interrupts are enabled.

[bookmark: linuxdrive3-CHP-9-ITERM-5954] [bookmark: linuxdrive3-CHP-9-ITERM-5955][bookmark: linuxdrive3-CHP-9-ITERM-5956]The signal

levels used in parallel communications are standard

transistor-transistor logic (TTL) levels: 0 and 5 volts, with the

logic threshold at about 1.2 volts. You can count on the ports at

least meeting the standard TTL LS current ratings, although most

modern parallel ports do better in both current and voltage ratings.

		[image: ]	
The parallel connector is not isolated from the

computer's internal circuitry, which is useful if

you want to connect logic gates directly to the port. But you have to

be careful to do the wiring correctly; the parallel port circuitry is

easily damaged when you play with your own custom circuitry, unless

you add optoisolators to your circuit. You can choose to use plug-in

parallel ports if you fear you'll damage your

motherboard.






 

[bookmark: linuxdrive3-CHP-9-ITERM-5957]The

bit specifications are outlined in Figure 9-1. You can access 12

output bits and 5 input bits, some of which are logically inverted

over the course of their signal path. The only bit with no associated

signal pin is bit 4 (0x10) of port 2, which enables interrupts from

the parallel port. We use this bit as part of our implementation of

an interrupt handler in Chapter 10.

[bookmark: linuxdrive3-CHP-9-FIG-1]
Figure 9-1. The pinout of the parallel port

[image: ]

 

[bookmark: linuxdrive3-CHP-9-SECT-3.2]
9.3.2. A Sample Driver

[bookmark: linuxdrive3-CHP-9-ITERM-5958]
[bookmark: linuxdrive3-CHP-9-ITERM-5959]The driver we introduce is called

short ([bookmark: linuxdrive3-CHP-9-ITERM-5960]Simple Hardware Operations and Raw Tests).

All it does is read and write a few 8-bit ports, starting from the

one you select at load time. By default, it uses the port range

assigned to the parallel interface of the PC. Each device node (with

a unique minor number) accesses a different port. The

short driver doesn't do

anything useful; it just isolates for external use as a single

instruction acting on a port. If you are not used to port I/O, you

can use short to get familiar with it; you can

measure the time it takes to transfer data through a port or play

other games.

For short to work on your system, it must have

free access to the underlying hardware device (by default, the

parallel interface); thus, no other driver may have allocated it.

Most modern distributions set up the parallel port drivers as modules

that are loaded only when needed, so contention for the I/O addresses

is not usually a problem. If, however, you get a

"can't get I/O

address" error from short (on

the console or in the system log file), some other driver has

probably already taken the port. A quick look at

/proc/ioports usually tells you which driver is

getting in the way. The same caveat applies to other I/O devices if

you are not using the parallel interface.

[bookmark: linuxdrive3-CHP-9-ITERM-5961]
[bookmark: linuxdrive3-CHP-9-ITERM-5962]
[bookmark: linuxdrive3-CHP-9-ITERM-5963]From now on, we just refer to

"the parallel interface" to

simplify the discussion. However, you can set the

base module parameter at load time to redirect

short to other I/O devices. This feature allows

the sample code to run on any Linux platform where you have access to

a digital I/O interface that is accessible via

outb and inb (even though

the actual hardware is memory-mapped on all platforms but the x86).

Later, in Section 9.4 we show how short

can be used with generic memory-mapped digital I/O as well.

[bookmark: linuxdrive3-CHP-9-ITERM-5964]
[bookmark: linuxdrive3-CHP-9-ITERM-5965][bookmark: linuxdrive3-CHP-9-ITERM-5966]To watch what happens

on the parallel connector and if you have a bit of an inclination to

work with hardware, you can solder a few LEDs to the output pins.

Each LED should be connected in series to a 1-K resistor leading to a

ground pin (unless, of course, your LEDs have the resistor built in).

If you connect an output pin to an input pin, you'll

generate your own input to be read from the input ports.

Note that you cannot just connect a printer to the parallel port and

see data sent to short. This driver implements

simple access to the I/O ports and does not perform the handshake

that printers need to operate on the data. In the next chapter, we

show a sample driver (called shortprint), that

is capable of driving parallel printers; that driver uses interrupts,

however, so we can't get to it quite yet.

If you are going to view parallel data by soldering LEDs to a D-type

connector, we suggest that you not use pins 9 and 10, because we

connect them together later to run the sample code shown in Chapter 10.

As far as short is concerned,

/dev/short0 writes to and reads from the 8-bit

port located at the I/O address base (0x378 unless

changed at load time). /dev/short1 writes to the

8-bit port located at base + 1, and so on up to

base + 7.

The actual output operation performed by

/dev/short0 is based on a tight loop using

outb. A memory barrier instruction is used to

ensure that the output operation actually takes place and is not

optimized away:

while (count--) {

    outb(*(ptr++), port);

    wmb(  );

}
 

You can run the following command to light your LEDs:

echo  -n "any string"  > /dev/short0
 

Each LED monitors a single bit of the output port. Remember that only

the last character written remains steady on the output pins long

enough to be perceived by your eyes. For that reason, we suggest that

you prevent automatic insertion of a trailing newline by passing the

-n option to echo.

[bookmark: linuxdrive3-CHP-9-ITERM-5967]Reading is performed by a

similar function, built around inb instead of

outb. In order to read

"meaningful" values from the

parallel port, you need to have some hardware connected to the input

pins of the connector to generate signals. If there is no signal, you

read an endless stream of identical bytes. If you choose to read from

an output port, you most likely get back the last value written to

the port (this applies to the parallel interface and to most other

digital I/O circuits in common use). Thus, those uninclined to get

out their soldering irons can read the current output value on port

0x378 by running a command such as:

dd if=/dev/short0 bs=1 count=1 | od -t x1
 

To demonstrate the use of all the I/O instructions, there are three

variations of each short device:

/dev/short0 performs the loop just shown,

/dev/short0p uses outb_p

and inb_p in place of the

"fast" functions, and

/dev/short0s uses the string instructions. There

are eight such devices, from short0 to

short7. Although the PC parallel interface has

only three ports, you may need more of them if using a different I/O

device to run your tests.

The short driver performs an absolute minimum of

hardware control but is adequate to show how the I/O port

instructions are used. Interested readers may want to look at the

source for the parport and

parport_pc modules to see how complicated this

device can get in real life in order to support a[bookmark: linuxdrive3-CHP-9-ITERM-5968] [bookmark: linuxdrive3-CHP-9-ITERM-5969] range of devices

(printers, tape backup, network interfaces) on the parallel port.
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9.4. Using I/O Memory

Despite the popularity of I/O ports in the x86 world, the main

mechanism used to communicate with devices is through memory-mapped

registers and device memory. Both are called I/O

memory because the difference between registers and memory

is transparent to software.

I/O memory is simply a region of RAM-like locations that the device

makes available to the processor over the bus. This memory can be

used for a number of purposes, such as holding video data or Ethernet

packets, as well as implementing device registers that behave just

like I/O ports (i.e., they have side effects associated with reading

and writing them).

The way to access I/O memory depends on the computer architecture,

bus, and device being used, although the principles are the same

everywhere. The discussion in this chapter touches mainly on ISA and

PCI memory, while trying to convey general information as well.

Although access to PCI memory is introduced here, a thorough

discussion of PCI is deferred to Chapter 12.

[bookmark: linuxdrive3-CHP-9-ITERM-5970] [bookmark: linuxdrive3-CHP-9-ITERM-5971][bookmark: linuxdrive3-CHP-9-ITERM-5972]
[bookmark: linuxdrive3-CHP-9-ITERM-5973]
[bookmark: linuxdrive3-CHP-9-ITERM-5974]
[bookmark: linuxdrive3-CHP-9-ITERM-5975]Depending on the computer platform

and bus being used, I/O memory may or may not be accessed through

page tables. When access passes though page tables, the kernel must

first arrange for the physical address to be visible from your

driver, and this usually means that you must call

ioremap[bookmark: linuxdrive3-CHP-9-ITERM-5976] before doing any I/O. If no page

tables are needed, I/O memory locations look pretty much like I/O

ports, and you can just read and write to them using proper wrapper

functions.

Whether or not ioremap is required to access I/O

memory, direct use of pointers to I/O memory is discouraged. Even

though (as introduced in Section 9.1) I/O memory is addressed like normal RAM

at hardware level, the extra care outlined in the Section 9.1.1 suggests avoiding normal

pointers. The wrapper functions used to access I/O memory are safe on

all platforms and are optimized away whenever straight pointer

dereferencing can perform the operation.

Therefore, even though dereferencing a pointer works (for now) on the

x86, failure to use the proper macros hinders the portability and

readability of the driver.

[bookmark: linuxdrive3-CHP-9-SECT-4.1]
9.4.1. I/O Memory Allocation and Mapping

I/O memory regions

[bookmark: linuxdrive3-CHP-9-ITERM-5977]
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[bookmark: linuxdrive3-CHP-9-ITERM-5980]
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be allocated prior to use. The interface for allocation of memory

regions (defined in <linux/ioport.h>) is:

struct resource *request_mem_region(unsigned long start, unsigned long len,

                                    char *name);
 

This function allocates a memory region of len

bytes, starting at start. If all goes well, a

non-NULL pointer is returned; otherwise the return

value is NULL. All I/O memory allocations are

listed in /proc/iomem.

Memory regions should be freed when no longer needed:

void release_mem_region(unsigned long start, unsigned long len);
 

There is also an old function for checking I/O memory region

availability:

int check_mem_region(unsigned long start, unsigned long len);
 

But, as with check_region, this function is

unsafe and should be avoided.

Allocation of I/O memory is not the only required step before that

memory may be accessed. You must also ensure that this I/O memory has

been made accessible to the kernel. Getting at I/O memory is not just

a matter of dereferencing a pointer; on many systems, I/O memory is

not directly accessible in this way at all. So a mapping must be set

up first. This is the role of the ioremap

function, introduced in Section 8.4 in Chapter 8. The function is

designed specifically to assign virtual addresses to I/O memory

regions.

Once equipped with ioremap (and

iounmap), a device driver can access any I/O

memory address, whether or not it is directly mapped to virtual

address space. Remember, though, that the addresses returned from

ioremap should not be dereferenced directly;

instead, accessor functions provided by the kernel should be used.

Before we get into those functions, we'd better

review the ioremap prototypes and introduce a

few details that we passed over in the previous chapter.

The functions are called according to the following definition:

[bookmark: linuxdrive3-CHP-9-ITERM-5982]
[bookmark: linuxdrive3-CHP-9-ITERM-5983]
[bookmark: linuxdrive3-CHP-9-ITERM-5984][bookmark: linuxdrive3-CHP-9-ITERM-5985]
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#include <asm/io.h>

void *ioremap(unsigned long phys_addr, unsigned long size);

void *ioremap_nocache(unsigned long phys_addr, unsigned long size);

void iounmap(void * addr);
 

[bookmark: linuxdrive3-CHP-9-ITERM-5987]
[bookmark: linuxdrive3-CHP-9-ITERM-5988]First

of all, you notice the new function

ioremap_nocache. We didn't

cover it in Chapter 8, because

its meaning is definitely hardware related. Quoting from one of the

kernel headers: "It's useful if

some control registers are in such an area, and write combining or

read caching is not desirable." Actually, the

function's implementation is identical to

ioremap on most computer platforms: in

situations where all of I/O memory is already visible through

noncacheable addresses, there's no reason to

implement a separate, noncaching version of

ioremap.

[bookmark: linuxdrive3-CHP-9-SECT-4.2]
9.4.2. Accessing I/O Memory

On some platforms,

you[bookmark: linuxdrive3-CHP-9-ITERM-5989] may get away with using the return

value from ioremap as a pointer. Such use is not

portable, and, increasingly, the kernel developers have been working

to eliminate any such use. The proper way of getting at I/O memory is

via a set of functions (defined via

<asm/io.h>) provided for that purpose.

To read from I/O memory, use one of the following:

unsigned int ioread8(void *addr);

unsigned int ioread16(void *addr);

unsigned int ioread32(void *addr);
 

Here, addr should be an address obtained from

ioremap (perhaps with an integer offset); the

return value is what was read from the given I/O memory.

There is a similar set of functions for writing to I/O memory:

void iowrite8(u8 value, void *addr);

void iowrite16(u16 value, void *addr);

void iowrite32(u32 value, void *addr);
 

If you must read or write a series of values to a given I/O memory

address, you can use the repeating versions of the functions:

void ioread8_rep(void *addr, void *buf, unsigned long count);

void ioread16_rep(void *addr, void *buf, unsigned long count);

void ioread32_rep(void *addr, void *buf, unsigned long count);

void iowrite8_rep(void *addr, const void *buf, unsigned long count);

void iowrite16_rep(void *addr, const void *buf, unsigned long count);

void iowrite32_rep(void *addr, const void *buf, unsigned long count);
 

These functions read or write count values from

the given buf to the given

addr. Note that count is

expressed in the size of the data being written;

ioread32_rep reads count

32-bit values starting at buf.

The functions described above perform all I/O to the given

addr. If, instead, you need to operate on a block

of I/O memory, you can use one of the following:

void memset_io(void *addr, u8 value, unsigned int count);

void memcpy_fromio(void *dest, void *source, unsigned int count);

void memcpy_toio(void *dest, void *source, unsigned int count);
 

These functions behave like their C library analogs.

If you read through the kernel source, you see many calls to an older

set of functions when I/O memory is being used. These functions still

work, but their use in new code is discouraged. Among other things,

they are less safe because they do not perform the same sort of type

checking. Nonetheless, we describe them here:



	unsigned readb(address);



	unsigned readw(address);



	unsigned readl(address);

	
These macros are used to retrieve 8-bit, 16-bit, and 32-bit data

values from I/O memory.





	void writeb(unsigned value, address);



	void writew(unsigned value, address);



	void writel(unsigned value, address);

	
Like the previous functions, these functions (macros) are used to

write 8-bit, 16-bit, and 32-bit data items.





Some 64-bit platforms also offer readq and

writeq, for quad-word (8-byte) memory operations

on the PCI bus. The quad-word nomenclature is a

historical leftover from the times when all real processors had

16-bit words. Actually, the L naming used for

32-bit values has become incorrect too, but renaming everything would

confuse things even more.

[bookmark: linuxdrive3-CHP-9-SECT-4.3]
9.4.3. Ports as I/O Memory

Some hardware has an interesting feature: some versions use I/O

ports, while others use I/O memory. The registers exported to the

processor are the same in either case, but the access method is

different. As a way of making life easier for drivers dealing with

this kind of hardware, and as a way of minimizing the apparent

differences between I/O port and memory accesses, the 2.6 kernel

provides a function called ioport_map:

void *ioport_map(unsigned long port, unsigned int count);
 

This function remaps count I/O ports and makes

them appear to be I/O memory. From that point thereafter, the driver

may use ioread8 and friends on the returned

addresses and forget that it is using I/O ports at all.

This mapping should be undone when it is no longer needed:

void ioport_unmap(void *addr);
 

These functions make I/O ports look like memory. Do note, however,

that the I/O ports must still be allocated with

request_region before they can be remapped in

this way.

[bookmark: linuxdrive3-CHP-9-SECT-4.4]
9.4.4. Reusing short for I/O Memory

[bookmark: linuxdrive3-CHP-9-ITERM-5990]
[bookmark: linuxdrive3-CHP-9-ITERM-5991]
[bookmark: linuxdrive3-CHP-9-ITERM-5992]The short sample

module, introduced earlier to access I/O ports, can be used to access

I/O memory as well. To this aim, you must tell it to use I/O memory

at load time; also, you need to change the base address to make it

point to your I/O region.

For example, this is how we used short to light

the debug LEDs on a MIPS development board:

mips.root# ./short_load use_mem=1 base=0xb7ffffc0

mips.root# echo -n 7 > /dev/short0
 

Use of short for I/O memory is the same as it is

for I/O ports.

The following fragment shows the loop used by

short in writing to a memory location:

while (count--) {

    iowrite8(*ptr++, address);

    wmb(  );

}
 

Note the use of a write memory barrier here. Because

iowrite8 likely turns into a direct assignment

on many architectures, the memory barrier is needed to ensure that

the writes happen in the expected order.

short uses inb and

outb to show how that is done. It would be a

straightforward exercise for the reader, however, to change

short to remap I/O ports with

ioport_map, and simplify the rest of the code

considerably.

[bookmark: linuxdrive3-CHP-9-SECT-4.5]
[bookmark: linuxdrive3-CHP-9-ITERM-5993]9.4.5. ISA Memory Below 1 MB

One of the most well-known I/O memory regions is the ISA range found

on personal computers. This is the memory range between 640 KB

(0xA0000) and 1 MB (0x100000).

Therefore, it appears right in the middle of regular system RAM. This

positioning may seem a little strange; it is an artifact of a

decision made in the early 1980s, when 640 KB of memory seemed like

more than anybody would ever be able to use.

This memory range belongs to the non-directly-mapped class of

memory.[5] You can read/write a few bytes in that

memory range using the short module as explained

previously, that is, by setting use_mem at load

time.
[bookmark: linuxdrive3-CHP-9-FNOTE-5][5] Actually, this is not completely true. The

memory range is so small and so frequently used that the kernel

builds page tables at boot time to access those addresses. However,

the virtual address used to access them is not the same as the

physical address, and thus ioremap is needed

anyway.


Although ISA I/O memory exists only in x86-class computers, we think

it's worth spending a few words and a sample driver

on it.

We are not going to discuss PCI memory in this chapter, since it is

the cleanest kind of I/O memory: once you know the physical address,

you can simply remap and access it. The

"problem" with PCI I/O memory is

that it doesn't lend itself to a working example for

this chapter, because we can't know in advance the

physical addresses your PCI memory is mapped to, or whether

it's safe to access either of those ranges. We chose

to describe the ISA memory range, because it's both

less clean and more suitable to running sample code.

[bookmark: linuxdrive3-CHP-9-ITERM-5994]
[bookmark: linuxdrive3-CHP-9-ITERM-5995]
[bookmark: linuxdrive3-CHP-9-ITERM-5996]To

demonstrate access to ISA memory, we use yet another silly little

module (part of the sample sources). In fact, this one is called

silly, as an acronym for Simple Tool for

Unloading and Printing ISA Data, or something like that.

The module supplements the functionality of

short by giving access to the whole 384-KB

memory space and by showing all the different I/O functions. It

features four device nodes that perform the same task using different

data transfer functions. The silly devices act

as a window over I/O memory, in a way similar to

/dev/mem. You can read and write data, and

lseek to an arbitrary I/O memory address.

Because silly provides access to ISA memory, it

must start by mapping the physical ISA addresses into kernel virtual

addresses. In the early days of the Linux kernel, one could simply

assign a pointer to an ISA address of interest, then dereference it

directly. In the modern world, though, we must work with the virtual

memory system and remap the memory range first. This mapping is done

with ioremap, as explained earlier for

short:

#define ISA_BASE    0xA0000

#define ISA_MAX     0x100000  /* for general memory access */



    /* this line appears in silly_init */

    io_base = ioremap(ISA_BASE, ISA_MAX - ISA_BASE);
 

ioremap returns a pointer value that can be used

with ioread8 and the other functions explained

in Section 9.4.2.

Let's look back at our sample module to see how

these functions might be used. /dev/sillyb,

featuring minor number 0, accesses I/O memory with

ioread8 and iowrite8. The

following code shows the implementation for

read, which makes the address range

0xA0000-0xFFFFF available as a virtual file in the

range 0-0x5FFFF. The read

function is structured as a switch statement over

the different access modes; here is the sillyb
case:

case M_8: 

  while (count) {

      *ptr = ioread8(add);

      add++;

      count--;

      ptr++;

  }

  break;
 

The next two devices are /dev/sillyw (minor

number 1) and /dev/sillyl (minor number 2). They

act like /dev/sillyb, except that they use

16-bit and 32-bit functions. Here's the

write implementation of

sillyl, again part of a

switch:

case M_32: 

  while (count >= 4) {

      iowrite8(*(u32 *)ptr, add);

      add += 4;

      count -= 4;

      ptr += 4;

  }

  break;
 

The last device is /dev/sillycp (minor number

3), which uses the memcpy_*io functions to

perform the same task. Here's the core of its

read implementation:

case M_memcpy:

  memcpy_fromio(ptr, add, count);

  break;
 

Because ioremap was used to provide access to

the ISA memory area, silly must invoke

iounmap when the module is unloaded:

[bookmark: linuxdrive3-CHP-9-ITERM-5997]iounmap(io_base);
 

[bookmark: linuxdrive3-CHP-9-SECT-4.6]
9.4.6. isa_readb and Friends

[bookmark: linuxdrive3-CHP-9-ITERM-5998]
[bookmark: linuxdrive3-CHP-9-ITERM-5999]A

look at the kernel source will turn up another set of routines with

names such as isa_readb. In fact, each of the

functions just described has an isa_ equivalent.

These functions provide access to ISA memory without the need for a

separate ioremap step. The word from the kernel

developers, however, is that these functions are intended to be

temporary driver-porting aids and that [bookmark: linuxdrive3-CHP-9-ITERM-6000] [bookmark: linuxdrive3-CHP-9-ITERM-6001] [bookmark: linuxdrive3-CHP-9-ITERM-6002] [bookmark: linuxdrive3-CHP-9-ITERM-6003] [bookmark: linuxdrive3-CHP-9-ITERM-6004]they may go away in the future.

Therefore, you should avoid using them.







[bookmark: linuxdrive3-CHP-9-SECT-5]
9.5. Quick Reference

This chapter introduced the following symbols related to hardware

management:
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	#include <linux/kernel.h>



	void barrier(void)

	
This "software"

[bookmark: linuxdrive3-CHP-9-ITERM-6005]
[bookmark: linuxdrive3-CHP-9-ITERM-6006]
[bookmark: linuxdrive3-CHP-9-ITERM-6007]memory

barrier requests

the[bookmark: linuxdrive3-CHP-9-ITERM-6008]
[bookmark: linuxdrive3-CHP-9-ITERM-6009]

compiler to consider all memory volatile across this instruction.





	#include <asm/system.h>



	void rmb(void);



	void read_barrier_depends(void);



	void wmb(void);



	void mb(void);

	
Hardware memory barriers. They request the CPU (and the compiler) to

checkpoint all memory reads, writes, or both across this instruction.





	#include <asm/io.h>



	unsigned inb(unsigned port);



	void outb(unsigned char byte, unsigned port);



	unsigned inw(unsigned port);



	void outw(unsigned short word, unsigned port);



	unsigned inl(unsigned port);



	void outl(unsigned doubleword, unsigned port);

	
Functions that are used to read and write I/O ports. They can also be

called by user-space programs, provided they have the right

privileges

[bookmark: linuxdrive3-CHP-9-ITERM-6010]
[bookmark: linuxdrive3-CHP-9-ITERM-6011]to

access ports.





	unsigned inb_p(unsigned port);



	...

	
[bookmark: linuxdrive3-CHP-9-ITERM-6012]If a small delay is needed after

an I/O operation, you can use the six pausing counterparts of the

functions introduced in the previous entry; these pausing functions

have names ending in _p.





	void insb(unsigned port, void *addr, unsigned long count);



	void outsb(unsigned port, void *addr, unsigned long count);



	void insw(unsigned port, void *addr, unsigned long count);



	void outsw(unsigned port, void *addr, unsigned long count);



	void insl(unsigned port, void *addr, unsigned long count);



	void outsl(unsigned port, void *addr, unsigned long count);

	
The "string functions"

are[bookmark: linuxdrive3-CHP-9-ITERM-6013]
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optimized to transfer data from an input port to a region of memory,

or the other way around. Such transfers[bookmark: linuxdrive3-CHP-9-ITERM-6018]
[bookmark: linuxdrive3-CHP-9-ITERM-6019]
[bookmark: linuxdrive3-CHP-9-ITERM-6020]

are performed by reading or writing the same port

count times.





	#include <linux/ioport.h>



	struct resource *request_region(unsigned long start, unsigned long len, char 



	 *name);



	void release_region(unsigned long start, unsigned long len);



	int check_region(unsigned long start, unsigned long len);

	
Resource allocators for I/O ports. The (deprecated)

check function returns 0 for

success and less than 0 in case of error.





	struct resource *request_mem_region(unsigned long start, unsigned long len, 



	 char *name);



	void release_mem_region(unsigned long start, unsigned long len);



	int check_mem_region(unsigned long start, unsigned long len);

	
Functions that handle resource allocation for memory regions.





	#include <asm/io.h>



	void *ioremap(unsigned long phys_addr, unsigned long size);



	void *ioremap_nocache(unsigned long phys_addr, unsigned long size);



	void iounmap(void *virt_addr);

	
ioremap[bookmark: linuxdrive3-CHP-9-ITERM-6021]
[bookmark: linuxdrive3-CHP-9-ITERM-6022]

remaps a physical address range into the processor's

virtual address space, making it available to the kernel.

iounmap frees the mapping when it is no longer

needed.





	#include <asm/io.h>



	unsigned int ioread8(void *addr);



	unsigned int ioread16(void *addr);



	unsigned int ioread32(void *addr);



	void iowrite8(u8 value, void *addr);



	void iowrite16(u16 value, void *addr);



	void iowrite32(u32 value, void *addr);

	
Accessor functions that are used to work with I/O memory.





	void ioread8_rep(void *addr, void *buf, unsigned long count);



	void ioread16_rep(void *addr, void *buf, unsigned long count);



	void ioread32_rep(void *addr, void *buf, unsigned long count);



	void iowrite8_rep(void *addr, const void *buf, unsigned long count);



	void iowrite16_rep(void *addr, const void *buf, unsigned long count);



	void iowrite32_rep(void *addr, const void *buf, unsigned long count);

	
"Repeating" versions of the I/O

memory primitives.





	unsigned readb(address);



	unsigned readw(address);



	unsigned readl(address);



	void writeb(unsigned value, address);



	void writew(unsigned value, address);



	void writel(unsigned value, address);



	memset_io(address, value, count);



	memcpy_fromio(dest, source, nbytes);



	memcpy_toio(dest, source, nbytes);

	
Older, type-unsafe functions for accessing I/O memory.





	void *ioport_map(unsigned long port, unsigned int count);



	void ioport_unmap(void *addr);

	
A driver author that wants to treat I/O ports as if they were I/O

memory may pass those ports to ioport_map. The

mapping should be done (with ioport_unmap) when

no longer needed.
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Chapter 10. Interrupt Handling

Although some devices can be controlled using nothing but their I/O

regions, most real devices are a bit more complicated than that.

Devices have to deal with the external world, which often includes

things such as spinning disks, moving tape, wires to distant places,

and so on. Much has to be done in a time frame that is different

from, and far slower than, that of the processor. Since it is almost

always undesirable to have the processor wait on external events,

there must be a way for a device to let the processor know when

something has happened.

That way, of course, is interrupts. An interrupt

is simply a signal that the hardware can send when it wants the

processor's attention. Linux handles interrupts in

much the same way that it handles signals in user space. For the most

part, a driver need only register a handler for its

device's interrupts, and handle them properly when

they arrive. Of course, underneath that simple picture there is some

complexity; in particular, interrupt handlers are somewhat limited in

the actions they can perform as a result of how they are run.

It is difficult to demonstrate the use of interrupts without a real

hardware device to generate them. Thus, the sample code used in this

chapter works with the parallel port. Such ports are starting to

become scarce on modern hardware, but, with luck, most people are

still able to get their hands on a system with an available port.

We'll be working with the short

module from the previous chapter; with some small additions it can

generate and handle interrupts from the parallel port. The

module's name, short, actually

means short int (it is C, isn't

it?), to remind us that it handles interrupts.

Before we get into the topic, however, it is time for one cautionary

note. Interrupt handlers, by their nature, run concurrently with

other code. Thus, they inevitably raise issues of concurrency and

contention for data structures and hardware. If you succumbed to the

temptation to pass over the discussion in Chapter 5, we understand. But we also

recommend that you turn back and have another look now. A solid

understanding of concurrency control techniques is vital when working

with interrupts.







[bookmark: linuxdrive3-CHP-10-SECT-1]
10.1. Preparing the Parallel Port

Although the parallel interface is simple,

[bookmark: linuxdrive3-CHP-10-ITERM-6023] [bookmark: linuxdrive3-CHP-10-ITERM-6024]
[bookmark: linuxdrive3-CHP-10-ITERM-6025]it can trigger

interrupts. This capability is used by the printer to notify the

lp driver that it is ready to accept the next

character in the buffer.

Like most devices, the parallel

port[bookmark: linuxdrive3-CHP-10-ITERM-6026]

doesn't actually generate interrupts before

it's instructed to do so; the parallel standard

states that setting bit 4 of port 2 (0x37a,

0x27a, or whatever) enables interrupt reporting. A

simple outb call to set the bit is performed by

short at module initialization.

[bookmark: linuxdrive3-CHP-10-ITERM-6027]Once interrupts are enabled, the

parallel interface generates an interrupt whenever the electrical

signal at pin 10 (the so-called ACK bit) changes from low to high.

The simplest way to force the interface to generate interrupts (short

of hooking up a printer to the port) is to connect pins 9 and 10 of

the parallel connector. A short length of wire inserted into the

appropriate holes in the parallel port connector on the back of your

system creates this connection. The pinout of the parallel port is

shown in Figure 9-1.

Pin 9 is the most significant bit of the parallel data byte. If you

write binary data to /dev/short0, you generate

several interrupts. Writing ASCII text to the port

won't generate any interrupts, though, because the

ASCII character set has no entries with the top bit set.

If you'd rather avoid wiring pins together, but you

do have a printer at hand, you can run the sample interrupt handler

using a real printer, as shown later. However, note that the probing

functions we introduce depend on the jumper between pin 9 and 10

being in place, and you need it to experiment with probing using our

code.







[bookmark: linuxdrive3-CHP-10-SECT-2]
10.2. Installing an Interrupt Handler

If you want to actually "see"

interrupts being generated, writing to the hardware device

isn't enough; a software handler must be configured

in the system. If the Linux kernel hasn't been told

to expect your interrupt, it simply acknowledges and ignores it.

[bookmark: linuxdrive3-CHP-10-ITERM-6028] [bookmark: linuxdrive3-CHP-10-ITERM-6029] [bookmark: linuxdrive3-CHP-10-ITERM-6030] [bookmark: linuxdrive3-CHP-10-ITERM-6031]Interrupt lines are a precious and

often limited resource, particularly when there are only 15 or 16 of

them. The kernel keeps a registry of interrupt lines, similar to the

registry of I/O ports. A module is expected to request an interrupt

channel (or IRQ, for interrupt request) before using it and to

release it when finished. In many situations, modules are also

expected to be able to share interrupt lines with other drivers, as

we will see. The following functions, declared in

<linux/interrupt.h>, implement the

interrupt registration interface:

int request_irq(unsigned int irq,

                irqreturn_t (*handler)(int, void *, struct pt_regs *),

                unsigned long flags, 

                const char *dev_name,

                void *dev_id);



void free_irq(unsigned int irq, void *dev_id);
 

The value returned from request_irq to the

requesting function is either 0 to indicate

success or a negative error code, as usual. It's not

uncommon for the function to return -EBUSY to

signal that another driver is already using the requested interrupt

line. The arguments to the functions are as follows:
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	unsigned int irq[bookmark: linuxdrive3-CHP-10-ITERM-6032]
[bookmark: linuxdrive3-CHP-10-ITERM-6033]

	
[bookmark: linuxdrive3-CHP-10-ITERM-6034][bookmark: linuxdrive3-CHP-10-ITERM-6035]The interrupt number

being requested.





	irqreturn_t (*handler)(int, void *, struct pt_regs *)[bookmark: linuxdrive3-CHP-10-ITERM-6036]
[bookmark: linuxdrive3-CHP-10-ITERM-6037]

	
The pointer to the handling function being installed. We discuss the

arguments to this function and its return value later in this

chapter.





	unsigned long flags[bookmark: linuxdrive3-CHP-10-ITERM-6038]
[bookmark: linuxdrive3-CHP-10-ITERM-6039]

	
As you might expect, a bit mask of options (described later) related

to interrupt management.





	const char *dev_name[bookmark: linuxdrive3-CHP-10-ITERM-6040]
[bookmark: linuxdrive3-CHP-10-ITERM-6041]

	
The string passed to request_irq is used in

/proc/interrupts to show the owner of the

interrupt (see the next section).





	void *dev_id[bookmark: linuxdrive3-CHP-10-ITERM-6042]
[bookmark: linuxdrive3-CHP-10-ITERM-6043]

	
Pointer used for shared interrupt lines. It is a unique identifier

that is used when the interrupt line is freed and that may also be

used by the driver to point to its own private data area (to identify

which device is interrupting). If the interrupt is not shared,

dev_id can be set to NULL, but

it a good idea anyway to use this item to point to the device

structure. We'll see a practical use for

dev_id in Section 10.3.





The bits that can be set in flags are as follows:
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	SA_INTERRUPT

	
[bookmark: linuxdrive3-CHP-10-ITERM-6044]
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set, this indicates a "fast"

interrupt handler. Fast handlers are executed with interrupts

disabled on the current processor (the topic is covered in the

Section 10.2.3).





	SA_SHIRQ

	
[bookmark: linuxdrive3-CHP-10-ITERM-6046]
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bit signals that the interrupt can be shared between devices. The

concept of sharing is outlined in Section 10.5.





	SA_SAMPLE_RANDOM

	
[bookmark: linuxdrive3-CHP-10-ITERM-6048]
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the generated interrupts can contribute to the entropy pool used by

/dev/random and

/dev/urandom. These devices return truly random

numbers when read and are designed to help application software

choose secure keys for encryption. Such random numbers are extracted

from an entropy pool that is contributed by various random events. If

your device generates interrupts at truly random times, you should

set this flag. If, on the other hand, your interrupts are predictable

(for example, vertical blanking of a frame grabber), the flag is not

worth setting�it wouldn't contribute to system

entropy anyway. Devices that could be influenced by attackers should

not set this flag; for example, network drivers can be subjected to

predictable packet timing from outside and should not contribute to

the entropy pool. See the comments in

drivers/char/random.c for more information.





The interrupt handler can be installed either at

driver[bookmark: linuxdrive3-CHP-10-ITERM-6055]
[bookmark: linuxdrive3-CHP-10-ITERM-6056] initialization or when the device is first

opened. Although installing the interrupt handler from within the

module's initialization function might sound like a

good idea, it often isn't, especially if your device

does not share interrupts. Because the number of interrupt lines is

limited, you don't want to waste them. You can

easily end up with more devices in your computer than there are

interrupts. If a module requests an IRQ at initialization, it

prevents any other driver from using the interrupt, even if the

device holding it is never used. Requesting the interrupt at device

open, on the other hand, allows some sharing of resources.

It is possible, for example, to run a frame grabber on the same

interrupt as a modem, as long as you don't use the

two devices at the same time. It is quite common for users to load

the module for a special device at system boot, even if the device is

rarely used. A data acquisition gadget might use the same interrupt

as the second serial port. While it's not too hard

to avoid connecting to your Internet service provider (ISP) during

data acquisition, being forced to unload a module in order to use the

modem is really unpleasant.

The correct place to call request_irq is when

the device is first opened, before the hardware

is instructed to generate interrupts. The place to call

free_irq is the last time the device is closed,

after the hardware is told not to interrupt the

processor any more. The disadvantage of this technique is that you

need to keep a per-device open count so that you know when interrupts

can be disabled.

[bookmark: linuxdrive3-CHP-10-ITERM-6057]
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short requests its interrupt line at load time.

This was done so that you can run the test programs without having to

run an extra process to keep the device open.

short, therefore, requests the interrupt from

within its initialization function (short_init)

instead of doing it in short_open, as a real

device driver would.

The interrupt requested by the following code is

short_irq. The actual assignment of the variable

(i.e., determining which IRQ to use) is shown later, since it is not

relevant to the current discussion. short_base is

the base I/O address of the parallel interface being used; register 2

of the interface is written to[bookmark: linuxdrive3-CHP-10-ITERM-6059]
[bookmark: linuxdrive3-CHP-10-ITERM-6060]

enable interrupt reporting.

if (short_irq >= 0) {

    result = request_irq(short_irq, short_interrupt,

            SA_INTERRUPT, "short", NULL);

   if (result) {

        printk(KERN_INFO "short: can't get assigned irq %i\n",

                short_irq);

        short_irq = -1;

    }

    else { /* actually enable it -- assume this *is* a parallel port */

        outb(0x10,short_base+2);

    }

}
 

The code shows that the handler being installed is a fast handler

(SA_INTERRUPT), doesn't support

interrupt sharing (SA_SHIRQ is missing), and

doesn't contribute to system entropy

(SA_SAMPLE_RANDOM is missing, too). The

outb call then enables interrupt reporting for

the parallel port.

For what it's worth, the i386 and x86_64

architectures define a function for querying the availability of an

interrupt line:

int can_request_irq(unsigned int irq, unsigned long flags);
 

This function returns a nonzero value if an attempt to allocate the

given interrupt succeeds. Note, however, that things can always

change between calls to can_request_irq and

request_irq.

[bookmark: linuxdrive3-CHP-10-SECT-2.1]
10.2.1. The /proc Interface

[bookmark: linuxdrive3-CHP-10-ITERM-6061]
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a hardware interrupt reaches the processor, an internal counter is

incremented, providing a way to check whether the device is working

as expected. Reported interrupts are shown in

/proc/interrupts. The following snapshot was

taken on a two-processor Pentium system:

root@montalcino:/bike/corbet/write/ldd3/src/short# m /proc/interrupts

           CPU0       CPU1       

  0:    4848108         34    IO-APIC-edge  timer

  2:          0          0          XT-PIC  cascade

  8:          3          1    IO-APIC-edge  rtc

 10:       4335          1   IO-APIC-level  aic7xxx

 11:       8903          0   IO-APIC-level  uhci_hcd

 12:         49          1    IO-APIC-edge  i8042

NMI:          0          0 

LOC:    4848187    4848186 

ERR:          0

MIS:          0
 

The first column is the IRQ number. You can see from the IRQs that

are missing that the file shows only interrupts corresponding to

installed handlers. For example, the first serial port (which uses

interrupt number 4) is not shown, indicating that the modem

isn't being used. In fact, even if the modem had

been used earlier but wasn't in use at the time of

the snapshot, it would not show up in the file; the serial ports are

well behaved and release their interrupt handlers when the device is

closed.

The /proc/interrupts display shows how many

interrupts have been delivered to each CPU on the system. As you can

see from the output, the Linux kernel generally handles interrupts on

the first CPU as a way of maximizing cache locality.[1] The last two columns give information on

the programmable interrupt controller that handles the interrupt (and

that a driver writer does not need to worry about), and the name(s)

of the device(s) that have registered handlers for the interrupt (as

specified in the dev_name argument to

request_irq).
[bookmark: linuxdrive3-CHP-10-FNOTE-1][1] Although, some larger systems explicitly use interrupt

balancing schemes to spread the interrupt load across the

system.
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/proc tree contains another interrupt-related

file, /proc/stat; sometimes

you'll find one file more useful and sometimes

you'll prefer the other.

/proc/stat records several low-level statistics

about system activity, including (but not limited to) the number of

interrupts received since system boot. Each line of

stat begins with a text string that is the key

to the line; the intr mark is what we are looking

for. The following (truncated) snapshot was taken shortly after the

previous one:

intr 5167833 5154006 2 0 2 4907 0 2 68 4 0 4406 9291 50 0 0
 

[bookmark: linuxdrive3-CHP-10-ITERM-6071]The

first number is the total of all interrupts, while each of the others

represents a single IRQ line, starting with interrupt

0. All of the counts are summed across all

processors in the system. This snapshot shows that interrupt number 4

has been used 4907 times, even though no handler is

currently installed. If the driver

you're testing acquires and releases the interrupt

at each open and close cycle, you may find

/proc/stat more useful than

/proc/interrupts.

[bookmark: linuxdrive3-CHP-10-ITERM-6072][bookmark: linuxdrive3-CHP-10-ITERM-6073]Another difference between the two files is

that interrupts is not architecture dependent

(except, perhaps, for a couple of lines at the end), whereas

stat is; the number of fields depends on the

hardware underlying the kernel. The number of available interrupts

varies from as few as 15 on the SPARC to as many as 256 on the IA-64

and a few other systems. It's interesting to note

that the number of interrupts defined on the x86 is currently 224,

not 16 as you may expect; this, as explained in

include/asm-i386/irq.h, depends on Linux using

the architectural limit instead of an implementation-specific limit

(such as the 16 interrupt sources of the old-fashioned PC interrupt

controller).

The following is a snapshot of /proc/interrupts

taken on an IA-64 system. As you can see, besides different hardware

routing of common interrupt sources, the output is very similar to

that from the 32-bit system shown earlier.

           CPU0       CPU1       

 27:       1705      34141  IO-SAPIC-level  qla1280

 40:          0          0           SAPIC  perfmon

 43:        913       6960  IO-SAPIC-level  eth0

 47:      26722        146  IO-SAPIC-level  usb-uhci

 64:          3          6   IO-SAPIC-edge  ide0

 80:          4          2   IO-SAPIC-edge  keyboard

 89:          0          0   IO-SAPIC-edge  PS/2 Mouse

239:    5606341    5606052           SAPIC  timer

254:      67575      52815           SAPIC  IPI

NMI:          0          0 

ERR:          0
 

[bookmark: linuxdrive3-CHP-10-SECT-2.2]
10.2.2. Autodetecting the IRQ Number

[bookmark: linuxdrive3-CHP-10-ITERM-6074]
[bookmark: linuxdrive3-CHP-10-ITERM-6075][bookmark: linuxdrive3-CHP-10-ITERM-6076][bookmark: linuxdrive3-CHP-10-ITERM-6077][bookmark: linuxdrive3-CHP-10-ITERM-6078]One of

the most challenging problems for a driver at initialization time can

be how to determine which IRQ line is going to be used by the device.

The driver needs the information in order to correctly install the

handler. Even though a programmer could require the user to specify

the interrupt number at load time, this is a bad practice, because

most of the time the user doesn't know the number,

either because he didn't configure the jumpers or

because the device is jumperless. Most users want their hardware to

"just work" and are not interested

in issues like interrupt numbers. So autodetection of the interrupt

number is a basic requirement for driver usability.

Sometimes autodetection depends on the knowledge that some devices

feature a default behavior that rarely, if ever, changes. In this

case, the driver might assume that the default values apply. This is

exactly how short behaves by default with the

parallel port. The implementation is straightforward, as shown by

short itself:

if (short_irq < 0) /* not yet specified: force the default on */

    switch(short_base) {

        case 0x378: short_irq = 7; break;

        case 0x278: short_irq = 2; break;

        case 0x3bc: short_irq = 5; break;

    }
 

The code assigns the interrupt number according to the

[bookmark: linuxdrive3-CHP-10-ITERM-6079]chosen base I/O

address, while allowing the user to override the default at load time

with something like:

insmod ./short.ko irq=x
 

short_base defaults to 0x378,

so short_irq defaults to 7.

Some devices are more advanced in design and simply

"announce" which interrupt

they're going to use. In this case, the driver

retrieves the interrupt number by reading a status byte from one of

the device's I/O ports or PCI configuration space.

When the target device is one that has the ability to tell the driver

which interrupt it is going to use, autodetecting the IRQ number just

means probing the device, with no additional work required to probe

the interrupt. Most modern hardware works this way, fortunately; for

example, the PCI standard solves the problem by requiring peripheral

devices to declare what interrupt line(s) they are going to use. The

PCI standard is discussed in Chapter 12.

Unfortunately, not every device is programmer friendly, and

autodetection might require some probing. The technique is quite

simple: the driver tells the device to generate interrupts and

watches what happens. If everything goes well, only one interrupt

line is activated.

Although probing is simple in theory, the actual implementation might

be unclear. We look at two ways to perform the task: calling

kernel-defined helper functions and implementing our own version.

[bookmark: linuxdrive3-CHP-10-SECT-2.2.1]
10.2.2.1 Kernel-assisted probing

[bookmark: linuxdrive3-CHP-10-ITERM-6080]
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Linux kernel offers a low-level facility for probing the interrupt

number. It works for only nonshared interrupts, but most hardware

that is capable of working in a shared interrupt mode provides better

ways of finding the configured interrupt number anyway. The facility

consists of two functions, declared in

<linux/interrupt.h> (which also describes

the probing machinery):
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	unsigned long probe_irq_on(void);

	
[bookmark: linuxdrive3-CHP-10-ITERM-6082]
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function returns a bit mask of unassigned interrupts. The driver must

preserve the returned bit mask, and pass it to

probe_irq_off later. After this call, the driver

should arrange for its device to generate at least one interrupt.





	int probe_irq_off(unsigned long);

	
[bookmark: linuxdrive3-CHP-10-ITERM-6084]
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the device has requested an interrupt, the driver calls this

function, passing as its argument the bit mask previously returned by

probe_irq_on. probe_irq_off

returns the number of the interrupt that was issued after

"probe_on." If no interrupts

occurred, 0 is returned (therefore, IRQ

0 can't be probed for, but no

custom device can use it on any of the supported architectures

anyway). If more than one interrupt occurred (ambiguous detection),

probe_irq_off returns a negative value.





The programmer should be careful to enable interrupts on the device

after the call to

probe_irq_on and to disable them

before calling

probe_irq_off. Additionally, you must remember

to service the pending interrupt in your device after

probe_irq_off.

The[bookmark: linuxdrive3-CHP-10-ITERM-6086]
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short module demonstrates how to use such

probing. If you load the module with probe=1, the

following code is executed to detect your interrupt line, provided

pins 9 and 10 of the parallel connector are bound together:

int count = 0;

do {

    unsigned long mask;



    mask = probe_irq_on(  );

    outb_p(0x10,short_base+2); /* enable reporting */

    outb_p(0x00,short_base);   /* clear the bit */

    outb_p(0xFF,short_base);   /* set the bit: interrupt! */

    outb_p(0x00,short_base+2); /* disable reporting */

    udelay(5);  /* give it some time */

    short_irq = probe_irq_off(mask);



    if (short_irq =  = 0) { /* none of them? */

        printk(KERN_INFO "short: no irq reported by probe\n");

        short_irq = -1;

    }

    /*

     * if more than one line has been activated, the result is

     * negative. We should service the interrupt (no need for lpt port)

     * and loop over again. Loop at most five times, then give up

     */

} while (short_irq < 0 && count++ < 5);

if (short_irq < 0)

    printk("short: probe failed %i times, giving up\n", count);
 

Note the use of udelay before calling

probe_irq_off. Depending on the speed of your

processor, you may have to wait for a brief period to give the

interrupt time to actually be delivered.

Probing might be a lengthy task. While this is not true for

short, probing a frame grabber, for example,

requires a delay of at least 20 ms (which is ages for the processor),

and other devices might take even longer. Therefore,

it's best to probe for the interrupt line only once,

at module initialization, independently of whether you install the

handler at device open (as you should) or within the initialization

function (which is not recommended).

It's interesting to note that on some platforms

(PowerPC, M68k, most MIPS implementations, and both SPARC versions)

probing is unnecessary, and, therefore, the previous functions are

just empty placeholders, sometimes called "useless

ISA nonsense." On other platforms, probing is

implemented only for ISA devices. Anyway, most architectures define

the functions (even if they are empty) to ease porting existing

device drivers.

[bookmark: linuxdrive3-CHP-10-SECT-2.2.2]
10.2.2.2 Do-it-yourself probing

[bookmark: linuxdrive3-CHP-10-ITERM-6088]
[bookmark: linuxdrive3-CHP-10-ITERM-6089]Probing

can also be implemented in the driver itself without too much

trouble. It is a rare driver that must implement its own probing, but

seeing how it works gives some insight into the process. To that end,

the short module performs do-it-yourself

detection of the IRQ line if it is loaded with

probe=2.

The mechanism is the same as the one described earlier: enable all

unused interrupts, then wait and see what happens. We can, however,

exploit our knowledge of the device. Often a device can be configured

to use one IRQ number from a set of three or four; probing just those

IRQs enables us to detect the right one, without having to test for

all possible IRQs.

[bookmark: linuxdrive3-CHP-10-ITERM-6090]
[bookmark: linuxdrive3-CHP-10-ITERM-6091]The

short implementation assumes that

3, 5, 7, and

9 are the only possible IRQ values. These numbers

are actually the values that some parallel devices allow you to

select.

The following code probes by testing all

"possible" interrupts and looking

at what happens. The trials array lists the IRQs

to try and has 0 as the end marker; the

tried array is used to keep track of which

handlers have actually been registered by this driver.

int trials[  ] = {3, 5, 7, 9, 0};

int tried[  ]  = {0, 0, 0, 0, 0};

int i, count = 0;



/*

 * install the probing handler for all possible lines. Remember

 * the result (0 for success, or -EBUSY) in order to only free

 * what has been acquired

 */

for (i = 0; trials[i]; i++)

    tried[i] = request_irq(trials[i], short_probing,

            SA_INTERRUPT, "short probe", NULL);



do {

    short_irq = 0; /* none got, yet */

    outb_p(0x10,short_base+2); /* enable */

    outb_p(0x00,short_base);

    outb_p(0xFF,short_base); /* toggle the bit */

    outb_p(0x00,short_base+2); /* disable */

    udelay(5);  /* give it some time */



    /* the value has been set by the handler */

    if (short_irq =  = 0) { /* none of them? */

        printk(KERN_INFO "short: no irq reported by probe\n");

    }

    /*

     * If more than one line has been activated, the result is

     * negative. We should service the interrupt (but the lpt port

     * doesn't need it) and loop over again. Do it at most 5 times

     */

} while (short_irq <=0 && count++ < 5);



/* end of loop, uninstall the handler */

for (i = 0; trials[i]; i++)

    if (tried[i] =  = 0)

        free_irq(trials[i], NULL);



if (short_irq < 0)

    printk("short: probe failed %i times, giving up\n", count);
 

[bookmark: linuxdrive3-CHP-10-ITERM-6092]
[bookmark: linuxdrive3-CHP-10-ITERM-6093][bookmark: linuxdrive3-CHP-10-ITERM-6094]You might not know in advance what

the "possible" IRQ values are. In

that case, you need to probe all the free interrupts, instead of

limiting yourself to a few trials[ ]. To probe for

all interrupts, you have to probe from IRQ 0 to

IRQ NR_IRQS-1, where NR_IRQS is

defined in <asm/irq.h> and is platform

dependent.

Now we are missing only the probing handler itself. The

handler's role is to update

short_irq according to which interrupts are

actually received. A 0 value in

short_irq means "nothing

yet," while a negative value means

"ambiguous." These values were

chosen to be consistent with probe_irq_off and

to allow the same code to call either kind of probing within

short.c.

irqreturn_t short_probing(int irq, void *dev_id, struct pt_regs *regs)

{

    if (short_irq =  = 0) short_irq = irq;    /* found */

    if (short_irq != irq) short_irq = -irq; /* ambiguous */

    return IRQ_HANDLED;

}
 

The arguments to the handler are described later. Knowing that

irq is the interrupt being handled should be

sufficient to understand the function just shown.

[bookmark: linuxdrive3-CHP-10-SECT-2.3]
10.2.3. Fast and Slow Handlers

Older versions of the [bookmark: linuxdrive3-CHP-10-ITERM-6095] [bookmark: linuxdrive3-CHP-10-ITERM-6096]Linux kernel took great pains to

distinguish between "fast" and

"slow" interrupts. Fast interrupts

were those that could be handled very quickly, whereas handling slow

interrupts took significantly longer. Slow interrupts could be

sufficiently demanding of the processor, and it was worthwhile to

reenable interrupts while they were being handled. Otherwise, tasks

requiring quick attention could be delayed for too long.

In modern kernels, most of the differences between fast and slow

interrupts have disappeared. There remains only one: fast interrupts

(those that were requested with the SA_INTERRUPT

flag) are executed with all other interrupts disabled on the current

processor. Note that other processors can still handle interrupts,

although you will never see two processors handling the same IRQ at

the same time.

So, which type of interrupt should your driver use? On modern

systems, SA_INTERRUPT is intended only for use in

a few, specific situations such as timer interrupts. Unless you have

a strong reason to run your interrupt handler with other interrupts

disabled, you should not use SA_INTERRUPT.

This description should satisfy most readers, although someone with a

taste for hardware and some experience with her computer might be

interested in going deeper. If you don't care about

the internal details, you can skip to the next section.

[bookmark: linuxdrive3-CHP-10-SECT-2.3.1]
10.2.3.1 The internals of interrupt handling on the x86

[bookmark: linuxdrive3-CHP-10-ITERM-6097][bookmark: linuxdrive3-CHP-10-ITERM-6098]This description has been extrapolated from

arch/i386/kernel/irq.c,

arch/i386/kernel/apic.c,

arch/i386/kernel/entry.S,

arch/i386/kernel/i8259.c, and

include/asm-i386/hw_irq.h as they appear in the

2.6 kernels; although the general concepts remain the same, the

hardware details differ on other platforms.

[bookmark: linuxdrive3-CHP-10-ITERM-6099]
[bookmark: linuxdrive3-CHP-10-ITERM-6100]The

lowest level of interrupt handling can be found in

entry.S, an assembly-language file that handles

much of the machine-level work. By way of a bit of assembler trickery

and some macros, a bit of code is assigned to every possible

interrupt. In each case, the code pushes the interrupt number on the

stack and jumps to a common segment, which calls

do_IRQ, defined in irq.c.

The first thing do_IRQ does is to acknowledge

the interrupt so that the interrupt controller can go on to other

things. It then obtains a spinlock for the given IRQ number, thus

preventing any other CPU from handling this IRQ. It clears a couple

of status bits (including one called IRQ_WAITING

that we'll look at shortly) and then looks up the

handler(s) for this particular IRQ. If there is no handler,

there's nothing to do; the spinlock is released, any

pending software interrupts are handled, and

do_IRQ returns.

[bookmark: linuxdrive3-CHP-10-ITERM-6101]
[bookmark: linuxdrive3-CHP-10-ITERM-6102]Usually,

however, if a device is interrupting, there is at least one handler

registered for its IRQ as well. The function

handle_IRQ_event is called to actually invoke

the handlers. If the handler is of the slow variety

(SA_INTERRUPT is not set), interrupts are

reenabled in the hardware, and the handler is invoked. Then

it's just a matter of cleaning up, running software

interrupts, and getting back to regular work. The

"regular work" may well have

changed as a result of an interrupt (the handler could

wake_up a process, for example), so the last

thing that happens on return from an interrupt is a possible

rescheduling of the processor.

Probing for IRQs is done by setting the

IRQ_WAITING status bit for each IRQ that currently

lacks a handler. When the interrupt happens,

do_IRQ clears that bit and then returns, because

no handler is registered. probe_irq_off, when

called by a driver, needs to search for only the IRQ that [bookmark: linuxdrive3-CHP-10-ITERM-6103] [bookmark: linuxdrive3-CHP-10-ITERM-6104] [bookmark: linuxdrive3-CHP-10-ITERM-6105] [bookmark: linuxdrive3-CHP-10-ITERM-6106]no longer has

IRQ_WAITING set.







[bookmark: linuxdrive3-CHP-10-SECT-3]
10.3. Implementing a Handler

So far, we've learned to register [bookmark: linuxdrive3-CHP-10-ITERM-6107] [bookmark: linuxdrive3-CHP-10-ITERM-6108] [bookmark: linuxdrive3-CHP-10-ITERM-6109]an interrupt handler but not to write

one. Actually, there's nothing unusual about a

handler�it's ordinary C code.

The only peculiarity is that a handler runs at interrupt time and,

therefore, suffers some restrictions on what it can do. These

restrictions are the same as those we saw with kernel timers. A

handler can't transfer data to or from user space,

because it doesn't execute in the context of a

process. Handlers also cannot do anything that would sleep, such as

calling wait_event, allocating memory with

anything other than GFP_ATOMIC, or locking a

semaphore. Finally, handlers cannot call

schedule.

[bookmark: linuxdrive3-CHP-10-ITERM-6110][bookmark: linuxdrive3-CHP-10-ITERM-6111]The

role of an interrupt handler is to give feedback to its device about

interrupt reception and to read or write data according to the

meaning of the interrupt being serviced. The first step usually

consists of clearing a bit on the interface board; most hardware

devices won't generate other interrupts until their

"interrupt-pending" bit has been

cleared. Depending on how your hardware works, this step may need to

be performed last instead of first; there is no catch-all rule here.

Some devices don't require this step, because they

don't have an

"interrupt-pending" bit; such

devices are a minority, although the parallel port is one of them.

For that reason, short does not have to clear

such a bit.

A typical task for an interrupt handler is awakening processes

sleeping on the device if the interrupt signals the event

they're waiting for, such as the arrival of new

data.

To stick with the frame grabber example, a process could acquire a

sequence of images by continuously reading the device; the

read call blocks before reading each frame,

while the interrupt handler awakens the process as soon as each new

frame arrives. This assumes that the grabber interrupts the processor

to signal successful arrival of each new frame.

The programmer should be careful to write a routine that executes in

a minimum amount of time, independent of its being a fast or slow

handler. If a long computation needs to be performed, the best

approach is to use a tasklet or workqueue to schedule computation at

a safer time (we'll look at how work can be deferred

in this manner in Section 10.4.)

[bookmark: linuxdrive3-CHP-10-ITERM-6112]
[bookmark: linuxdrive3-CHP-10-ITERM-6113][bookmark: linuxdrive3-CHP-10-ITERM-6114]Our sample code in

short responds to the interrupt by calling

do_gettimeofday and printing the current time

into a page-sized circular buffer. It then awakens any reading

process, because there is now data available to be read.

irqreturn_t short_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

    struct timeval tv;

    int written;



    do_gettimeofday(&tv);



        /* Write a 16 byte record. Assume PAGE_SIZE is a multiple of 16 */

    written = sprintf((char *)short_head,"%08u.%06u\n",

            (int)(tv.tv_sec % 100000000), (int)(tv.tv_usec));

    BUG_ON(written != 16);

    short_incr_bp(&short_head, written);

    wake_up_interruptible(&short_queue); /* awake any reading process */

    return IRQ_HANDLED;

}
 

This code, though simple, represents the typical job of an interrupt

handler. It, in turn, calls short_incr_bp, which

is defined as follows:

static inline void short_incr_bp(volatile unsigned long *index, int delta)

{

    unsigned long new = *index + delta;

    barrier(  );  /* Don't optimize these two together */

    *index = (new >= (short_buffer + PAGE_SIZE)) ? short_buffer : new;

}
 

This function has been carefully written to wrap a pointer into the

circular buffer without ever exposing an incorrect value. The

barrier call is there to block compiler

optimizations across the other two lines of the function. Without the

barrier, the compiler might decide to optimize out the

new variable and assign directly to

*index. That optimization could expose an

incorrect value of the index for a brief period in the case where it

wraps. By taking care to prevent in inconsistent value from ever

being visible to other threads, we can manipulate the circular buffer

pointers safely without locks.

The device file used to read the buffer being filled at interrupt

time is /dev/shortint. This device special file,

together with /dev/shortprint,

wasn't introduced in Chapter 9, because its use is

specific to interrupt handling. The internals of

/dev/shortint are specifically tailored for

interrupt generation and reporting. Writing to the device generates

one interrupt every other byte; reading the device gives the time

when each interrupt was reported.

[bookmark: linuxdrive3-CHP-10-ITERM-6115]If you connect together pins 9

and 10 of the parallel connector, you can generate interrupts by

raising the high bit of the parallel data byte. This can be

accomplished by writing binary data to

/dev/short0 or by writing anything to

/dev/shortint.[2]
[bookmark: linuxdrive3-CHP-10-FNOTE-2][2] The

shortint device accomplishes its task by

alternately writing 0x00 and 0xff to the parallel port.


The following code implements read and

write for /dev/shortint:

ssize_t short_i_read (struct file *filp, char _ _user *buf, size_t count, 

     loff_t *f_pos)

{

    int count0;

    DEFINE_WAIT(wait);



    while (short_head =  = short_tail) {

        prepare_to_wait(&short_queue, &wait, TASK_INTERRUPTIBLE);

        if (short_head =  = short_tail)

            schedule(  );

        finish_wait(&short_queue, &wait);

        if (signal_pending (current))  /* a signal arrived */

            return -ERESTARTSYS; /* tell the fs layer to handle it */

    } 

    /* count0 is the number of readable data bytes */

    count0 = short_head - short_tail;

    if (count0 < 0) /* wrapped */

        count0 = short_buffer + PAGE_SIZE - short_tail;

    if (count0 < count) count = count0;



    if (copy_to_user(buf, (char *)short_tail, count))

        return -EFAULT;

    short_incr_bp (&short_tail, count);

    return count;

}



ssize_t short_i_write (struct file *filp, const char _ _user *buf, size_t count,

        loff_t *f_pos)

{

    int written = 0, odd = *f_pos & 1;

    unsigned long port = short_base; /* output to the parallel data latch */

    void *address = (void *) short_base;



    if (use_mem) {

        while (written < count)

            iowrite8(0xff * ((++written + odd) & 1), address);

    } else {

        while (written < count)

            outb(0xff * ((++written + odd) & 1), port);

    }



    *f_pos += count;

    return written;

}
 

The other device special file, /dev/shortprint,

uses the parallel port to drive a printer; you can use it if you want

to avoid connecting pins 9 and 10 of a D-25 connector. The

write implementation of

shortprint uses a circular buffer to store data

to be printed, while the read implementation is

the one just shown (so you can read the time your printer takes to

eat each character).

In order to support printer operation, the interrupt handler has been

slightly modified from the one just shown, adding the ability to send

the next data byte to the printer if there is more data to transfer.

[bookmark: linuxdrive3-CHP-10-SECT-3.1]
10.3.1. Handler Arguments and Return Value

Though short ignores them,

[bookmark: linuxdrive3-CHP-10-ITERM-6116] [bookmark: linuxdrive3-CHP-10-ITERM-6117]
[bookmark: linuxdrive3-CHP-10-ITERM-6118]three arguments are passed to an

interrupt handler: irq, dev_id,

and regs. Let's look at the role

of each.

The interrupt number (int irq) is useful as

information you may print in your log messages, if any. The second

argument, void *dev_id, is a sort of client data;

a void * argument is passed to

request_irq, and this same pointer is then

passed back as an argument to the handler when the interrupt happens.

You usually pass a pointer to your device data structure in

dev_id, so a driver that manages several instances

of the same device doesn't need any extra code in

the interrupt handler to find out which device is in charge of the

current interrupt event.

Typical use of the argument in an interrupt handler is as follows:

static irqreturn_t sample_interrupt(int irq, void *dev_id, struct pt_regs 

                             *regs)

{

    struct sample_dev *dev = dev_id;



    /* now `dev' points to the right hardware item */

    /* .... */

}
 

The typical open code associated with this

handler looks like this:

static void sample_open(struct inode *inode, struct file *filp)

{

    struct sample_dev *dev = hwinfo + MINOR(inode->i_rdev);

    request_irq(dev->irq, sample_interrupt,

                0 /* flags */, "sample", dev /* dev_id */);

    /*....*/

    return 0;

}
 

[bookmark: linuxdrive3-CHP-10-ITERM-6119]The last argument, struct

pt_regs *regs, is rarely used. It holds a snapshot of the

processor's context before the processor entered

interrupt code. The registers can be used for monitoring and

debugging; they are not normally needed for regular device driver

tasks.

Interrupt handlers should return a value indicating whether there was

actually an interrupt to handle. If the handler found that its device

did, indeed, need attention, it should return

IRQ_HANDLED; otherwise the return value should be

IRQ_NONE. You can also generate the return value

with this macro:

IRQ_RETVAL(handled)
 

where handled is nonzero if you were able to

handle the interrupt. The return value is used by the kernel to

detect and suppress spurious interrupts. If your device gives you no

way to tell whether it really interrupted, you should return

IRQ_HANDLED.

[bookmark: linuxdrive3-CHP-10-SECT-3.2]
10.3.2. Enabling and Disabling Interrupts

There are times when a

[bookmark: linuxdrive3-CHP-10-ITERM-6120]
[bookmark: linuxdrive3-CHP-10-ITERM-6121]device driver must block the delivery

of interrupts for a (hopefully short) period of time.

Often,

interrupts must be blocked while holding a spinlock to avoid

deadlocking the system. There are ways of disabling interrupts that

do not involve spinlocks. But before we discuss them, note that

disabling interrupts should be a relatively rare activity, even in

device drivers, and this technique should never be used as a mutual

exclusion mechanism within a driver.

[bookmark: linuxdrive3-CHP-10-SECT-3.2.1]
10.3.2.1 Disabling a single interrupt

Sometimes (but rarely!) a driver needs to disable interrupt delivery

for a specific interrupt line. The kernel offers three functions for

this purpose, all declared in <asm/irq.h>.

These functions are part of the kernel API, so we describe them, but

their use is discouraged in most drivers. Among other things, you

cannot disable shared interrupt lines, and, on modern systems, shared

interrupts are the norm. That said, here they are:

void disable_irq(int irq);

void disable_irq_nosync(int irq);

void enable_irq(int irq);
 

Calling any of these functions may update the mask for the specified

irq in the programmable interrupt controller

(PIC), thus disabling or enabling the specified IRQ across all

processors. Calls to these functions can be nested�if

disable_irq is called twice in succession, two

enable_irq calls are required before the IRQ is

truly reenabled. It is possible to call these functions from an

interrupt handler, but enabling your own IRQ while handling it is not

usually good practice.

disable_irq not only disables the given

interrupt but also waits for a currently executing interrupt handler,

if any, to complete. Be aware that if the thread calling

disable_irq holds any resources (such as

spinlocks) that the interrupt handler needs, the system can deadlock.

disable_irq_nosync differs from

disable_irq in that it returns immediately.

Thus, using disable_irq_nosync is a little

faster but may leave your driver open to race conditions.

[bookmark: linuxdrive3-CHP-10-ITERM-6122]
[bookmark: linuxdrive3-CHP-10-ITERM-6123]But why disable an

interrupt? Sticking to the parallel port, let's look

at the plip network interface. A

plip device uses the bare-bones parallel port to

transfer data. Since only five bits can be read from the parallel

connector, they are interpreted as four data bits and a

clock/handshake signal. When the first four bits of a packet are

transmitted by the initiator (the interface sending the packet), the

clock line is raised, causing the receiving interface to interrupt

the processor. The plip handler is then invoked

to deal with newly arrived data.

After the device has been alerted, the data transfer proceeds, using

the handshake line to clock new data to the receiving interface (this

might not be the best implementation, but it is necessary for

compatibility with other packet drivers using the parallel port).

Performance would be unbearable if the receiving interface had to

handle two interrupts for every byte received. Therefore, the driver

disables the interrupt during the reception of the packet; instead, a

poll-and-delay loop is used to bring in the data.

Similarly, because the handshake line from the receiver to the

transmitter is used to acknowledge data reception, the transmitting

interface disables its IRQ line during packet transmission.

[bookmark: linuxdrive3-CHP-10-SECT-3.2.2]
10.3.2.2 Disabling all interrupts

What if you need to disable all interrupts? In

the 2.6 kernel, it is possible to turn off all interrupt handling on

the current processor with either of the following two functions

(which are defined in <asm/system.h>):

void local_irq_save(unsigned long flags);

void local_irq_disable(void);
 

A call to local_irq_save disables interrupt

delivery on the current processor after saving the current interrupt

state into flags. Note that

flags is passed directly, not by pointer.

local_irq_disable shuts off local interrupt

delivery without saving the state; you should use this version only

if you know that interrupts have not already been disabled elsewhere.

Turning interrupts back on is accomplished with:

void local_irq_restore(unsigned long flags);

void local_irq_enable(void);
 

The first version restores that state which was stored into

flags by local_irq_save,

while local_irq_enable enables interrupts

unconditionally. Unlike disable_irq,

local_irq_disable does not keep track of

multiple calls. If more than one function in the call chain might

need to disable interrupts, local_irq_save

should be used.

In the 2.6 kernel, there is no way to disable all interrupts globally

across the entire system. The kernel developers have decided that the

cost of shutting off all interrupts is too high and that there is no

need for that capability in any case. If you are working with an

older driver that makes calls to functions such as

cli and sti, you need to

update it to use proper locking before it will [bookmark: linuxdrive3-CHP-10-ITERM-6124] [bookmark: linuxdrive3-CHP-10-ITERM-6125] [bookmark: linuxdrive3-CHP-10-ITERM-6126]work under 2.6.







[bookmark: linuxdrive3-CHP-10-SECT-4]
10.4. Top and Bottom Halves

One of the main problems with interrupt[bookmark: linuxdrive3-CHP-10-ITERM-6127] [bookmark: linuxdrive3-CHP-10-ITERM-6128] [bookmark: linuxdrive3-CHP-10-ITERM-6129]

handling is how to perform lengthy tasks within a handler. Often a

substantial amount of work must be done in response to a device

interrupt, but interrupt handlers need to finish up quickly and not

keep interrupts blocked for long. These two needs (work and speed)

conflict with each other, leaving the driver writer in a bit of a

bind.

Linux (along with many other systems) resolves this problem by

splitting the interrupt handler into two halves. The so-called

top half is the routine that actually responds

to the interrupt�the one you register with

request_irq. The bottom

half is a routine that is scheduled by the top half to be

executed later, at a safer time. The big difference between the

top-half handler and the bottom half is that all interrupts are

enabled during execution of the bottom

half�that's why it runs at a safer time. In

the typical scenario, the top half saves device data to a

device-specific buffer, schedules its bottom half, and exits: this

operation is very fast. The bottom half then performs whatever other

work is required, such as awakening processes, starting up another

I/O operation, and so on. This setup permits the top half to service

a new interrupt while the bottom half is still working.

Almost every serious interrupt handler is split this way. For

instance, when a network interface reports the arrival of a new

packet, the handler just retrieves the data and pushes it up to the

protocol layer; actual processing of the packet is performed in a

bottom half.

The Linux kernel has two different mechanisms that may be used to

implement bottom-half processing, both of which were introduced in

Chapter 7. Tasklets are often

the preferred mechanism for bottom-half processing; they are very

fast, but all tasklet code must be atomic. The alternative to

tasklets is workqueues, which may have a higher latency but that are

allowed to sleep.

The following discussion works, once again, with the

short driver. When loaded with a module option,

short can be told to do interrupt processing in

a top/bottom-half mode with either a tasklet or workqueue handler. In

this case, the top half executes quickly; it simply remembers the

current time and schedules the bottom half processing. The bottom

half is then charged with encoding this time and awakening any user

processes that may be waiting for data.

[bookmark: linuxdrive3-CHP-10-SECT-4.1]
10.4.1. Tasklets

[bookmark: linuxdrive3-CHP-10-ITERM-6130][bookmark: linuxdrive3-CHP-10-ITERM-6131][bookmark: linuxdrive3-CHP-10-ITERM-6132]Remember that tasklets are a special

function that may be scheduled to run, in software interrupt context,

at a system-determined safe time. They may be scheduled to run

multiple times, but tasklet scheduling is not cumulative; the tasklet

runs only once, even if it is requested repeatedly before it is

launched. No tasklet ever runs in parallel with itself, since they

run only once, but tasklets can run in parallel with other tasklets

on SMP systems. Thus, if your driver has multiple tasklets, they must

employ some sort of locking to avoid conflicting with each other.

Tasklets are also guaranteed to run on the same CPU as the function

that first schedules them. Therefore, an interrupt handler can be

secure that a tasklet does not begin executing before the handler has

completed. However, another interrupt can certainly be delivered

while the tasklet is running, so locking between the tasklet and the

interrupt handler may still be required.

[bookmark: linuxdrive3-CHP-10-ITERM-6133]
[bookmark: linuxdrive3-CHP-10-ITERM-6134]Tasklets

must be declared with the DECLARE_TASKLET macro:

DECLARE_TASKLET(name, function, data);
 

name is the name to be given to the tasklet,

function is the function that is called to

execute the tasklet (it takes one unsigned long

argument and returns void), and

data is an unsigned long value to be passed to the

tasklet function.

The short driver declares its tasklet as follows:

void short_do_tasklet(unsigned long);

DECLARE_TASKLET(short_tasklet, short_do_tasklet, 0);
 

[bookmark: linuxdrive3-CHP-10-ITERM-6135]
[bookmark: linuxdrive3-CHP-10-ITERM-6136]The

function tasklet_schedule is used to schedule a

tasklet for running. If short is loaded with

tasklet=1, it installs a different interrupt

handler that saves data and schedules the tasklet as follows:

irqreturn_t short_tl_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

    do_gettimeofday((struct timeval *) tv_head); /* cast to stop 'volatile' warning */

    short_incr_tv(&tv_head);

    tasklet_schedule(&short_tasklet);

    short_wq_count++; /* record that an interrupt arrived */

    return IRQ_HANDLED;

}
 

The actual tasklet routine, short_do_tasklet,

will be executed shortly (so to speak) at the

system's convenience. As mentioned earlier, this

routine performs the bulk of the work of handling the interrupt; it

looks like this:

void short_do_tasklet (unsigned long unused)

{

    int savecount = short_wq_count, written;

    short_wq_count = 0; /* we have already been removed from the queue */

    /*

     * The bottom half reads the tv array, filled by the top half,

     * and prints it to the circular text buffer, which is then consumed

     * by reading processes

     */



    /* First write the number of interrupts that occurred before this bh */

    written = sprintf((char *)short_head,"bh after %6i\n",savecount);

    short_incr_bp(&short_head, written);



    /*

     * Then, write the time values. Write exactly 16 bytes at a time,

     * so it aligns with PAGE_SIZE

     */



    do {

        written = sprintf((char *)short_head,"%08u.%06u\n",

                (int)(tv_tail->tv_sec % 100000000),

                (int)(tv_tail->tv_usec));

        short_incr_bp(&short_head, written);

        short_incr_tv(&tv_tail);

    } while (tv_tail != tv_head);



    wake_up_interruptible(&short_queue); /* awake any reading process */

}
 

Among other things, this tasklet makes a note of how many interrupts

have arrived since it was last called. A device such as

short can generate a great many interrupts in a

brief period, so it is not uncommon for several to arrive before the

bottom half is executed. Drivers must always be prepared for this

possibility and must be able to determine how much work there is to

perform from the information left by the top half.

[bookmark: linuxdrive3-CHP-10-SECT-4.2]
10.4.2. Workqueues

Recall that

[bookmark: linuxdrive3-CHP-10-ITERM-6137]
[bookmark: linuxdrive3-CHP-10-ITERM-6138]workqueues

invoke a function at some future time in the context of a special

worker process. Since the workqueue function

runs in process context, it can sleep if need be. You cannot,

however, copy data into user space from a workqueue, unless you use

the advanced techniques we demonstrate in Chapter 15; the worker process does

not have access to any other process's address

space.

The short driver, if loaded with the

wq option set to a nonzero value, uses a workqueue

for its bottom-half processing. It uses the system default workqueue,

so there is no special setup code required; if your driver has

special latency requirements (or might sleep for a long time in the

workqueue function), you may want to create your

own, dedicated workqueue. We do need a work_struct

structure, which is declared and initialized with the following:

static struct work_struct short_wq;



    /* this line is in short_init(  ) */

    INIT_WORK(&short_wq, (void (*)(void *)) short_do_tasklet, NULL);
 

Our worker function is short_do_tasklet, which

we have already seen in the previous section.

When working with a workqueue, short establishes

yet another interrupt handler that looks like this:

irqreturn_t short_wq_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

    /* Grab the current time information. */

    do_gettimeofday((struct timeval *) tv_head);

    short_incr_tv(&tv_head);



    /* Queue the bh. Don't worry about multiple enqueueing */

    schedule_work(&short_wq);



    short_wq_count++; /* record that an interrupt arrived */

    return IRQ_HANDLED;

}
 

As you can see, the interrupt handler [bookmark: linuxdrive3-CHP-10-ITERM-6139] [bookmark: linuxdrive3-CHP-10-ITERM-6140] [bookmark: linuxdrive3-CHP-10-ITERM-6141]looks very much like the tasklet

version, with the exception that it calls

schedule_work to arrange the bottom-half

processing.







[bookmark: linuxdrive3-CHP-10-SECT-5]
10.5. Interrupt Sharing

The notion of an IRQ conflict is [bookmark: linuxdrive3-CHP-10-ITERM-6142]
[bookmark: linuxdrive3-CHP-10-ITERM-6143]almost synonymous with the PC

architecture. In the past, IRQ lines on the PC have not been able to

serve more than one device, and there have never been enough of them.

As a result, frustrated users have often spent much time with their

computer case open, trying to find a way to make all of their

peripherals play well together.

Modern hardware, of course, has been designed to allow the sharing of

interrupts; the PCI bus requires it. Therefore, the Linux kernel

supports interrupt sharing on all buses, even those (such as the ISA

bus) where sharing has traditionally not been supported. Device

drivers for the 2.6 kernel should be written to work with shared

interrupts if the target hardware can support that mode of operation.

Fortunately, working with shared interrupts is easy, most of the

time.

[bookmark: linuxdrive3-CHP-10-SECT-5.1]
10.5.1. Installing a Shared Handler

Shared interrupts are installed through

[bookmark: linuxdrive3-CHP-10-ITERM-6144]request_irq just

like nonshared ones, but there are two differences:

	[bookmark: linuxdrive3-CHP-10-ITERM-6145]
[bookmark: linuxdrive3-CHP-10-ITERM-6146]The

SA_SHIRQ bit must be specified in the

flags argument when requesting the interrupt.

	[bookmark: linuxdrive3-CHP-10-ITERM-6147]The dev_id argument

must be unique. Any pointer into the

module's address space will do, but

dev_id definitely cannot be set to

NULL.



The kernel keeps a list of shared handlers associated with the

interrupt, and dev_id can be thought of as the

signature that differentiates between them. If two drivers were to

register NULL as their signature on the same

interrupt, things might get mixed up at unload time, causing the

kernel to oops when an interrupt arrived. For this reason, modern

kernels complain loudly if passed a NULL
dev_id when registering shared interrupts. When a

shared interrupt is requested, request_irq

succeeds if one of the following is true:

	The interrupt line is free.

	All handlers already registered for that line have also specified

that the IRQ is to be shared.



Whenever two or more drivers are sharing an interrupt line and the

hardware interrupts the processor on that line, the kernel invokes

every handler registered for that interrupt, passing each its own

dev_id. Therefore, a shared handler must be able

to recognize its own interrupts and should quickly exit when its own

device has not interrupted. Be sure to return

IRQ_NONE whenever your handler is called and finds

that the device is not interrupting.

If you need to probe for your device before requesting the IRQ line,

the kernel can't help you. No probing function is

available for shared handlers. The standard probing mechanism works

if the line being used is free, but if the line is already held by

another driver with sharing capabilities, the probe fails, even if

your driver would have worked perfectly. Fortunately, most hardware

designed for interrupt sharing is also able to tell the processor

which interrupt it is using, thus eliminating the need for explicit

probing.

[bookmark: linuxdrive3-CHP-10-ITERM-6148]
[bookmark: linuxdrive3-CHP-10-ITERM-6149]Releasing

the handler is performed in the

normal[bookmark: linuxdrive3-CHP-10-ITERM-6150]

way, using free_irq. Here the

dev_id argument is used to select the correct

handler to release from the list of shared handlers for the

interrupt. That's why the dev_id

pointer must be unique.

[bookmark: linuxdrive3-CHP-10-ITERM-6151]
[bookmark: linuxdrive3-CHP-10-ITERM-6152][bookmark: linuxdrive3-CHP-10-ITERM-6153]
[bookmark: linuxdrive3-CHP-10-ITERM-6154]A

driver using a shared handler needs to be careful about one more

thing: it can't play with

enable_irq or disable_irq.

If it does, things might go haywire for other devices sharing the

line; disabling another device's interrupts for even

a short time may create latencies that are problematic for that

device and it's user. Generally, the programmer must

remember that his driver doesn't own the IRQ, and

its behavior should be more

"social" than is necessary if one

owns the interrupt line.

[bookmark: linuxdrive3-CHP-10-SECT-5.2]
10.5.2. Running the Handler

As suggested earlier, when

the[bookmark: linuxdrive3-CHP-10-ITERM-6155] kernel receives an interrupt, all

the registered handlers are invoked. A shared handler must be able to

distinguish between interrupts that it needs to handle and interrupts

generated by other devices.

Loading short with the option

shared=1 installs the following handler instead

of the default:

irqreturn_t short_sh_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

    int value, written;

    struct timeval tv;



    /* If it wasn't short, return immediately */

    value = inb(short_base);

    if (!(value & 0x80))

        return IRQ_NONE;

    

    /* clear the interrupting bit */

    outb(value & 0x7F, short_base);



    /* the rest is unchanged */



    do_gettimeofday(&tv);

    written = sprintf((char *)short_head,"%08u.%06u\n",

            (int)(tv.tv_sec % 100000000), (int)(tv.tv_usec));

    short_incr_bp(&short_head, written);

    wake_up_interruptible(&short_queue); /* awake any reading process */

    return IRQ_HANDLED;

}
 

An explanation is due here. Since the parallel port has no

"interrupt-pending" bit to check,

the handler uses the ACK bit for this purpose. If the bit is high,

the interrupt being reported is for short, and

the handler clears the bit.

The handler resets the bit by zeroing the high bit of the parallel

interface's data

port�short assumes that pins 9 and 10 are

connected together. If one of the other devices sharing the IRQ with

short generates an interrupt,

short sees that its own line is still inactive

and does nothing.

A full-featured driver probably splits the work into top and bottom

halves, of course, but that's easy to add and does

not have any impact on the code that implements sharing. A real

driver would also likely use the dev_id argument

to determine which, of possibly many, devices might be interrupting.

Note that if you are using a printer (instead of the jumper wire) to

test interrupt management with short, this

shared handler won't work as advertised, because the

printer protocol doesn't allow for sharing, and the

driver can't know whether the interrupt was from the

printer.

[bookmark: linuxdrive3-CHP-10-SECT-5.3]
10.5.3. The /proc Interface and Shared Interrupts

[bookmark: linuxdrive3-CHP-10-ITERM-6156]
[bookmark: linuxdrive3-CHP-10-ITERM-6157][bookmark: linuxdrive3-CHP-10-ITERM-6158][bookmark: linuxdrive3-CHP-10-ITERM-6159]Installing shared handlers in

the system doesn't affect

/proc/stat, which doesn't even

know about handlers. However, /proc/interrupts

changes slightly.

All the handlers installed for the same interrupt number appear on

the same line of /proc/interrupts. The following

output (from an x86_64 system) shows how shared interrupt handlers

are displayed:

           CPU0       

  0:  892335412         XT-PIC  timer

  1:     453971         XT-PIC  i8042

  2:          0         XT-PIC  cascade

  5:          0         XT-PIC  libata, ehci_hcd

  8:          0         XT-PIC  rtc

  9:          0         XT-PIC  acpi

 10:   11365067         XT-PIC  ide2, uhci_hcd, uhci_hcd, SysKonnect SK-98xx, EMU10K1

 11:    4391962         XT-PIC  uhci_hcd, uhci_hcd

 12:        224         XT-PIC  i8042

 14:    2787721         XT-PIC  ide0

 15:     203048         XT-PIC  ide1

NMI:      41234 

LOC:  892193503 

ERR:        102

MIS:          0
 

[bookmark: linuxdrive3-CHP-10-ITERM-6160]This system has several shared

interrupt lines. IRQ 5 is used for the serial ATA and IEEE 1394

controllers; IRQ 10 has several devices, including an IDE controller,

two USB controllers, an Ethernet[bookmark: linuxdrive3-CHP-10-ITERM-6161] [bookmark: linuxdrive3-CHP-10-ITERM-6162] interface, and a sound card; and IRQ

11 also is used by two USB controllers.







[bookmark: linuxdrive3-CHP-10-SECT-6]
10.6. Interrupt-Driven I/O

Whenever a data [bookmark: linuxdrive3-CHP-10-ITERM-6163]
[bookmark: linuxdrive3-CHP-10-ITERM-6164]transfer to or from the managed

hardware might be delayed for any reason, the driver writer should

implement buffering. Data buffers help to detach data transmission

and reception from the write and

read system calls, and overall system

performance benefits.

A good buffering mechanism leads to interrupt-driven

I/O, in which an input buffer is filled at interrupt time

and is emptied by processes that read the device; an output buffer is

filled by processes that write to the device and is emptied at

interrupt time. An example of interrupt-driven output is the

implementation of /dev/shortprint.

For interrupt-driven data transfer to happen successfully, the

hardware should be able to generate interrupts with the following

semantics:

	For input, the device interrupts the processor when new data has

arrived and is ready to be retrieved by the system processor. The

actual actions to perform depend on whether the device uses I/O

ports, memory mapping, or DMA.

	For output, the device delivers an interrupt either when it is ready

to accept new data or to acknowledge a successful data transfer.

Memory-mapped and DMA-capable devices usually generate interrupts to

tell the system they are done with the buffer.



The timing relationships between a read or

write and the actual arrival of data were

introduced in Section 6.2.3 in Chapter 6.

[bookmark: linuxdrive3-CHP-10-SECT-6.1]
10.6.1. A Write-Buffering Example

We have mentioned the shortprint[bookmark: linuxdrive3-CHP-10-ITERM-6165] [bookmark: linuxdrive3-CHP-10-ITERM-6166]

driver a couple of times; now it is time to actually take a look.

This module

[bookmark: linuxdrive3-CHP-10-ITERM-6167] [bookmark: linuxdrive3-CHP-10-ITERM-6168]implements a very simple,

output-oriented driver for the parallel port; it is sufficient,

however, to enable the printing of files. If you chose to test this

driver out, however, remember that you must pass the printer a file

in a format it understands; not all printers respond well when given

a stream of arbitrary data.

The shortprint driver maintains a one-page

circular output buffer. When a user-space process writes data to the

device, that data is fed into the buffer, but the

write method does not actually perform any I/O.

Instead, the core of shortp_write looks like

this:

    while (written < count) {

        /* Hang out until some buffer space is available. */

        space = shortp_out_space(  );

        if (space <= 0) {

            if (wait_event_interruptible(shortp_out_queue,

                        (space = shortp_out_space(  )) > 0))

                goto out;

        }



        /* Move data into the buffer. */

        if ((space + written) > count)

            space = count - written;

        if (copy_from_user((char *) shortp_out_head, buf, space)) {

            up(&shortp_out_sem);

            return -EFAULT;

        }

        shortp_incr_out_bp(&shortp_out_head, space);

        buf += space;

        written += space;



        /* If no output is active, make it active. */

        spin_lock_irqsave(&shortp_out_lock, flags);

        if (! shortp_output_active)

            shortp_start_output(  );

        spin_unlock_irqrestore(&shortp_out_lock, flags);

    }



out:

    *f_pos += written;
 

A semaphore (shortp_out_sem) controls access to

the circular buffer; shortp_write obtains that

semaphore just prior to the code fragment above. While holding the

semaphore, it attempts to feed data into the circular buffer. The

function shortp_out_space returns the amount of

contiguous space available (so there is no need to worry about buffer

wraps); if that amount is 0, the driver waits

until some space is freed. It then copies as much data as it can into

the buffer.

Once there is data to output, shortp_write must

ensure that the data is written to the device. The actual writing is

done by way of a workqueue function;

shortp_write must kick that function off if it

is not already running. After obtaining a separate spinlock that

controls access to variables used on the consumer side of the output

buffer (including shortp_output_active), it calls

shortp_start_output if need be. Then

it's just a matter of noting how much data was

"written" to the buffer and

returning.

The function that starts the output process looks like the following:

static void shortp_start_output(void)

{

    if (shortp_output_active) /* Should never happen */

        return;



    /* Set up our 'missed interrupt' timer */

    shortp_output_active = 1;

    shortp_timer.expires = jiffies + TIMEOUT;

    add_timer(&shortp_timer);



    /*  And get the process going. */

    queue_work(shortp_workqueue, &shortp_work);

}
 

The reality of dealing with hardware is that you can, occasiona





[bookmark: linuxdrive3-CHP-10-SECT-7]
10.7. Quick Reference

These symbols related to interrupt management were introduced in this

chapter:

[bookmark: linuxdrive3-CHP-10-ITERM-6173][bookmark: linuxdrive3-CHP-10-ITERM-6174][bookmark: linuxdrive3-CHP-10-ITERM-6175][bookmark: linuxdrive3-CHP-10-ITERM-6176][bookmark: linuxdrive3-CHP-10-ITERM-6177][bookmark: linuxdrive3-CHP-10-ITERM-6178][bookmark: linuxdrive3-CHP-10-ITERM-6179][bookmark: linuxdrive3-CHP-10-ITERM-6180]

	#include <linux/interrupt.h> 



	int request_irq(unsigned int irq, irqreturn_t (*handler)(  ), unsigned long 



	 flags, const char *dev_name, void *dev_id);



	void free_irq(unsigned int irq, void *dev_id);

	
Calls that register

and[bookmark: linuxdrive3-CHP-10-ITERM-6173]
[bookmark: linuxdrive3-CHP-10-ITERM-6174]
[bookmark: linuxdrive3-CHP-10-ITERM-6175]
[bookmark: linuxdrive3-CHP-10-ITERM-6176]

unregister an interrupt handler.





	#include <linux/irq.h.h>



	int can_request_irq(unsigned int irq, unsigned long flags);

	
This function, available on the i386 and x86_64 architectures,

returns a nonzero value if an attempt to allocate the given interrupt

line succeeds.





	#include <asm/signal.h>



	SA_INTERRUPT



	SA_SHIRQ



	SA_SAMPLE_RANDOM

	
[bookmark: linuxdrive3-CHP-10-ITERM-6177]
[bookmark: linuxdrive3-CHP-10-ITERM-6178][bookmark: linuxdrive3-CHP-10-ITERM-6179][bookmark: linuxdrive3-CHP-10-ITERM-6180]Flags for request_irq.

SA_INTERRUPT requests installation of a fast

handler (as opposed to a slow one). SA_SHIRQ

installs a shared handler, and the third flag asserts that interrupt

timestamps can be used to generate system entropy.





	/proc/interrupts



	/proc/stat

	
Filesystem nodes that report information about hardware interrupts

and installed handlers.





	unsigned long probe_irq_on(void);



	int probe_irq_off(unsigned long);

	
Functions used by the driver when it has to probe to determine which

interrupt line is being used by a device. The result of

probe_irq_on must be passed back to

probe_irq_off after the interrupt has been

generated. The return value of probe_irq_off is

the detected interrupt number.





	IRQ_NONE



	IRQ_HANDLED



	IRQ_RETVAL(int x)

	
The possible return values from an interrupt handler, indicating

whether an actual interrupt from the device was present.





	void disable_irq(int irq);



	void disable_irq_nosync(int irq);



	void enable_irq(int irq);

	
A driver can enable and disable interrupt reporting. If the hardware

tries to generate an interrupt while interrupts are disabled, the

interrupt is lost forever. A driver using a shared handler must not

use these functions.





	void local_irq_save(unsigned long flags);



	void local_irq_restore(unsigned long flags);

	
Use local_irq_save to disable interrupts on the

local processor and remember their previous state. The

flags can be passed to

local_irq_restore to restore the previous

interrupt state.





	void local_irq_disable(void);



	void local_irq_enable(void);

	
Functions that unconditionally disable and enable interrupts on the

current processor.











[bookmark: linuxdrive3-CHP-11]

Chapter 11. Data Types in the Kernel

Before we go on to more advanced topics, we need to stop for a quick

note on portability issues. Modern versions of the Linux kernel are

highly portable, running on numerous different architectures. Given

the multiplatform nature of Linux, drivers intended for serious use

should be portable as well.

But a core issue with kernel code is being able both to access data

items of known length (for example, filesystem data structures or

registers on device boards) and to exploit the capabilities of

different processors (32-bit and 64-bit architectures, and possibly

16 bit as well).

Several of the problems encountered by kernel developers while

porting x86 code to new architectures have been related to incorrect

data typing. Adherence to strict data typing and compiling with the

-Wall -Wstrict-prototypes flags can prevent most

bugs.

Data types used by kernel data are divided into three main classes:

standard C types such as int, explicitly sized

types such as u32, and types used for specific

kernel objects, such as pid_t. We are going to see

when and how each of the three typing classes should be used. The

final sections of the chapter talk about some other typical problems

you might run into when porting driver code from the x86 to other

platforms, and introduce the generalized support for linked lists

exported by recent kernel headers.

If you follow the guidelines we provide, your driver should compile

and run even on platforms on which you are unable to test it.







[bookmark: linuxdrive3-CHP-11-SECT-1]
11.1. Use of Standard C Types

[bookmark: linuxdrive3-CHP-11-ITERM-6181][bookmark: linuxdrive3-CHP-11-ITERM-6182]Although most programmers are accustomed

to[bookmark: linuxdrive3-CHP-11-ITERM-6183]

freely using standard types like int and

long, writing device drivers requires some care to

avoid typing conflicts and obscure bugs.

[bookmark: linuxdrive3-CHP-11-ITERM-6184]
[bookmark: linuxdrive3-CHP-11-ITERM-6185]The

problem is that you can't use the standard types

when you need "a 2-byte filler" or

"something representing a 4-byte

string," because the normal C data types are not the

same size on all architectures. To show the data size of the various

C types, the datasize program has been included

in the sample files provided on

O'Reilly's FTP site in the

directory misc-progs. This is a sample run of

the program on an i386 system (the last four types shown are

introduced in the next section):

morgana% misc-progs/datasize

arch   Size:  char  short  int  long   ptr long-long  u8 u16 u32 u64

i686            1     2     4     4     4     8        1   2   4   8
 

The program can be used to show that long integers

and pointers feature a different size on 64-bit platforms, as

demonstrated by running the program on different Linux computers:

arch   Size:  char  short  int  long   ptr long-long  u8 u16 u32 u64

i386            1     2     4     4     4     8        1   2   4   8

alpha           1     2     4     8     8     8        1   2   4   8

armv4l          1     2     4     4     4     8        1   2   4   8

ia64            1     2     4     8     8     8        1   2   4   8

m68k            1     2     4     4     4     8        1   2   4   8

mips            1     2     4     4     4     8        1   2   4   8

ppc             1     2     4     4     4     8        1   2   4   8

sparc           1     2     4     4     4     8        1   2   4   8

sparc64         1     2     4     4     4     8        1   2   4   8

x86_64          1     2     4     8     8     8        1   2   4   8
 

[bookmark: linuxdrive3-CHP-11-ITERM-6186]
[bookmark: linuxdrive3-CHP-11-ITERM-6187]It's

interesting to note that the SPARC 64 architecture runs with a 32-bit

user space, so pointers are 32 bits wide there, even though they are

64 bits wide in kernel space. This can be verified by loading the

kdatasize module (available in the directory

misc-modules within the sample files). The

module reports size information at load time using

printk and returns an error (so

there's no need to unload it):

kernel: arch   Size:  char short int long  ptr long-long u8 u16 u32 u64

kernel: sparc64         1    2    4    8    8     8       1   2   4   8
 

[bookmark: linuxdrive3-CHP-11-ITERM-6188]
[bookmark: linuxdrive3-CHP-11-ITERM-6189][bookmark: linuxdrive3-CHP-11-ITERM-6190][bookmark: linuxdrive3-CHP-11-ITERM-6191][bookmark: linuxdrive3-CHP-11-ITERM-6192]Although you must be careful

when mixing different data types, sometimes there are good reasons to

do so. One such situation is for memory addresses, which are special

as far as the kernel is concerned. Although, conceptually, addresses

are pointers, memory administration is often better accomplished by

using an unsigned integer type; the kernel treats physical memory

like a huge array, and a memory address is just an index into the

array. Furthermore, a pointer is easily dereferenced; when dealing

directly with memory addresses, you almost never want to dereference

them in this manner. Using an integer type prevents this

dereferencing, thus avoiding bugs. Therefore, generic memory

addresses in the kernel are usually unsigned
long, exploiting the fact that pointers and

long integers are always the same size, at least

on all the platforms currently supported by Linux.

[bookmark: linuxdrive3-CHP-11-ITERM-6193] [bookmark: linuxdrive3-CHP-11-ITERM-6194][bookmark: linuxdrive3-CHP-11-ITERM-6195]For what it's

worth, the C99 standard defines the intptr_t and

uintptr_t types for an integer variable that can

hold a pointer value. These types are almost unused in the 2.6

kernel, however.







[bookmark: linuxdrive3-CHP-11-SECT-2]
11.2. Assigning an Explicit Size to Data Items

[bookmark: linuxdrive3-CHP-11-ITERM-6196][bookmark: linuxdrive3-CHP-11-ITERM-6197][bookmark: linuxdrive3-CHP-11-ITERM-6198]Sometimes kernel code

[bookmark: linuxdrive3-CHP-11-ITERM-6199]
[bookmark: linuxdrive3-CHP-11-ITERM-6200]requires

data items of a specific size, perhaps to match predefined binary

structures,[1] to communicate with user space, or to

align data within structures by inserting

"padding" fields (but refer to the

Section 11.4.4 for information about alignment

issues).
[bookmark: linuxdrive3-CHP-11-FNOTE-1][1] This happens when reading partition

tables, when executing a binary file, or when decoding a network

packet.


The kernel offers the following data types to use whenever you need

to know the size of your data. All the types are declared in

<asm/types.h>, which, in turn, is included

by <linux/types.h>:

u8;   /* unsigned byte (8 bits) */

u16;  /* unsigned word (16 bits) */

u32;  /* unsigned 32-bit value */

u64;  /* unsigned 64-bit value */
 

[bookmark: linuxdrive3-CHP-11-ITERM-6201] [bookmark: linuxdrive3-CHP-11-ITERM-6202]The corresponding signed types exist, but

are rarely needed; just replace u with

s in the name if you need them.

[bookmark: linuxdrive3-CHP-11-ITERM-6203]If a user-space program needs to use

these types, it can prefix the names with a double underscore:

_ _u8 and the other types are defined independent

of _ _KERNEL_ _. If, for example, a driver needs

to exchange binary structures with a program running in user space by

means of ioctl, the header files should declare

32-bit fields in the structures as _ _u32.

[bookmark: linuxdrive3-CHP-11-ITERM-6204]
[bookmark: linuxdrive3-CHP-11-ITERM-6205]It's

important to remember that these types are Linux specific, and using

them hinders porting software to other Unix flavors. Systems with

recent compilers support the C99-standard types, such as

uint8_t and uint32_t; if

portability is a concern, those types can be used in favor of the

Linux-specific variety.

You might also note that sometimes the kernel uses conventional

types, such as unsigned int, for items whose

dimension is architecture independent. This is usually done for

backward compatibility. When u32 and friends were

introduced in Version 1.1.67, the developers

couldn't change existing data structures to the new

types because the compiler issues a warning when there is a type

mismatch between the structure field and the value being assigned to

it.[2] Linus

didn't expect the operating system (OS) he wrote for

his own use to become multiplatform; as a result, old structures are

sometimes loosely typed.
[bookmark: linuxdrive3-CHP-11-FNOTE-2][2] As a matter of fact, the compiler signals type

inconsistencies even if the two types are just different names for

the same object, such as unsigned long and

u32 on the PC.








[bookmark: linuxdrive3-CHP-11-SECT-3]
11.3. Interface-Specific Types

[bookmark: linuxdrive3-CHP-11-ITERM-6206][bookmark: linuxdrive3-CHP-11-ITERM-6207][bookmark: linuxdrive3-CHP-11-ITERM-6208][bookmark: linuxdrive3-CHP-11-ITERM-6209]Some of the

commonly[bookmark: linuxdrive3-CHP-11-ITERM-6210]
[bookmark: linuxdrive3-CHP-11-ITERM-6211] used data types in the kernel have

their own typedef statements, thus preventing any

portability problems. For example, a process identifier (pid) is

usually pid_t instead of int.

Using pid_t masks any possible difference in the

actual data typing. We use the expression

interface-specific to refer to a type defined by

a library in order to provide an interface to a specific data

structure.

Note that, in recent times, relatively few new interface-specific

types have been defined. Use of the typedef

statement has gone out of favor among many kernel developers, who

would rather see the real type information used directly in the code,

rather than hidden behind a user-defined type. Many older

interface-specific types remain in the kernel, however, and they will

not be going away anytime soon.

Even when no interface-specific type is defined,

it's always important to use the proper data type in

a way consistent with the rest of the kernel. A jiffy count, for

instance, is always unsigned long, independent of

its actual size, so the unsigned
long type should always be used when working with

jiffies. In this section we concentrate on use of

_t types.

Many _t types are defined in

<linux/types.h>, but the list is rarely

useful. When you need a specific type, you'll find

it in the prototype of the functions you need to call or in the data

structures you use.

[bookmark: linuxdrive3-CHP-11-ITERM-6212]
[bookmark: linuxdrive3-CHP-11-ITERM-6213]Whenever

your driver uses functions that require such

"custom" types and you

don't follow the convention, the compiler issues a

warning; if you use the -Wall compiler flag and

are careful to remove all the warnings, you can feel confident that

your code is portable.

[bookmark: linuxdrive3-CHP-11-ITERM-6214]The main problem with

_t data items is that when you need to print them,

it's not always easy to choose the right

printk or printf format,

and warnings you resolve on one architecture reappear on another. For

example, how would you print a size_t, that is

unsigned long on some platforms and

unsigned int on some others?

[bookmark: linuxdrive3-CHP-11-ITERM-6215]Whenever you need to print some

interface-specific data, the best way to do it is by casting the

value to the biggest possible type (usually long

or unsigned long) and then

printing it through the corresponding format. This kind of tweaking

won't generate errors or warnings because the format

matches the type, and you won't lose data bits

because the cast is either a null operation or an extension of the

item to a bigger data type.

In practice, the data items we're talking about

aren't usually meant to be printed, so the issue

applies only to debugging messages. Most often, the code needs only

to store and compare the interface-specific types, in addition to

passing them as arguments to library or kernel functions.

Although _t types are the correct solution for

most situations, sometimes the right type doesn't

exist. This happens for some old interfaces that

haven't yet been cleaned up.

[bookmark: linuxdrive3-CHP-11-ITERM-6216]The one ambiguous point

we've found in the kernel headers is data typing for

I/O functions, which is loosely defined (see the Section 9.2.6 in Chapter 9). The loose typing is

mainly there for historical reasons, but it can create problems when

writing code. For example, one can get into trouble by swapping the

arguments to functions like outb; if there were

a port_t type, the compiler would find this type

of error.







[bookmark: linuxdrive3-CHP-11-SECT-4]
11.4. Other Portability Issues

In addition to data typing, [bookmark: linuxdrive3-CHP-11-ITERM-6217]there

are a few other software issues to keep in mind when writing a driver

if you want it to be portable across Linux platforms.

A general rule is to be suspicious of explicit constant values.

Usually the code has been parameterized using preprocessor macros.

This section lists the most important portability problems. Whenever

you encounter other values that have been parameterized, you can find

hints in the header files and in the device drivers distributed with

the official kernel.

[bookmark: linuxdrive3-CHP-11-SECT-4.1]
11.4.1. Time Intervals

[bookmark: linuxdrive3-CHP-11-ITERM-6218]
[bookmark: linuxdrive3-CHP-11-ITERM-6219][bookmark: linuxdrive3-CHP-11-ITERM-6220][bookmark: linuxdrive3-CHP-11-ITERM-6221][bookmark: linuxdrive3-CHP-11-ITERM-6222]When dealing with time

intervals, don't assume that there are 1000 jiffies

per second. Although this is currently true for the i386

architecture, not every Linux platform runs at this speed. The

assumption can be false even for the x86 if you play with the

HZ value (as some people do), and nobody knows

what will happen in future kernels. Whenever you calculate time

intervals using jiffies, scale your times using HZ

(the number of timer interrupts per second). For example, to check

against a timeout of half a second, compare the elapsed time against

HZ/2. More generally, the number of jiffies

corresponding to msec milliseconds is always

msec*HZ/1000.

[bookmark: linuxdrive3-CHP-11-SECT-4.2]
11.4.2. Page Size

[bookmark: linuxdrive3-CHP-11-ITERM-6223]
[bookmark: linuxdrive3-CHP-11-ITERM-6224]
[bookmark: linuxdrive3-CHP-11-ITERM-6225][bookmark: linuxdrive3-CHP-11-ITERM-6226][bookmark: linuxdrive3-CHP-11-ITERM-6227][bookmark: linuxdrive3-CHP-11-ITERM-6228]When playing games with memory, remember

that a memory page is PAGE_SIZE bytes, not 4 KB.

Assuming that the page size is 4 KB and hardcoding the value is a

common error among PC programmers, instead, supported platforms show

page sizes from 4 KB to 64 KB, and sometimes they differ between

different implementations of the same platform. The relevant macros

are PAGE_SIZE and PAGE_SHIFT.

The latter contains the number of bits to shift an address to get its

page number. The number currently is 12 or greater for pages that are

4 KB and larger. The macros are defined in

<asm/page.h>; user-space programs can use

the getpagesize library function if they ever

need the information.

Let's look at a nontrivial situation. If a driver

needs 16 KB for temporary data, it shouldn't specify

an order of 2 to

get_free_pages. You need a portable solution.

Such a solution, fortunately, has been written by the kernel

developers and is called get_order:

#include <asm/page.h>

int order = get_order(16*1024);

buf = get_free_pages(GFP_KERNEL, order);
 

Remember that the argument to get_order must be

a power of two.

[bookmark: linuxdrive3-CHP-11-SECT-4.3]
11.4.3. Byte Order

[bookmark: linuxdrive3-CHP-11-ITERM-6229][bookmark: linuxdrive3-CHP-11-ITERM-6230][bookmark: linuxdrive3-CHP-11-ITERM-6231]Be careful not to make assumptions about

byte ordering. Whereas the PC stores multibyte values low-byte first

(little end first, thus little-endian), some high-level platforms

work the other way (big-endian). Whenever possible, your code should

be written such that it does not care about byte ordering in the data

it manipulates. However, sometimes a driver needs to build an integer

number out of single bytes or do the opposite, or it must communicate

with a device that expects a specific order.

The include file <asm/byteorder.h> defines

either _ _BIG_ENDIAN or _

_LITTLE_ENDIAN, depending on the

processor's byte ordering. When dealing with byte

ordering issues, you could code a bunch of #ifdef _

_LITTLE_ENDIAN conditionals, but there is a better way. The

Linux kernel defines a set of macros that handle conversions between

the processor's byte ordering and that of the data

you need to store or load in a specific byte order. For example:

u32 cpu_to_le32 (u32);

u32 le32_to_cpu (u32);
 

These two macros convert a value from whatever the CPU uses to an

unsigned, little-endian, 32-bit quantity and back. They work whether

your CPU is big-endian or little-endian and, for that matter, whether

it is a 32-bit processor or not. They return their argument unchanged

in cases where there is no work to be done. Use of these macros makes

it easy to write portable code without having to use a lot of

conditional compilation constructs.

There are dozens of similar routines; you can see the full list in

<linux/byteorder/big_endian.h> and

<linux/byteorder/little_endian.h>. After a

while, the pattern is not hard to follow.

be64_to_cpu converts an unsigned, big-endian,

64-bit value to the internal CPU representation.

le16_to_cpus, instead, handles signed,

little-endian, 16-bit quantities. When dealing with pointers, you can

also use functions like cpu_to_le32p, which take

a pointer to the value to be converted rather than the value itself.

See the include file for the rest.

[bookmark: linuxdrive3-CHP-11-SECT-4.4]
11.4.4. Data Alignment

[bookmark: linuxdrive3-CHP-11-ITERM-6232]
[bookmark: linuxdrive3-CHP-11-ITERM-6233][bookmark: linuxdrive3-CHP-11-ITERM-6234][bookmark: linuxdrive3-CHP-11-ITERM-6235]
[bookmark: linuxdrive3-CHP-11-ITERM-6236][bookmark: linuxdrive3-CHP-11-ITERM-6237]
[bookmark: linuxdrive3-CHP-11-ITERM-6238][bookmark: linuxdrive3-CHP-11-ITERM-6239]The last problem worth

considering when writing portable code is how to access unaligned

data�for example, how to read a 4-byte value stored at an

address that isn't a multiple of 4 bytes. i386 users

often access unaligned data items, but not all architectures permit

it. Many modern architectures generate an exception every time the

program tries unaligned data transfers; data transfer is handled by

the exception handler, with a great performance penalty. If you need

to access unaligned data, you should use the following macros:

#include <asm/unaligned.h>

get_unaligned(ptr);

put_unaligned(val, ptr);
 

These macros are typeless and work for every data item, whether

it's one, two, four, or eight bytes long. They are

defined with any kernel version.

[bookmark: linuxdrive3-CHP-11-ITERM-6240]Another issue related to alignment is

portability of data structures across platforms. The same data

structure (as defined in the C-language source file) can be compiled

differently on different platforms. The compiler arranges structure

fields to be aligned according to conventions that differ from

platform to platform.

[bookmark: linuxdrive3-CHP-11-ITERM-6241]In order to write data structures for data

items that can be moved across architectures, you should always

enforce natural alignment of the data items in addition to

standardizing on a specific endianness. Natural

alignment means storing data items at an address that is a

multiple of their size (for instance, 8-byte items go in an address

multiple of 8). To enforce natural alignment while preventing the

compiler to arrange the fields in unpredictable ways, you should use

filler fields that avoid leaving holes in the data structure.

[bookmark: linuxdrive3-CHP-11-ITERM-6242]
[bookmark: linuxdrive3-CHP-11-ITERM-6243][bookmark: linuxdrive3-CHP-11-ITERM-6244][bookmark: linuxdrive3-CHP-11-ITERM-6245]To show how alignment is

enforced by the compiler, the dataalign program

is distributed in the misc-progs directory of

the sample code, and an equivalent kdataalign

module is part of misc-modules. This is the

output of the program on several platforms and the output of the

module on the SPARC64:

arch  Align:  char  short  int  long   ptr long-long  u8 u16 u32 u64

i386            1     2     4     4     4     4        1   2   4   4

i686            1     2     4     4     4     4        1   2   4   4

alpha           1     2     4     8     8     8        1   2   4   8

armv4l          1     2     4     4     4     4        1   2   4   4

ia64            1     2     4     8     8     8        1   2   4   8

mips            1     2     4     4     4     8        1   2   4   8

ppc             1     2     4     4     4     8        1   2   4   8

sparc           1     2     4     4     4     8        1   2   4   8

sparc64         1     2     4     4     4     8        1   2   4   8

x86_64          1     2     4     8     8     8        1   2   4   8



kernel: arch  Align: char short int long  ptr long-long u8 u16 u32 u64

kernel: sparc64        1    2    4    8    8     8       1   2   4   8
 

It's interesting to note that not all platforms

align 64-bit values on 64-bit boundaries, so you need filler fields

to enforce alignment and ensure portability.

Finally, be aware that the compiler may quietly insert padding into

structures itself to ensure that every field is aligned for good

performance on the target processor. If you are defining a structure

that is intended to match a structure expected by a device, this

automatic padding may thwart your attempt. The way around this

problem is to tell the compiler that the structure must be

"packed," with no fillers added.

For example, the kernel header file

<linux/edd.h> defines several data

structures used in interfacing with the x86 BIOS, and it includes the

following definition:

struct {

        u16 id;

        u64 lun;

        u16 reserved1;

        u32 reserved2;

} _ _attribute_ _ ((packed)) scsi;
 

Without the _ _attribute_ _ ((packed)), the

lun field would be preceded by two filler bytes or

six if we compile the structure on a 64-bit platform.

[bookmark: linuxdrive3-CHP-11-SECT-4.5]
11.4.5. Pointers and Error Values

Many internal kernel functions return a pointer value to the caller.

Many of those functions can also fail.

In[bookmark: linuxdrive3-CHP-11-ITERM-6246]
[bookmark: linuxdrive3-CHP-11-ITERM-6247]
[bookmark: linuxdrive3-CHP-11-ITERM-6248]
[bookmark: linuxdrive3-CHP-11-ITERM-6249]

most cases, failure is indicated by returning a

NULL pointer value. This technique works, but it

is unable to communicate the exact nature of the problem. Some

interfaces really need to return an actual error code so that the

caller can make the right decision based on what actually went wrong.

A number of kernel interfaces return this information by encoding the

error code in a pointer value. Such functions must be used with care,

since their return value cannot simply be compared against

NULL. To help in the creation and use of this sort

of interface, a small set of functions has been made available (in

<linux/err.h>).

A function returning a pointer type can return an error value with:

void *ERR_PTR(long error);
 

where error is the usual negative error code. The

caller can use IS_ERR to test whether a returned

pointer is an error code or not:

long IS_ERR(const void *ptr);
 

If you need the actual error code, it can be extracted with:

long PTR_ERR(const void *ptr);
 

You should use PTR_ERR only on a value for which

IS_ERR returns a true value; any other value is

a valid[bookmark: linuxdrive3-CHP-11-ITERM-6250]

pointer.







[bookmark: linuxdrive3-CHP-11-SECT-5]
11.5. Linked Lists

Operating system [bookmark: linuxdrive3-CHP-11-ITERM-6251]kernels, like many other programs, often

need to maintain lists of data structures. The Linux kernel has, at

times, been host to several linked list implementations at the same

time. To reduce the amount of duplicated code, the kernel developers

have created a standard implementation of circular, doubly linked

lists; others needing to manipulate lists are encouraged to use this

facility.

When working with the linked list interface, you should always bear

in mind that the list functions perform no locking. If there is a

possibility that your driver could attempt to perform concurrent

operations on the same list, it is your responsibility to implement a

locking scheme. The alternatives (corrupted list structures, data

loss, kernel panics) tend to be difficult to diagnose.

To use the list mechanism, your driver must include the file

<linux/list.h>. This file defines a simple

structure of type list_head:

struct list_head {

    struct list_head *next, *prev;

};
 

Linked lists used in real code are almost invariably made up of some

type of structure, each one describing one entry in the list. To use

the Linux list facility in your code, you need only embed a

list_head inside the structures that make up the

list. If your driver maintains a list of things to do, say, its

declaration would look something like this:

struct todo_struct {

    struct list_head list;

    int priority; /* driver specific */

    /* ... add other driver-specific fields */

};
 

[bookmark: linuxdrive3-CHP-11-ITERM-6252]
[bookmark: linuxdrive3-CHP-11-ITERM-6253]The

head of the list is usually a standalone list_head

structure. Figure 11-1 shows

how the simple struct list_head

is used to maintain a list of data structures.

[bookmark: linuxdrive3-CHP-11-FIG-1]
Figure 11-1. The list_head data structure

[image: ]

 

List heads must be initialized prior to use with the

INIT_LIST_HEAD macro. A "things

to do" list head could be declared and initialized

with:

struct list_head todo_list;



INIT_LIST_HEAD(&todo_list);
 

Alternatively, lists can be initialized at compile time:

LIST_HEAD(todo_list);
 

Several functions are defined in

<linux/list.h> that work with lists:

[bookmark: linuxdrive3-CHP-11-ITERM-6254][bookmark: linuxdrive3-CHP-11-ITERM-6255][bookmark: linuxdrive3-CHP-11-ITERM-6256][bookmark: linuxdrive3-CHP-11-ITERM-6257][bookmark: linuxdrive3-CHP-11-ITERM-6258][bookmark: linuxdrive3-CHP-11-ITERM-6259][bookmark: linuxdrive3-CHP-11-ITERM-6260][bookmark: linuxdrive3-CHP-11-ITERM-6261][bookmark: linuxdrive3-CHP-11-ITERM-6262][bookmark: linuxdrive3-CHP-11-ITERM-6263][bookmark: linuxdrive3-CHP-11-ITERM-6264][bookmark: linuxdrive3-CHP-11-ITERM-6265]

	list_add(struct list_head *new, struct list_head *head);

	
[bookmark: linuxdrive3-CHP-11-ITERM-6254]
[bookmark: linuxdrive3-CHP-11-ITERM-6255]Adds

the new entry immediately after the list

head�normally at the beginning of the list. Therefore, it can

be used to build stacks. Note, however, that the

head need not be the nominal head of the list; if

you pass a list_head structure that happens to be

in the middle of the list somewhere, the new entry goes immediately

after it. Since Linux lists are circular, the head of the list is not

generally different from any other entry.





	list_add_tail(struct list_head *new, struct list_head *head); 

	
[bookmark: linuxdrive3-CHP-11-ITERM-6256]
[bookmark: linuxdrive3-CHP-11-ITERM-6257]Adds

a new entry just before the given list head�at the end of the

list, in other words. list_add_tail can, thus,

be used to build first-in first-out queues.





	list_del(struct list_head *entry);



	list_del_init(struct list_head *entry);

	
[bookmark: linuxdrive3-CHP-11-ITERM-6258]
[bookmark: linuxdrive3-CHP-11-ITERM-6259]
[bookmark: linuxdrive3-CHP-11-ITERM-6260]
[bookmark: linuxdrive3-CHP-11-ITERM-6261]The

given entry is removed from the list. If the entry might ever be

reinserted into another list, you should use

list_del_init, which reinitializes the linked

list pointers.





	list_move(struct list_head *entry, struct list_head *head);



	list_move_tail(struct list_head *entry, struct list_head *head);

	
The given entry is removed from its current list

and added to the beginning of head. To put the

entry at the end of the new list, use

list_move_tail instead.





	list_empty(struct list_head *head);

	
[bookmark: linuxdrive3-CHP-11-ITERM-6262]
[bookmark: linuxdrive3-CHP-11-ITERM-6263]Returns

a nonzero value if the given list is empty.





	list_splice(struct list_head *list, struct list_head *head);

	
[bookmark: linuxdrive3-CHP-11-ITERM-6264]
[bookmark: linuxdrive3-CHP-11-ITERM-6265]Joins

two lists by inserting list immediately after

head.





[bookmark: linuxdrive3-CHP-11-ITERM-6266]
[bookmark: linuxdrive3-CHP-11-ITERM-6267]The

list_head structures are good for implementing a

list of like structures, but the invoking program is usually more

interested in the larger structures that make up the list as a whole.

A macro, list_entry, is provided that maps a

list_head structure pointer back into a pointer to

the structure that contains it. It is invoked as follows:

list_entry(struct list_head *ptr, type_of_struct, field_name);
 

where ptr is a pointer to the struct

list_head being used, type_of_struct is

the type of the structure containing the ptr, and

field_name is the name of the list field within

the structure. In our todo_struct structure from

before, the list field is called simply list.

Thus, we would turn a list entry into its containing structure with a

line such as:

struct todo_struct *todo_ptr =

    list_entry(listptr, struct todo_struct, list);
 

The list_entry macro takes a little getting used

to but is not that hard to use.

[bookmark: linuxdrive3-CHP-11-ITERM-6268]
[bookmark: linuxdrive3-CHP-11-ITERM-6269]The traversal of linked lists is easy: one

need only follow the prev and

next pointers. As an example, suppose we want to

keep the list of todo_struct items sorted in

descending priority order. A function to add a new entry would look

something like this:

void todo_add_entry(struct todo_struct *new)

{

    struct list_head *ptr;

    struct todo_struct *entry;



    for (ptr = todo_list.next; ptr != &todo_list; ptr = ptr->next) {

        entry = list_entry(ptr, struct todo_struct, list);

        if (entry->priority < new->priority) {

            list_add_tail(&new->list, ptr);

            return;

        }

    }

    list_add_tail(&new->list, &todo_struct)

}
 

However, as a general rule, it is better to use one of a set of

predefined macros for creating loops that iterate through lists. The

previous loop, for example, could be coded as:

void todo_add_entry(struct todo_struct *new)

{

    struct list_head *ptr;

    struct todo_struct *entry;



    list_for_each(ptr, &todo_list) {

        entry = list_entry(ptr, struct todo_struct, list);

        if (entry->priority < new->priority) {

            list_add_tail(&new->list, ptr);

            return;

        }

    }

    list_add_tail(&new->list, &todo_struct)

}
 

Using the provided macros helps avoid simple programming errors; the

developers of these macros have also put some effort into ensuring

that they perform well. A few variants exist:

[bookmark: linuxdrive3-CHP-11-ITERM-6270][bookmark: linuxdrive3-CHP-11-ITERM-6271]

	list_for_each(struct list_head *cursor, struct list_head *list)[bookmark: linuxdrive3-CHP-11-ITERM-6270]
[bookmark: linuxdrive3-CHP-11-ITERM-6271]

	
This macro creates a for loop that executes once

with cursor pointing at each successive entry in

the list. Be careful about changing the list while iterating through

it.





	list_for_each_prev(struct list_head *cursor, struct list_head *list)

	
This version iterates backward through the list.





	list_for_each_safe(struct list_head *cursor, struct list_head *next, struct 



	 list_head *list)

	
If your loop may delete entries in the list, use this version. It

simply stores the next entry in the list in next

at the beginning of the loop, so it does not get confused if the

entry pointed to by cursor is deleted.





	list_for_each_entry(type *cursor, struct list_head *list, member)



	list_for_each_entry_safe(type *cursor, type *next, struct list_head *list, 



	 member)

	
These macros ease the process of dealing with a list containing a

given type of structure. Here,

cursor is a pointer to the containing structure

type, and member is the name of the

list_head structure within the containing

structure. With these macros, there is no need to put

list_entry calls inside the loop.





[bookmark: linuxdrive3-CHP-11-ITERM-6272][bookmark: linuxdrive3-CHP-11-ITERM-6273][bookmark: linuxdrive3-CHP-11-ITERM-6274]If you look inside

<linux/list.h>, you see some additional

declarations. The hlist type is a

[bookmark: linuxdrive3-CHP-11-ITERM-6275]doubly linked list with a

separate, single-pointer list head type; it is often used for

creation of hash tables and similar structures. There are also macros

for iterating through both types of lists that are intended to work

with the read-copy-update mechanism (described in Section 5.7.5

in Chapter 5). These primitives

are unlikely to be useful in device drivers; see the header file if

you would like more information on how [bookmark: linuxdrive3-CHP-11-ITERM-6276]they work.







[bookmark: linuxdrive3-CHP-11-SECT-6]
11.6. Quick Reference

The following symbols were introduced in this chapter:

[bookmark: linuxdrive3-CHP-11-ITERM-6277][bookmark: linuxdrive3-CHP-11-ITERM-6278][bookmark: linuxdrive3-CHP-11-ITERM-6279][bookmark: linuxdrive3-CHP-11-ITERM-6280][bookmark: linuxdrive3-CHP-11-ITERM-6281][bookmark: linuxdrive3-CHP-11-ITERM-6282]

	#include <linux/types.h>



	typedef u8;



	typedef u16;



	typedef u32;



	typedef u64;

	
Types guaranteed to be 8-, 16-, 32-, and 64-bit unsigned integer

values. The equivalent signed types exist as well. In user space, you

can refer to the types as _ _u8, _

_u16, and so forth.





	#include <asm/page.h>



	PAGE_SIZE



	PAGE_SHIFT

	
Symbols

that[bookmark: linuxdrive3-CHP-11-ITERM-6277]

define the number of bytes per page for the current architecture and

the number of bits in the page offset (12 for 4-KB pages and 13 for

8-KB pages).





	#include <asm/byteorder.h>



	_ _LITTLE_ENDIAN



	_ _BIG_ENDIAN

	
Only one of the two symbols is defined, depending on the architecture.





	#include <asm/byteorder.h>



	u32 _ _cpu_to_le32 (u32);



	u32 _ _le32_to_cpu (u32);

	
Functions that convert between known

[bookmark: linuxdrive3-CHP-11-ITERM-6278]byte

orders and that of the processor. There are more than 60 such

functions; see the various files in

include/linux/byteorder/ for a full list and the

ways in which they are defined.





	#include <asm/unaligned.h>



	get_unaligned(ptr);



	put_unaligned(val, ptr);

	
Some architectures need to protect

[bookmark: linuxdrive3-CHP-11-ITERM-6279]
[bookmark: linuxdrive3-CHP-11-ITERM-6280] [bookmark: linuxdrive3-CHP-11-ITERM-6281]unaligned data

access using these macros. The macros expand to normal pointer

dereferencing for architectures that permit you to access unaligned

data.





	#include <linux/err.h>



	void *ERR_PTR(long error);



	long PTR_ERR(const void *ptr);



	long IS_ERR(const void *ptr);

	
Functions allow error codes to be returned by functions that return a

pointer value.





	#include <linux/list.h>



	list_add(struct list_head *new, struct list_head *head);



	list_add_tail(struct list_head *new, struct list_head *head);



	list_del(struct list_head *entry);



	list_del_init(struct list_head *entry);



	list_empty(struct list_head *head);



	list_entry(entry, type, member);



	list_move(struct list_head *entry, struct list_head *head);



	list_move_tail(struct list_head *entry, struct list_head *head);



	list_splice(struct list_head *list, struct list_head *head);

	
Functions that manipulate circular, [bookmark: linuxdrive3-CHP-11-ITERM-6282]doubly linked lists.





	list_for_each(struct list_head *cursor, struct list_head *list)



	list_for_each_prev(struct list_head *cursor, struct list_head *list)



	list_for_each_safe(struct list_head *cursor, struct list_head *next, struct 



	 list_head *list)



	list_for_each_entry(type *cursor, struct list_head *list, member)



	list_for_each_entry_safe(type *cursor, type *next struct list_head *list, 



	 member)

	
Convenience macros for iterating through linked lists.











[bookmark: linuxdrive3-CHP-12]

Chapter 12. PCI Drivers

While Chapter 9 introduced the

lowest levels of hardware control, this chapter provides an overview

of the higher-level bus architectures. A bus is made up of both an

electrical interface and a programming interface. In this chapter, we

deal with the programming interface.

This chapter covers a number

[bookmark: linuxdrive3-CHP-12-ITERM-6283]
[bookmark: linuxdrive3-CHP-12-ITERM-6284]
[bookmark: linuxdrive3-CHP-12-ITERM-6285]of

bus architectures. However, the primary focus is on the kernel

functions that access Peripheral Component Interconnect (PCI)

peripherals, because these days the PCI bus is the most commonly used

peripheral bus on desktops and bigger computers. The bus is the one

that is best supported by the kernel. ISA is still common for

electronic hobbyists and is described later, although it is pretty

much a bare-metal kind of bus, and there isn't much

to say in addition to what is covered in Chapter 9 and Chapter 10.







[bookmark: linuxdrive3-CHP-12-SECT-1]
12.1. The PCI Interface

Although many computer[bookmark: linuxdrive3-CHP-12-ITERM-6286]
[bookmark: linuxdrive3-CHP-12-ITERM-6287]
[bookmark: linuxdrive3-CHP-12-ITERM-6288]

users think of PCI as a way of laying out electrical wires, it is

actually a complete set of specifications defining how different

parts of a computer should interact.

The PCI specification covers most issues related to computer

interfaces. We are not going to cover it all here; in this section,

we are mainly concerned with how a PCI driver can find its hardware

and gain access to it. The probing techniques discussed in 

Chapter 12 and Chapter 10

can be used with PCI

devices, but the specification offers an alternative that is

preferable to probing.

The PCI architecture was designed as a replacement for the ISA

standard, with three main goals: to get better performance when

transferring data between the computer and its peripherals, to be as

platform independent as possible, and to simplify adding and removing

peripherals to the system.

The PCI bus achieves better performance by using a higher clock rate

than ISA; its clock runs at 25 or 33 MHz (its actual rate being a

factor of the system clock), and 66-MHz and even 133-MHz

implementations have recently been deployed as well. Moreover, it is

equipped with a 32-bit data bus, and a 64-bit extension has been

included in the specification. Platform independence is often a goal

in the design of a computer bus, and it's an

especially important feature of PCI, because the PC world has always

been dominated by processor-specific interface standards. PCI is

currently used extensively on IA-32, Alpha, PowerPC, SPARC64, and

IA-64 systems, and some other platforms as well.

What is most relevant to the driver writer, however, is

PCI's support for autodetection of interface boards.

PCI devices are jumperless (unlike most older peripherals) and are

automatically configured at boot time. Then, the device driver must

be able to access configuration information in the device in order to

complete initialization. This happens without the need to perform any

probing.

[bookmark: linuxdrive3-CHP-12-SECT-1.1]
12.1.1. PCI Addressing

Each PCI peripheral

[bookmark: linuxdrive3-CHP-12-ITERM-6289]is

identified by a bus number, a

device number, and a

function number. The PCI specification permits

a single system to host up to 256 buses, but because 256 buses are

not sufficient for many large systems, Linux now supports PCI

domains. Each PCI domain can host up to 256

buses. Each bus hosts up to 32 devices, and each device can be a

multifunction board (such as an audio device with an accompanying

CD-ROM drive) with a maximum of eight functions. Therefore, each

function can be identified at hardware level by a 16-bit address, or

key. Device drivers written for Linux, though, don't

need to deal with those binary addresses, because they use a specific

data structure, called pci_dev, to act on the

devices.

Most recent workstations feature at

least[bookmark: linuxdrive3-CHP-12-ITERM-6290]

two PCI buses. Plugging more than one bus in a single system is

accomplished by means of

bridges[bookmark: linuxdrive3-CHP-12-ITERM-6291],

special-purpose PCI peripherals whose task is joining two buses. The

overall layout of a PCI system is a tree where each bus is connected

to an upper-layer bus, up to bus 0 at the root of the tree. The

CardBus PC-card system is also connected to the PCI system via

bridges. A typical PCI system is represented in Figure 12-1, where the various

bridges are highlighted.

[bookmark: linuxdrive3-CHP-12-FIG-1]
Figure 12-1. Layout of a typical PCI system
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The 16-bit hardware addresses associated with PCI peripherals,

although mostly hidden in the struct pci_dev

object, are still visible occasionally, especially when lists of

devices are being used. One such situation is the output of

lspci (part of the pciutils

package, available with most distributions) and the layout of

information in /proc/pci and

/proc/bus/pci. The sysfs representation of PCI

devices also shows this addressing scheme, with the addition of the

PCI domain information.[1] When the hardware address is displayed, it

can be shown as two values (an 8-bit bus number and an 8-bit device

and function number), as three values (bus, device, and function), or

as four values (domain, bus, device, and function); all the values

are usually displayed in hexadecimal.
[bookmark: linuxdrive3-CHP-12-FNOTE-1][1] Some architectures also

display the PCI domain information in the

/proc/pci and /proc/bus/pci

files.


For example, /proc/bus/pci/devices uses a single

16-bit field (to ease parsing and sorting), while

/proc/bus/busnumber

splits the address into three fields. The following shows how those

addresses appear, showing only the beginning of the output lines:

$ lspci | cut -d: -f1-3

0000:00:00.0 Host bridge

0000:00:00.1 RAM memory

0000:00:00.2 RAM memory

0000:00:02.0 USB Controller

0000:00:04.0 Multimedia audio controller

0000:00:06.0 Bridge

0000:00:07.0 ISA bridge

0000:00:09.0 USB Controller

0000:00:09.1 USB Controller

0000:00:09.2 USB Controller

0000:00:0c.0 CardBus bridge

0000:00:0f.0 IDE interface

0000:00:10.0 Ethernet controller

0000:00:12.0 Network controller

0000:00:13.0 FireWire (IEEE 1394)

0000:00:14.0 VGA compatible controller

$ cat /proc/bus/pci/devices | cut -f1

0000

0001

0002

0010

0020

0030

0038

0048

0049

004a

0060

0078

0080

0090

0098

00a0

$ tree /sys/bus/pci/devices/

/sys/bus/pci/devices/

|-- 0000:00:00.0 -> ../../../devices/pci0000:00/0000:00:00.0

|-- 0000:00:00.1 -> ../../../devices/pci0000:00/0000:00:00.1

|-- 0000:00:00.2 -> ../../../devices/pci0000:00/0000:00:00.2

|-- 0000:00:02.0 -> ../../../devices/pci0000:00/0000:00:02.0

|-- 0000:00:04.0 -> ../../../devices/pci0000:00/0000:00:04.0

|-- 0000:00:06.0 -> ../../../devices/pci0000:00/0000:00:06.0

|-- 0000:00:07.0 -> ../../../devices/pci0000:00/0000:00:07.0

|-- 0000:00:09.0 -> ../../../devices/pci0000:00/0000:00:09.0

|-- 0000:00:09.1 -> ../../../devices/pci0000:00/0000:00:09.1

|-- 0000:00:09.2 -> ../../../devices/pci0000:00/0000:00:09.2

|-- 0000:00:0c.0 -> ../../../devices/pci0000:00/0000:00:0c.0

|-- 0000:00:0f.0 -> ../../../devices/pci0000:00/0000:00:0f.0

|-- 0000:00:10.0 -> ../../../devices/pci0000:00/0000:00:10.0

|-- 0000:00:12.0 -> ../../../devices/pci0000:00/0000:00:12.0

|-- 0000:00:13.0 -> ../../../devices/pci0000:00/0000:00:13.0

`-- 0000:00:14.0 -> ../../../devices/pci0000:00/0000:00:14.0
 

All three lists of devices are sorted in the same order, since

lspci uses the /proc files

as its source of information. Taking the VGA video controller as an

example, 0x00a0 means

0000:00:14.0 when split into domain (16 bits), bus

(8 bits), device (5 bits) and function (3 bits).

The hardware circuitry of each peripheral board answers queries

pertaining to three address spaces: memory locations, I/O ports, and

configuration registers. The first two address spaces are shared by

all the devices on the same PCI bus (i.e., when you access a memory

location, all the devices on that PCI bus see the bus cycle at the

same time). The configuration space, on the other hand, exploits

geographical

addressing[bookmark: linuxdrive3-CHP-12-ITERM-6292]. Configuration queries address only

one slot at a time, so they never collide.

As far as the driver is concerned,

[bookmark: linuxdrive3-CHP-12-ITERM-6293]
[bookmark: linuxdrive3-CHP-12-ITERM-6294]
[bookmark: linuxdrive3-CHP-12-ITERM-6295]memory

and I/O regions are accessed in the usual ways via

inb, readb, and so forth.

Configuration transactions, on the other hand, are performed by

calling specific kernel functions to access configuration registers.

With regard to interrupts, every PCI slot has four interrupt pins,

and each device function can use one of them without being concerned

about how those pins are routed to the CPU. Such routing is the

responsibility of the computer platform and is implemented outside of

the PCI bus. Since the PCI specification requires interrupt lines to

be shareable, even a processor with a limited number of IRQ lines,

such as the x86, can host many PCI interface boards (each with four

interrupt pins).

The I/O space in a PCI bus uses a 32-bit address bus (leading to 4 GB

of I/O ports), while the memory space can be accessed with either

32-bit or 64-bit addresses. 64-bit addresses are available on more

recent platforms. Addresses are supposed to be unique to one device,

but software may erroneously configure two devices to the same

address, making it impossible to access either one. But this problem

never occurs unless a driver is willingly playing with registers it

shouldn't touch. The good news is that every memory

and I/O address region offered by the interface board can be remapped

by means of configuration transactions. That is, the firmware

[bookmark: linuxdrive3-CHP-12-ITERM-6296]initializes

PCI hardware at system boot, mapping each region to a different

address to avoid collisions.[2] The addresses to which these regions are currently mapped

can be read from the configuration space, so the Linux driver can

access its devices without probing. After reading the configuration

registers, the driver can safely access its hardware.
[bookmark: linuxdrive3-CHP-12-FNOTE-2][2] Actually, that

configuration is not restricted to the time the system boots;

hotpluggable devices, for example, cannot be available at boot time

and appear later instead. The main point here is that the device

driver must not change the address of I/O or memory regions.


The PCI configuration

[bookmark: linuxdrive3-CHP-12-ITERM-6297]space

consists of 256 bytes for each device function (except for PCI

Express devices, which have 4 KB of configuration space for each

function), and the layout of the configuration registers is

standardized. Four bytes of the configuration space hold a unique

function ID, so the driver can identify its device by looking for the

specific ID for that peripheral.[3] In

summary, each device board is geographically addressed to retrieve

its configuration registers; the information in those registers can

then be used to perform normal I/O access, without the need for

further geographic addressing.
[bookmark: linuxdrive3-CHP-12-FNOTE-3][3] You'll find the ID of any device in its own

hardware manual. A list is included in the file

pci.ids, part of the

pciutils package and the kernel sources; it

doesn't pretend to be complete but just lists the

most renowned vendors and devices. The kernel version of this file

will not be included in future kernel series.


It should be clear from this description that the main innovation of

the PCI interface standard over ISA is the configuration address

space. Therefore, in addition to the usual driver code, a PCI driver

needs the ability to access the configuration space, in order to save

itself from risky probing tasks.

For the remainder of this chapter, we use the word

device to refer to a device function, because

each function in a multifunction board acts as an independent entity.

When we refer to a device, we mean the tuple "domain

number, bus number, device number, and function

number."

[bookmark: linuxdrive3-CHP-12-SECT-1.2]
12.1.2. Boot Time

To see how PCI works, we[bookmark: linuxdrive3-CHP-12-ITERM-6298]
[bookmark: linuxdrive3-CHP-12-ITERM-6299] start from system boot, since

that's when the devices are configured.

When power is applied to a PCI device, the hardware remains inactive.

In other words, the device responds only to configuration

transactions. At power on, the device has no memory and no I/O ports

mapped in the computer's address space; every other

device-specific feature, such as interrupt reporting, is disabled as

well.

Fortunately, every PCI motherboard is equipped with PCI-aware

firmware, called the BIOS, NVRAM, or PROM, depending on the platform.

The firmware offers access to the device configuration address space

by reading and writing registers in the PCI controller.

At system boot, the

[bookmark: linuxdrive3-CHP-12-ITERM-6300]firmware (or the Linux kernel,

if so configured) performs configuration transactions with every PCI

peripheral in order to allocate a safe place for each address region

it offers. By the time a device driver accesses the device, its

memory and I/O regions have already been mapped into the

processor's address space. The driver can change

this default assignment, but it never needs to do that.

As suggested, the user can look at the PCI device list and the

devices' configuration registers by reading

/proc/bus/pci/devices and

/proc/bus/pci/*/*. The former is a text file

with (hexadecimal) device information, and the latter are binary

files that report a snapshot of the configuration registers of each

device, one file per device. The individual PCI device directories in

the sysfs tree can be found in

/sys/bus/pci/devices. A PCI device directory

contains a number of different files:

$ tree /sys/bus/pci/devices/0000:00:10.0

/sys/bus/pci/devices/0000:00:10.0

|-- class

|-- config

|-- detach_state

|-- device

|-- irq

|-- power

|   `-- state

|-- resource

|-- subsystem_device

|-- subsystem_vendor

`-- vendor
 

The file config is a binary file that allows the

raw PCI config information to be read from the device (just like the

/proc/bus/pci/*/* provides.) The files

vendor, device,

subsystem_device,

subsystem_vendor, and class

all refer to the specific values of this PCI device (all PCI devices

provide this information.) The file irq shows

the current IRQ assigned to this PCI device, and the file

resource shows the current memory resources

allocated by this device.

[bookmark: linuxdrive3-CHP-12-SECT-1.3]
12.1.3. Configuration Registers and Initialization

In this section, we look

[bookmark: linuxdrive3-CHP-12-ITERM-6301]
[bookmark: linuxdrive3-CHP-12-ITERM-6302]
[bookmark: linuxdrive3-CHP-12-ITERM-6303]at the configuration registers that PCI

devices contain. All PCI devices feature at least a 256-byte address

space. The first 64 bytes are standardized, while the rest are device

dependent. Figure 12-2 shows

the layout of the device-independent configuration space.

[bookmark: linuxdrive3-CHP-12-FIG-2]
Figure 12-2. The standardized PCI configuration registers
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As the figure shows, some of the PCI configuration registers are

required and some are optional. Every PCI device must contain

meaningful values in the required registers, whereas the contents of

the optional registers depend on the actual capabilities of the

peripheral. The optional fields are not used unless the contents of

the required fields indicate that they are valid. Thus, the required

fields assert the board's capabilities, including

whether the other fields are usable.

It's interesting to note that the PCI registers are

always little-endian. Although the standard is designed to be

architecture independent, the PCI designers sometimes show a slight

bias toward the PC environment. The driver writer should be careful

about byte ordering when accessing multibyte configuration registers;

code that works on the PC might not work on other platforms. The

Linux developers have taken care of the byte-ordering problem (see

the next section, Section 12.1.8), but the issue must be kept

in mind. If you ever need to convert data from host order to PCI

order or vice versa, you can resort to the functions defined in

<asm/byteorder.h>, introduced in Chapter 11, knowing that PCI byte

order is little-endian.

Describing all the configuration items is beyond the scope of this

book. Usually, the technical documentation released with each device

describes the supported registers. What we're

interested in is how a driver can look for its device and how it can

access the device's configuration space.

Three or five PCI registers identify a device:

vendorID, deviceID, and

class are the three that are always used. Every

PCI manufacturer assigns proper values to these read-only registers,

and the driver can use them to look for the device. Additionally, the

fields subsystem vendorID and subsystem

deviceID are sometimes set by the vendor to further

differentiate similar devices.

Let's look at these registers in more detail:

[bookmark: linuxdrive3-CHP-12-ITERM-6304][bookmark: linuxdrive3-CHP-12-ITERM-6305][bookmark: linuxdrive3-CHP-12-ITERM-6306][bookmark: linuxdrive3-CHP-12-ITERM-6307][bookmark: linuxdrive3-CHP-12-ITERM-6308][bookmark: linuxdrive3-CHP-12-ITERM-6309][bookmark: linuxdrive3-CHP-12-ITERM-6310][bookmark: linuxdrive3-CHP-12-ITERM-6311][bookmark: linuxdrive3-CHP-12-ITERM-6312][bookmark: linuxdrive3-CHP-12-ITERM-6313]

	vendorID[bookmark: linuxdrive3-CHP-12-ITERM-6304]
[bookmark: linuxdrive3-CHP-12-ITERM-6305]

	
This 16-bit register identifies a hardware manufacturer. For

instance, every Intel device is marked with the same vendor number,

0x8086. There is a global registry of such

numbers, maintained by the PCI Special Interest Group, and

manufacturers must apply to have a unique number assigned to them.





	deviceID[bookmark: linuxdrive3-CHP-12-ITERM-6306]
[bookmark: linuxdrive3-CHP-12-ITERM-6307]

	
This is another 16-bit register, selected by the manufacturer; no

official registration is required for the device ID. This ID is

usually paired with the vendor ID to make a unique 32-bit identifier

for a hardware device. We use the word

signature to refer to the vendor and device ID

pair. A device driver usually relies on the signature to identify its

device; you can find what value to look for in the hardware manual

for the target device.





	class[bookmark: linuxdrive3-CHP-12-ITERM-6308]
[bookmark: linuxdrive3-CHP-12-ITERM-6309]

	
Every peripheral device belongs to a class. The

class register is a 16-bit value whose top 8 bits

identify the "base class" (or

group). For example,

"ethernet" and

"token ring" are two classes

belonging to the "network" group,

while the "serial" and

"parallel" classes belong to the

"communication" group. Some drivers

can support several similar devices, each of them featuring a

different signature but all belonging to the same class; these

drivers can rely on the class register to identify

their peripherals, as shown later.





	subsystem vendorID[bookmark: linuxdrive3-CHP-12-ITERM-6310]
[bookmark: linuxdrive3-CHP-12-ITERM-6311]



	subsystem deviceID[bookmark: linuxdrive3-CHP-12-ITERM-6312]
[bookmark: linuxdrive3-CHP-12-ITERM-6313]

	
These fields can be used for further identification of a device. If

the chip is a generic interface chip to a local (onboard) bus, it is

often used in several completely different roles, and the driver must

identify the actual device it is talking with. The subsystem

identifiers are used to this end.





Using these different identifiers, a PCI driver can tell the kernel

what kind of devices it supports. The

struct[bookmark: linuxdrive3-CHP-12-ITERM-6314]
pci_device_id structure is used to define a list

of the different types of PCI devices that a driver supports. This

structure contains the following fields:



	_ _u32 vendor; 



	_ _u32 device; 

	
These specify the PCI vendor and device IDs of a device. If a driver

can handle any vendor or device ID, the value

PCI_ANY_ID should be used for these fields.





	_ _u32 subvendor; 



	_ _u32 subdevice; 

	
These specify the PCI subsystem vendor and subsystem device IDs of a

device. If a driver can handle any type of subsystem ID, the value

PCI_ANY_ID should be used for these fields.





	_ _u32 class; 



	_ _u32 class_mask; 

	
These two values allow the driver to specify that it supports a type

of PCI class device. The different classes of PCI devices (a VGA

controller is one example) are described in the PCI specification. If

a driver can handle any type of subsystem ID, the value

PCI_ANY_ID should be used for these fields.





	kernel_ulong_t driver_data; 

	
This value is not used to match a device but is used to hold

information that the PCI driver can use to differentiate between

different devices if it wants to.





There are two helper macros that should be used to initialize a

struct pci_device_id structure:

[bookmark: linuxdrive3-CHP-12-ITERM-6315][bookmark: linuxdrive3-CHP-12-ITERM-6316][bookmark: linuxdrive3-CHP-12-ITERM-6317][bookmark: linuxdrive3-CHP-12-ITERM-6318]

	PCI_DEVICE(vendor, device)[bookmark: linuxdrive3-CHP-12-ITERM-6315]
[bookmark: linuxdrive3-CHP-12-ITERM-6316] 

	
This creates a struct
pci_device_id that matches only the specific

vendor and device ID. The macro sets the subvendor

and subdevice fields of the structure to

PCI_ANY_ID.





	PCI_DEVICE_CLASS(device_class, device_class_mask)[bookmark: linuxdrive3-CHP-12-ITERM-6317]
[bookmark: linuxdrive3-CHP-12-ITERM-6318] 

	
This creates a struct
pci_device_id that matches a specific PCI class.





An example of using these macros to define the type of devices a

driver supports can be found in the following kernel files:

drivers/usb/host/ehci-hcd.c:



static const struct pci_device_id pci_ids[  ] = { {

        /* handle any USB 2.0 EHCI controller */

        PCI_DEVICE_CLASS(((PCI_CLASS_SERIAL_USB << 8) | 0x20), ~0),

        .driver_data =  (unsigned long) &ehci_driver,

        },

        { /* end: all zeroes */ }

};



drivers/i2c/busses/i2c-i810.c:



static struct pci_device_id i810_ids[  ] = {

    { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82810_IG1) },

    { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82810_IG3) },

    { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82810E_IG) },

    { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82815_CGC) },

    { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82845G_IG) },

    { 0, },

};
 

These examples create a list of struct
pci_device_id structures, with an empty structure

set to all zeros as the last value in the list. This array of IDs is

used in the struct pci_driver

(described below), and it is also used to tell user space which

devices this specific driver supports.

[bookmark: linuxdrive3-CHP-12-SECT-1.4]
12.1.4. MODULE_DEVICE_TABLE

This pci_device_id structure needs to be exported

to user space to allow the hotplug and module loading systems know

what module works with what hardware devices. The macro

MODULE_DEVICE_TABLE[bookmark: linuxdrive3-CHP-12-ITERM-6319]
[bookmark: linuxdrive3-CHP-12-ITERM-6320]

accomplishes this. An example is:

MODULE_DEVICE_TABLE(pci, i810_ids);
 

This statement creates a local variable called _

_mod_pci_device_table that points to the list of

struct pci_device_id. Later in

the kernel build process, the depmod program

searches all modules for the symbol _

_mod_pci_device_table. If that symbol is found, it pulls

the data out of the module and adds it to the file

/lib/modules/KERNEL_VERSION/modules.pcimap.

After depmod completes, all PCI devices that are

supported by modules in the kernel are listed, along with their

module names, in that file. When the kernel tells the hotplug system

that a new PCI device has been found, the hotplug system uses the

modules.pcimap file to find the proper driver to

load.

[bookmark: linuxdrive3-CHP-12-SECT-1.5]
12.1.5. Registering a PCI Driver

The main structure that all

[bookmark: linuxdrive3-CHP-12-ITERM-6321]PCI drivers must create in order to be

registered with the kernel properly is the struct

pci_driver structure. This structure consists of a number

of function callbacks and variables that describe the PCI driver to

the PCI core. Here are the fields in this structure that a PCI driver

needs to be aware of:

[bookmark: linuxdrive3-CHP-12-ITERM-6322][bookmark: linuxdrive3-CHP-12-ITERM-6323][bookmark: linuxdrive3-CHP-12-ITERM-6324][bookmark: linuxdrive3-CHP-12-ITERM-6325]

	const char *name;[bookmark: linuxdrive3-CHP-12-ITERM-6322] 

	
The name of the driver. It must be unique among all PCI drivers in

the kernel and is normally set to the same name as the module name of

the driver. It shows up in sysfs under

/sys/bus/pci/drivers/ when the driver is in the

kernel.





	const struct pci_device_id *id_table;[bookmark: linuxdrive3-CHP-12-ITERM-6323] 

	
Pointer to the struct
pci_device_id table described earlier in this

chapter.





	int (*probe) (struct pci_dev *dev, const struct pci_device_id *id);[bookmark: linuxdrive3-CHP-12-ITERM-6324] 

	
Pointer to the probe function in the PCI driver. This function is

called by the PCI core when it has a struct

pci_dev that it thinks this driver wants to control. A

pointer to the struct
pci_device_id that the PCI core used to make this

decision is also passed to this function. If the PCI driver claims

the struct pci_dev that is

passed to it, it should initialize the device properly and return

0. If the driver does not want to claim the

device, or an error occurs, it should return a negative error value.

More details about this function follow later in this chapter.





	void (*remove) (struct pci_dev *dev);[bookmark: linuxdrive3-CHP-12-ITERM-6325] 

	
Pointer to the function that the PCI core calls when the

struct pci_dev is being removed

from the system, or when the PCI driver is being unloaded from the

kernel. More details about this function follow later in this

chapter.





	int (*suspend) (struct pci_dev *dev, u32 state); 

	
Pointer to the function that the PCI core calls when the

struct pci_dev is being

suspended. The suspend state is passed in the

state variable. This function is optional; a

driver does not have to provide it.





	int (*resume) (struct pci_dev *dev); 

	
Pointer to the function that the PCI core calls when the

struct pci_dev is being resumed. It is always

called after suspend has been called. This

function is optional; a driver does not have to provide it.





In summary, to create a proper struct
pci_driver structure, only four fields need to be

initialized:

static struct pci_driver pci_driver = {

    .name = "pci_skel",

    .id_table = ids,

    .probe = probe,

    .remove = remove,

};
 

To register the struct pci_driver with the PCI

core, a call to pci_register_driver is made with

a pointer to the struct
pci_driver. This is traditionally done in the

module initialization code for the PCI driver:

static int _ _init pci_skel_init(void)

{

    return pci_register_driver(&pci_driver);

}
 

Note that the pci_register_driver function

either returns a negative error number or 0 if

everything was registered successfully. It does not return the number

of devices that were bound to the driver or an error number if no

devices were bound to the driver. This is a change from kernels prior

to the 2.6 release and was done because of the following situations:

	On systems that support PCI hotplug, or CardBus systems, a PCI device

can appear or disappear at any point in time. It is helpful if

drivers can be loaded before the device appears, to reduce the time

it takes to initialize a device.

	The 2.6 kernel allows new PCI IDs to be dynamically allocated to a

driver after it has been loaded. This is done through the file

new_id that is created in all PCI driver

directories in sysfs. This is very useful if a new device is being

used that the kernel doesn't know about just yet. A

user can write the PCI ID values to the new_id

file, and then the driver binds to the new device. If a driver was

not allowed to load until a device was present in the system, this

interface would not be able to work.



When the PCI driver is to be unloaded, the struct

pci_driver needs to be unregistered from the kernel. This

is done with a call to pci_unregister_driver.

When this call happens, any PCI devices that were currently bound to

this driver are removed, and the remove function

for this PCI driver is called before the

pci_unregister_driver function returns.

static void _ _exit pci_skel_exit(void)

{

    pci_unregister_driver(&pci_driver);

}
 

[bookmark: linuxdrive3-CHP-12-SECT-1.6]
12.1.6. Old-Style PCI Probing

In older kernel

[bookmark: linuxdrive3-CHP-12-ITERM-6326]versions,

the function, pci_register_driver, was not

always used by PCI drivers. Instead, they would either walk the list

of PCI devices in the system by hand, or they would call a function

that could search for a specific PCI device. The ability to walk the

list of PCI devices in the system within a driver has been removed

from the 2.6 kernel in order to prevent drivers from crashing the

kernel if they happened to modify the PCI device lists while a device

was being removed at the same time.

If the ability to find a specific PCI device is really needed, the

following functions are available:



	struct pci_dev *pci_get_device(unsigned int vendor, unsigned int device, 



	 struct pci_dev *from); 

	
This function scans the list of PCI devices currently present in the

system, and if the input arguments match the specified

vendor and device IDs, it

increments the reference count on the struct
pci_dev variable found, and returns it to the

caller. This prevents the structure from disappearing without any

notice and ensures that the kernel does not oops. After the driver is

done with the struct pci_dev

returned by the function, it must call the function

pci_dev_put to decrement the usage count

properly back to allow the kernel to clean up the device if it is

removed.





The from argument is used to get hold of multiple

devices with the same signature; the argument should point to the

last device that has been found, so that the search can continue

instead of restarting from the head of the list. To find the first

device, from is specified as

NULL. If no (further) device is found,

NULL is returned.

An example of how to use this function properly is:

struct pci_dev *dev;

dev = pci_get_device(PCI_VENDOR_FOO, PCI_DEVICE_FOO, NULL);

if (dev) {

    /* Use the PCI device */

    ...

    pci_dev_put(dev);

}
 

This function can not be called from interrupt context. If it is, a

warning is printed out to the system log.



	struct pci_dev *pci_get_subsys(unsigned int vendor, unsigned int device, 



	 unsigned int ss_vendor, unsigned int ss_device, struct pci_dev *from); 

	
This function works just like pci_get_device,

but it allows the subsystem vendor and subsystem device IDs to be

specified when looking for the device.





This function can not be called from interrupt context. If it is, a

warning is printed out to the system log.



	struct pci_dev *pci_get_slot(struct pci_bus *bus, unsigned int devfn); 

	
This function searches the list of PCI devices in the system on the

specified struct pci_bus for the specified device

and function number of the PCI device. If a device is found that

matches, its reference count is incremented and a pointer to it is

returned. When the caller is finished accessing the

struct pci_dev, it must call

pci_dev_put.





All of these functions can not be called from interrupt context. If

they are, a warning is printed out to the system log.

[bookmark: linuxdrive3-CHP-12-SECT-1.7]
12.1.7. Enabling the PCI Device

In the probe function for the PCI driver,

[bookmark: linuxdrive3-CHP-12-ITERM-6327]before the driver can access any

device resource (I/O region or interrupt) of the PCI device, the

driver must call the pci_enable_device function:

[bookmark: linuxdrive3-CHP-12-ITERM-6328][bookmark: linuxdrive3-CHP-12-ITERM-6329]

	 [bookmark: linuxdrive3-CHP-12-ITERM-6328]
[bookmark: linuxdrive3-CHP-12-ITERM-6329] int pci_enable_device(struct pci_dev *dev); 

	
This function actually enables the device. It wakes up the device and

in some cases also assigns its interrupt line and I/O regions. This

happens, for example, with CardBus devices (which have been made

completely equivalent to PCI at the driver level).





[bookmark: linuxdrive3-CHP-12-SECT-1.8]
12.1.8. Accessing the Configuration Space

After the driver has

[bookmark: linuxdrive3-CHP-12-ITERM-6330]
[bookmark: linuxdrive3-CHP-12-ITERM-6331]detected the device, it

usually needs to read from or write to the three address spaces:

memory, port, and configuration. In particular, accessing the

configuration space is vital to the driver, because it is the only

way it can find out where the device is mapped in memory and in the

I/O space.

Because the microprocessor has no way to access the configuration

space directly, the computer vendor has to provide a way to do it. To

access configuration space, the CPU must write and read registers in

the PCI controller, but the exact implementation is vendor dependent

and not relevant to this discussion, because Linux offers a standard

interface to access the configuration space.

As far as the driver is concerned, the configuration space can be

accessed through 8-bit, 16-bit, or 32-bit data transfers. The

relevant functions are prototyped in

<linux/pci.h>:



	int pci_read_config_byte(struct pci_dev *dev, int where, u8 *val); 



	int pci_read_config_word(struct pci_dev *dev, int where, u16 *val); 



	int pci_read_config_dword(struct pci_dev *dev, int where, u32 *val); 

	
Read one, two, or four bytes from the configuration space of the

device identified by dev. The

where argument is the byte offset from the

beginning of the configuration space. The value fetched from the

configuration space is returned through the val

pointer, and the return value of the functions is an error code. The

word and dword functions

convert the value just read from little-endian to the native byte

order of the processor, so you need not deal with byte ordering.





	int pci_write_config_byte(struct pci_dev *dev, int where, u8 val); 



	int pci_write_config_word(struct pci_dev *dev, int where, u16 val); 



	int pci_write_config_dword(struct pci_dev *dev, int where, u32 val); 

	
Write one, two, or four bytes to the configuration space. The device

is identified by dev as usual, and the value being

written is passed as val. The

word and dword functions

convert the value to little-endian before writing to the peripheral

device.





All of the previous functions are implemented as inline functions

that really call the following functions. Feel free to use these

functions instead of the above in case the driver does not have

access to a struct pci_dev at any paticular moment

in time:



	int pci_bus_read_config_byte (struct pci_bus *bus, unsigned int devfn, int 



	 where, u8 *val); 



	int pci_bus_read_config_word (struct pci_bus *bus, unsigned int devfn, int 



	 where, u16 *val); 



	int pci_bus_read_config_dword (struct pci_bus *bus, unsigned int devfn, int 



	 where, u32 *val); 

	
Just like the pci_read_ functions, but

struct pci_bus
* and devfn variables are

needed instead of a struct pci_dev

*.





	int pci_bus_write_config_byte (struct pci_bus *bus, unsigned int devfn, int 



	 where, u8 val); 



	int pci_bus_write_config_word (struct pci_bus *bus, unsigned int devfn, int 



	 where, u16 val); 



	int pci_bus_write_config_dword (struct pci_bus *bus, unsigned int devfn, int 



	 where, u32 val); 

	
Just like the pci_write_ functions, but

struct pci_bus
* and devfn variables are

needed instead of a struct pci_dev *.





The best way to address the configuration variables using the

pci_read_ functions is by means of the symbolic

names defined in <linux/pci.h>. For

example, the following small function retrieves the revision ID of a

device by passing the symbolic name for where to

pci_read_config_byte:

static unsigned char skel_get_revision(struct pci_dev *dev)

{

    u8 revision;



    pci_read_config_byte(dev, PCI_REVISION_ID, &revision);

    return revision;

}
 

[bookmark: linuxdrive3-CHP-12-SECT-1.9]
12.1.9. Accessing the I/O and Memory Spaces

A PCI device

implements[bookmark: linuxdrive3-CHP-12-ITERM-6332]
[bookmark: linuxdrive3-CHP-12-ITERM-6333]
[bookmark: linuxdrive3-CHP-12-ITERM-6334] up to six I/O address

regions. Each region consists of either memory or I/O locations. Most

devices implement their I/O registers in memory regions, because

it's generally a saner approach.

However, unlike normal

memory, I/O registers should not be cached by the CPU because each

access can have side effects. The PCI device that implements I/O

registers as a memory region marks the difference by setting a

"memory-is-prefetchable" bit in its

configuration register.[4] If the memory region is marked as prefetchable, the CPU

can cache its contents and do all sorts of optimization with it;

nonprefetchable memory access, on the other hand,

can't be optimized because each access can have side

effects, just as with I/O ports. Peripherals that map their control

registers to a memory address range declare that range as

nonprefetchable, whereas something like video memory on PCI boards is

prefetchable. In this section, we use the word

region[bookmark: linuxdrive3-CHP-12-ITERM-6335]
[bookmark: linuxdrive3-CHP-12-ITERM-6336]
[bookmark: linuxdrive3-CHP-12-ITERM-6337]
[bookmark: linuxdrive3-CHP-12-ITERM-6338] to refer to a generic I/O address

space that is memory-mapped or port-mapped.
[bookmark: linuxdrive3-CHP-12-FNOTE-4][4] The information lives in one

of the low-order bits of the base address PCI registers. The bits are

defined in <linux/pci.h>.


An interface board reports the size and current location of its

regions using configuration registers�the six 32-bit registers

shown in Figure 12-2, whose

symbolic names are PCI_BASE_ADDRESS_0 tHRough

PCI_BASE_ADDRESS_5. Since the I/O space defined by

PCI is a 32-bit address space, it makes sense to use the same

configuration interface for memory and I/O. If the device uses a

64-bit address bus, it can declare regions in the 64-bit memory space

by using two consecutive PCI_BASE_ADDRESS

registers for each region, low bits first. It is possible for one

device to offer both 32-bit regions and 64-bit regions.

In the kernel, the I/O regions of PCI devices have been integrated

into the generic resource management. For this reason, you

don't need to access the configuration variables in

order to know where your device is mapped in memory or I/O space. The

preferred interface for getting region information consists of the

following functions:

[bookmark: linuxdrive3-CHP-12-ITERM-6339][bookmark: linuxdrive3-CHP-12-ITERM-6340][bookmark: linuxdrive3-CHP-12-ITERM-6341][bookmark: linuxdrive3-CHP-12-ITERM-6342][bookmark: linuxdrive3-CHP-12-ITERM-6343][bookmark: linuxdrive3-CHP-12-ITERM-6344]

	unsigned long pci_resource_start(struct pci_dev *dev, int bar);[bookmark: linuxdrive3-CHP-12-ITERM-6339]
[bookmark: linuxdrive3-CHP-12-ITERM-6340] 

	
The function returns the first address (memory address or I/O port

number) associated with one of the six PCI I/O regions. The region is

selected by the integer bar (the base address

register), ranging from 0-5 (inclusive).





	unsigned long pci_resource_end(struct pci_dev *dev, int bar);[bookmark: linuxdrive3-CHP-12-ITERM-6341]
[bookmark: linuxdrive3-CHP-12-ITERM-6342] 

	
The function returns the last address that is part of the I/O region

number bar. Note that this is the last usable

address, not the first address after the region.





	unsigned long pci_resource_flags(struct pci_dev *dev, int bar);[bookmark: linuxdrive3-CHP-12-ITERM-6343]
[bookmark: linuxdrive3-CHP-12-ITERM-6344] 

	
This function returns the flags associated with this resource.





Resource flags are used to define some features of the individual

resource. For PCI resources associated with PCI I/O regions, the

information is extracted from the base address registers, but can

come from elsewhere for resources not associated with PCI devices.

All resource flags [bookmark: linuxdrive3-CHP-12-ITERM-6345]
[bookmark: linuxdrive3-CHP-12-ITERM-6346]are defined in

<linux/ioport.h>; the most important are:



	IORESOURCE_IO 



	IORESOURCE_MEM 

	
If the associated I/O region exists, one and only one of these flags

is set.





	IORESOURCE_PREFETCH 



	IORESOURCE_READONLY 

	
These flags tell whether a memory region is prefetchable and/or write

protected. The latter flag is never set for PCI resources.





By making use of the

pci_resource_[bookmark: linuxdrive3-CHP-12-ITERM-6347]
[bookmark: linuxdrive3-CHP-12-ITERM-6348]

functions, a device driver can completely ignore the underlying PCI

registers, since the system already used them to structure resource

information.

[bookmark: linuxdrive3-CHP-12-SECT-1.10]
12.1.10. PCI Interrupts

As far as interrupts are

[bookmark: linuxdrive3-CHP-12-ITERM-6349]concerned,

PCI is easy to handle. By the time Linux boots, the

computer's firmware has already assigned a unique

interrupt number to the device, and the driver just needs to use it.

The interrupt number is stored in configuration register 60

(PCI_INTERRUPT_LINE), which is one byte wide. This

allows for as many as 256 interrupt lines, but the actual limit

depends on the CPU being used. The driver doesn't

need to bother checking the interrupt number, because the value found

in PCI_INTERRUPT_LINE is guaranteed to be the

right one.

If the device doesn't support interrupts, register

61 (PCI_INTERRUPT_PIN) is 0;

otherwise, it's nonzero. However, since the driver

knows if its device is interrupt driven or not, it

doesn't usually need to read

PCI_INTERRUPT_PIN.

Thus, PCI-specific code for dealing with interrupts just needs to

read the configuration byte to obtain the interrupt number that is

saved in a local variable, as shown in the following code. Beyond

that, the information in Chapter 10 applies.

result = pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &myirq);

if (result) {

    /* deal with error */

}
 

The rest of this section provides additional information for the

curious reader but isn't needed for writing drivers.

A PCI connector has four interrupt pins, and peripheral boards can

use any or all of them. Each pin is individually routed to the

motherboard's interrupt controller, so interrupts

can be shared without any electrical problems. The interrupt

controller is then responsible for mapping the interrupt wires (pins)

to the processor's hardware; this platform-dependent

operation is left to the controller in order to achieve platform

independence in the bus itself.

The read-only configuration register located at

PCI_INTERRUPT_PIN is used to tell the computer

which single pin is actually used. It's worth

remembering that each device board can host up to eight devices; each

device uses a single interrupt pin and reports it in its own

configuration register. Different devices on the same device board

can use different interrupt pins or share the same one.

The PCI_INTERRUPT_LINE register, on the other

hand, is read/write. When the computer is booted, the firmware scans

its PCI devices and sets the register for each device according to

how the interrupt pin is routed for its PCI slot. The value is

assigned by the firmware, because only the firmware knows how the

motherboard routes the different interrupt pins to the processor. For

the device driver, however, the PCI_INTERRUPT_LINE

register is read-only. Interestingly, recent versions of the Linux

kernel under some circumstances can assign interrupt lines without

resorting to the BIOS.

[bookmark: linuxdrive3-CHP-12-SECT-1.11]
12.1.11. Hardware Abstractions

We complete the discussion

[bookmark: linuxdrive3-CHP-12-ITERM-6350]
[bookmark: linuxdrive3-CHP-12-ITERM-6351]of

PCI by taking a quick look at how the system handles the plethora of

PCI controllers[bookmark: linuxdrive3-CHP-12-ITERM-6352] available on the marketplace. This is

just an informational section, meant to show the curious reader how

the object-oriented layout of the kernel extends down to the lowest

levels.

The mechanism used to implement hardware abstraction is the usual

structure containing methods. It's a powerful

technique that adds just the minimal overhead of dereferencing a

pointer to the normal overhead of a function call. In the case of PCI

management, the only hardware-dependent operations are the ones that

read and write configuration registers, because everything else in

the PCI world is accomplished by directly reading and writing the I/O

and memory address spaces, and those are under direct control of the

CPU.

Thus, the relevant structure for configuration register access

includes only two fields:

struct pci_ops {

    int (*read)(struct pci_bus *bus, unsigned int devfn, int where, int size, 

                u32 *val);

    int (*write)(struct pci_bus *bus, unsigned int devfn, int where, int size, 

                 u32 val);

};
 

The structure is defined in <linux/pci.h>

and used by drivers/pci/pci.c, where the actual

public functions are defined.

The two functions that act on the PCI configuration space have more

overhead than dereferencing a pointer; they use cascading pointers

due to the high object-orientedness of the code, but the overhead is

not an issue in operations that are performed quite rarely and never

in speed-critical paths. The actual implementation of

pci_read_config_byte(dev, where, val), for

instance, expands to:

dev->bus->ops->read(bus, devfn, where, 8, val);
 

The various PCI buses in the system are detected at system boot, and

that's when the struct pci_bus

items are created and associated with their features, including the

ops field.

Implementing [bookmark: linuxdrive3-CHP-12-ITERM-6353] [bookmark: linuxdrive3-CHP-12-ITERM-6354] [bookmark: linuxdrive3-CHP-12-ITERM-6355]hardware abstraction via

"hardware operations" data

structures is typical in the Linux kernel. One important example is

the struct alpha_machine_vector

data structure. It is defined in

<asm-alpha/machvec.h> and takes care of

everything that may change across different Alpha-based computers.







[bookmark: linuxdrive3-CHP-12-SECT-2]
12.2. A Look Back: ISA

The ISA bus is quite old in [bookmark: linuxdrive3-CHP-12-ITERM-6356]
[bookmark: linuxdrive3-CHP-12-ITERM-6357]
[bookmark: linuxdrive3-CHP-12-ITERM-6358]design and is a notoriously poor

performer, but it still holds a good part of the market for extension

devices. If speed is not important and you want to support old

motherboards, an ISA implementation is preferable to PCI. An

additional advantage of this old standard is that if you are an

electronic hobbyist, you can easily build your own ISA devices,

something definitely not possible with PCI.

On the other hand, a great disadvantage of ISA is that

it's tightly bound to the PC architecture; the

interface bus has all the limitations of the 80286 processor and

causes endless pain to system programmers. The other great problem

with the ISA design (inherited from the original IBM PC) is the lack

of geographical addressing, which has led to many problems and

lengthy unplug-rejumper-plug-test cycles to add new devices.

It's interesting to note that even the oldest Apple

II computers were already exploiting geographical addressing, and

they featured jumperless expansion boards.

Despite its great disadvantages, ISA is still used in several

unexpected places. For example, the VR41xx series of MIPS processors

used in several palmtops features an ISA-compatible expansion bus,

strange as it seems. The reason behind these unexpected uses of ISA

is the extreme low cost of some legacy hardware, such as 8390-based

Ethernet cards, so a CPU with ISA electrical signaling can easily

exploit the awful, but cheap, PC devices.

[bookmark: linuxdrive3-CHP-12-SECT-2.1]
12.2.1. Hardware Resources

An ISA device can be equipped with I/O

[bookmark: linuxdrive3-CHP-12-ITERM-6359]
[bookmark: linuxdrive3-CHP-12-ITERM-6360]ports,

memory areas, and interrupt lines.

Even though the x86 processors support 64 KB of I/O port memory

(i.e., the processor asserts 16 address lines), some old PC hardware

decodes only the lowest 10 address lines. This limits the usable

address space to 1024 ports, because any address in the range 1 KB to

64 KB is mistaken for a low address by any device that decodes only

the low address lines. Some peripherals circumvent this limitation by

mapping only one port into the low kilobyte and using the high

address lines to select between different device registers. For

example, a device mapped at 0x340 can safely use

port 0x740, 0xB40, and so on.

If the availability of I/O ports is limited, memory access is still

worse. An ISA device can use only the memory range between 640 KB and

1 MB and between 15 MB and 16 MB for I/O register and device control.

The 640-KB to 1-MB range is used by the PC BIOS, by VGA-compatible

video boards, and by various other devices, leaving little space

available for new devices. Memory at 15 MB, on the other hand, is not

directly supported by Linux, and hacking the kernel to support it is

a waste of programming time nowadays.

The third resource available to ISA device boards is interrupt lines.

A limited number of interrupt lines is routed to the ISA bus, and

they are shared by all the interface boards. As a result, if devices

aren't properly configured, they can find themselves

using the same interrupt lines.

Although the original ISA specification doesn't

allow interrupt sharing across devices, most device boards allow

it.[5] Interrupt sharing at the software level

is described in Chapter 10.
[bookmark: linuxdrive3-CHP-12-FNOTE-5][5] The problem with interrupt sharing is a matter of

electrical engineering: if a device drives the signal line

inactive�by applying a low-impedance voltage level�the

interrupt can't be shared. If, on the other hand,

the device uses a pull-up resistor to the inactive logic level,

sharing is possible. This is the norm nowadays. However,

there's still a potential risk of losing interrupt

events since ISA interrupts are edge triggered instead of level

triggered. Edge-triggered interrupts are easier to implement in

hardware but don't lend themselves to safe

sharing.


[bookmark: linuxdrive3-CHP-12-SECT-2.2]
12.2.2. ISA Programming

As far as programming

is[bookmark: linuxdrive3-CHP-12-ITERM-6361]
[bookmark: linuxdrive3-CHP-12-ITERM-6362]

concerned, there's no specific aid in the kernel or

the BIOS to ease access to ISA devices (like there is, for example,

for PCI). The only facilities you can use are the registries of I/O

ports and IRQ lines, described in 

Section 10.2.

The programming techniques shown throughout the first part of this

book apply to ISA devices; the driver can probe for I/O ports, and

the interrupt line must be autodetected with one of the techniques

shown in Section 10.2.2.

The helper functions isa_readb and friends have

been briefly introduced in 

Chapter 9, and

there's nothing more to say about them.

[bookmark: linuxdrive3-CHP-12-SECT-2.3]
12.2.3. The Plug-and-Play Specification

Some new ISA device boards follow peculiar design rules and require a

special initialization sequence intended to simplify installation and

configuration of add-on interface boards. The specification for the

design of these boards is called plug and

play[bookmark: linuxdrive3-CHP-12-ITERM-6363] [bookmark: linuxdrive3-CHP-12-ITERM-6364] (PnP) and consists of a cumbersome rule

set for building and configuring jumperless ISA devices. PnP devices

implement relocatable I/O regions; the PC's BIOS is

responsible for the relocation�reminiscent of PCI.

In short, the goal of PnP is to obtain the same flexibility found in

PCI devices without changing the underlying electrical interface (the

ISA bus). To this end, the specs define a set of device-independent

configuration registers and a way to geographically address the

interface boards, even though the physical bus

doesn't carry per-board (geographical)

wiring�every ISA signal line connects to every available slot.

Geographical addressing works by assigning a small integer, called

the card select number[bookmark: linuxdrive3-CHP-12-ITERM-6365] [bookmark: linuxdrive3-CHP-12-ITERM-6366] (CSN), to each PnP

peripheral in the computer. Each PnP device features a unique serial

identifier, 64 bits wide, that is hardwired into the peripheral

board. CSN assignment uses the unique serial number to identify the

PnP devices. But the CSNs can be assigned safely only at boot time,

which requires the BIOS to be PnP aware. For this reason, old

computers require the user to obtain and insert a specific

configuration diskette, even if the device is PnP capable.

Interface boards following the PnP specs are complicated at the

hardware level. They are much more elaborate than PCI boards and

require complex software. It's not unusual to have

difficulty installing these devices, and even if the installation

goes well, you still face the performance constraints and the limited

I/O space of the ISA bus. It's much better to

install PCI devices whenever possible and enjoy the new technology

instead.

If you are interested in the PnP configuration software, you can

browse drivers/net/3c509.c, whose probing

function deals with PnP devices. The 2.6 kernel saw a lot of work in

the PnP device support area, so a lot of the inflexible interfaces

have been cleaned up compared to[bookmark: linuxdrive3-CHP-12-ITERM-6367] [bookmark: linuxdrive3-CHP-12-ITERM-6368] [bookmark: linuxdrive3-CHP-12-ITERM-6369] previous kernel releases.







[bookmark: linuxdrive3-CHP-12-SECT-3]
12.3. PC/104 and PC/104+

Currently in the industrial world, two[bookmark: linuxdrive3-CHP-12-ITERM-6370] bus architectures are quite

fashionable: PC/104 and PC/104+. Both are standard in PC-class

single-board computers.

Both standards refer to specific form factors for printed circuit

boards, as well as electrical/mechanical specifications for board

interconnections. The practical advantage of these buses is that they

allow circuit boards to be stacked vertically using a plug-and-socket

kind of connector on one side of the device.

The electrical and logical layout of the two buses is identical to

ISA (PC/104) and PCI (PC/104+), so software won't

notice any difference between the usual desktop buses and these two.







[bookmark: linuxdrive3-CHP-12-SECT-4]
12.4. Other PC Buses

PCI and ISA are the most commonly used peripheral interfaces in the

PC world, but they aren't the only ones.

Here's a summary of the features of other buses

found in the PC market.

[bookmark: linuxdrive3-CHP-12-SECT-4.1]
12.4.1. MCA

[bookmark: linuxdrive3-CHP-12-ITERM-6371] [bookmark: linuxdrive3-CHP-12-ITERM-6372]
[bookmark: linuxdrive3-CHP-12-ITERM-6373]Micro

Channel Architecture (MCA) is [bookmark: linuxdrive3-CHP-12-ITERM-6374]an IBM

standard used in PS/2 computers and some laptops. At the hardware

level, Micro Channel has more features than ISA. It supports

multimaster DMA, 32-bit address and data lines, shared interrupt

lines, and geographical addressing to access per-board configuration

registers. Such registers are called Programmable Option

Select[bookmark: linuxdrive3-CHP-12-ITERM-6375] [bookmark: linuxdrive3-CHP-12-ITERM-6376] (POS), but they

don't have all the features of the PCI registers.

Linux support for Micro Channel includes functions that are exported

to modules.

A device driver can read the integer value MCA_bus

to see if it is running on a Micro Channel computer. If the symbol is

a preprocessor macro, the macro MCA_bus_

_is_a_macro is defined as well. If MCA_bus_

_is_a_macro is undefined, then MCA_bus

is an integer variable exported to modularized code. Both

MCA_BUS and MCA_bus_

_is_a_macro are defined in

<asm/processor.h>.

[bookmark: linuxdrive3-CHP-12-SECT-4.2]
12.4.2. EISA

The[bookmark: linuxdrive3-CHP-12-ITERM-6377]
[bookmark: linuxdrive3-CHP-12-ITERM-6378]
[bookmark: linuxdrive3-CHP-12-ITERM-6379]

Extended ISA (EISA) bus is a 32-bit [bookmark: linuxdrive3-CHP-12-ITERM-6380]extension

to ISA, with a compatible interface connector; ISA device boards can

be plugged into an EISA connector. The additional wires are routed

under the ISA contacts.

Like PCI and MCA, the EISA bus is designed to host jumperless

devices, and it has the same features as MCA: 32-bit address and data

lines, multimaster DMA, and shared interrupt lines. EISA devices are

configured by software, but they don't need any

particular operating system support. EISA drivers already exist in

the Linux kernel for Ethernet devices and SCSI controllers.

An EISA driver checks the value EISA_bus to

determine if the host computer carries an EISA bus. Like

MCA_bus, EISA_bus is either a

macro or a variable, depending on whether EISA_bus_

_is_a_macro is defined. Both symbols are defined in

<asm/processor.h>.

The kernel has full EISA support for devices with sysfs and resource

management functionality. This is located in the

drivers/eisa directory.

[bookmark: linuxdrive3-CHP-12-SECT-4.3]
12.4.3. VLB

Another extension to ISA is the [bookmark: linuxdrive3-CHP-12-ITERM-6381] [bookmark: linuxdrive3-CHP-12-ITERM-6382]
[bookmark: linuxdrive3-CHP-12-ITERM-6383]
[bookmark: linuxdrive3-CHP-12-ITERM-6384]VESA

Local Bus (VLB) interface[bookmark: linuxdrive3-CHP-12-ITERM-6385] bus,

which extends the ISA [bookmark: linuxdrive3-CHP-12-ITERM-6386]connectors by adding a third lengthwise

slot. A device can just plug into this extra connector (without

plugging in the two associated ISA connectors), because the VLB slot

duplicates all important signals from the ISA connectors. Such

"standalone" VLB peripherals not

using the ISA slot are rare, because most devices need to reach the

back panel so that their external connectors are available.

The VESA bus is much more limited in its capabilities than the EISA,

MCA, and PCI buses and is disappearing from the market. No special

kernel support exists for VLB. However, both the Lance Ethernet

driver and the IDE disk driver in Linux 2.0 can deal with VLB

versions of their devices.







[bookmark: linuxdrive3-CHP-12-SECT-5]
12.5. SBus

While most computers nowadays are[bookmark: linuxdrive3-CHP-12-ITERM-6387]

equipped with a PCI or ISA interface bus, most older SPARC-based

workstations use SBus to connect their peripherals.

[bookmark: linuxdrive3-CHP-12-ITERM-6388]
[bookmark: linuxdrive3-CHP-12-ITERM-6389]SBus

is quite an advanced design, although it has been around for a long

time. It is meant to be processor independent (even though only SPARC

computers use it) and is optimized for I/O peripheral boards. In

other words, you can't plug additional RAM into SBus

slots (RAM expansion boards have long been forgotten even in the ISA

world, and PCI does not support them either). This optimization is

meant to simplify the design of both hardware devices and system

software, at the expense of some additional complexity in the

motherboard.

This I/O bias of the bus results in peripherals using

virtual addresses to transfer data, thus

bypassing the need to allocate a contiguous DMA buffer. The

motherboard is responsible for decoding the virtual addresses and

mapping them to physical addresses. This requires attaching an MMU

(memory management unit) to the bus; the chipset in charge of the

task is called IOMMU. Although somehow more complex than using

physical addresses on the interface bus, this design is greatly

simplified by the fact that SPARC processors have always been

designed by keeping the MMU core separate from the CPU core (either

physically or at least conceptually). Actually, this design choice is

shared by other smart processor designs and is beneficial overall.

Another feature of this bus is that device boards exploit massive

geographical addressing, so there's no need to

implement an address decoder in every peripheral or to deal with

address conflicts.

SBus peripherals use the Forth language in their PROMs to initialize

themselves. Forth was chosen because the interpreter is lightweight

and, therefore, can be easily implemented in the firmware of any

computer system. In addition, the SBus specification outlines the

boot process, so that compliant I/O devices fit easily into the

system and are recognized at system boot. This was a great step to

support multi-platform devices; it's a completely

different world from the PC-centric ISA stuff we were used to.

However, it didn't succeed for a variety of

commercial reasons.

Although current kernel versions offer quite full-featured support

for SBus devices, the bus is used so little nowadays that

it's not worth covering in detail here. Interested

readers can look at source files in

arch/sparc/kernel and

arch/sparc/mm.







[bookmark: linuxdrive3-CHP-12-SECT-6]
12.6. NuBus

Another interesting, but nearly forgotten, interface bus is NuBus. It

is found on older Mac computers (those with the M68k family of CPUs).

All of the [bookmark: linuxdrive3-CHP-12-ITERM-6390]
[bookmark: linuxdrive3-CHP-12-ITERM-6391]
[bookmark: linuxdrive3-CHP-12-ITERM-6392]bus

is memory-mapped (like everything with the M68k), and the devices are

only geographically addressed. This is good and typical of Apple, as

the much older Apple II already had a similar bus layout. What is bad

is that it's almost impossible to find documentation

on NuBus, due to the close-everything policy Apple has always

followed with its Mac computers (and unlike the previous Apple II,

whose source code and schematics were available at little cost).

The file drivers/nubus/nubus.c includes almost

everything we know about this bus, and it's

interesting reading; it shows how much hard reverse engineering

developers had to do.







[bookmark: linuxdrive3-CHP-12-SECT-7]
12.7. External Buses

One of the most [bookmark: linuxdrive3-CHP-12-ITERM-6393] [bookmark: linuxdrive3-CHP-12-ITERM-6394]recent entries in the field of interface

buses is the whole class of external buses. This includes USB,

FireWire, and IEEE1284 (parallel-port-based external bus). These

interfaces are somewhat similar to older and not-so-external

technology, such as PCMCIA/CardBus and even SCSI.

Conceptually, these buses are neither full-featured interface buses

(like PCI is) nor dumb communication channels (like the serial ports

are). It's hard to classify the software that is

needed to exploit their features, as it's usually

split into two levels: the driver for the hardware controller (like

drivers for PCI SCSI adaptors or PCI controllers introduced in the

Section 12.1) and the driver for the specific

"client" device (like

sd.c handles generic SCSI disks and so-called

PCI drivers deal with cards plugged in the bus).







[bookmark: linuxdrive3-CHP-12-SECT-8]
12.8. Quick Reference

This section summarizes the symbols introduced in the chapter:

[bookmark: linuxdrive3-CHP-12-ITERM-6395][bookmark: linuxdrive3-CHP-12-ITERM-6396][bookmark: linuxdrive3-CHP-12-ITERM-6397][bookmark: linuxdrive3-CHP-12-ITERM-6398][bookmark: linuxdrive3-CHP-12-ITERM-6399][bookmark: linuxdrive3-CHP-12-ITERM-6400]

	#include <linux/pci.h> 

	
Header that includes symbolic names for the PCI

[bookmark: linuxdrive3-CHP-12-ITERM-6395]registers

and several vendor and device ID values.





	struct pci_dev; 

	
Structure that represents a PCI device within the kernel.





	struct pci_driver; 

	
Structure that represents a PCI driver. All PCI drivers must define

this.





	struct pci_device_id; 

	
Structure that describes the

[bookmark: linuxdrive3-CHP-12-ITERM-6396]types of PCI devices this driver

supports.





	int pci_register_driver(struct pci_driver *drv); 



	int pci_module_init(struct pci_driver *drv); 



	void pci_unregister_driver(struct pci_driver *drv); 

	
Functions that register or unregister a PCI driver from the kernel.





	struct pci_dev *pci_find_device(unsigned int vendor, unsigned int device, 



	 struct pci_dev *from); 



	struct pci_dev *pci_find_device_reverse(unsigned int vendor, unsigned int 



	 device, const struct pci_dev *from); 



	struct pci_dev *pci_find_subsys (unsigned int vendor, unsigned int device, 



	 unsigned int ss_vendor, unsigned int ss_device, const struct pci_dev *from); 



	struct pci_dev *pci_find_class(unsigned int class, struct pci_dev *from); 

	
Functions that search the[bookmark: linuxdrive3-CHP-12-ITERM-6397]

device[bookmark: linuxdrive3-CHP-12-ITERM-6398]

list for devices with a specific signature or those belonging to a

specific class. The return value is NULL if none

is found. from is used to continue a search; it

must be NULL the first time you call either

function, and it must point to the device just found if you are

searching for more devices. These functions are not recommended to be

used, use the pci_get_ variants instead.





	struct pci_dev *pci_get_device(unsigned int vendor, unsigned int device, 



	 struct pci_dev *from); 



	struct pci_dev *pci_get_subsys(unsigned int vendor, unsigned int device, 



	 unsigned int ss_vendor, unsigned int ss_device, struct pci_dev *from); 



	struct pci_dev *pci_get_slot(struct pci_bus *bus, unsigned int devfn); 

	
Functions that search the device [bookmark: linuxdrive3-CHP-12-ITERM-6399]
[bookmark: linuxdrive3-CHP-12-ITERM-6400]list for devices

with a specific signature or belonging to a specific class. The

return value is NULL if none is found.

from is used to continue a search; it must be

NULL the first time you call either function, and

it must point to the device just found if you are searching for more

devices. The structure returned has its reference count incremented,

and after the caller is finished with it, the function

pci_dev_put must be called.





	int pci_read_config_byte(struct pci_dev *dev, int where, u8 *val); 



	int pci_read_config_word(struct pci_dev *dev, int where, u16 *val); 



	int pci_read_config_dword(struct pci_dev *dev, int where, u32 *val); 



	int pci_write_config_byte (struct pci_dev *dev, int where, u8 *val); 



	int pci_write_config_word (struct pci_dev *dev, int where, u16 *val); 



	int pci_write_config_dword (struct pci_dev *dev, int where, u32 *val); 

	
Functions that read or write a PCI configuration register. Although

the Linux kernel takes care of byte ordering, the programmer must be

careful about byte ordering when assembling multibyte values from

individual bytes. The PCI bus is little-endian.





	int pci_enable_device(struct pci_dev *dev); 

	
Enables a PCI device.





	unsigned long pci_resource_start(struct pci_dev *dev, int bar); 



	unsigned long pci_resource_end(struct pci_dev *dev, int bar); 



	unsigned long pci_resource_flags(struct pci_dev *dev, int bar); 

	
Functions that handle PCI device resources.











[bookmark: linuxdrive3-CHP-13]

Chapter 13. USB Drivers

The universal serial bus (USB) is a

[bookmark: linuxdrive3-CHP-13-ITERM-6401]
[bookmark: linuxdrive3-CHP-13-ITERM-6402]
[bookmark: linuxdrive3-CHP-13-ITERM-6403]
[bookmark: linuxdrive3-CHP-13-ITERM-6404]
[bookmark: linuxdrive3-CHP-13-ITERM-6405]connection

[bookmark: linuxdrive3-CHP-13-ITERM-6406]between a host computer

and a number of peripheral devices. It was originally created to

replace a wide range of slow and different buses�the parallel,

serial, and keyboard connections�with a single bus type that

all devices could connect to.[1] USB has grown beyond these

slow connections and now supports almost every type of device that

can be connected to a PC. The latest revision of the USB

specification added high-speed connections with a theoretical speed

limit of 480 MBps.
[bookmark: linuxdrive3-CHP-13-FNOTE-1][1] Portions of this

chapter are based on the in-kernel documentation for the Linux kernel

USB code, which were written by the kernel USB developers and

released under the GPL.


Topologically, a USB subsystem is not laid out as a bus; it is rather

a tree built out of several point-to-point links. The links are

four-wire cables (ground, power, and two signal wires) that connect a

device and a hub, just like twisted-pair Ethernet. The USB host

controller is in charge of asking every USB device if it has any data

to send. Because of this topology, a USB device can never start

sending data without first being asked to by the host controller.

This configuration allows for a very easy plug-and-play type of

system, whereby devices can be automatically configured by the host

computer.

The bus is very simple at the technological level, as

it's a single-master implementation in which the

host computer polls the various peripheral devices. Despite this

intrinsic limitation, the bus has some interesting features, such as

the ability for a device to request a fixed bandwidth for its data

transfers in order to reliably support video and audio I/O. Another

important feature of USB is that it acts merely as a communication

channel between the device and the host, without requiring specific

meaning or structure to the data it delivers.[2]
[bookmark: linuxdrive3-CHP-13-FNOTE-2][2] Actually, some structure is there, but it mostly reduces to a

requirement for the communication to fit into one of a few predefined

classes: a keyboard won't allocate bandwidth, for

example, while some video cameras will.


The USB protocol specifications define a set of standards that any

device of a specific type can follow. If a device follows that

standard, then a special driver for that device is not necessary.

These different types are called classes and consist of things like

storage devices, keyboards, mice, joysticks, network devices, and

modems. Other types of devices that do not fit into these classes

require a special vendor-specific driver to be written for that

specific device. Video devices and USB-to-serial devices are a good

example where there is no defined standard, and a driver is needed

for every different device from different manufacturers.

These features, together with the inherent hotplug capability of the

design, make USB a handy, low-cost mechanism to connect (and

disconnect) several devices to the computer without the need to shut

the system down, open the cover, and swear over screws and wires.

The Linux kernel supports two main types of USB drivers: drivers on a

host system and drivers on a device. The USB drivers for a host

system control the USB devices that are plugged into it, from the

host's point of view (a common USB host is a desktop

computer.) The USB drivers in a device, control how that single

device looks to the host computer as a USB device. As the term

"USB device drivers" is very

confusing, the USB developers have created the term

"USB gadget drivers" to describe

the drivers that control a USB device that connects to a computer

(remember that Linux also runs in those tiny embedded devices, too.)

This chapter details how the USB system that runs on a desktop

computer works. USB gadget drivers are outside the realm of this book

at this point in time.

As Chapter 13 shows, USB

drivers live between the different kernel subsytems (block, net,

char, etc.) and the USB hardware controllers. The USB core provides

an interface for USB drivers to use to access and control the USB

hardware, without having to worry about the different types of USB

hardware controllers that are present on the system.

[bookmark: linuxdrive3-CHP-13-FIG-1]
Figure 13-1. USB driver overview
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[bookmark: linuxdrive3-CHP-13-SECT-1]
13.1. USB Device Basics

A USB device is a very complex thing, as described in the official

USB documentation (available at http://www.usb.org). Fortunately, the Linux

kernel provides a subsystem called the USB

core to handle most of the complexity. This chapter

describes the interaction between a driver and the USB core. Figure 13-1 shows how USB devices

consist of configurations, interfaces, and endpoints and how USB

drivers bind to USB interfaces, not the entire USB device.

[bookmark: linuxdrive3-CHP-13-FIG-2]
Figure 13-2. USB device overview
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[bookmark: linuxdrive3-CHP-13-SECT-1.1]
13.1.1. Endpoints

The most basic form of

[bookmark: linuxdrive3-CHP-13-ITERM-6407]USB

communication is through something called an

endpoint. A USB endpoint can carry data in

only one direction, either from the host computer to the device

(called an OUT endpoint) or from the device to

the host computer (called an IN endpoint).

Endpoints can be thought of as [bookmark: linuxdrive3-CHP-13-ITERM-6408]unidirectional pipes.

A USB endpoint can be one of four different types that describe how

the data is transmitted:

[bookmark: linuxdrive3-CHP-13-ITERM-6409][bookmark: linuxdrive3-CHP-13-ITERM-6410][bookmark: linuxdrive3-CHP-13-ITERM-6411]

	[bookmark: linuxdrive3-CHP-13-ITERM-6409]CONTROL 

	
Control endpoints are used to allow access to different parts of the

USB device. They are commonly used for configuring the device,

retrieving information about the device, sending commands to the

device, or retrieving status reports about the device. These

endpoints are usually small in size. Every USB device has a control

endpoint called "endpoint 0" that

is used by the USB core to configure the device at insertion time.

These transfers are guaranteed by the USB protocol to always have

enough reserved bandwidth to make it through to the device.





	INTERRUPT 

	
Interrupt endpoints transfer small amounts of data at a fixed rate

every time the USB host asks the device for data. These endpoints are

the primary transport method for USB keyboards and mice. They are

also commonly used to send data to USB devices to control the device,

but are not generally used to transfer large amounts of data. These

transfers are guaranteed by the USB protocol to always have enough

reserved bandwidth to make it through.





	[bookmark: linuxdrive3-CHP-13-ITERM-6410]BULK 

	
Bulk endpoints transfer large amounts of data. These endpoints are

usually much larger (they can hold more characters at once) than

interrupt endpoints. They are common for devices that need to

transfer any data that must get through with no data loss. These

transfers are not guaranteed by the USB protocol to always make it

through in a specific amount of time. If there is not enough room on

the bus to send the whole BULK packet, it is split up across multiple

transfers to or from the device. These endpoints are common on

printers, storage, and network devices.





	[bookmark: linuxdrive3-CHP-13-ITERM-6411]ISOCHRONOUS 

	
Isochronous endpoints also transfer large amounts of data, but the

data is not always guaranteed to make it through. These endpoints are

used in devices that can handle loss of data, and rely more on

keeping a constant stream of data flowing. Real-time data

collections, such as audio and video devices, almost always use these

endpoints.





Control and bulk endpoints are used for asynchronous data transfers,

whenever the driver decides to use them. Interrupt and isochronous

endpoints are periodic. This means that these endpoints are set up to

transfer data at fixed times continuously, which causes their

bandwidth to be reserved by the USB core.

USB endpoints are described in the kernel with the structure

struct usb_host_endpoint. This

structure contains the real endpoint information in another structure

called struct
usb_endpoint_descriptor. The latter structure

contains all of the USB-specific data in the exact format that the

device itself specified. The fields of this structure that drivers

care about are:

[bookmark: linuxdrive3-CHP-13-ITERM-6412][bookmark: linuxdrive3-CHP-13-ITERM-6413][bookmark: linuxdrive3-CHP-13-ITERM-6414][bookmark: linuxdrive3-CHP-13-ITERM-6415]

	bEndpointAddress[bookmark: linuxdrive3-CHP-13-ITERM-6412] 

	
This is the USB address of this specific endpoint. Also included in

this 8-bit value is the direction of the endpoint. The bitmasks

USB_DIR_OUT and USB_DIR_IN can

be placed against this field to determine if the data for this

endpoint is directed to the device or to the host.





	bmAttributes[bookmark: linuxdrive3-CHP-13-ITERM-6413] 

	
This is the type of endpoint. The bitmask

USB_ENDPOINT_XFERTYPE_MASK should be placed

against this value in order to determine if the endpoint is of type

USB_ENDPOINT_XFER_ISOC,

USB_ENDPOINT_XFER_BULK, or of type

USB_ENDPOINT_XFER_INT. These macros define a

isochronous, bulk, and interrupt endpoint, respectively.





	wMaxPacketSize[bookmark: linuxdrive3-CHP-13-ITERM-6414] 

	
This is the maximum size in bytes that this endpoint can handle at

once. Note that it is possible for a driver to send amounts of data

to an endpoint that is bigger than this value, but the data will be

divided up into wMaxPacketSize chunks when

actually transmitted to the device. For high-speed devices, this

field can be used to support a high-bandwidth mode for the endpoint

by using a few extra bits in the upper part of the value. See the USB

specification for more details about how this is done.





	bInterval[bookmark: linuxdrive3-CHP-13-ITERM-6415] 

	
If this endpoint is of type interrupt, this value is the interval

setting for the endpoint�that is, the time between interrupt

requests for the endpoint. The value is represented in milliseconds.





The fields of this structure do not have a

"traditional" Linux kernel naming

scheme. This is because these fields directly correspond to the field

names in the USB specification. The USB kernel programmers felt that

it was more important to use the specified names, so as to reduce

confusion when reading the specification, than it was to have

variable names that look familiar to Linux programmers.

[bookmark: linuxdrive3-CHP-13-SECT-1.2]
13.1.2. Interfaces

USB endpoints are bundled up

[bookmark: linuxdrive3-CHP-13-ITERM-6416]
[bookmark: linuxdrive3-CHP-13-ITERM-6417]into

interfaces. USB interfaces handle only one

type of a USB logical connection, such as a mouse, a keyboard, or a

audio stream. Some USB devices have multiple interfaces, such as a

USB speaker that might consist of two interfaces: a USB keyboard for

the buttons and a USB audio stream. Because a USB interface

represents basic functionality, each USB driver controls an

interface; so, for the speaker example, Linux needs two different

drivers for one hardware device.

USB interfaces may have alternate settings, which are different

choices for parameters of the interface. The initial state of a

interface is in the first setting, numbered 0.

Alternate settings can be used to control individual endpoints in

different ways, such as to reserve different amounts of USB bandwidth

for the device. Each device with an isochronous endpoint uses

alternate settings for the same interface.

USB interfaces are described in the kernel with the

struct usb_interface structure.

This structure is what the USB core passes to USB drivers and is what

the USB driver then is in charge of controlling. The important fields

in this structure are:

[bookmark: linuxdrive3-CHP-13-ITERM-6418][bookmark: linuxdrive3-CHP-13-ITERM-6419][bookmark: linuxdrive3-CHP-13-ITERM-6420][bookmark: linuxdrive3-CHP-13-ITERM-6421]

	struct usb_host_interface *altsetting[bookmark: linuxdrive3-CHP-13-ITERM-6418] 

	
An array of interface structures containing all of the alternate

settings that may be selected for this interface. Each

struct usb_host_interface

consists of a set of endpoint configurations as defined by the

struct usb_host_endpoint

structure described above. Note that these interface structures are

in no particular order.





	unsigned num_altsetting[bookmark: linuxdrive3-CHP-13-ITERM-6419] 

	
The number of alternate settings pointed to by the

altsetting pointer.





	struct usb_host_interface *cur_altsetting[bookmark: linuxdrive3-CHP-13-ITERM-6420] 

	
A pointer into the array altsetting, denoting the

currently active setting for this interface.





	int minor[bookmark: linuxdrive3-CHP-13-ITERM-6421] 

	
If the USB driver bound to this interface uses the USB major number,

this variable contains the minor number assigned by the USB core to

the interface. This is valid only after a successful call to

usb_register_dev (described later in this

chapter).





There are other fields in the[bookmark: linuxdrive3-CHP-13-ITERM-6422] struct
usb_interface structure, but USB drivers do not

need to be aware of them.

[bookmark: linuxdrive3-CHP-13-SECT-1.3]
13.1.3. Configurations

USB interfaces are t[bookmark: linuxdrive3-CHP-13-ITERM-6423]
[bookmark: linuxdrive3-CHP-13-ITERM-6424]
[bookmark: linuxdrive3-CHP-13-ITERM-6425]hemselves bundled up into

configurations. A USB device can have multiple

configurations and might switch between them in order to change the

state of the device. For example, some devices that allow firmware to

be downloaded to them contain multiple configurations to accomplish

this. A single configuration can be enabled only at one point in

time. Linux does not handle multiple configuration USB devices very

well, but, thankfully, they are rare.

Linux describes USB configurations with the structure

struct usb_host_config and

entire USB devices with the structure struct
usb_device. USB device drivers do not generally

ever need to read or write to any values in these structures, so they

are not defined in detail here. The curious reader can find

descriptions of them in the file

include/linux/usb.h in the kernel source tree.

A USB device driver commonly has to convert data from a given

struct usb_interface structure

into a struct usb_device

structure that the USB core needs for a wide range of function calls.

To do this, the function interface_to_usbdev is

provided. Hopefully, in the future, all USB calls that currently need

a struct usb_device will be

converted to take a struct
usb_interface parameter and will not require the

drivers to do the conversion.

So to summarize, USB devices are quite complex and are made up of

lots of different [bookmark: linuxdrive3-CHP-13-ITERM-6426]logical units. The relationships among

these units can be simply described as follows:

	Devices usually have one or more configurations.

	Configurations often have one or more interfaces.

	Interfaces usually have one or more settings.

	Interfaces have zero or more endpoints.









[bookmark: linuxdrive3-CHP-13-SECT-2]
13.2. USB and Sysfs

Due to the complexity of a single [bookmark: linuxdrive3-CHP-13-ITERM-6427]
[bookmark: linuxdrive3-CHP-13-ITERM-6428]
[bookmark: linuxdrive3-CHP-13-ITERM-6429]
[bookmark: linuxdrive3-CHP-13-ITERM-6430] [bookmark: linuxdrive3-CHP-13-ITERM-6431]USB physical device, the

representation of that device in sysfs is also quite complex. Both

the physical USB device (as represented by a

struct usb_device) and the

individual USB interfaces (as represented by a

struct usb_interface) are shown

in sysfs as individual devices. (This is because both of those

structures contain a struct
device structure.) As an example, for a simple USB

mouse that contains only one USB interface, the following would be

the sysfs directory tree for that device:

/sys/devices/pci0000:00/0000:00:09.0/usb2/2-1

|-- 2-1:1.0

|   |-- bAlternateSetting

|   |-- bInterfaceClass

|   |-- bInterfaceNumber

|   |-- bInterfaceProtocol

|   |-- bInterfaceSubClass

|   |-- bNumEndpoints

|   |-- detach_state

|   |-- iInterface

|   `-- power

|       `-- state

|-- bConfigurationValue

|-- bDeviceClass

|-- bDeviceProtocol

|-- bDeviceSubClass

|-- bMaxPower

|-- bNumConfigurations

|-- bNumInterfaces

|-- bcdDevice

|-- bmAttributes

|-- detach_state

|-- devnum

|-- idProduct

|-- idVendor

|-- maxchild

|-- power

|   `-- state

|-- speed

`-- version
 

The struct usb_device is

represented in the tree at:

/sys/devices/pci0000:00/0000:00:09.0/usb2/2-1
 

while the USB interface for the mouse�the interface that the

USB mouse driver is bound to�is located at the directory:

/sys/devices/pci0000:00/0000:00:09.0/usb2/2-1/2-1:1.0
 

To help understand what this long device path means, we describe how

the kernel labels the USB devices.

The first USB device is a root hub. This is the USB controller,

usually contained in a PCI device. The controller is so named because

it controls the whole USB bus connected to it. The controller is a

bridge between the PCI bus and the USB bus, as well as being the

first USB device on that bus.

All [bookmark: linuxdrive3-CHP-13-ITERM-6432]
[bookmark: linuxdrive3-CHP-13-ITERM-6433]
[bookmark: linuxdrive3-CHP-13-ITERM-6434]root hubs are assigned a unique number

by the USB core. In our example, the root hub is called

usb2, as it is the second root hub that was

registered with the USB core. There is no limit on the number of root

hubs that can be contained in a single system at any time.

Every device that is on a USB bus takes the number of the root hub as

the first number in its name. That is followed by a

- character and then the number of the port that

the device is plugged into. As the device in our example is plugged

into the first port, a 1 is added to the name. So

the device name for the main USB mouse device is

2-1. Because this USB device contains one

interface, that causes another device in the tree to be added to the

sysfs path. The naming scheme for USB interfaces is the device name

up to this point: in our example, it's

2-1 followed by a colon and the USB configuration

number, then a period and the interface number. So for this example,

the device name is 2-1:1.0 because it is the first

configuration and has interface number zero.

So to summarize, the USB sysfs device

[bookmark: linuxdrive3-CHP-13-ITERM-6435]naming scheme is:

root_hub-hub_port:config.interface
 

As the devices go further down in the USB tree, and as more and more

USB hubs are used, the hub port number is added to the string

following the previous hub port number in the chain. For a two-deep

tree, the device name looks like:

root_hub-hub_port-hub_port:config.interface
 

As can be seen in the previous directory listing of the USB device

and interface, all of the USB specific information is available

directly through sysfs (for example, the idVendor, idProduct, and

bMaxPower information). One of these files,

bConfigurationValue, can be written to in order

to change the active USB configuration that is being used. This is

useful for devices that have multiple configurations, when the kernel

is unable to determine what configuration to select in order to

properly operate the device. A number of USB modems need to have the

proper configuration value written to this file in order to have the

correct USB driver bind to the device.

Sysfs does not expose all of the different parts of a USB device, as

it stops at the interface level. Any alternate configurations that

the device may contain are not shown, as well as the details of the

endpoints associated with the interfaces. This information can be

found in the usbfs filesystem, which is mounted

in the /proc/bus/usb/ directory on the system.

The file /proc/bus/usb/devices does show all of

the same information exposed in sysfs, as well as the alternate

configuration and endpoint information for all USB devices that are

present in the system. usbfs also allows

user-space programs to directly talk to USB devices, which has

enabled a lot of kernel drivers to be moved out to user space, where

it is easier to maintain and debug. The USB scanner driver is a good

example of this, as it is no longer present in the kernel because its

functionality is now contained in the user-space [bookmark: linuxdrive3-CHP-13-ITERM-6436] [bookmark: linuxdrive3-CHP-13-ITERM-6437] [bookmark: linuxdrive3-CHP-13-ITERM-6438] [bookmark: linuxdrive3-CHP-13-ITERM-6439] [bookmark: linuxdrive3-CHP-13-ITERM-6440]SANE library

programs.







[bookmark: linuxdrive3-CHP-13-SECT-3]
13.3. USB Urbs

The USB code in the Linux kernel[bookmark: linuxdrive3-CHP-13-ITERM-6441] [bookmark: linuxdrive3-CHP-13-ITERM-6442]
[bookmark: linuxdrive3-CHP-13-ITERM-6443]

communicates with all USB devices using something called a

urb ([bookmark: linuxdrive3-CHP-13-ITERM-6444]USB request block). This

request block is described with the struct urb

structure and can be found in the include/linux/usb.h

file.

A urb is used to send or receive data to or from a specific USB

endpoint on a specific USB device in an asynchronous manner. It is

used much like a kiocb structure is used in the

filesystem async I/O code or as a struct
skbuff is used in the networking code. A USB

device driver may allocate many urbs for a single endpoint or may

reuse a single urb for many different endpoints, depending on the

need of the driver. Every endpoint in a device can handle a queue of

urbs, so that multiple urbs can be sent to the same endpoint before

the queue is empty. The typical

lifecycle[bookmark: linuxdrive3-CHP-13-ITERM-6445]

of a urb is as follows:

	Created by a USB device driver.

	Assigned to a specific endpoint of a specific USB device.

	Submitted to the USB core, by the USB device driver.

	Submitted to the specific USB host controller driver for the

specified device by the USB core.

	Processed by the USB host controller driver that makes a USB transfer

to the device.

	When the urb is completed, the USB host controller driver notifies

the USB device driver.



Urbs can also be canceled any time by the driver that submitted the

urb, or by the USB core if the device is removed from the system.

urbs are dynamically created and contain an internal reference count

that enables them to be automatically freed when the last user of the

urb releases it.

The procedure described in this chapter for handling urbs is useful,

because it permits streaming and other complex, overlapping

communications that allow drivers to achieve the highest possible

data transfer speeds. But less cumbersome procedures are available if

you just want to send individual bulk or control messages and do not

care about data throughput rates. (See the Section 13.5.)

[bookmark: linuxdrive3-CHP-13-SECT-3.1]
13.3.1. struct urb

The fields of the[bookmark: linuxdrive3-CHP-13-ITERM-6446]
[bookmark: linuxdrive3-CHP-13-ITERM-6447]
[bookmark: linuxdrive3-CHP-13-ITERM-6448] struct urb

structure that matter to a USB device driver are:

[bookmark: linuxdrive3-CHP-13-ITERM-6449][bookmark: linuxdrive3-CHP-13-ITERM-6450]

	struct usb_device *dev[bookmark: linuxdrive3-CHP-13-ITERM-6449] 

	
Pointer to the struct usb_device to which this urb

is sent. This variable must be initialized by the USB driver before

the urb can be sent to the USB core.





	unsigned int pipe[bookmark: linuxdrive3-CHP-13-ITERM-6450] 

	
Endpoint information for the specific struct
usb_device that this urb is to be sent to. This

variable must be initialized by the USB driver before the urb can be

sent to the USB core.





To set fields of this structure, the driver uses the following

functions as appropriate, depending on the direction of traffic. Note

that every endpoint can be of only one type.

[bookmark: linuxdrive3-CHP-13-ITERM-6451][bookmark: linuxdrive3-CHP-13-ITERM-6452][bookmark: linuxdrive3-CHP-13-ITERM-6453][bookmark: linuxdrive3-CHP-13-ITERM-6454][bookmark: linuxdrive3-CHP-13-ITERM-6455]

	unsigned int usb_sndctrlpipe(struct usb_device *dev, unsigned int 



	 endpoint) 

	
Specifies a control OUT endpoint for the specified USB device with

the specified endpoint number.





	unsigned int usb_rcvctrlpipe(struct usb_device *dev, unsigned int 



	 endpoint) 

	
Specifies a control IN endpoint for the specified USB device with the

specified endpoint number.





	unsigned int usb_sndbulkpipe(struct usb_device *dev, unsigned int 



	 endpoint) 

	
Specifies a bulk OUT endpoint for the specified USB device with the

specified endpoint number.





	unsigned int usb_rcvbulkpipe(struct usb_device *dev, unsigned int 



	 endpoint) 

	
Specifies a bulk IN endpoint for the specified USB device with the

specified endpoint number.





	unsigned int usb_sndintpipe(struct usb_device *dev, unsigned int endpoint) 

	
Specifies an interrupt OUT endpoint for the specified USB device with

the specified endpoint number.





	unsigned int usb_rcvintpipe(struct usb_device *dev, unsigned int endpoint) 

	
Specifies an interrupt IN endpoint for the specified USB device with

the specified endpoint number.





	unsigned int usb_sndisocpipe(struct usb_device *dev, unsigned int 



	 endpoint) 

	
Specifies an isochronous OUT endpoint for the specified USB device

with the specified endpoint number.





	unsigned int usb_rcvisocpipe(struct usb_device *dev, unsigned int 



	 endpoint) 

	
Specifies an isochronous IN endpoint for the specified USB device

with the specified endpoint number.





	unsigned int transfer_flags[bookmark: linuxdrive3-CHP-13-ITERM-6451] 

	
This variable can be set to a number of different bit values,

depending on what the USB driver wants to happen to the urb. The

available values are:





	URB_SHORT_NOT_OK 

	
When set, it specifies that any short read on an IN endpoint that

might occur should be treated as an error by the USB core. This value

is useful only for urbs that are to be read from the USB device, not

for write urbs.





	URB_ISO_ASAP 

	
If the urb is isochronous, this bit can be set if the driver wants

the urb to be scheduled, as soon as the bandwidth utilization allows

it to be, and to set the start_frame variable in

the urb at that point. If this bit is not set for an isochronous urb,

the driver must specify the start_frame value and

must be able to recover properly if the transfer cannot start at that

moment. See the upcoming section about isochronous urbs for more

information.





	URB_NO_TRANSFER_DMA_MAP 

	
Should be set when the urb contains a DMA buffer to be transferred.

The USB core uses the buffer pointed to by the

TRansfer_dma variable and not the buffer pointed

to by the transfer_buffer variable.





	URB_NO_SETUP_DMA_MAP 

	
Like the URB_NO_TRANSFER_DMA_MAP bit, this bit is

used for control urbs that have a DMA buffer already set up. If it is

set, the USB core uses the buffer pointed to by the

setup_dma variable instead of the

setup_packet variable.





	URB_ASYNC_UNLINK 

	
If set, the call to usb_unlink_urb for this urb

returns almost immediately, and the urb is unlinked in the

background. Otherwise, the function waits until the urb is completely

unlinked and finished before returning. Use this bit with care,

because it can make synchronization issues very difficult to debug.





	URB_NO_FSBR 

	
Used by only the UHCI USB Host controller driver and tells it to not

try to do Front Side Bus Reclamation logic. This bit should generally

not be set, because machines with a UHCI host controller create a lot

of CPU overhead, and the PCI bus is saturated waiting on a urb that

sets this bit.





	URB_ZERO_PACKET 

	
If set, a bulk out urb finishes by sending a short packet containing

no data when the data is aligned to an endpoint packet boundary. This

is needed by some broken USB devices (such as a number of USB to IR

devices) in order to work properly.





	URB_NO_INTERRUPT 

	
If set, the hardware may not generate an interrupt when the urb is

finished. This bit should be used with care and only when queuing

multiple urbs to the same endpoint. The USB core functions use this

in order to do DMA buffer transfers.





	void *transfer_buffer[bookmark: linuxdrive3-CHP-13-ITERM-6452] 

	
Pointer to the buffer to be used when sending data to the device (for

an OUT urb) or when receiving data from the device (for an IN urb).

In order for the host controller to properly access this buffer, it

must be created with a call to kmalloc, not on the

stack or statically. For control endpoints, this buffer is for the

data stage of the transfer.





	dma_addr_t transfer_dma[bookmark: linuxdrive3-CHP-13-ITERM-6453] 

	
Buffer to be used to transfer data to the USB device using DMA.





	int transfer_buffer_length[bookmark: linuxdrive3-CHP-13-ITERM-6454]
[bookmark: linuxdrive3-CHP-13-ITERM-6455] 

	
The length of the buffer pointed to by the

transfer_buffer or the

transfer_dma variable (as only one can be used for

a urb). If this is 0, neither transfer buffers are

used by the USB core.





For an OUT endpoint, if the endpoint maximum size is smaller than the

value specified in this variable, the transfer to the USB device is

broken up into smaller chunks in order to properly transfer the data.

This large transfer occurs in consecutive USB frames. It is much

faster to submit a large block of data in one urb, and have the USB

host controller split it up into smaller pieces, than it is to send

smaller buffers in consecutive order.

[bookmark: linuxdrive3-CHP-13-ITERM-6456][bookmark: linuxdrive3-CHP-13-ITERM-6457]

	unsigned char *setup_packet[bookmark: linuxdrive3-CHP-13-ITERM-6456] 

	
Pointer to the setup packet for a control urb. It is transferred

before the data in the transfer buffer. This variable is valid only

for control urbs.





	dma_addr_t setup_dma[bookmark: linuxdrive3-CHP-13-ITERM-6457] 

	
DMA buffer for the setup packet for a control urb. It is transferred

before the data in the normal transfer buffer. This variable is valid

only for control urbs.





	usb_complete_t complete 

	
Pointer to the completion handler function that is called by the USB

core when the urb is completely transferred or when an error occurs

to the urb. Within this function, the USB driver may inspect the urb,

free it, or resubmit it for another transfer. (See the Section 13.3.4 for more details

about the completion handler.)





The usb_complete_t typedef is defined as:

typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
 

[bookmark: linuxdrive3-CHP-13-ITERM-6458][bookmark: linuxdrive3-CHP-13-ITERM-6459][bookmark: linuxdrive3-CHP-13-ITERM-6460]

	void *context[bookmark: linuxdrive3-CHP-13-ITERM-6458] 

	
Pointer to a data blob that can be set by the USB driver. It can be

used in the completion handler when the urb is returned to the

driver. See the following section for more details about this

variable.





	int actual_length[bookmark: linuxdrive3-CHP-13-ITERM-6459] 

	
When the urb is finished, this variable is set to the actual length

of the data either sent by the urb (for OUT urbs) or received by the

urb (for IN urbs.) For IN urbs, this must be used instead of the

transfer_buffer_length variable, because the data

received could be smaller than the whole buffer size.





	int status[bookmark: linuxdrive3-CHP-13-ITERM-6460] 

	
When the urb is finished, or being processed by the USB core, this

variable is set to the current status of the urb. The only time a USB

driver can safely access this variable is in the urb completion

handler function (described in Section 13.3.4). This

restriction is to prevent race conditions that occur while the urb is

being processed by the USB core. For isochronous urbs, a successful

value (0) in this variable merely indicates

whether the urb has been unlinked. To obtain a detailed status on

isochronous urbs, the iso_frame_desc variables

should be checked.





Valid values for this variable include:

[bookmark: linuxdrive3-CHP-13-ITERM-6461][bookmark: linuxdrive3-CHP-13-ITERM-6462][bookmark: linuxdrive3-CHP-13-ITERM-6463][bookmark: linuxdrive3-CHP-13-ITERM-6464][bookmark: linuxdrive3-CHP-13-ITERM-6465]

	0

	
The urb transfer was successful.





	-ENOENT 

	
The urb was stopped by a call to usb_kill_urb.





	-ECONNRESET 

	
The urb was unlinked by a call to

usb_unlink_urb, and the

TRansfer_flags variable of the urb was set to

URB_ASYNC_UNLINK.





	-EINPROGRESS 

	
The urb is still being processed by the USB host controllers. If your

driver ever sees this value, it is a bug in your driver.





	-EPROTO 

	
One of the following errors occurred with this urb:

	A bitstuff error happened during the transfer.

	No response packet was received in time by the hardware.







	-EILSEQ 

	
There was a CRC mismatch in the urb transfer.





	-EPIPE 

	
The endpoint is now stalled. If the endpoint involved is not a

control endpoint, this error can be cleared through a call to the

function usb_clear_halt.





	-ECOMM 

	
Data was received faster during the transfer than it could be written

to system memory. This error value happens only for an IN urb.





	-ENOSR 

	
Data could not be retrieved from the system memory during the

transfer fast enough to keep up with the requested USB data rate.

This error value happens only for an OUT urb.





	-EOVERFLOW 

	
A "babble" error happened to the

urb. A "babble" error occurs when

the endpoint receives more data than the endpoint's

specified maximum packet size.





	-EREMOTEIO 

	
Occurs only if the URB_SHORT_NOT_OK flag is set in

the urb's transfer_flags variable

and means that the full amount of data requested by the urb was not

received.





	-ENODEV 

	
The USB device is now gone from the system.





	-EXDEV 

	
Occurs only for a isochronous urb and means that the transfer was

only partially completed. In order to determine what was transferred,

the driver must look at the individual frame status.





	-EINVAL 

	
Something very bad happened with the urb. The USB kernel

documentation describes what this value means:

ISO madness, if this happens: Log off and go home


It also can happen if a parameter is incorrectly set in the urb

stucture or if an incorrect function parameter in the

usb_submit_urb call submitted the urb to the USB

core.





	-ESHUTDOWN 

	
There was a severe error with the USB host controller driver; it has

now been disabled, or the device was disconnected from the system,

and the urb was submitted after the device was removed. It can also

occur if the configuration was changed for the device, while the urb

was submitted to the device.

Generally, the error values -EPROTO,

-EILSEQ, and -EOVERFLOW

indicate hardware problems with the device, the device firmware, or

the cable connecting the device to the computer.





	int start_frame[bookmark: linuxdrive3-CHP-13-ITERM-6461] 

	
Sets or returns the initial frame number for isochronous transfers to

use.





	int interval[bookmark: linuxdrive3-CHP-13-ITERM-6462] 

	
The interval at which the urb is polled. This is valid only for

interrupt or isochronous urbs. The value's units

differ depending on the speed of the device. For low-speed and

full-speed devices, the units are frames, which are equivalent to

milliseconds. For devices, the units are in microframes, which is

equivalent to units of 1/8 milliseconds. This value must be set by

the USB driver for isochronous or interrupt urbs before the urb is

sent to the USB core.





	int number_of_packets[bookmark: linuxdrive3-CHP-13-ITERM-6463] 

	
Valid only for isochronous urbs and specifies the number of

isochronous transfer buffers to be handled by this urb. This value

must be set by the USB driver for isochronous urbs before the urb is

sent to the USB core.





	int error_count[bookmark: linuxdrive3-CHP-13-ITERM-6464] 

	
Set by the USB core only for isochronous urbs after their completion.

It specifies the number of isochronous transfers that reported any

type of error.





	struct usb_iso_packet_descriptor iso_frame_desc[0][bookmark: linuxdrive3-CHP-13-ITERM-6465] 

	
Valid only for isochronous urbs. This variable is an array of the

struct usb_iso_packet_descriptor structures that

make up this urb. This structure allows a single urb to define a

number of isochronous transfers at once. It is also used to collect

the transfer status of each individual transfer.





The struct usb_iso_packet_descriptor is made up of

the following fields:



	unsigned int offset 

	
The offset into the transfer buffer (starting at 0

for the first byte) where this packet's data is

located.





	unsigned int length 

	
The length of the transfer buffer for this packet.





	unsigned int actual_length 

	
The length of the data received into the transfer buffer for this

isochronous packet.





	unsigned int status 

	
The status of the individual isochronous transfer of this packet. It

can take the same return values as the main struct

urb structure's status

variable.





[bookmark: linuxdrive3-CHP-13-SECT-3.2]
13.3.2. Creating and Destroying Urbs

The struct urb structure must

never

[bookmark: linuxdrive3-CHP-13-ITERM-6466]
[bookmark: linuxdrive3-CHP-13-ITERM-6467]
[bookmark: linuxdrive3-CHP-13-ITERM-6468]be created statically in a driver or

within another structure, because that would break the reference

counting scheme used by the USB core for urbs. It must be created

with a call to the[bookmark: linuxdrive3-CHP-13-ITERM-6469]
[bookmark: linuxdrive3-CHP-13-ITERM-6470]
usb_alloc_urb function. This function has the

prototype:

struct urb *usb_alloc_urb(int iso_packets, int mem_flags);
 

The first parameter, iso_packets, is the number of

isochronous packets this urb should contain. If you do not want to

create an isochronous urb, this variable should be set to

0. The second parameter,

mem_flags, is the same type of flag that is passed

to the kmalloc function call to allocate memory

from the kernel (see Section 8.1.1

for the details on these

flags). If the function is successful in allocating enough space for

the urb, a pointer to the urb is returned to the caller. If the

return value is NULL, some error occurred within

the USB core, and the driver needs to clean up properly.

After a urb has been created, it must be properly initialized before

it can be used by the USB core. See the next sections for how to

initialize different types of urbs.

In order to tell the USB core that the driver is finished with the

urb, the driver must call the usb_free_urb

function. This function only has one argument:

void usb_free_urb(struct urb *urb);
 

The argument is a pointer to the struct urb you

want to release. After this function is called, the urb structure is

gone, and the driver cannot access it any more.

[bookmark: linuxdrive3-CHP-13-SECT-3.2.1]
13.3.2.1 Interrupt urbs

The function [bookmark: linuxdrive3-CHP-13-ITERM-6471]
[bookmark: linuxdrive3-CHP-13-ITERM-6472]usb_fill_int_urb

is a helper

function[bookmark: linuxdrive3-CHP-13-ITERM-6473]
[bookmark: linuxdrive3-CHP-13-ITERM-6474]

to properly initialize a urb to be sent to a interrupt endpoint of a

USB device:

void usb_fill_int_urb(struct urb *urb, struct usb_device *dev,

                      unsigned int pipe, void *transfer_buffer,

                      int buffer_length, usb_complete_t complete,

                      void *context, int interval);
 

This function contains a lot of parameters:



	struct urb *urb 

	
A pointer to the urb to be initialized.





	struct usb_device *dev 

	
The USB device to which this urb is to be sent.





	unsigned int pipe 

	
The specific endpoint of the USB device to which this urb is to be

sent. This value is created with the previously mentioned

usb_sndintpipe or

usb_rcvintpipe functions.





	void *transfer_buffer 

	
A pointer to the buffer from which outgoing data is taken or into

which incoming data is received. Note that this can not be a static

buffer and must be created with a call to

kmalloc.





	int buffer_length 

	
The length of the buffer pointed to by the

transfer_buffer pointer.





	usb_complete_t complete 

	
Pointer to the completion handler that is called when this urb is

completed.





	void *context 

	
Pointer to the blob that is added to the urb structure for later

retrieval by the completion handler function.





	int interval 

	
The interval at which that this urb should be scheduled. See the

previous description of the struct urb structure

to find the proper units for this value.





[bookmark: linuxdrive3-CHP-13-SECT-3.2.2]
13.3.2.2 Bulk urbs

Bulk urbs are initialized[bookmark: linuxdrive3-CHP-13-ITERM-6475] much like interrupt urbs. The function

that does this is[bookmark: linuxdrive3-CHP-13-ITERM-6476]
[bookmark: linuxdrive3-CHP-13-ITERM-6477]
usb_fill_bulk_urb, and it looks like:

void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev,

                       unsigned int pipe, void *transfer_buffer,

                       int buffer_length, usb_complete_t complete,

                       void *context);
 

The function parameters are all the same as in the

usb_fill_int_urb function. However, there is no

interval parameter because bulk urbs have no

interval value. Please note that the unsigned
int pipe variable must be

initialized with a call to the usb_sndbulkpipe

or usb_rcvbulkpipe function.

The usb_fill_int_urb function does not set the

transfer_flags variable in the urb, so any

modification to this field has to be done by the driver itself.

[bookmark: linuxdrive3-CHP-13-SECT-3.2.3]
13.3.2.3 Control urbs

Control urbs [bookmark: linuxdrive3-CHP-13-ITERM-6478]are initialized almost the same way as

bulk urbs, with a call to the function

[bookmark: linuxdrive3-CHP-13-ITERM-6479]
[bookmark: linuxdrive3-CHP-13-ITERM-6480]usb_fill_control_urb:

void usb_fill_control_urb(struct urb *urb, struct usb_device *dev,

                          unsigned int pipe, unsigned char *setup_packet,

                          void *transfer_buffer, int buffer_length,

                          usb_complete_t complete, void *context);
 

The function parameters are all the same as in the

usb_fill_bulk_urb function, except that there is

a new parameter, unsigned char
*setup_packet, which must point to the setup

packet data that is to be sent to the endpoint. Also, the

unsigned int pipe variable must

be initialized with a call to the

usb_sndctrlpipe or

usb_rcvictrlpipe function.

The usb_fill_control_urb function does not set

the TRansfer_flags variable in the urb, so any

modification to this field has to be done by the driver itself. Most

drivers do not use this function, as it is much simpler to use the

synchronous API calls as described in Section 13.5.

[bookmark: linuxdrive3-CHP-13-SECT-3.2.4]
13.3.2.4 Isochronous urbs

[bookmark: linuxdrive3-CHP-13-ITERM-6481]Isochronous urbs unfortunately do not have

an initializer function like the interrupt, control, and bulk urbs

do. So they must be initialized "by

hand" in the driver before they can be submitted to

the USB core. The following is an example of how to properly

initialize this type of urb. It was taken from the

konicawc.c kernel driver located in the

drivers/usb/media directory in the main kernel

source tree.

urb->dev = dev;

urb->context = uvd;

urb->pipe = usb_rcvisocpipe(dev, uvd->video_endp-1);

urb->interval = 1;

urb->transfer_flags = URB_ISO_ASAP;

urb->transfer_buffer = cam->sts_buf[i];

urb->complete = konicawc_isoc_irq;

urb->number_of_packets = FRAMES_PER_DESC;

urb->transfer_buffer_length = FRAMES_PER_DESC;

for (j=0; j < FRAMES_PER_DESC; j++) {

        urb->iso_frame_desc[j].offset = j;

        urb->iso_frame_desc[j].length = 1;

}
 

[bookmark: linuxdrive3-CHP-13-SECT-3.3]
13.3.3. Submitting Urbs

Once the urb has been [bookmark: linuxdrive3-CHP-13-ITERM-6482]
[bookmark: linuxdrive3-CHP-13-ITERM-6483]properly

created and initialized by the USB driver, it is ready to be

submitted to the USB core to be sent out to the USB device. This is

done with a call to the function

[bookmark: linuxdrive3-CHP-13-ITERM-6484]
[bookmark: linuxdrive3-CHP-13-ITERM-6485]usb_submit_urb:

int usb_submit_urb(struct urb *urb, int mem_flags);
 

The urb parameter is a pointer to the urb that is

to be sent to the device. The mem_flags parameter

is equivalent to the same parameter that is passed to the

kmalloc call and is used to tell the USB core

how to allocate any memory buffers at this moment in time.

After a urb has been submitted to the USB core successfully, it

should never try to access any fields of the urb structure until the

complete function is called.

Because the function usb_submit_urb can be

called at any time (including from within an interrupt context), the

specification of the mem_flags variable must be

correct. There are really only three valid values that should be

used, depending on when usb_submit_urb is being

called:



	GFP_ATOMIC 

	
This value should be used whenever the following are true:

	The caller is within a urb completion handler, an interrupt, a bottom

half, a tasklet, or a timer callback.

	The caller is holding a spinlock or rwlock. Note that if a semaphore

is being held, this value is not necessary.

	The current->state is not

TASK_RUNNING. The state is always

TASK_RUNNING unless the driver has changed the

current state itself.







	GFP_NOIO 

	
This value should be used if the driver is in the block I/O patch. It

should also be used in the error handling path of all storage-type

devices.





	GFP_KERNEL 

	
This should be used for all other situations that do not fall into

one of the previously mentioned categories.





[bookmark: linuxdrive3-CHP-13-SECT-3.4]
13.3.4. Completing Urbs: The Completion Callback Handler

If the call to usb_submit_urb

was[bookmark: linuxdrive3-CHP-13-ITERM-6486]
[bookmark: linuxdrive3-CHP-13-ITERM-6487]
[bookmark: linuxdrive3-CHP-13-ITERM-6488]

successful, transferring control of the urb to the USB core, the

function returns 0; otherwise, a negative error

number is returned. If the function succeeds, the completion handler

of the urb (as specified by the complete

function pointer) is called exactly once when the urb is completed.

When this function is called, the USB core is finished with the URB,

and control of it is now returned to the device driver.

There are only three ways a urb can be finished and have the

complete[bookmark: linuxdrive3-CHP-13-ITERM-6489]
[bookmark: linuxdrive3-CHP-13-ITERM-6490] function called:

	The urb is successfully sent to the device, and the device returns

the proper acknowledgment. For an OUT urb, the data was successfully

sent, and for an IN urb, the requested data was successfully

received. If this has happened, the status

variable in the urb is set to 0.

	Some kind of error happened when sending or receiving data from the

device. This is noted by the error value in the

status variable in the urb structure.

	The urb was "unlinked" from the USB

core. This happens either when the driver tells the USB core to

cancel a submitted urb with a call to

usb_unlink_urb or

usb_kill_urb, or when a device is removed from

the system and a urb had been submitted to it.



An example of how to test for the different return values within a

urb completion call is shown later in this chapter.

[bookmark: linuxdrive3-CHP-13-SECT-3.5]
13.3.5. Canceling Urbs

To stop a urb that has been[bookmark: linuxdrive3-CHP-13-ITERM-6491]
[bookmark: linuxdrive3-CHP-13-ITERM-6492] submitted to the USB core, the functions

[bookmark: linuxdrive3-CHP-13-ITERM-6493]
[bookmark: linuxdrive3-CHP-13-ITERM-6494]
[bookmark: linuxdrive3-CHP-13-ITERM-6495]
[bookmark: linuxdrive3-CHP-13-ITERM-6496]usb_kill_urb

or[bookmark: linuxdrive3-CHP-13-ITERM-6497]
[bookmark: linuxdrive3-CHP-13-ITERM-6498]
[bookmark: linuxdrive3-CHP-13-ITERM-6499]
[bookmark: linuxdrive3-CHP-13-ITERM-6500]
usb_unlink_urb should be called:

int usb_kill_urb(struct urb *urb);

int usb_unlink_urb(struct urb *urb);
 

The urb parameter for both of these functions is a

pointer to the urb that is to be canceled.

When the function is usb_kill_urb, the urb

lifecycle is stopped. This function is usually used when the device

is disconnected from the system, in the disconnect callback.

For some drivers, the usb_unlink_urb function

should be used to tell the USB core to stop an urb. This function

does not wait for the urb to be fully stopped before returning to the

caller. This is useful for stopping the urb while in an interrupt

handler or when a spinlock is held, as waiting for a urb to fully

stop requires the ability for the USB core to put the calling process

to sleep. This function requires that the

URB_ASYNC_UNLINK flag value [bookmark: linuxdrive3-CHP-13-ITERM-6501] [bookmark: linuxdrive3-CHP-13-ITERM-6502] [bookmark: linuxdrive3-CHP-13-ITERM-6503]be set in the urb

that is being asked to be stopped in order to work properly.







[bookmark: linuxdrive3-CHP-13-SECT-4]
13.4. Writing a USB Driver

The approach to writing a USB [bookmark: linuxdrive3-CHP-13-ITERM-6504] [bookmark: linuxdrive3-CHP-13-ITERM-6505]
[bookmark: linuxdrive3-CHP-13-ITERM-6506]device driver is similar to a

pci_driver: the driver registers its driver object

with the USB subsystem and later uses vendor and device identifiers

to tell if its hardware has been installed.

[bookmark: linuxdrive3-CHP-13-SECT-4.1]
13.4.1. What Devices Does the Driver Support?

The struct usb_device_id structure provides a list

of different types of USB devices that this driver supports. This

list is used by the USB core to decide which driver to give a device

to, and by the hotplug scripts to decide which driver to

automatically load when a specific device is plugged into the system.

The struct usb_device_id[bookmark: linuxdrive3-CHP-13-ITERM-6507] structure is

defined with the following fields:

[bookmark: linuxdrive3-CHP-13-ITERM-6508][bookmark: linuxdrive3-CHP-13-ITERM-6509][bookmark: linuxdrive3-CHP-13-ITERM-6510][bookmark: linuxdrive3-CHP-13-ITERM-6511][bookmark: linuxdrive3-CHP-13-ITERM-6512][bookmark: linuxdrive3-CHP-13-ITERM-6513][bookmark: linuxdrive3-CHP-13-ITERM-6514][bookmark: linuxdrive3-CHP-13-ITERM-6515][bookmark: linuxdrive3-CHP-13-ITERM-6516][bookmark: linuxdrive3-CHP-13-ITERM-6517][bookmark: linuxdrive3-CHP-13-ITERM-6518][bookmark: linuxdrive3-CHP-13-ITERM-6519][bookmark: linuxdrive3-CHP-13-ITERM-6520][bookmark: linuxdrive3-CHP-13-ITERM-6521][bookmark: linuxdrive3-CHP-13-ITERM-6522]

	_ _u16 match_flags [bookmark: linuxdrive3-CHP-13-ITERM-6508] 

	
Determines which of the following fields in the structure the device

should be matched against. This is a bit field defined by the

different USB_DEVICE_ID_MATCH_* values specified

in the include/linux/mod_devicetable.h file.

This field is usually never set directly but is initialized by the

USB_DEVICE type macros described later.





	_ _u16 idVendor [bookmark: linuxdrive3-CHP-13-ITERM-6509] 

	
The USB vendor ID for the device. This number is assigned by the USB

forum to its members and cannot be made up by anyone else.





	_ _u16 idProduct [bookmark: linuxdrive3-CHP-13-ITERM-6510] 

	
The USB product ID for the device. All vendors that have a vendor ID

assigned to them can manage their product IDs however they choose to.





	_ _u16 bcdDevice_lo [bookmark: linuxdrive3-CHP-13-ITERM-6511] 



	_ _u16 bcdDevice_hi [bookmark: linuxdrive3-CHP-13-ITERM-6512] 

	
Define the low and high ends of the range of the vendor-assigned

product version number. The bcdDevice_hi value is

inclusive; its value is the number of the highest-numbered device.

Both of these values are expressed in

[bookmark: linuxdrive3-CHP-13-ITERM-6513] [bookmark: linuxdrive3-CHP-13-ITERM-6514] [bookmark: linuxdrive3-CHP-13-ITERM-6515]binary-coded decimal (BCD) form. These

variables, combined with the idVendor and

idProduct, are used to define a specific version

of a device.





	_ _u8 bDeviceClass [bookmark: linuxdrive3-CHP-13-ITERM-6516] 



	_ _u8 bDeviceSubClass [bookmark: linuxdrive3-CHP-13-ITERM-6517] 



	_ _u8 bDeviceProtocol [bookmark: linuxdrive3-CHP-13-ITERM-6518] 

	
Define the class, subclass, and protocol of the device, respectively.

These numbers are assigned by the USB forum and are defined in the

USB specification. These values specify the behavior for the whole

device, including all interfaces on this device.





	_ _u8 bInterfaceClass [bookmark: linuxdrive3-CHP-13-ITERM-6519] 



	_ _u8 bInterfaceSubClass [bookmark: linuxdrive3-CHP-13-ITERM-6520] 



	_ _u8 bInterfaceProtocol [bookmark: linuxdrive3-CHP-13-ITERM-6521] 

	
Much like the device-specific values above, these define the class,

subclass, and protocol of the individual interface, respectively.

These numbers are assigned by the USB forum and are defined in the

USB specification.





	kernel_ulong_t driver_info[bookmark: linuxdrive3-CHP-13-ITERM-6522] 

	
This value is not used to match against, but it holds information

that the driver can use to differentiate the different devices from

each other in the probe callback function to the

USB driver.





As with PCI devices, there are a number of macros that are used to

initialize this structure:

[bookmark: linuxdrive3-CHP-13-ITERM-6523][bookmark: linuxdrive3-CHP-13-ITERM-6524][bookmark: linuxdrive3-CHP-13-ITERM-6525][bookmark: linuxdrive3-CHP-13-ITERM-6526][bookmark: linuxdrive3-CHP-13-ITERM-6527][bookmark: linuxdrive3-CHP-13-ITERM-6528][bookmark: linuxdrive3-CHP-13-ITERM-6529][bookmark: linuxdrive3-CHP-13-ITERM-6530]

	USB_DEVICE(vendor, product)[bookmark: linuxdrive3-CHP-13-ITERM-6523]
[bookmark: linuxdrive3-CHP-13-ITERM-6524] 

	
Creates a struct usb_device_id that can be used to

match only the specified vendor and product ID values. This is very

commonly used for USB devices that need a specific driver.





	USB_DEVICE_VER(vendor, product, lo, hi)[bookmark: linuxdrive3-CHP-13-ITERM-6525]
[bookmark: linuxdrive3-CHP-13-ITERM-6526] 

	
Creates a struct usb_device_id that can be used to

match only the specified vendor and product ID values within a

version range.





	USB_DEVICE_INFO(class, subclass, protocol)[bookmark: linuxdrive3-CHP-13-ITERM-6527]
[bookmark: linuxdrive3-CHP-13-ITERM-6528] 

	
Creates a struct usb_device_id that can be used to

match a specific class of USB devices.





	USB_INTERFACE_INFO(class, subclass, protocol)[bookmark: linuxdrive3-CHP-13-ITERM-6529]
[bookmark: linuxdrive3-CHP-13-ITERM-6530] 

	
Creates a struct usb_device_id that can be used to

match a specific class of USB interfaces.





So, for a simple USB device driver that controls only a single USB

device from a single vendor, the struct

usb_device_id table would be defined as:

/* table of devices that work with this driver */

static struct usb_device_id skel_table [  ] = {

    { USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) },

    { }                 /* Terminating entry */

};

MODULE_DEVICE_TABLE (usb, skel_table);
 

As with a PCI driver, the MODULE_DEVICE_TABLE

macro is necessary to allow user-space tools to figure out what

devices this driver can control. But for USB drivers, the string

usb must be the first value in the macro.

[bookmark: linuxdrive3-CHP-13-SECT-4.2]
13.4.2. Registering a USB Driver

The main structure that all USB

drivers[bookmark: linuxdrive3-CHP-13-ITERM-6531] must create is a

struct usb_driver. This

structure must be filled out by the USB driver and consists of a

number of function callbacks and variables that describe the USB

driver to the USB core code:

[bookmark: linuxdrive3-CHP-13-ITERM-6532][bookmark: linuxdrive3-CHP-13-ITERM-6533][bookmark: linuxdrive3-CHP-13-ITERM-6534][bookmark: linuxdrive3-CHP-13-ITERM-6535][bookmark: linuxdrive3-CHP-13-ITERM-6536][bookmark: linuxdrive3-CHP-13-ITERM-6537]

	struct module *owner[bookmark: linuxdrive3-CHP-13-ITERM-6532]
[bookmark: linuxdrive3-CHP-13-ITERM-6533] 

	
Pointer to the module owner of this driver. The USB core uses it to

properly reference count this USB driver so that it is not unloaded

at inopportune moments. The variable should be set to the

THIS_MODULE macro.





	const char *name[bookmark: linuxdrive3-CHP-13-ITERM-6534]
[bookmark: linuxdrive3-CHP-13-ITERM-6535] 

	
Pointer to the name of the driver. It must be unique among all USB

drivers in the kernel and is normally set to the same name as the

module name of the driver. It shows up in sysfs under

/sys/bus/usb/drivers/ when the driver is in the

kernel.





	const struct usb_device_id *id_table[bookmark: linuxdrive3-CHP-13-ITERM-6536]
[bookmark: linuxdrive3-CHP-13-ITERM-6537] 

	
Pointer to the struct usb_device_id table that

contains a list of all of the different kinds of USB devices this

driver can accept. If this variable is not set, the

probe function callback in the USB driver is never

called. If you want your driver always to be called for every USB

device in the system, create a entry that sets only the

driver_info field:





static struct usb_device_id usb_ids[  ] = {

    {.driver_info = 42},

    {  }

};
 

[bookmark: linuxdrive3-CHP-13-ITERM-6538][bookmark: linuxdrive3-CHP-13-ITERM-6539][bookmark: linuxdrive3-CHP-13-ITERM-6540][bookmark: linuxdrive3-CHP-13-ITERM-6541]

	int (*probe) (struct usb_interface *intf, const struct usb_device_id *id)[bookmark: linuxdrive3-CHP-13-ITERM-6538]
[bookmark: linuxdrive3-CHP-13-ITERM-6539] 

	
Pointer to the probe function in the USB driver. This function

(described in Section 13.4.3) is called by the USB core

when it thinks it has a struct
usb_interface that this driver can handle. A

pointer to the struct usb_device_id that the USB

core used to make this decision is also passed to this function. If

the USB driver claims the struct
usb_interface that is passed to it, it should

initialize the device properly and return 0. If

the driver does not want to claim the device, or an error occurs, it

should return a negative error value.





	void (*disconnect) (struct usb_interface *intf)[bookmark: linuxdrive3-CHP-13-ITERM-6540]
[bookmark: linuxdrive3-CHP-13-ITERM-6541] 

	
Pointer to the disconnect function in the USB driver. This function

(described in Section 13.4.3) is called by the USB core

when the struct usb_interface has been removed

from the system or when the driver is being unloaded from the USB

core.





So, to create a value struct

usb_driver[bookmark: linuxdrive3-CHP-13-ITERM-6542]
[bookmark: linuxdrive3-CHP-13-ITERM-6543]

structure, only five fields need to be initialized:

static struct usb_driver skel_driver = {

    .owner = THIS_MODULE,

    .name = "skeleton",

    .id_table = skel_table,

    .probe = skel_probe,

    .disconnect = skel_disconnect,

};
 

The struct usb_driver does

contain a few more callbacks, which are generally not used very

often, and are not required in order for a USB driver to work

properly:



	int (*ioctl) (struct usb_interface *intf, unsigned int code, void *buf) 

	
Pointer to an ioctl function in the USB driver.

If it is present, it is called when a user-space program makes a

ioctl call on the usbfs

filesystem device entry associated with a USB device attached to this

USB driver. In pratice, only the USB hub driver uses this ioctl, as

there is no other real need for any other USB driver to use it.





	int (*suspend) (struct usb_interface *intf, u32 state) 

	
Pointer to a suspend function in the USB driver. It is called when

the device is to be suspended by the USB core.





	int (*resume) (struct usb_interface *intf) 

	
Pointer to a resume function in the USB driver. It is called when the

device is being resumed by the USB core.





To register the

struct[bookmark: linuxdrive3-CHP-13-ITERM-6544]
[bookmark: linuxdrive3-CHP-13-ITERM-6545] usb_driver with

the USB core, a call to usb_register_driver is

made with a pointer to the struct
usb_driver. This is traditionally done in the

module initialization code for the USB driver:

static int _ _init usb_skel_init(void)

{

    int result;



    /* register this driver with the USB subsystem */

    result = usb_register(&skel_driver);

    if (result)

        err("usb_register failed. Error number %d", result);



    return result;

}
 

When the USB driver is to

be[bookmark: linuxdrive3-CHP-13-ITERM-6546] unloaded, the struct

usb_driver needs to be unregistered from the kernel. This

is done with a call to usb_deregister_driver.

When this call happens, any USB interfaces that were currently bound

to this driver are disconnected, and the

disconnect[bookmark: linuxdrive3-CHP-13-ITERM-6547]
[bookmark: linuxdrive3-CHP-13-ITERM-6548] function is called for them.

static void _ _exit usb_skel_exit(void)

{

    /* deregister this driver with the USB subsystem */

    usb_deregister(&skel_driver);

}
 

[bookmark: linuxdrive3-CHP-13-SECT-4.3]
13.4.3. probe and disconnect in Detail

In the struct usb_driver structure described in

the previous section, the driver specified two functions that the USB

core calls at appropriate times. The probe

function is called when a device is installed that the USB core

thinks this driver should handle; the probe

function should perform checks on the information passed to it about

the device and decide whether the driver is really appropriate for

that device. The disconnect function is called

when the driver should no longer control the device for some reason

and can do clean-up.

Both the probe and

disconnect [bookmark: linuxdrive3-CHP-13-ITERM-6549]
[bookmark: linuxdrive3-CHP-13-ITERM-6550]function callbacks are called in the

context of the USB hub kernel thread, so it is legal to sleep within

them. However, it is recommended that the majority of work be done

when the device is opened by a user if possible, in order to keep the

USB probing time to a minimum. This is because the USB core handles

the addition and removal of USB devices within a single thread, so

any slow device driver can cause the USB device detection time to

slow down and become noticeable by the user.

In the probe function callback, the USB driver

should initialize any local structures that it might use to manage

the USB device. It should also save any information that it needs

about the device to the local structure, as it is usually easier to

do so at this time. As an example, USB drivers usually want to detect

what the endpoint address and buffer sizes are for the device, as

they are needed in order to communicate with the device. Here is some

example code that detects both IN and OUT endpoints of BULK type and

saves some information about them in a local device structure:

/* set up the endpoint information */

/* use only the first bulk-in and bulk-out endpoints */

iface_desc = interface->cur_altsetting;

for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {

    endpoint = &iface_desc->endpoint[i].desc;



    if (!dev->bulk_in_endpointAddr &&

        (endpoint->bEndpointAddress & USB_DIR_IN) &&

        ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)

                =  = USB_ENDPOINT_XFER_BULK)) {

        /* we found a bulk in endpoint */

        buffer_size = endpoint->wMaxPacketSize;

        dev->bulk_in_size = buffer_size;

        dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;

        dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);

        if (!dev->bulk_in_buffer) {

            err("Could not allocate bulk_in_buffer");

            goto error;

        }

    }



    if (!dev->bulk_out_endpointAddr &&

        !(endpoint->bEndpointAddress & USB_DIR_IN) &&

        ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)

                =  = USB_ENDPOINT_XFER_BULK)) {

        /* we found a bulk out endpoint */

        dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;

    }

}

if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {

    err("Could not find both bulk-in and bulk-out endpoints");

    goto error;

}
 

This block of code first loops over every endpoint that is present in

this interface and assigns a local pointer to the endpoint structure

to make it easier to access later:

for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {

    endpoint = &iface_desc->endpoint[i].desc;
 

Then, after we have an endpoint, and we have not found a bulk IN type

endpoint already, we look to see if this endpoint's

direction is IN. That can be tested by seeing whether the bitmask

USB_DIR_IN is contained in the

bEndpointAddress endpoint variable. If this is

true, we determine whether the endpoint type is bulk or not, by first

masking off the bmAttributes variable with the

USB_ENDPOINT_XFERTYPE_MASK bitmask, and then

checking if it matches the value

USB_ENDPOINT_XFER_BULK:

if (!dev->bulk_in_endpointAddr &&

    (endpoint->bEndpointAddress & USB_DIR_IN) &&

    ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)

            =  = USB_ENDPOINT_XFER_BULK)) {
 

If all of these tests are true, the driver knows it found the proper

type of endpoint and can save the information about the endpoint that

it will later need to communicate over it in a local structure:

/* we found a bulk in endpoint */

buffer_size = endpoint->wMaxPacketSize;

dev->bulk_in_size = buffer_size;

dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;

dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);

if (!dev->bulk_in_buffer) {

    err("Could not allocate bulk_in_buffer");

    goto error;

}
 

Because the USB driver needs to retrieve the local data structure

that is associated with this struct
usb_interface later in the lifecycle of the

device, the function

[bookmark: linuxdrive3-CHP-13-ITERM-6551]
[bookmark: linuxdrive3-CHP-13-ITERM-6552]usb_set_intfdata

can be called:

/* save our data pointer in this interface device */

usb_set_intfdata(interface, dev);
 

This function accepts a pointer to any data type and saves it in the

struct[bookmark: linuxdrive3-CHP-13-ITERM-6553]
[bookmark: linuxdrive3-CHP-13-ITERM-6554]
usb_interface structure for later access. To

retrieve the data, the function usb_get_intfdata

should be called:

struct usb_skel *dev;

struct usb_interface *interface;

int subminor;

int retval = 0;



subminor = iminor(inode);



interface = usb_find_interface(&skel_driver, subminor);

if (!interface) {

    err ("%s - error, can't find device for minor %d",

         _ _FUNCTION_ _, subminor);

    retval = -ENODEV;

    goto exit;

}



dev = usb_get_intfdata(interface);

if (!dev) {

    retval = -ENODEV;

    goto exit;

}
 

usb_get_intfdata is usually called in the

open function of the USB driver and again in the

disconnect function. Thanks to these two

functions, USB drivers do not need to keep a static array of pointers

that store the individual device structures for all current devices

in the system. The indirect reference to device information allows an

unlimited number of devices to be supported by any USB driver.

If the USB driver is not associated with another type of subsystem

that handles the user interaction with the device (such as input,

tty, video, etc.), the driver can use the USB major number in order

to use the traditional char driver interface with user space. To do

this, the USB driver must call the

usb_register_dev function in the

probe function when it wants to register a

device with the USB core. Make sure that the device and driver are in

a proper state to handle a user wanting to access the device as soon

as this function is called.

/* we can register the device now, as it is ready */

retval = usb_register_dev(interface, &skel_class);

if (retval) {

    /* something prevented us from registering this driver */

    err("Not able to get a minor for this device.");

    usb_set_intfdata(interface, NULL);

    goto error;

}
 

The [bookmark: linuxdrive3-CHP-13-ITERM-6555]
[bookmark: linuxdrive3-CHP-13-ITERM-6556]usb_register_dev

function requires a pointer to a struct
usb_interface and a pointer to a

struct usb_class_driver. This

struct usb_class_driver is used to define a number

of different parameters that the USB driver wants the USB core to

know when registering for a minor number. This structure consists of

the following variables:

[bookmark: linuxdrive3-CHP-13-ITERM-6557][bookmark: linuxdrive3-CHP-13-ITERM-6558][bookmark: linuxdrive3-CHP-13-ITERM-6559][bookmark: linuxdrive3-CHP-13-ITERM-6560][bookmark: linuxdrive3-CHP-13-ITERM-6561][bookmark: linuxdrive3-CHP-13-ITERM-6562][bookmark: linuxdrive3-CHP-13-ITERM-6563][bookmark: linuxdrive3-CHP-13-ITERM-6564][bookmark: linuxdrive3-CHP-13-ITERM-6565]

	char *name[bookmark: linuxdrive3-CHP-13-ITERM-6557]
[bookmark: linuxdrive3-CHP-13-ITERM-6558] 

	
The name that sysfs uses to describe the device. A leading pathname,

if present, is used only in devfs and is not covered in this book. If

the number of the device needs to be in the name, the characters

%d should be in the name string. For example, to

create the devfs name usb/foo1 and the sysfs class

name foo1, the name string should be set to

usb/foo%d.





	struct file_operations *fops;[bookmark: linuxdrive3-CHP-13-ITERM-6559]
[bookmark: linuxdrive3-CHP-13-ITERM-6560] 

	
Pointer to the struct file_operations that this

driver has defined to use to register as the character device. See

Chapter 3 for more information

about this structure.





	mode_t mode;[bookmark: linuxdrive3-CHP-13-ITERM-6561]
[bookmark: linuxdrive3-CHP-13-ITERM-6562] 

	
The mode for the devfs file to be created for this driver; unused

otherwise. A typical setting for this variable would be the value

S_IRUSR combined with the value

S_IWUSR, which would provide only read and write

access by the owner of the device file.





	int minor_base;[bookmark: linuxdrive3-CHP-13-ITERM-6563]
[bookmark: linuxdrive3-CHP-13-ITERM-6564] 

	
This is the start of the assigned minor range for this driver. All

devices associated with this driver are created with unique,

increasing minor numbers beginning with this value. Only 16 devices

are allowed to be associated with this driver at any one time unless

the

CONFIG_USB_DYNAMIC_MINORS[bookmark: linuxdrive3-CHP-13-ITERM-6565] configuration option has

been enabled for the kernel. If so, this variable is ignored, and all

minor numbers for the device are allocated on a first-come,

first-served manner. It is recommended that systems that have enabled

this option use a program such as udev to manage

the device nodes in the system, as a static /dev

tree will not work properly.





When the USB device is disconnected, all resources associated with

the device should be cleaned up, if possible. At this time, if

usb_register_dev has been called to allocate a

minor number for this USB device during the

probe function, the function

usb_deregister_dev must be called to give the

minor number back to the USB core.

In the disconnect[bookmark: linuxdrive3-CHP-13-ITERM-6566]
[bookmark: linuxdrive3-CHP-13-ITERM-6567] function, it is also important to

retrieve from the interface any data that was previously set with a

call to usb_set_intfdata. Then set the data

pointer in the struct
usb_interface structure to NULL

to prevent any further mistakes in accessing the data improperly:

static void skel_disconnect(struct usb_interface *interface)

{

    struct usb_skel *dev;

    int minor = interface->minor;



    /* prevent skel_open(  ) from racing skel_disconnect(  ) */

    lock_kernel(  );



    dev = usb_get_intfdata(interface);

    usb_set_intfdata(interface, NULL);



    /* give back our minor */

    usb_deregister_dev(interface, &skel_class);



    unlock_kernel(  );



    /* decrement our usage count */

    kref_put(&dev->kref, skel_delete);



    info("USB Skeleton #%d now disconnected", minor);

}
 

Note the call to lock_kernel in the previous

code snippet. This takes the big kernel lock, so that the

disconnect callback does not encounter a race

condition with the open call when trying to get a pointer to the

correct interface data structure. Because the

open is called with the big kernel lock taken,

if the disconnect also takes that same lock,

only one portion of the driver can access and then set the interface

data pointer.

Just before the disconnect function is called

for a USB device, all urbs that are currently in transmission for the

device are canceled by the USB core, so the driver does not have to

explicitly call usb_kill_urb for these urbs. If

a driver tries to submit a urb to a USB device after it has been

disconnected with a call to usb_submit_urb, the

submission will fail with an error value of

-EPIPE.

[bookmark: linuxdrive3-CHP-13-SECT-4.4]
13.4.4. Submitting and Controlling a Urb

When the driver has data to send [bookmark: linuxdrive3-CHP-13-ITERM-6568]
[bookmark: linuxdrive3-CHP-13-ITERM-6569]
[bookmark: linuxdrive3-CHP-13-ITERM-6570]to the USB device (as typically happens

in a driver's write function), a

urb must be[bookmark: linuxdrive3-CHP-13-ITERM-6571] allocated for

transmitting the data to the device:

urb = usb_alloc_urb(0, GFP_KERNEL);

if (!urb) {

    retval = -ENOMEM;

    goto error;

}
 

After the urb is allocated successfully, a DMA buffer should also be

created to send the data to the device in the most efficient manner,

and the data that is passed to the driver should be copied into that

buffer:

buf = usb_buffer_alloc(dev->udev, count, GFP_KERNEL, &urb->transfer_dma);

if (!buf) {

    retval = -ENOMEM;

    goto error;

}

if (copy_from_user(buf, user_buffer, count)) {

    retval = -EFAULT;

    goto error;

}
 

Once the data is properly copied from the user space into the local

buffer, the urb must be initialized correctly before it can be

submitted to the USB core:

/* initialize the urb properly */

usb_fill_bulk_urb(urb, dev->udev,

          usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr),

          buf, count, skel_write_bulk_callback, dev);

urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 

Now that the urb is properly allocated, the data is properly copied,

and the urb is properly initialized, it can be submitted to the USB

core to be transmitted to the device:

/* send the data out the bulk port */

retval = usb_submit_urb(urb, GFP_KERNEL);

if (retval) {

    err("%s - failed submitting write urb, error %d", _ _FUNCTION_ _, retval);

    goto error;

}
 

After the urb is successfully transmitted to the USB device (or

something happens in transmission), the urb callback is called by the

USB core. In our example, we initialized the urb to point to the

function skel_write_bulk_callback, and that is

the function that is called:

static void skel_write_bulk_callback(struct urb *urb, struct pt_regs *regs)

{

    /* sync/async unlink faults aren't errors */

    if (urb->status && 

        !(urb->status =  = -ENOENT || 

          urb->status =  = -ECONNRESET ||

          urb->status =  = -ESHUTDOWN)) {

        dbg("%s - nonzero write bulk status received: %d",

            _ _FUNCTION_ _, urb->status);

    }



    /* free up our allocated buffer */

    usb_buffer_free(urb->dev, urb->transfer_buffer_length, 

            urb->transfer_buffer, urb->transfer_dma);

}
 

The first thing the callback function does is check the status of the

urb to determine if this urb completed successfully or not. The error

values, -ENOENT, -ECONNRESET,

and -ESHUTDOWN are not real transmission errors,

just reports about conditions accompanying a successful transmission.

(See the list of possible errors for urbs detailed in the section

Section 13.3.1.) Then the callback frees up the allocated

buffer that was assigned to this urb to transmit.

It's common for another urb to be submitted to the

device while the urb callback function is running. This is useful

when streaming data to a device. Remember that the urb callback is

running in interrupt context, so it should do any memory allocation,

hold any semaphores, or do anything else that could cause the process

to sleep. When submitting a urb from within a callback, use the

GFP_ATOMIC flag to tell the USB core to not sleep

if it needs to allocate new memory[bookmark: linuxdrive3-CHP-13-ITERM-6572] [bookmark: linuxdrive3-CHP-13-ITERM-6573] [bookmark: linuxdrive3-CHP-13-ITERM-6574] chunks during the submission process.







[bookmark: linuxdrive3-CHP-13-SECT-5]
13.5. USB Transfers Without Urbs

Sometimes a USB driver does[bookmark: linuxdrive3-CHP-13-ITERM-6575] [bookmark: linuxdrive3-CHP-13-ITERM-6576] [bookmark: linuxdrive3-CHP-13-ITERM-6577] [bookmark: linuxdrive3-CHP-13-ITERM-6578] not want to go through all of the

hassle of creating a struct urb, initializing it,

and then waiting for the urb completion function to run, just to send

or receive some simple USB data. Two functions are available to

provide a simpler interface.

[bookmark: linuxdrive3-CHP-13-SECT-5.1]
13.5.1. usb_bulk_msg

[bookmark: linuxdrive3-CHP-13-ITERM-6579]
[bookmark: linuxdrive3-CHP-13-ITERM-6580]usb_bulk_msg

creates a USB bulk urb and sends it to the specified device, then

waits for it to complete before returning to the caller. It is

defined as:

int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,

                 void *data, int len, int *actual_length,

                 int timeout);
 

The parameters of this function are:



	struct usb_device *usb_dev 

	
A pointer to the USB device to send the bulk message to.





	unsigned int pipe 

	
The specific endpoint of the USB device to which this bulk message is

to be sent. This value is created with a call to either

usb_sndbulkpipe or

usb_rcvbulkpipe.





	void *data 

	
A pointer to the data to send to the device if this is an OUT

endpoint. If this is an IN endpoint, this is a pointer to where the

data should be placed after being read from the device.





	int len 

	
The length of the buffer that is pointed to by the

data parameter.





	int *actual_length 

	
A pointer to where the function places the actual number of bytes

that have either been transferred to the device or received from the

device, depending on the direction of the endpoint.





	int timeout 

	
The amount of time, in jiffies, that should be waited before timing

out. If this value is 0, the function waits

forever for the message to complete.





If the function is successful, the return value is

0; otherwise, a negative error number is returned.

This error number matches up with the error numbers previously

described for urbs in Section 13.3.1. If successful, the

actual_length parameter contains the number of

bytes that were transferred or received from this message.

The following is an example of using this function call:

/* do a blocking bulk read to get data from the device */

retval = usb_bulk_msg(dev->udev,

              usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr),

              dev->bulk_in_buffer,

              min(dev->bulk_in_size, count),

              &count, HZ*10);



/* if the read was successful, copy the data to user space */

if (!retval) {

    if (copy_to_user(buffer, dev->bulk_in_buffer, count))

        retval = -EFAULT;

    else

        retval = count;

}
 

This example shows a simple bulk read from an IN endpoint. If the

read is successful, the data is then copied to user space. This is

typically done in a read function for a USB

driver.

The usb_bulk_msg function cannot be called from

within interrupt context or with a spinlock held. Also, this function

cannot be canceled by any other function, so be careful when using

it; make sure that your driver's

disconnect knows enough to wait for the call to

complete before allowing itself to be unloaded from memory.

[bookmark: linuxdrive3-CHP-13-SECT-5.2]
13.5.2. usb_control_msg

The [bookmark: linuxdrive3-CHP-13-ITERM-6581]
[bookmark: linuxdrive3-CHP-13-ITERM-6582]usb_control_msg

function works just like the usb_bulk_msg

function, except it allows a driver to send and receive USB control

messages:

int usb_control_msg(struct usb_device *dev, unsigned int pipe,

                    _ _u8 request, _ _u8 requesttype,

                    _ _u16 value, _ _u16 index,

                    void *data, _ _u16 size, int timeout);
 

The parameters of this function are almost the same as

usb_bulk_msg, with a few important differences:



	struct usb_device *dev 

	
A pointer to the USB device to send the control message to.





	unsigned int pipe 

	
The specific endpoint of the USB device that this control message is

to be sent to. This value is created with a call to either

usb_sndctrlpipe or

usb_rcvctrlpipe.





	_ _u8 request 

	
The USB request value for the control message.





	_ _u8 requesttype 

	
The USB request type value for the control message





	_ _u16 value 

	
The USB message value for the control message.





	_ _u16 index 

	
The USB message index value for the control message.





	void *data 

	
A pointer to the data to send to the device if this is an OUT

endpoint. If this is an IN endpoint, this is a pointer to where the

data should be placed after being read from the device.





	_ _u16 size 

	
The size of the buffer that is pointed to by the

data parameter.





	int timeout 

	
The amount of time, in jiffies, that should be waited before timing

out. If this value is 0, the function will wait

forever for the message to complete.





If the function is successful, it returns the number of bytes that

were transferred to or from the device. If it is not successful, it

returns a negative error number.

The parameters request,

requesttype, value, and

index all directly map to the USB specification

for how a USB control message is defined. For more information on the

valid values for these parameters and how they are used, see Chapter

9 of the USB specification.

Like the function usb_bulk_msg, the function

usb_control_msg cannot be called from within

interrupt context or with a spinlock held. Also, this function cannot

be canceled by any other function, so be careful when using it; make

sure that your driver disconnect function knows

enough to wait for the call to complete before allowing itself to be

unloaded from memory.

[bookmark: linuxdrive3-CHP-13-SECT-5.3]
13.5.3. Other USB Data Functions

A number of helper functions[bookmark: linuxdrive3-CHP-13-ITERM-6583] in the USB core can be used to retrieve

standard information from all USB devices. These functions cannot be

called from within interrupt context or with a spinlock held.

The function

[bookmark: linuxdrive3-CHP-13-ITERM-6584]
[bookmark: linuxdrive3-CHP-13-ITERM-6585]
[bookmark: linuxdrive3-CHP-13-ITERM-6586]usb_get_descriptor

retrieves the specified USB descriptor from the specified device. The

function is defined as:

int usb_get_descriptor(struct usb_device *dev, unsigned char type,

                       unsigned char index, void *buf, int size);
 

This function can be used by a USB driver to retrieve from the

struct usb_device structure any

of the device descriptors that are not already present in the

existing struct usb_device and

struct usb_interface

structures, such as audio descriptors or other class specific

information. The parameters of the function are:



	struct usb_device *usb_dev 

	
A pointer to the USB device that the descriptor should be retrieved

from.





	unsigned char type 

	
The descriptor type. This type is described in the USB specification

and can be one of the following types:





USB_DT_DEVICE

USB_DT_CONFIG

USB_DT_STRING

USB_DT_INTERFACE

USB_DT_ENDPOINT

USB_DT_DEVICE_QUALIFIER

USB_DT_OTHER_SPEED_CONFIG

USB_DT_INTERFACE_POWER

USB_DT_OTG

USB_DT_DEBUG

USB_DT_INTERFACE_ASSOCIATION

USB_DT_CS_DEVICE

USB_DT_CS_CONFIG

USB_DT_CS_STRING

USB_DT_CS_INTERFACE

USB_DT_CS_ENDPOINT
 



	unsigned char index 

	
The number of the descriptor that should be retrieved from the device.





	void *buf 

	
A pointer to the buffer to which you copy the descriptor.





	int size 

	
The size of the memory pointed to by the buf

variable.





If this function is successful, it returns the number of bytes read

from the device. Otherwise, it returns a negative error number

returned by the underlying call to

usb_control_msg that this function makes.

One of the more common uses for the

usb_get_descriptor call is to retrieve a string

from the USB device. Because this is quite common, there is a helper

function for it called usb_get_string:

int usb_get_string(struct usb_device *dev, unsigned short langid,

                   unsigned char index, void *buf, int size);
 

If successful, this function returns the number of bytes received by

the device for the string. Otherwise, it returns a negative error

number returned by the underlying call to

usb_control_msg that this function makes.

If this function is successful, it returns a string encoded in the

UTF-16LE format (Unicode, 16 bits per character, in little-endian

byte order) in the buffer pointed to by the buf

parameter. As this format is usually not very useful, there is

another function, called usb_string, that

returns a string that is read from a USB device and is already

converted into an ISO 8859-1 format string. This character set is a

8-bit subset of Unicode and is the most common format for strings in

English and other Western European languages. As this is typically

the format that the USB device's strings are in, it

is recommended that the[bookmark: linuxdrive3-CHP-13-ITERM-6587]
[bookmark: linuxdrive3-CHP-13-ITERM-6588]
usb_string function be used [bookmark: linuxdrive3-CHP-13-ITERM-6589] [bookmark: linuxdrive3-CHP-13-ITERM-6590] [bookmark: linuxdrive3-CHP-13-ITERM-6591] [bookmark: linuxdrive3-CHP-13-ITERM-6592]instead of the

usb_get_string function.







[bookmark: linuxdrive3-CHP-13-SECT-6]
13.6. Quick Reference

This section summarizes the symbols introduced in the chapter:



	#include <linux/usb.h> 

	
Header file where everything related to USB resides. It must be

included by all USB device drivers.





	struct usb_driver; 

	
Structure that describes a USB driver.





	struct usb_device_id; 

	
Structure that describes the types of USB devices this driver

supports.





	int usb_register(struct usb_driver *d); 



	void usb_deregister(struct usb_driver *d); 

	
Functions used to register and unregister a USB driver from the USB

core.





	struct usb_device *interface_to_usbdev(struct usb_interface *intf); 

	
Retrieves the controlling struct
usb_device * out of a

struct usb_interface
*.





	struct usb_device; 

	
Structure that controls an entire USB device.





	struct usb_interface; 

	
Main USB device structure that all USB drivers use to communicate

with the USB core.





	void usb_set_intfdata(struct usb_interface *intf, void *data); 



	void *usb_get_intfdata(struct usb_interface *intf); 

	
Functions to set and get access to the private data pointer section

within the struct usb_interface.





	struct usb_class_driver; 

	
A structure that describes a USB driver that wants to use the USB

major number to communicate with user-space programs.





	int usb_register_dev(struct usb_interface *intf, struct usb_class_driver 



	 *class_driver); 



	void usb_deregister_dev(struct usb_interface *intf, struct usb_class_driver 



	 *class_driver); 

	
Functions used to register and unregister a specific

struct usb_interface
* structure with a struct
usb_class_driver * structure.





	struct urb; 

	
Structure that describes a USB data transmission.





	struct urb *usb_alloc_urb(int iso_packets, int mem_flags); 



	void usb_free_urb(struct urb *urb); 

	
Functions used to create and destroy a struct
usb urb *.





	int usb_submit_urb(struct urb *urb, int mem_flags); 



	int usb_kill_urb(struct urb *urb); 



	int usb_unlink_urb(struct urb *urb); 

	
Functions used to start and stop a USB data transmission.





	void usb_fill_int_urb(struct urb *urb, struct usb_device *dev, unsigned int 



	 pipe, void *transfer_buffer, int buffer_length, usb_complete_t complete, 



	 void *context, int interval); 



	void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int 



	 pipe, void *transfer_buffer, int buffer_length, usb_complete_t complete, 



	 void *context); 



	void usb_fill_control_urb(struct urb *urb, struct usb_device *dev, unsigned 



	 int pipe, unsigned char *setup_packet, void *transfer_buffer, int 



	 buffer_ length, usb_complete_t complete, void *context); 

	
Functions used to initialize a struct urb before

it is submitted to the USB core.





	int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, void *data, 



	 int len, int *actual_length, int timeout); 



	int usb_control_msg(struct usb_device *dev, unsigned int pipe, _ _u8 request, 



	 _ _u8 requesttype, _ _u16 value, _ _u16 index, void *data, _ _u16 size, 



	 int timeout); 

	
Functions used to send or receive USB data without having to use a

struct urb.











[bookmark: linuxdrive3-CHP-14]

Chapter 14. The Linux Device Model

One of the stated goals for the 2.5 development cycle was the

creation of a unified device model for the kernel. [bookmark: linuxdrive3-CHP-14-ITERM-6593] [bookmark: linuxdrive3-CHP-14-ITERM-6594] [bookmark: linuxdrive3-CHP-14-ITERM-6595] [bookmark: linuxdrive3-CHP-14-ITERM-6596]Previous kernels had no single

data structure to which they could turn to obtain information about

how the system is put together. Despite this lack of information,

things worked well for some time. The demands of newer systems, with

their more complicated topologies and need to support features such

as power management, made it clear, however, that a general

abstraction describing the structure of the system was needed.

The 2.6 device model provides that abstraction. It is now used within

the kernel to support a wide variety of tasks, including:

[bookmark: linuxdrive3-CHP-14-ITERM-6597][bookmark: linuxdrive3-CHP-14-ITERM-6598][bookmark: linuxdrive3-CHP-14-ITERM-6599][bookmark: linuxdrive3-CHP-14-ITERM-6600][bookmark: linuxdrive3-CHP-14-ITERM-6601][bookmark: linuxdrive3-CHP-14-ITERM-6602][bookmark: linuxdrive3-CHP-14-ITERM-6603][bookmark: linuxdrive3-CHP-14-ITERM-6604][bookmark: linuxdrive3-CHP-14-ITERM-6605][bookmark: linuxdrive3-CHP-14-ITERM-6606][bookmark: linuxdrive3-CHP-14-ITERM-6607][bookmark: linuxdrive3-CHP-14-ITERM-6608]

	Power management and system shutdown 

	
These require an[bookmark: linuxdrive3-CHP-14-ITERM-6597]
[bookmark: linuxdrive3-CHP-14-ITERM-6598]
[bookmark: linuxdrive3-CHP-14-ITERM-6599]
[bookmark: linuxdrive3-CHP-14-ITERM-6600]

understanding of the system's structure. For

example, a USB host adaptor cannot be shut down before dealing with

all of the devices connected to that adaptor. The device model

enables a traversal of the system's hardware in the

right order.





	Communications with user space 

	
The implementation of the[bookmark: linuxdrive3-CHP-14-ITERM-6601] [bookmark: linuxdrive3-CHP-14-ITERM-6602]

sysfs virtual filesystem is tightly tied into the device model and

exposes the structure represented by it. The provision of information

about the system to user space and knobs for changing operating

parameters is increasingly done through sysfs and, therefore, through

the device model.





	Hotpluggable devices 

	
Computer

hardware[bookmark: linuxdrive3-CHP-14-ITERM-6603]
[bookmark: linuxdrive3-CHP-14-ITERM-6604]

is increasingly dynamic; peripherals can come and go at the whim of

the user. The hotplug mechanism used within the kernel to handle and

(especially) communicate with user space about the plugging and

unplugging of devices is managed through the device model.





	Device classes 

	
Many parts of the system

have[bookmark: linuxdrive3-CHP-14-ITERM-6605]
[bookmark: linuxdrive3-CHP-14-ITERM-6606]

little interest in how devices are connected, but they need to know

what kinds of devices are available. The device model includes a

mechanism for assigning devices to classes,

which describe those devices at a higher, functional level and allow

them to be discovered from user space.





	Object lifecycles 

	
Many of the

[bookmark: linuxdrive3-CHP-14-ITERM-6607]
[bookmark: linuxdrive3-CHP-14-ITERM-6608]functions

described above, including hotplug support and sysfs, complicate the

creation and manipulation of objects created within the kernel. The

implementation of the device model required the creation of a set of

mechanisms for dealing with object lifecycles, their relationships to

each other, and their representation in user space.





The Linux device model is a complex data structure. For example,

consider Chapter 14, which

shows (in simplified form) a tiny piece of the device model structure

associated with a USB mouse. Down the center of the diagram, we see

the part of the core "devices" tree

that shows how the mouse is connected to the system. The

"bus" tree tracks what is connected

to each bus, while the subtree under

"classes" concerns itself with the

functions provided by the devices, regardless of how they are

connected. The device model tree on even a simple system contains

hundreds of nodes like those shown in the diagram; it is a difficult

data structure to visualize as a whole.

[bookmark: linuxdrive3-CHP-14-FIG-1]
Figure 14-1. A small piece of the device model
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For the most part, the Linux device model code takes care of all

these considerations without imposing itself upon driver authors. It

sits mostly in the background; direct interaction with the device

model is generally handled by bus-level logic and various other

kernel subsystems. As a result, many driver authors can ignore the

device model entirely, and trust it to take care of itself.

There are times, however, when an understanding of the device model

is a good thing to have. There are times when the device model

"leaks out" from behind the other

layers; for example, the generic DMA code (which we encounter in

Chapter 15) works with

struct device. You may want to use some of the

capabilities provided by the device model, such as the reference

counting and related features provided by kobjects. Communication

with user space via sysfs is also a device model function; this

chapter explains how that communication works.

We start, however, with a bottom-up presentation of the device model.

The complexity of the device model makes it hard to understand by

starting with a high-level view. Our hope is that, by showing how the

low-level device components work, we can prepare you for the

challenge of grasping how those components are used to build the

larger structure.

For many readers, this chapter can be treated as advanced material

that need not be read the first time through. Those who are

interested in how the Linux device model works are encouraged to

press ahead, however, [bookmark: linuxdrive3-CHP-14-ITERM-6609] [bookmark: linuxdrive3-CHP-14-ITERM-6610] [bookmark: linuxdrive3-CHP-14-ITERM-6611] [bookmark: linuxdrive3-CHP-14-ITERM-6612]as we get into the low-level details.







[bookmark: linuxdrive3-CHP-14-SECT-1]
14.1. Kobjects, Ksets, and Subsystems

The kobject is the [bookmark: linuxdrive3-CHP-14-ITERM-6613] [bookmark: linuxdrive3-CHP-14-ITERM-6614]
[bookmark: linuxdrive3-CHP-14-ITERM-6615]
[bookmark: linuxdrive3-CHP-14-ITERM-6616]
[bookmark: linuxdrive3-CHP-14-ITERM-6617]
[bookmark: linuxdrive3-CHP-14-ITERM-6618]
[bookmark: linuxdrive3-CHP-14-ITERM-6619]fundamental

structure

[bookmark: linuxdrive3-CHP-14-ITERM-6620]that holds the device

model together. It was initially conceived as a simple reference

counter, but its responsibilities have grown over time, and so have

its fields. The tasks handled by struct
kobject and its supporting code now include:



	Reference counting of objects 

	
Often, when a kernel object is created, there is no way to know just

how long it will exist. One way of tracking the lifecycle of such

objects is through reference counting. When no code in the kernel

holds a reference to a given object, that object has finished its

useful life and can be deleted.





	Sysfs representation 

	
Every object that shows up in sysfs has, underneath it, a kobject

that interacts with the kernel to create its visible representation.





	Data structure glue 

	
The device model is, in its entirety, a fiendishly complicated data

structure made up of multiple hierarchies with numerous links between

them. The kobject implements this structure and holds it together.





	Hotplug event handling 

	
The kobject subsystem handles the generation of events that notify

user space about the comings and goings of hardware on the system.





One might conclude from the preceding list that the kobject is a

complicated structure. One would be right. By looking at one piece at

a time, however, it is possible to understand this structure and how

it works.

[bookmark: linuxdrive3-CHP-14-SECT-1.1]
14.1.1. Kobject Basics

A kobject has the type struct kobject; it is

defined in <linux/kobject.h>. That file

also includes declarations for a number of other structures related

to kobjects and, of course, a long list of functions for manipulating

them.

[bookmark: linuxdrive3-CHP-14-SECT-1.1.1]
14.1.1.1 Embedding kobjects

Before we get into

[bookmark: linuxdrive3-CHP-14-ITERM-6621]
[bookmark: linuxdrive3-CHP-14-ITERM-6622]the

details, it is worth taking a moment to understand how kobjects are

used. If you look back at the list of functions handled by kobjects,

you see that they are all services performed on behalf of other

objects. A kobject, in other words, is of little interest on its own;

it exists only to tie a higher-level object into the device model.

Thus, it is rare (even unknown) for kernel code to create a

standalone kobject; instead, kobjects are used to control access to a

larger, domain-specific object. To this end, kobjects are found

embedded in other structures. If you are used to thinking of things

in object-oriented terms, kobjects can be seen as a top-level,

abstract class from which other classes are derived. A kobject

implements a set of capabilities that are not particularly useful by

themselves but that are nice to have in other objects. The C language

does not allow for the direct expression of inheritance, so other

techniques�such as embedding one structure in

another�must be used.

As an example, let's look back at

struct cdev, which we

encountered in Chapter 3. That

structure, as found in the 2.6.10 kernel, looks like this:

struct cdev {

    struct kobject kobj;

    struct module *owner;

    struct file_operations *ops;

    struct list_head list;

    dev_t dev;

    unsigned int count;

};
 

As we can see, the cdev structure has a kobject

embedded within it. If you have one of these structures, finding its

embedded kobject is just a matter of using the

kobj field. Code that works with kobjects often

has the opposite problem, however: given a struct

kobject pointer, what is the pointer to the containing

structure? You should avoid tricks (such as assuming that the kobject

is at the beginning of the structure), and, instead, use the

container_of macro (introduced in 

Section 3.5.1.

So the way to convert a

pointer

[bookmark: linuxdrive3-CHP-14-ITERM-6623]to

a struct kobject called

kp embedded within a struct

cdev would be:

struct cdev *device = container_of(kp, struct cdev, kobj);
 

Programmers often define a simple macro for

"[bookmark: linuxdrive3-CHP-14-ITERM-6624]back-casting" kobject

pointers to the containing type.

[bookmark: linuxdrive3-CHP-14-SECT-1.1.2]
14.1.1.2 Kobject initialization

This book has presented a

number[bookmark: linuxdrive3-CHP-14-ITERM-6625]

of types with simple mechanisms for initialization at compile or

runtime. The initialization of a kobject is a bit more complicated,

especially when all of its functions are used. Regardless of how a

kobject is used, however, a few steps must be performed.

The first of those is to simply set the entire kobject to

0, usually with a call to

memset. Often this initialization happens as

part of the zeroing of the structure into which the kobject is

embedded. Failure to zero out a kobject often leads to very strange

crashes further down the line; it is not a step you want to skip.

The next step is to set up some of the internal fields with a call to

kobject_init( ):

void kobject_init(struct kobject *kobj);
 

Among other things, kobject_init sets the

kobject's reference count to one. Calling

kobject_init is not sufficient, however. Kobject

users must, at a minimum, set the name of the kobject; this is the

name that is used in sysfs entries. If you dig through the kernel

source, you can find the code that copies a string directly into the

kobject's name field, but that

approach should be avoided. Instead, use:

int kobject_set_name(struct kobject *kobj, const char *format, ...);
 

This function takes a printk-style variable

argument list. Believe it or not, it is actually possible for this

operation to fail (it may try to allocate memory); conscientious code

should check the return value and react accordingly.

The other kobject fields that should be set, directly or indirectly,

by the creator are ktype, kset,

and parent. We will get to these later in this

chapter.

[bookmark: linuxdrive3-CHP-14-SECT-1.1.3]
14.1.1.3 Reference count manipulation

One of the key functions [bookmark: linuxdrive3-CHP-14-ITERM-6626]
[bookmark: linuxdrive3-CHP-14-ITERM-6627]of a kobject is to serve as a

reference counter for the object in which it is embedded. As long as

references to the object exist, the object (and the code that

supports it) must continue to exist. The low-level functions for

manipulating a kobject's reference counts are:

struct kobject *kobject_get(struct kobject *kobj);

void kobject_put(struct kobject *kobj);
 

A successful call to kobject_get increments the

kobject's reference counter and returns a pointer to

the kobject. If, however, the kobject is already in the process of

being destroyed, the operation fails, and

kobject_get returns NULL.

This return value must always be tested, or no end of unpleasant race

conditions could result.

When a reference is released, the call to

kobject_put decrements the reference count and,

possibly, frees the object. Remember that

kobject_init sets the reference count to one; so

when you create a kobject, you should make sure that the

corresponding kobject_put call is made when that

initial reference is no longer needed.

Note that, in many cases, the reference count in the kobject itself

may not be sufficient to prevent race conditions. The existence of a

kobject (and its containing structure) may well, for example, require

the continued existence of the module that created that kobject. It

would not do to unload that module while the kobject is still being

passed around. That is why the cdev structure we

saw above contains a struct
module pointer. Reference counting for

struct cdev is implemented as follows:

struct kobject *cdev_get(struct cdev *p)

{

    struct module *owner = p->owner;

    struct kobject *kobj;



    if (owner && !try_module_get(owner))

        return NULL;

    kobj = kobject_get(&p->kobj);

    if (!kobj)

        module_put(owner);

    return kobj;

}
 

Creating a reference to a cdev structure requires

creating a reference also to the module that owns it. So

cdev_get uses

try_module_get to attempt to increment that

module's usage count. If that operation succeeds,

kobject_get is used to increment the

kobject's reference count as well. That operation

could fail, of course, so the code checks the return value from

kobject_get and releases its reference to the

module if things don't work out.

[bookmark: linuxdrive3-CHP-14-SECT-1.1.4]
14.1.1.4 Release functions and kobject types

One important thing [bookmark: linuxdrive3-CHP-14-ITERM-6628]
[bookmark: linuxdrive3-CHP-14-ITERM-6629]
[bookmark: linuxdrive3-CHP-14-ITERM-6630]still missing from the discussion is

what happens to a kobject when its reference count reaches

0. The code that created the kobject generally

does not know when that will happen; if it did, there would be little

point in using a reference count in the first place. Even predictable

object life cycles become more complicated when sysfs is brought in;

user-space programs can keep a reference to a kobject (by keeping one

of its associated sysfs files open) for an arbitrary period of time.

The end result is that a structure protected by a kobject cannot be

freed at any single, predictable point in the

driver's lifecycle, but in code that must be

prepared to run at whatever moment the kobject's

reference count goes to 0. The reference count is

not under the direct control of the code that created the kobject. So

that code must be notified asynchronously whenever the last reference

to one of its kobjects goes away.

This notification is done through a kobject's

release[bookmark: linuxdrive3-CHP-14-ITERM-6631]
[bookmark: linuxdrive3-CHP-14-ITERM-6632]

method. Usually, this method has a form such as:

void my_object_release(struct kobject *kobj)

{

    struct my_object *mine = container_of(kobj, struct my_object, kobj);



    /* Perform any additional cleanup on this object, then... */

    kfree(mine);

}
 

One important point cannot be overstated: every kobject must have a

release method, and the kobject must persist (in

a consistent state) until that method is called. If these constraints

are not met, the code is flawed. It risks freeing the object when it

is still in use, or it fails to release the object after the last

reference is returned.

Interestingly, the release method is not stored

in the kobject itself; instead, it is associated with the type of the

structure that contains the kobject. This type is tracked with a

structure of type struct kobj_type, often simply

called a "ktype." This structure

looks like the following:

struct kobj_type {

    void (*release)(struct kobject *);

    struct sysfs_ops *sysfs_ops;

    struct attribute **default_attrs;

};
 

The release field in struct

kobj_type is, of course, a pointer to the

release method for this type of kobject. We will

come back to the other two fields (sysfs_ops and

default_attrs) later in this chapter.

Every kobject needs to have an associated

kobj_type structure. Confusingly, the pointer to

this structure can be found in two different places. The kobject

structure itself contains a field (called ktype)

that can contain this pointer. If, however, this kobject is a member

of a kset, the kobj_type pointer is provided by

that kset instead. (We will look at ksets in the next section.)

Meanwhile, the macro:

struct kobj_type *get_ktype(struct kobject *kobj);
 

finds the kobj_type pointer for a given kobject.

[bookmark: linuxdrive3-CHP-14-SECT-1.2]
14.1.2. Kobject Hierarchies, Ksets, and Subsystems

The kobject structure is

often[bookmark: linuxdrive3-CHP-14-ITERM-6633]
[bookmark: linuxdrive3-CHP-14-ITERM-6634]
[bookmark: linuxdrive3-CHP-14-ITERM-6635] used to link

together objects into a hierarchical structure that matches the

structure of the subsystem being modeled. There are two separate

mechanisms for this linking: the parent pointer

and ksets.

The parent field in struct

kobject is a pointer to another kobject�the one

representing the next level up in the hierarchy. If, for example, a

kobject represents a USB device, its parent

pointer may indicate the object representing the hub into which the

device is plugged.

The main use for the parent pointer is to position

the object in the sysfs hierarchy. We'll see how

this works in Section 14.2.

[bookmark: linuxdrive3-CHP-14-SECT-1.2.1]
14.1.2.1 Ksets

In many ways, a kset looks like an extension of the

kobj_type structure; a kset is a collection of

kobjects embedded within structures of the same type. However, while

struct kobj_type concerns

itself with the type of an object, struct
kset is concerned with aggregation and collection.

The two concepts have been separated so that objects of identical

type can appear in distinct sets.

Therefore, the main function of a kset is containment; it can be

thought of as the top-level container class for kobjects. In fact,

each kset contains its own kobject internally, and it can, in many

ways, be treated the same way as a kobject. It is worth noting that

ksets are always represented in sysfs; once a kset has been set up

and added to the system, there will be a sysfs directory for it.

Kobjects do not necessarily show up in sysfs, but every kobject that

is a member of a kset is represented there.

Adding a kobject to a kset is usually done when the object is

created; it is a two-step process. The kobject's

kset field must be pointed at the kset of

interest; then the kobject should be passed to:

int kobject_add(struct kobject *kobj);
 

As always, programmers should be aware that this function can fail

(in which case it returns a negative error code) and respond

accordingly. There is a convenience function provided by the kernel:

extern int kobject_register(struct kobject *kobj);
 

This function is simply a combination of

kobject_init and

kobject_add.

When a kobject is passed to kobject_add, its

reference count is incremented. Containment within the kset is, after

all, a reference to the object. At some point, the kobject will

probably have to be removed from the kset to clear that reference;

that is done with:

void kobject_del(struct kobject *kobj);
 

There is also a kobject_unregister function,

which is a combination of kobject_del and

kobject_put.

A kset keeps its children in a standard kernel linked list. In almost

all cases, the contained kobjects also have pointers to the kset (or,

strictly, its embedded kobject) in their parent's

fields. So, typically, a kset and its kobjects look something like

what you see in Figure 14-1.

Bear in mind that:

	All of the contained kobjects in the diagram are actually embedded

within some other type, possibly even other ksets.

	It is not required that a kobject's parent be the

containing kset (although any other organization would be strange and

rare).



[bookmark: linuxdrive3-CHP-14-FIG-2]
Figure 14-2. A simple kset hierarchy

[image: ]

 

[bookmark: linuxdrive3-CHP-14-SECT-1.2.2]
14.1.2.2 Operations on ksets

For initialization and setup, ksets have an

[bookmark: linuxdrive3-CHP-14-ITERM-6636]
[bookmark: linuxdrive3-CHP-14-ITERM-6637]interface very similar

to[bookmark: linuxdrive3-CHP-14-ITERM-6638]

that of kobjects. The following functions exist:

void kset_init(struct kset *kset);

int kset_add(struct kset *kset);

int kset_register(struct kset *kset);

void kset_unregister(struct kset *kset);
 

For the most part, these

functions[bookmark: linuxdrive3-CHP-14-ITERM-6639]

just call the analogous kobject_ function on the

kset's embedded kobject.

To manage the reference counts of ksets, the situation is about the

same:

struct kset *kset_get(struct kset *kset);

void kset_put(struct kset *kset);
 

A kset also has a name, which is stored in the embedded kobject. So,

if you have a kset called my_set, you would set

its name with:

kobject_set_name(&my_set->kobj, "The name");
 

Ksets also have a pointer (in the ktype field) to

the kobj_type structure describing the kobjects it

contains. This type is used in preference to the

ktype field in a kobject itself. As a result, in

typical usage, the ktype field in

struct kobject is left

NULL, because the same field within the kset is

the one actually used.

Finally, a kset contains a subsystem pointer (called subsys). So

it's time to talk about subsystems.

[bookmark: linuxdrive3-CHP-14-SECT-1.2.3]
14.1.2.3 Subsystems

A subsystem is

a[bookmark: linuxdrive3-CHP-14-ITERM-6640]
[bookmark: linuxdrive3-CHP-14-ITERM-6641]

representation for a high-level portion of the kernel as a whole.

Subsystems usually (but not always) show up at the top of the sysfs

hierarchy. Some example subsystems in the kernel include

block_subsys (/sys/block, for

block devices), devices_subsys

(/sys/devices, the core device hierarchy), and a

specific subsystem for every bus type known to the kernel. A driver

author almost never needs to create a new subsystem; if you feel

tempted to do so, think again. What you probably want, in the end, is

to add a new class, as discussed in Section 14.5.

A subsystem is represented by a simple structure:

struct subsystem {

    struct kset kset;

    struct rw_semaphore rwsem;

};
 

A subsystem, thus, is really just a wrapper around a kset, with a

semaphore thrown in.

Every kset must belong to a subsystem. The subsystem membership helps

establish the kset's position in the hierarchy, but,

more importantly, the subsystem's

rwsem semaphore is used to serialize access to a

kset's internal-linked list. This membership is

represented by the subsys pointer in

struct kset. Thus, one can find each

kset's containing subsystem from the

kset's structure, but one cannot find the multiple

ksets contained in a subsystem directly from the subsystem structure.

Subsystems are often declared with a special macro:

decl_subsys(name, struct kobj_type *type, 

            struct kset_hotplug_ops *hotplug_ops);
 

This macro creates a struct subsystem with a name

formed by taking the name given to the macro and

appending _subsys to it. The macro also

initializes the internal kset with the given type

and hotplug_ops. (We discuss hotplug operations

later in this chapter.)

Subsystems have the usual list of setup and teardown functions:

void subsystem_init(struct subsystem *subsys);

int subsystem_register(struct subsystem *subsys);

void subsystem_unregister(struct subsystem *subsys);

struct subsystem *subsys_get(struct subsystem *subsys)

void subsys_put(struct subsystem *subsys);
 

Most of these operations just act upon[bookmark: linuxdrive3-CHP-14-ITERM-6642] [bookmark: linuxdrive3-CHP-14-ITERM-6643] [bookmark: linuxdrive3-CHP-14-ITERM-6644] [bookmark: linuxdrive3-CHP-14-ITERM-6645] [bookmark: linuxdrive3-CHP-14-ITERM-6646] [bookmark: linuxdrive3-CHP-14-ITERM-6647] [bookmark: linuxdrive3-CHP-14-ITERM-6648] the subsystem's

kset.







[bookmark: linuxdrive3-CHP-14-SECT-2]
14.2. Low-Level Sysfs Operations

Kobjects are the mechanism[bookmark: linuxdrive3-CHP-14-ITERM-6649] [bookmark: linuxdrive3-CHP-14-ITERM-6650] [bookmark: linuxdrive3-CHP-14-ITERM-6651] [bookmark: linuxdrive3-CHP-14-ITERM-6652] behind the sysfs virtual [bookmark: linuxdrive3-CHP-14-ITERM-6653] [bookmark: linuxdrive3-CHP-14-ITERM-6654] [bookmark: linuxdrive3-CHP-14-ITERM-6655] [bookmark: linuxdrive3-CHP-14-ITERM-6656] [bookmark: linuxdrive3-CHP-14-ITERM-6657] [bookmark: linuxdrive3-CHP-14-ITERM-6658]filesystem. For every

directory found in sysfs, there is a kobject lurking somewhere within

the kernel. Every kobject of interest also exports one or more

attributes, which appear in that

kobject's sysfs directory as files containing

kernel-generated information. This section examines how kobjects and

sysfs interact at a low level.

Code that works with sysfs should include

<linux/sysfs.h>.

Getting a kobject to show up in sysfs is simply a matter of calling

kobject_add. We have already seen that function

as the way to add a kobject to a kset; creating entries in sysfs is

also part of its job. There are a couple of things worth knowing

about how the sysfs entry is created:

	Sysfs entries for kobjects are always directories, so a call to

kobject_add results in the creation of a

directory in sysfs. Usually that directory contains one or more

attributes; we see how attributes are specified shortly.

	The name assigned to the kobject (with

kobject_set_name) is the name used for the sysfs

directory. Thus, kobjects that appear in the same part of the sysfs

hierarchy must have unique names. Names assigned to kobjects should

also be reasonable file names: they cannot contain the slash

character, and the use of white space is strongly discouraged.

	The sysfs entry is located in the directory corresponding to the

kobject's parent pointer. If

parent is NULL when

kobject_add is called, it is set to the kobject

embedded in the new kobject's kset; thus, the sysfs

hierarchy usually matches the internal hierarchy created with ksets.

If both parent and kset are

NULL, the sysfs directory is created at the top

level, which is almost certainly not what you want.



Using the mechanisms we have described so far, we can use a kobject

to create an empty directory in sysfs. Usually, you want to do

something a little more interesting than that, so it is time to look

at the implementation of attributes.

[bookmark: linuxdrive3-CHP-14-SECT-2.1]
14.2.1. Default Attributes

When created, every kobject is given a set

of[bookmark: linuxdrive3-CHP-14-ITERM-6659]
[bookmark: linuxdrive3-CHP-14-ITERM-6660] default attributes. These

attributes are specified by way of the kobj_type

structure. That structure, remember, looks like this:

struct kobj_type {

    void (*release)(struct kobject *);

    struct sysfs_ops *sysfs_ops;

    struct attribute **default_attrs;

};
 

The[bookmark: linuxdrive3-CHP-14-ITERM-6661] default_attrs

field lists the attributes to be created for every kobject of this

type, and sysfs_ops provides the methods to

implement those attributes. We start with

default_attrs, which points to an array of

pointers to attribute structures:

struct attribute {

    char *name;

    struct module *owner;

    mode_t mode;

};
 

In this structure, name is the name of the

attribute (as it appears within the kobject's sysfs

directory), owner is a pointer to the module (if

any) that is responsible for the implementation of this attribute,

and mode is the protection bits that are to be

applied to this attribute. The mode is usually

S_IRUGO for read-only attributes; if the attribute

is writable, you can toss in S_IWUSR to give write

access to root only (the macros for modes are defined in

<linux/stat.h>). The last entry in the

default_attrs list must be zero-filled.

The default_attrs array says what the attributes

are but does not tell sysfs how to actually implement those

attributes. That task falls to the

kobj_type->sysfs_ops field, which points to a

structure defined as:

struct sysfs_ops {

    ssize_t (*show)(struct kobject *kobj, struct attribute *attr, 

                    char *buffer);

    ssize_t (*store)(struct kobject *kobj, struct attribute *attr, 

                     const char *buffer, size_t size);

};
 

Whenever an attribute is read from user space, the

show[bookmark: linuxdrive3-CHP-14-ITERM-6662]
[bookmark: linuxdrive3-CHP-14-ITERM-6663]

method is called with a pointer to the kobject and the appropriate

attribute structure. That method should encode the

value of the given attribute into buffer, being

sure not to overrun it (it is PAGE_SIZE bytes),

and return the actual length of the returned data. The conventions

for sysfs state that each attribute should contain a single,

human-readable value; if you have a lot of information to return, you

may want to consider splitting it into multiple attributes.

The same show method is used for all attributes

associated with a given kobject. The attr pointer

passed into the function can be used to determine which attribute is

being requested. Some show methods include a

series of tests on the attribute name. Other implementations embed

the attribute structure within another structure

that contains the information needed to return the

attribute's value; in this case,

container_of may be used within the

show method to obtain a pointer to the embedding

structure.

The store[bookmark: linuxdrive3-CHP-14-ITERM-6664]
[bookmark: linuxdrive3-CHP-14-ITERM-6665]
[bookmark: linuxdrive3-CHP-14-ITERM-6666] method is similar; it should decode

the data stored in buffer (size

contains the length of that data, which does not exceed

PAGE_SIZE), store and respond to the new value in

whatever way makes sense, and return the number of bytes actually

decoded. The store method can be called only if

the attribute's permissions allow writes. When

writing a store method, never forget that you

are receiving arbitrary information from user space; you should

validate it very carefully before taking any action in response. If

the incoming data does not match expectations, return a negative

error value rather than possibly doing something unwanted and

unrecoverable. If your device exports a

self_destruct attribute, you should require that a

specific string be written there to invoke that functionality; an

accidental, random write should yield only an error.

[bookmark: linuxdrive3-CHP-14-SECT-2.2]
14.2.2. Nondefault Attributes

In many cases, the [bookmark: linuxdrive3-CHP-14-ITERM-6667]
[bookmark: linuxdrive3-CHP-14-ITERM-6668]
[bookmark: linuxdrive3-CHP-14-ITERM-6669]kobject type's

default_attrs field describes all the attributes

that kobject will ever have. But that's not a

restriction in the design; attributes can be added and removed to

kobjects at will. If you wish to add a new attribute to a

kobject's sysfs directory, simply fill in an

attribute structure and pass it to:

int sysfs_create_file(struct kobject *kobj, struct attribute *attr);
 

If all goes well, the file is created with the name given in the

attribute structure, and the return value is

0; otherwise, the usual negative error code is

returned.

Note that the same show( ) and store(

) functions are called to implement operations on the new

attribute. Before you add a new, nondefault attribute to a kobject,

you should take whatever steps are necessary to ensure that those

functions know how to implement that attribute.

To remove an attribute,

[bookmark: linuxdrive3-CHP-14-ITERM-6670]
[bookmark: linuxdrive3-CHP-14-ITERM-6671]call:

int sysfs_remove_file(struct kobject *kobj, struct attribute *attr);
 

After the call, the attribute no longer appears in the

kobject's sysfs entry. Do be aware, however, that a

user-space process could have an open file descriptor for that

attribute and that show and

store calls are still possible after the

attribute has been removed.

[bookmark: linuxdrive3-CHP-14-SECT-2.3]
14.2.3. Binary Attributes

The sysfs conventions call [bookmark: linuxdrive3-CHP-14-ITERM-6672]
[bookmark: linuxdrive3-CHP-14-ITERM-6673]for all attributes to contain a

single value in a human-readable text format. That said, there is an

occasional, rare need for the creation of attributes that can handle

larger chunks of binary data. That need really only comes about when

data must be passed, untouched, between user space and the device.

For example, uploading firmware to devices requires this feature.

When such a device is encountered in the system, a user-space program

can be started (via the hotplug mechanism); that program then passes

the firmware code to the kernel via a binary sysfs attribute, as is

shown in Section 14.8.1.

Binary attributes are described with a

bin_attribute[bookmark: linuxdrive3-CHP-14-ITERM-6674]
[bookmark: linuxdrive3-CHP-14-ITERM-6675]

structure:

struct bin_attribute {

    struct attribute attr;

    size_t size;

    ssize_t (*read)(struct kobject *kobj, char *buffer, 

                    loff_t pos, size_t size);

    ssize_t (*write)(struct kobject *kobj, char *buffer, 

                    loff_t pos, size_t size);

};
 

Here, attr is an attribute

structure giving the name, owner, and permissions for the binary

attribute, and size is the maximum size of the

binary attribute (or 0 if there is no maximum).

The read and write methods

work similarly to the normal char driver equivalents; they can be

called multiple times for a single load with a maximum of one page

worth of data in each call. There is no way for sysfs to signal the

last of a set of write operations, so code implementing a binary

attribute must be able to determine the end of the data some other

way.

Binary attributes must be created explicitly; they cannot be set up

as default attributes. To create a binary attribute, call:

int sysfs_create_bin_file(struct kobject *kobj, 

                          struct bin_attribute *attr);
 

Binary attributes can be removed with:

int sysfs_remove_bin_file(struct kobject *kobj, 

                          struct bin_attribute *attr);
 

[bookmark: linuxdrive3-CHP-14-SECT-2.4]
14.2.4. Symbolic Links

The sysfs filesystem [bookmark: linuxdrive3-CHP-14-ITERM-6676] [bookmark: linuxdrive3-CHP-14-ITERM-6677]
[bookmark: linuxdrive3-CHP-14-ITERM-6678]has the usual tree structure, reflecting

the hierarchical organization of the kobjects it represents. The

relationships between objects in the kernel are often more

complicated than that, however. For example, one sysfs subtree

(/sys/devices) represents all of the devices

known to the system, while other subtrees (under

/sys/bus) represent the device drivers. These

trees do not, however, represent the relationships between the

drivers and the devices they manage. Showing these additional

relationships requires extra pointers which, in sysfs, are

implemented through symbolic links.

Creating a symbolic link within sysfs is easy:

int sysfs_create_link(struct kobject *kobj, struct kobject *target,

                      char *name);
 

This function creates a link (called name)

pointing to target's sysfs entry

as an attribute of kobj. It is a relative link, so

it works regardless of where sysfs is mounted on any particular

system.

The link persists even if target is removed from

the system. If you are creating symbolic links to other kobjects, you

should probably have a way of knowing about changes to those

kobjects, or some sort of assurance that the target kobjects will not

disappear. The consequences (dead symbolic links within sysfs) are

not particularly grave, but they are not representative of the best

[bookmark: linuxdrive3-CHP-14-ITERM-6679]
[bookmark: linuxdrive3-CHP-14-ITERM-6680]
[bookmark: linuxdrive3-CHP-14-ITERM-6681]
[bookmark: linuxdrive3-CHP-14-ITERM-6682]
[bookmark: linuxdrive3-CHP-14-ITERM-6683]
[bookmark: linuxdrive3-CHP-14-ITERM-6684]programming style and[bookmark: linuxdrive3-CHP-14-ITERM-6685] [bookmark: linuxdrive3-CHP-14-ITERM-6686] [bookmark: linuxdrive3-CHP-14-ITERM-6687] [bookmark: linuxdrive3-CHP-14-ITERM-6688] can cause

confusion in user space.

Symbolic links can

be[bookmark: linuxdrive3-CHP-14-ITERM-6689] removed with:

void sysfs_remove_link(struct kobject *kobj, char *name);
 







[bookmark: linuxdrive3-CHP-14-SECT-3]
14.3. Hotplug Event Generation

A hotplug event is a [bookmark: linuxdrive3-CHP-14-ITERM-6690]
[bookmark: linuxdrive3-CHP-14-ITERM-6691]
[bookmark: linuxdrive3-CHP-14-ITERM-6692]
[bookmark: linuxdrive3-CHP-14-ITERM-6693]
[bookmark: linuxdrive3-CHP-14-ITERM-6694]
[bookmark: linuxdrive3-CHP-14-ITERM-6695]notification

to [bookmark: linuxdrive3-CHP-14-ITERM-6696]
[bookmark: linuxdrive3-CHP-14-ITERM-6697]user space from the kernel

that something has changed in the system's

configuration. They are generated whenever a kobject is created or

destroyed. Such events are generated, for example, when a digital

camera is plugged in with a USB cable, when a user switches console

modes, or when a disk is repartitioned. Hotplug events turn into an

invocation of /sbin/hotplug, which can respond

to each event by loading drivers, creating device nodes, mounting

partitions, or taking any other action that is appropriate.

The last major kobject function we look at is the generation of these

events. The actual event generation takes place when a kobject is

passed to kobject_add or

kobject_del. Before the event is handed to user

space, code associated with the kobject (or, more specifically, the

kset to which it belongs) has the opportunity to add information for

user space or to disable event generation entirely.

[bookmark: linuxdrive3-CHP-14-SECT-3.1]
14.3.1. Hotplug Operations

Actual control of hotplug events

is[bookmark: linuxdrive3-CHP-14-ITERM-6698]
[bookmark: linuxdrive3-CHP-14-ITERM-6699]

exercised by way of a set of methods stored in the

kset_hotplug_ops[bookmark: linuxdrive3-CHP-14-ITERM-6700]
[bookmark: linuxdrive3-CHP-14-ITERM-6701]

structure:

struct kset_hotplug_ops {

    int (*filter)(struct kset *kset, struct kobject *kobj);

    char *(*name)(struct kset *kset, struct kobject *kobj);

    int (*hotplug)(struct kset *kset, struct kobject *kobj, 

                   char **envp, int num_envp, char *buffer, 

                   int buffer_size);

};
 

A pointer to this structure is found in the

hotplug_ops field of the kset structure. If a

given kobject is not contained within a kset, the kernel searchs up

through the hierarchy (via the parent pointer)

until it finds a kobject that does have a kset;

that kset's hotplug operations are then used.

The filter[bookmark: linuxdrive3-CHP-14-ITERM-6702]
[bookmark: linuxdrive3-CHP-14-ITERM-6703]
[bookmark: linuxdrive3-CHP-14-ITERM-6704] hotplug operation is called whenever

the kernel is considering generating an event for a given kobject. If

filter returns 0, the event

is not created. This method, therefore, gives the kset code an

opportunity to decide which events should be passed on to user space

and which should not.

As an example of how this method might be used, consider the block

subsystem. There are at least three types of kobjects used there,

representing disks, partitions, and request queues. User space may

want to react to the addition of a disk or a partition, but it does

not normally care about request queues. So the

filter method allows event generation only for

kobjects representing disks and partitions. It looks like this:

static int block_hotplug_filter(struct kset *kset, struct kobject *kobj)

{

    struct kobj_type *ktype = get_ktype(kobj);



    return ((ktype =  = &ktype_block) || (ktype =  = &ktype_part));

}
 

Here, a quick test on the type of kobject is sufficient to decide

whether the event should be generated or not.

When the user-space hotplug program is invoked, it is passed to the

name of the relevant subsystem as its one and only parameter. The

name hotplug method is charged with providing

that name. It should return a simple string suitable for passing to

user space.

Everything else that the hotplug script might want to know is passed

in the environment. The final hotplug method

(hotplug) gives an opportunity to add useful

environment variables prior to the invocation of that script. Again,

this method's prototype is:

int (*hotplug)(struct kset *kset, struct kobject *kobj, 

               char **envp, int num_envp, char *buffer, 

               int buffer_size);
 

As usual, kset and kobject

describe the object for which the event is being generated. The

envp array is a place to store additional

environment variable definitions (in the usual

NAME=value format); it has

num_envp entries available. The variables

themselves should be encoded into buffer, which is

buffer_size bytes long. If you add any variables

to envp, be sure to add a NULL

entry after your last addition so that the kernel knows where the end

is. The return value should normally be 0; any

nonzero return aborts the generation of the hotplug event.

The generation of hotplug events (like much of the work in the device

model) is usually handled by logic at the bus driver level.







[bookmark: linuxdrive3-CHP-14-SECT-4]
14.4. Buses, Devices, and Drivers

So far, we have seen a great deal of low-level infrastructures and a

relative shortage of examples. We try to make up for that in the rest

of this chapter as we get into the higher levels of the Linux device

model. To that end, we introduce a new virtual bus, which we call

lddbus,[1] and modify the

scullp driver to

"connect" to that bus.
[bookmark: linuxdrive3-CHP-14-FNOTE-1][1] The logical name for

this bus, of course, would have been

"sbus," but that name was already

taken by a real, physical bus.


Once again, much of the material covered here will never be needed by

many driver authors. Details at this level are generally handled at

the bus level, and few authors need to add a new bus type. This

information is useful, however, for anybody wondering what is

happening inside the PCI, USB, etc. layers or who needs to make

changes at that level.

[bookmark: linuxdrive3-CHP-14-SECT-4.1]
14.4.1. Buses

A bus is a channel [bookmark: linuxdrive3-CHP-14-ITERM-6705] [bookmark: linuxdrive3-CHP-14-ITERM-6706]
[bookmark: linuxdrive3-CHP-14-ITERM-6707] [bookmark: linuxdrive3-CHP-14-ITERM-6708]
[bookmark: linuxdrive3-CHP-14-ITERM-6709]between the processor and one or

more devices. For the purposes of the device model, all devices are

connected via a bus, even if it is an internal, virtual,

"platform" bus. Buses can plug into

each other�a USB controller is usually a PCI device, for

example. The device model represents the actual connections between

buses and the devices they control.

In the Linux device model, a bus is represented by the

bus_type[bookmark: linuxdrive3-CHP-14-ITERM-6710]
[bookmark: linuxdrive3-CHP-14-ITERM-6711]

structure, defined in <linux/device.h>.

This structure looks like:

struct bus_type {

    char *name;

    struct subsystem subsys;

    struct kset drivers;

    struct kset devices;

    int (*match)(struct device *dev, struct device_driver *drv);

    struct device *(*add)(struct device * parent, char * bus_id);

    int (*hotplug) (struct device *dev, char **envp, 

                    int num_envp, char *buffer, int buffer_size);

    /* Some fields omitted */

};
 

The name[bookmark: linuxdrive3-CHP-14-ITERM-6712] field is the name of the bus, something

such as pci. You can see from the structure that

each bus is its own subsystem; these subsystems do not live at the

top level in sysfs, however. Instead, they are found underneath the

bus subsystem. A bus contains two ksets,

representing the known drivers for that bus and all devices plugged

into the bus. Then, there is a set of methods that we will get to

shortly.

[bookmark: linuxdrive3-CHP-14-SECT-4.1.1]
14.4.1.1 Bus registration

As we mentioned,

the[bookmark: linuxdrive3-CHP-14-ITERM-6713]
[bookmark: linuxdrive3-CHP-14-ITERM-6714]

example source includes a virtual bus implementation called

lddbus. This bus sets up its

bus_type structure as follows:

struct bus_type ldd_bus_type = {

    .name = "ldd",

    .match = ldd_match,

    .hotplug  = ldd_hotplug,

};
 

Note that very few of the bus_type fields require

initialization; most of that is handled by the device model core. We

do have to specify the name of the bus, however, and any methods that

go along with it.

Inevitably, a new bus must be registered with the system via a call

to bus_register[bookmark: linuxdrive3-CHP-14-ITERM-6715]
[bookmark: linuxdrive3-CHP-14-ITERM-6716].

The lddbus code does so in this way:

ret = bus_register(&ldd_bus_type);

if (ret)

    return ret;
 

This call can fail, of course, so the return value must always be

checked. If it succeeds, the new bus subsystem has been added to the

system; it is visible in sysfs under /sys/bus,

and it is possible to start adding devices.

Should it be necessary to remove a bus from the system (when the

associated module is removed, for example),

bus_unregister should be called:

void bus_unregister(struct bus_type *bus);
 

[bookmark: linuxdrive3-CHP-14-SECT-4.1.2]
14.4.1.2 Bus methods

There are several methods

[bookmark: linuxdrive3-CHP-14-ITERM-6717]
[bookmark: linuxdrive3-CHP-14-ITERM-6718]
[bookmark: linuxdrive3-CHP-14-ITERM-6719]defined

for the bus_type structure; they allow the bus

code to serve as an intermediary between the device core and

individual drivers. The methods defined in the 2.6.10 kernel are:



	int (*match)(struct device *device, struct device_driver *driver);

	
This method is called, perhaps multiple times, whenever a new device

or driver is added for this bus. It should return a nonzero value if

the given device can be handled by the given

driver. (We get to the details of the

device and device_driver

structures shortly). This function must be handled at the bus level,

because that is where the proper logic exists; the core kernel cannot

know how to match devices and drivers for every possible bus type.





	int (*hotplug) (struct device *device, char **envp, int num_envp, char 



	 *buffer, int buffer_size);

	
This method allows the bus to add variables to the environment prior

to the generation of a hotplug event in user space. The parameters

are the same as for the kset hotplug method

(described in the earlier Section 14.3).





The[bookmark: linuxdrive3-CHP-14-ITERM-6720]
[bookmark: linuxdrive3-CHP-14-ITERM-6721]
lddbus driver has a very simple

match[bookmark: linuxdrive3-CHP-14-ITERM-6722]
[bookmark: linuxdrive3-CHP-14-ITERM-6723]
[bookmark: linuxdrive3-CHP-14-ITERM-6724] function, which simply compares the

driver and device names:

static int ldd_match(struct device *dev, struct device_driver *driver)

{

    return !strncmp(dev->bus_id, driver->name, strlen(driver->name));

}
 

When real hardware is involved, the match

function usually makes some sort of comparison between the hardware

ID provided by the device itself and the IDs supported by the driver.

The lddbus hotplug method

looks like this:

static int ldd_hotplug(struct device *dev, char **envp, int num_envp,

        char *buffer, int buffer_size)

{

    envp[0] = buffer;

    if (snprintf(buffer, buffer_size, "LDDBUS_VERSION=%s",

                Version) >= buffer_size)

        return -ENOMEM;

    envp[1] = NULL;

    return 0;

}
 

Here, we add in the current revision number of the

lddbus source, just in case anybody is curious.

[bookmark: linuxdrive3-CHP-14-SECT-4.1.3]
14.4.1.3 Iterating over devices and drivers

If you are writing bus-level code, [bookmark: linuxdrive3-CHP-14-ITERM-6725]
[bookmark: linuxdrive3-CHP-14-ITERM-6726]
[bookmark: linuxdrive3-CHP-14-ITERM-6727]
[bookmark: linuxdrive3-CHP-14-ITERM-6728]you

may find yourself having to perform some operation on all devices or

drivers that have been registered with your bus. It may be tempting

to dig directly into the structures in the

bus_type structure, but it is better to use the

helper functions that have been provided.

To operate on every device known to the bus, use:

int bus_for_each_dev(struct bus_type *bus, struct device *start, 

                     void *data, int (*fn)(struct device *, void *));
 

This function iterates over every device on bus,

passing the associated device structure to

fn, along with the value passed in as

data. If start is

NULL, the iteration begins with the first device

on the bus; otherwise iteration starts with the first device after

start. If fn returns a nonzero

value, iteration stops and that value is returned from

bus_for_each_dev[bookmark: linuxdrive3-CHP-14-ITERM-6729]
[bookmark: linuxdrive3-CHP-14-ITERM-6730].

There is a similar function for iterating over drivers:

int bus_for_each_drv(struct bus_type *bus, struct device_driver *start, 

                     void *data, int (*fn)(struct device_driver *, void *));
 

This function works just like bus_for_each_dev,

except, of course, that it works with drivers instead.

It should be noted that both of these functions hold the bus

subsystem's reader/writer semaphore for the duration

of the work. So an attempt to use the two of them together will

deadlock�each will be trying to obtain the same semaphore.

Operations that modify the bus (such as unregistering devices) will

also lock up. So, use the bus_for_each functions

with some care.

[bookmark: linuxdrive3-CHP-14-SECT-4.1.4]
14.4.1.4 Bus attributes

Almost every layer in the Linux

[bookmark: linuxdrive3-CHP-14-ITERM-6731]
[bookmark: linuxdrive3-CHP-14-ITERM-6732]device

model provides an interface for the addition of attributes, and the

bus layer is no exception. The

bus_attribute[bookmark: linuxdrive3-CHP-14-ITERM-6733]
[bookmark: linuxdrive3-CHP-14-ITERM-6734]

type is defined in <linux/device.h> as

follows:

struct bus_attribute {

    struct attribute attr;

    ssize_t (*show)(struct bus_type *bus, char *buf);

    ssize_t (*store)(struct bus_type *bus, const char *buf, 

                     size_t count);

};
 

We have already seen struct
attribute in Section 14.2.1. The bus_attribute

type also includes two methods for displaying and setting the value

of the attribute. Most device model layers above the kobject level

work this way.

A convenience macro has been provided for the compile-time creation

and initialization of bus_attribute structures:

[bookmark: linuxdrive3-CHP-14-ITERM-6735][bookmark: linuxdrive3-CHP-14-ITERM-6736]BUS_ATTR(name, mode, show, store);
 

This macro declares a structure, generating its name by prepending

the string bus_attr_ to the given

name.

Any attributes belonging to a bus should be created explicitly with

bus_create_file:

int bus_create_file(struct bus_type *bus, struct bus_attribute *attr);
 

Attributes can also

be[bookmark: linuxdrive3-CHP-14-ITERM-6737]
[bookmark: linuxdrive3-CHP-14-ITERM-6738]

removed with:

void bus_remove_file(struct bus_type *bus, struct bus_attribute *attr);
 

The lddbus driver creates a simple attribute

file containing, once again, the source version number. The

show method and bus_attribute

structure are set up as follows:

static ssize_t show_bus_version(struct bus_type *bus, char *buf)

{

    return snprintf(buf, PAGE_SIZE, "%s\n", Version);

}



static BUS_ATTR(version, S_IRUGO, show_bus_version, NULL);
 

Creating the attribute file is done at module load time:

if (bus_create_file(&ldd_bus_type, &bus_attr_version))

    printk(KERN_NOTICE "Unable to create version attribute\n");
 

This call creates an[bookmark: linuxdrive3-CHP-14-ITERM-6739] [bookmark: linuxdrive3-CHP-14-ITERM-6740] [bookmark: linuxdrive3-CHP-14-ITERM-6741] [bookmark: linuxdrive3-CHP-14-ITERM-6742] [bookmark: linuxdrive3-CHP-14-ITERM-6743] attribute file

(/sys/bus/ldd/version) containing the revision

number for the lddbus code.

[bookmark: linuxdrive3-CHP-14-SECT-4.2]
14.4.2. Devices

At the lowest level, every device[bookmark: linuxdrive3-CHP-14-ITERM-6744] [bookmark: linuxdrive3-CHP-14-ITERM-6745] [bookmark: linuxdrive3-CHP-14-ITERM-6746]
[bookmark: linuxdrive3-CHP-14-ITERM-6747] in a

Linux system is represented by an instance of struct

device:

struct device {

    struct device *parent;

    struct kobject kobj;

    char bus_id[BUS_ID_SIZE];

    struct bus_type *bus;

    struct device_driver *driver;

    void *driver_data;

    void (*release)(struct device *dev);

    /* Several fields omitted */

};
 

There are many other struct

device[bookmark: linuxdrive3-CHP-14-ITERM-6748] fields that are of interest only to the

device core code. These fields, however, are worth knowing about:

[bookmark: linuxdrive3-CHP-14-ITERM-6749][bookmark: linuxdrive3-CHP-14-ITERM-6750][bookmark: linuxdrive3-CHP-14-ITERM-6751][bookmark: linuxdrive3-CHP-14-ITERM-6752][bookmark: linuxdrive3-CHP-14-ITERM-6753][bookmark: linuxdrive3-CHP-14-ITERM-6754][bookmark: linuxdrive3-CHP-14-ITERM-6755]

	struct device *parent[bookmark: linuxdrive3-CHP-14-ITERM-6749]

	
The device's

"parent" device�the device to

which it is attached. In most cases, a parent device is some sort of

bus or host controller. If parent is

NULL, the device is a top-level device, which is

not usually what you want.





	struct kobject kobj;[bookmark: linuxdrive3-CHP-14-ITERM-6750]

	
The kobject that represents this device and links it into the

hierarchy. Note that, as a general rule,

device->kobj->parent is equal to

&device->parent->kobj.





	char bus_id[BUS_ID_SIZE];[bookmark: linuxdrive3-CHP-14-ITERM-6751]

	
A string that uniquely identifies this device on the bus. PCI

devices, for example, use the standard PCI ID format containing the

domain, bus, device, and function numbers.





	struct bus_type *bus;[bookmark: linuxdrive3-CHP-14-ITERM-6752]

	
Identifies which kind of bus the device sits on.





	struct device_driver *driver;[bookmark: linuxdrive3-CHP-14-ITERM-6753]

	
The driver that manages this device; we examine

struct device_driver in the

next section.





	void *driver_data;[bookmark: linuxdrive3-CHP-14-ITERM-6754]

	
A private data field that may be used by the device driver.





	void (*release)(struct device *dev);[bookmark: linuxdrive3-CHP-14-ITERM-6755]

	
The method is called when the last reference to the device is

removed; it is called from the embedded kobject's

release method. All device

structures registered with the core must have a

release method, or the kernel prints out scary

complaints.





At a minimum, the parent,

bus_id, bus, and

release fields must be set before the device

structure can be registered.

[bookmark: linuxdrive3-CHP-14-SECT-4.2.1]
14.4.2.1 Device registration

The usual set of

registration[bookmark: linuxdrive3-CHP-14-ITERM-6756]
[bookmark: linuxdrive3-CHP-14-ITERM-6757]

and unregistration functions exists:

int device_register(struct device *dev);

void device_unregister(struct device *dev);
 

We have seen how the lddbus code registers its

bus type. However, an actual bus is a device and must be registered

separately. For simplicity, the lddbus module

supports only a single virtual bus, so the driver sets up its device

at compile time:

static void ldd_bus_release(struct device *dev)

{

    printk(KERN_DEBUG "lddbus release\n");

}

    

struct device ldd_bus = {

    .bus_id   = "ldd0",

    .release  = ldd_bus_release

};
 

This is a top-level bus, so the parent and

bus fields are left NULL. We

have a simple, no-op release method, and, as the

first (and only) bus, its name is ldd0. This bus

device is registered with:

ret = device_register(&ldd_bus);

if (ret)

    printk(KERN_NOTICE "Unable to register ldd0\n");
 

Once that call is complete, the new bus can be seen under

/sys/devices in sysfs. Any devices added to this

bus then shows up under /sys/devices/ldd0/.

[bookmark: linuxdrive3-CHP-14-SECT-4.2.2]
14.4.2.2 Device attributes

Device entries

[bookmark: linuxdrive3-CHP-14-ITERM-6758]
[bookmark: linuxdrive3-CHP-14-ITERM-6759]in

sysfs can have attributes. The relevant structure is:

struct device_attribute {

    struct attribute attr;

    ssize_t (*show)(struct device *dev, char *buf);

    ssize_t (*store)(struct device *dev, const char *buf, 

                     size_t count);

};
 

These attribute structures can be set up at compile time with this

macro:

DEVICE_ATTR(name, mode, show, store);
 

The resulting structure is named by prepending

dev_attr_ to the given name.

The actual management of attribute files is handled with the usual

pair of functions:

int device_create_file(struct device *device, 

                       struct device_attribute *entry);

void device_remove_file(struct device *dev, 

                        struct device_attribute *attr);
 

The dev_attrs field of struct

bus_type points to a list of default attributes created for

every device added to that bus.

[bookmark: linuxdrive3-CHP-14-SECT-4.2.3]
14.4.2.3 Device structure embedding

The device structure

[bookmark: linuxdrive3-CHP-14-ITERM-6760]
[bookmark: linuxdrive3-CHP-14-ITERM-6761]
[bookmark: linuxdrive3-CHP-14-ITERM-6762]contains the information that the

device model core needs to model the system. Most subsystems,

however, track additional information about the devices they host. As

a result, it is rare for devices to be represented by bare

device structures; instead, that structure, like

kobject structures, is usually embedded within a higher-level

representation of the device. If you look at the definitions of

struct pci_dev or

struct usb_device, you will

find a struct device buried

inside. Usually, low-level drivers are not even aware of that

struct device, but there can be

exceptions.

The lddbus driver creates its own device type

(struct ldd_device) and expects

individual device drivers to register their devices using that type.

It is a simple structure:

struct ldd_device {

    char *name;

    struct ldd_driver *driver;

    struct device dev;

};



#define to_ldd_device(dev) container_of(dev, struct ldd_device, dev);
 

This structure allows the driver to provide an actual name for the

device (which can be distinct from its bus ID, stored in the

device structure) and a pointer to driver

information. Structures for real devices usually also contain

information about the vendor, device model, device configuration,

resources used, and so on. Good examples can be found in

struct pci_dev

(<linux/pci.h>) or

struct usb_device

(<linux/usb.h>). A convenience macro

(to_ldd_device) is also defined for

struct ldd_device to make it

easy to turn pointers to the embedded device

structure into ldd_device pointers.

The registration interface exported by lddbus

looks like this:

int register_ldd_device(struct ldd_device *ldddev)

{

    ldddev->dev.bus = &ldd_bus_type;

    ldddev->dev.parent = &ldd_bus;

    ldddev->dev.release = ldd_dev_release;

    strncpy(ldddev->dev.bus_id, ldddev->name, BUS_ID_SIZE);

    return device_register(&ldddev->dev);

}

EXPORT_SYMBOL(register_ldd_device);
 

Here, we simply fill in some of the embedded

device structure fields (which individual drivers

should not need to know about), and register the device with the

driver core. If we wanted to add bus-specific attributes to the

device, we could do so here.

To show how this interface is used, let us introduce another sample

driver, which we have called sculld. It is yet

another variant on the scullp driver first

introduced in Chapter 8. It

implements the usual memory area device, but

sculld also works with the Linux device model by

way of the lddbus interface.

The sculld driver adds an attribute of its own

to its device entry; this attribute, called dev,

simply contains the associated device number. This attribute could be

used by a module loading the script or the hotplug subsystem to

automatically create device nodes when the device is added to the

system. The setup for this attribute follows the usual patterns:

static ssize_t sculld_show_dev(struct device *ddev, char *buf)

{

    struct sculld_dev *dev = ddev->driver_data;



    return print_dev_t(buf, dev->cdev.dev);

}



static DEVICE_ATTR(dev, S_IRUGO, sculld_show_dev, NULL);
 

Then, at initialization time, the device is registered, and the

dev attribute is created through the following

function:

static void sculld_register_dev(struct sculld_dev *dev, int index)

{

    sprintf(dev->devname, "sculld%d", index);

    dev->ldev.name = dev->devname;

    dev->ldev.driver = &sculld_driver;

    dev->ldev.dev.driver_data = dev;

    register_ldd_device(&dev->ldev);

    device_create_file(&dev->ldev.dev, &dev_attr_dev);

}
 

Note that we make use of the driver_data field to

store the pointer to our own, internal device structure.

[bookmark: linuxdrive3-CHP-14-SECT-4.3]
14.4.3. Device Drivers

The device model

[bookmark: linuxdrive3-CHP-14-ITERM-6763]
[bookmark: linuxdrive3-CHP-14-ITERM-6764]tracks

all of the drivers known to the system. The main reason for this

tracking is to enable the driver core to match up drivers with new

devices. Once drivers are known objects within the system, however, a

number of other things become possible. Device drivers can export

information and configuration variables that are independent of any

specific device, for example.

Drivers are defined by the following structure:

[bookmark: linuxdrive3-CHP-14-ITERM-6765][bookmark: linuxdrive3-CHP-14-ITERM-6766]struct device_driver {

    char *name;

    struct bus_type *bus;

    struct kobject kobj;

    struct list_head devices;

    int (*probe)(struct device *dev);

    int (*remove)(struct device *dev);

    void (*shutdown) (struct device *dev);

};
 

Once again, several of the structure's fields have

been omitted (see <linux/device.h> for the

full story). Here, name is the name of the driver

(it shows up in sysfs), bus is the type of bus

this driver works with, kobj is the inevitable

kobject, devices is a list of all devices

currently bound to this driver, probe is a

function called to query the existence of a specific device (and

whether this driver can work with it), remove is

called when the device is removed from the system, and

shutdown is called at shutdown time to quiesce the

device.

The form of the functions for working with

device_driver structures should be looking

familiar by now (so we cover them very quickly). The registration

functions are:

int driver_register(struct device_driver *drv);

void driver_unregister(struct device_driver *drv);
 

The usual attribute structure exists:

struct driver_attribute {

    struct attribute attr;

    ssize_t (*show)(struct device_driver *drv, char *buf);

    ssize_t (*store)(struct device_driver *drv, const char *buf, 

                     size_t count);

};

DRIVER_ATTR(name, mode, show, store);
 

And attribute files are created in the usual way:

int driver_create_file(struct device_driver *drv, 

                       struct driver_attribute *attr);

void driver_remove_file(struct device_driver *drv, 

                        struct driver_attribute *attr);
 

The bus_type structure contains a field

(drv_attrs) that points to a set of default

attributes, which are created for all drivers associated with that

bus.

[bookmark: linuxdrive3-CHP-14-SECT-4.3.1]
14.4.3.1 Driver structure embedding

As is the case with

mos[bookmark: linuxdrive3-CHP-14-ITERM-6767]
[bookmark: linuxdrive3-CHP-14-ITERM-6768]
[bookmark: linuxdrive3-CHP-14-ITERM-6769]t driver core structures, the

device_driver structure is usually found embedded

within a higher-level, bus-specific structure. The

lddbus subsystem would never go against such a

trend, so it has defined its own

ldd_driver[bookmark: linuxdrive3-CHP-14-ITERM-6770]
[bookmark: linuxdrive3-CHP-14-ITERM-6771]

structure:

struct ldd_driver {

    char *version;

    struct module *module;

    struct device_driver driver;

    struct driver_attribute version_attr;

};



#define to_ldd_driver(drv) container_of(drv, struct ldd_driver, driver);
 

Here, we require each driver to provide its current software version,

and lddbus exports that version string for every

driver it knows about. The bus-specific driver registration function

is:

int register_ldd_driver(struct ldd_driver *driver)

{

    int ret;

    

    driver->driver.bus = &ldd_bus_type;

    ret = driver_register(&driver->driver);

    if (ret)

        return ret;

    driver->version_attr.attr.name = "version";

    driver->version_attr.attr.owner = driver->module;

    driver->version_attr.attr.mode = S_IRUGO;

    driver->version_attr.show = show_version;

    driver->version_attr.store = NULL;

    return driver_create_file(&driver->driver, &driver->version_attr);

}
 

The first half of the function simply registers the low-level

device_driver structure with the core; the rest

sets up the version attribute. Since this

attribute is created at runtime, we can't use the

DRIVER_ATTR[bookmark: linuxdrive3-CHP-14-ITERM-6772]
[bookmark: linuxdrive3-CHP-14-ITERM-6773]
[bookmark: linuxdrive3-CHP-14-ITERM-6774]
[bookmark: linuxdrive3-CHP-14-ITERM-6775]

macro; instead, the driver_attribute structure

must be filled in by hand. Note that we set the owner of the

attribute to the driver module, rather than the

lddbus module; the reason for this can be seen

in the implementation of the

show[bookmark: linuxdrive3-CHP-14-ITERM-6776]
[bookmark: linuxdrive3-CHP-14-ITERM-6777]

function for this attribute:

static ssize_t show_version(struct device_driver *driver, char *buf)

{

    struct ldd_driver *ldriver = to_ldd_driver(driver);



    sprintf(buf, "%s\n", ldriver->version);

    return strlen(buf);

}
 

One might think that the attribute owner should be the

lddbus module, since the function that

implements the attribute is defined there. This function, however, is

working with the ldd_driver structure created (and

owned) by the driver itself. If that structure were to go away while

a user-space process tried to read the version number, things could

get messy. Designating the driver module as the owner of the

attribute prevents the module from being unloaded, while user-space

holds the attribute file open. Since each driver module creates a

reference to the lddbus module, we can be sure

that lddbus will not be unloaded at an

inopportune time.

For completeness, sculld creates its

ldd_driver structure as follows:

static struct ldd_driver sculld_driver = {

    .version = "$Revision: 1.1 $",

    .module = THIS_MODULE,

    .driver = {

        .name = "sculld",

    },

};
 

A simple call to register_ldd_driver adds it to

the system. Once initialization is complete, the driver information

can be [bookmark: linuxdrive3-CHP-14-ITERM-6778]
[bookmark: linuxdrive3-CHP-14-ITERM-6779]
[bookmark: linuxdrive3-CHP-14-ITERM-6780]
[bookmark: linuxdrive3-CHP-14-ITERM-6781]seen in

sysfs:

$ tree /sys/bus/ldd/drivers

/sys/bus/ldd/drivers

`-- sculld

    |-- sculld0 -> ../../../../devices/ldd0/sculld0

    |-- sculld1 -> ../../../../devices/ldd0/sculld1

    |-- sculld2 -> ../../../../devices/ldd0/sculld2

    |-- sculld3 -> ../../../../devices/ldd0/sculld3

    `-- version
 







[bookmark: linuxdrive3-CHP-14-SECT-5]
14.5. Classes

The final device model [bookmark: linuxdrive3-CHP-14-ITERM-6782] [bookmark: linuxdrive3-CHP-14-ITERM-6783]
[bookmark: linuxdrive3-CHP-14-ITERM-6784]
[bookmark: linuxdrive3-CHP-14-ITERM-6785]
[bookmark: linuxdrive3-CHP-14-ITERM-6786]concept we examine in this

chapter is the class. A class is a

higher-level view of a device that abstracts out low-level

implementation details. Drivers may see a SCSI disk or an ATA disk,

but, at the class level, they are all simply disks. Classes allow

user space to work with devices based on what they do, rather than

how they are connected or how they work.

Almost all classes show up in sysfs under

/sys/class. Thus, for example, all network

interfaces can be found under /sys/class/net,

regardless of the type of interface. Input devices can be found in

/sys/class/input, and serial devices are in

/sys/class/tty. The one exception is block

devices, which can be found under /sys/block for

historical reasons.

Class membership is usually handled by high-level code without the

need for explicit support from drivers. When the

sbull driver (see Chapter 16) creates a virtual disk

device, it automatically appears in /sys/block.

The snull network driver (see Chapter 17) does not have to do

anything special for its interfaces to be represented in

/sys/class/net. There will be times, however,

when drivers end up dealing with classes directly.

In many cases, the class subsystem is the best way of exporting

information to user space. When a subsystem creates a class, it owns

the class entirely, so there is no need to worry about which module

owns the attributes found there. It also takes very little time

wandering around in the more hardware-oriented parts of sysfs to

realize that it can be an unfriendly place for direct browsing. Users

more happily find information in

/sys/class/some-widget than under, say,

/sys/devices/pci0000:00/0000:00:10.0/usb2/2-0:1.0.

The driver core exports two distinct interfaces for managing classes.

The class_simple routines are designed to make

it as easy as possible to add new classes to the system; their main

purpose, usually, is to expose attributes containing device numbers

to enable the automatic creation of device nodes. The regular class

interface is more complex but offers more features as well. We start

with the simple version.

[bookmark: linuxdrive3-CHP-14-SECT-5.1]
14.5.1. The class_simple Interface

The class_simple[bookmark: linuxdrive3-CHP-14-ITERM-6787]
[bookmark: linuxdrive3-CHP-14-ITERM-6788]

interface was intended to be so easy to use that nobody would have

any excuse for not exporting, at a minimum, an attribute containing a

device's assigned number. Using this interface is

simply a matter of a couple of function calls, with little of the

usual boilerplate associated with the Linux device model.

The first step is to create the class itself. That is accomplished

with a call to class_simple_create:

struct class_simple *class_simple_create(struct module *owner, char *name);
 

This function creates a class with the given name.

The operation can fail, of course, so the return value should always

be checked (using IS_ERR, described in the

Section 1.8 in Chapter 11) before continuing.

A simple class can be destroyed with:

void class_simple_destroy(struct class_simple *cs);
 

The real purpose of creating a simple class is to add devices to it;

that task is achieved with:

struct class_device *class_simple_device_add(struct class_simple *cs,

                                             dev_t devnum,

                                             struct device *device,

                                             const char *fmt, ...);
 

Here, cs is the previously created simple class,

devnum is the assigned device number,

device is the struct
device representing this device, and the remaining

parameters are a printk-style format string and

arguments to create the device name. This call adds an entry to the

class containing one attribute, dev, which holds

the device number. If the device parameter is not

NULL, a symbolic link (called

device) points to the device's

entry under /sys/devices.

It is possible to add other attributes to a device entry. It is just

a matter of using class_device_create_file,

which we discuss in the next section with the rest of the full class

subsystem.

Classes generate hotplug events when devices come and go. If your

driver needs to add variables to the environment for the user-space

event handler, it can set up a hotplug callback with:

int class_simple_set_hotplug(struct class_simple *cs, 

                             int (*hotplug)(struct class_device *dev, 

                                            char **envp, int num_envp, 

                                            char *buffer, int buffer_size));
 

When your device goes away, the class entry should be removed with:

void class_simple_device_remove(dev_t dev);
 

Note that the class_device structure returned by

class_simple_device_add is not needed here; the

device number (which should certainly be unique) is sufficient.

[bookmark: linuxdrive3-CHP-14-SECT-5.2]
14.5.2. The Full Class Interface

The class_simple interface suffices

[bookmark: linuxdrive3-CHP-14-ITERM-6789]
[bookmark: linuxdrive3-CHP-14-ITERM-6790]for many needs, but sometimes more

flexibility is required. The following discussion describes how to

use the full class mechanism, upon which

class_simple is based. It is brief: the class

functions and structures follow the same patterns as the rest of the

device model, so there is little that is truly new here.

[bookmark: linuxdrive3-CHP-14-SECT-5.2.1]
14.5.2.1 Managing classes

A class is defined by an

[bookmark: linuxdrive3-CHP-14-ITERM-6791]
[bookmark: linuxdrive3-CHP-14-ITERM-6792]instance

of struct class:

struct class {

    char *name;

    struct class_attribute *class_attrs;

    struct class_device_attribute *class_dev_attrs;

    int (*hotplug)(struct class_device *dev, char **envp, 

                   int num_envp, char *buffer, int buffer_size);

    void (*release)(struct class_device *dev);

    void (*class_release)(struct class *class);

    /* Some fields omitted */

};
 

Each class needs a unique name, which is how this

class appears under /sys/class. When the class

is registered, all of the attributes listed in the

(NULL-terminated) array pointed to by

class_attrs is created. There is also a set of

default attributes for every device added to the class;

class_dev_attrs points to those. There is the

usual hotplug function for adding variables to

the environment when events are generated. There are also two

release methods: release is

called whenever a device is removed from the class, while

class_release is called when the class itself is

released.

The registration functions are:

int class_register(struct class *cls);

void class_unregister(struct class *cls);
 

The interface for working with attributes should not surprise anybody

at this point:

struct class_attribute {

    struct attribute attr;

    ssize_t (*show)(struct class *cls, char *buf);

    ssize_t (*store)(struct class *cls, const char *buf, size_t count);

};



CLASS_ATTR(name, mode, show, store);



int class_create_file(struct class *cls, 

                      const struct class_attribute *attr);

void class_remove_file(struct class *cls, 

                       const struct class_attribute *attr);
 

[bookmark: linuxdrive3-CHP-14-SECT-5.2.2]
14.5.2.2 Class devices

The real purpose of a

[bookmark: linuxdrive3-CHP-14-ITERM-6793]
[bookmark: linuxdrive3-CHP-14-ITERM-6794]class is to serve as a container for the

devices that are members of that class. A member is represented by

struct class_device:

struct class_device {

    struct kobject kobj;

    struct class *class;

    struct device *dev;

    void *class_data;

    char class_id[BUS_ID_SIZE];

};
 

The[bookmark: linuxdrive3-CHP-14-ITERM-6795]
class_id field holds the name of this device as it

appears in sysfs. The class pointer should point

to the class holding this device, and dev should

point to the associated device structure. Setting

dev is optional; if it is

non-NULL, it is used to create a symbolic link

from the class entry to the corresponding entry under

/sys/devices, making it easy to find the device

entry in user space. The class can use class_data

to hold a private pointer.

The usual registration functions have been provided:

int class_device_register(struct class_device *cd);

void class_device_unregister(struct class_device *cd);
 

The class device interface also allows the renaming of an already

registered entry:

int class_device_rename(struct class_device *cd, char *new_name);
 

Class device entries have attributes:

struct class_device_attribute {

   struct attribute attr;

   ssize_t (*show)(struct class_device *cls, char *buf);

   ssize_t (*store)(struct class_device *cls, const char *buf, 

                    size_t count);

};



CLASS_DEVICE_ATTR(name, mode, show, store);



int class_device_create_file(struct class_device *cls, 

                             const struct class_device_attribute *attr);

void class_device_remove_file(struct class_device *cls, 

                              const struct class_device_attribute *attr);
 

A default set of attributes, in the class's

class_dev_attrs field, is created when the class

device is registered; class_device_create_file

may be used to create additional attributes. Attributes may also be

added to class devices created with the

class_simple interface.

[bookmark: linuxdrive3-CHP-14-SECT-5.2.3]
14.5.2.3 Class interfaces

The class

subsystem[bookmark: linuxdrive3-CHP-14-ITERM-6796]

has an

[bookmark: linuxdrive3-CHP-14-ITERM-6797]
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concept not found in other parts of the Linux device model. This

mechanism is called an interface, but it is,

perhaps, best thought of as a sort of trigger mechanism that can be

used to get notification when devices enter or leave the class.

An interface is represented by:

struct class_interface {

    struct class *class;

    int (*add) (struct class_device *cd);

    void (*remove) (struct class_device *cd);

};
 

Interfaces can be registered and unregistered with:

int class_interface_register(struct class_interface *intf);

void class_interface_unregister(struct class_interface *intf);
 

The functioning of an interface is straightforward. Whenever a class

device is added to the class specified in the

class_interface structure, the

interface's add function is

called. That function can perform any additional setup required for

that device; this setup often takes the form of adding more

attributes, but other applications are possible. When the device is

removed from the class, the remove method is

called to perform any required cleanup.

Multiple interfaces[bookmark: linuxdrive3-CHP-14-ITERM-6799] [bookmark: linuxdrive3-CHP-14-ITERM-6800] [bookmark: linuxdrive3-CHP-14-ITERM-6801] [bookmark: linuxdrive3-CHP-14-ITERM-6802] [bookmark: linuxdrive3-CHP-14-ITERM-6803] can be registered for a class.







[bookmark: linuxdrive3-CHP-14-SECT-6]
14.6. Putting It All Together

To better understand[bookmark: linuxdrive3-CHP-14-ITERM-6804]
[bookmark: linuxdrive3-CHP-14-ITERM-6805]
[bookmark: linuxdrive3-CHP-14-ITERM-6806]
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[bookmark: linuxdrive3-CHP-14-ITERM-6808] what the driver model does, let

us walk through the steps of a device's lifecycle

within the kernel. We describe how the PCI subsystem interacts with

the driver model, the basic concepts of how a driver is added and

removed, and how a device is added and removed from the system. These

details, while describing the PCI kernel code specifically, apply to

all other subsystems that use the driver core to manage their drivers

and devices.

The interaction between the PCI core, driver core, and the individual

PCI drivers is quite complex, as Figure 14-2 shows.

[bookmark: linuxdrive3-CHP-14-FIG-3]
Figure 14-3. Device-creation process

[image: ]

 

[bookmark: linuxdrive3-CHP-14-SECT-6.1]
14.6.1. Add a Device

The PCI subsystem [bookmark: linuxdrive3-CHP-14-ITERM-6809]
[bookmark: linuxdrive3-CHP-14-ITERM-6810]
[bookmark: linuxdrive3-CHP-14-ITERM-6811]declares

a single struct bus_type called

pci_bus_type, which is initialized with the

following values:

struct bus_type pci_bus_type = {

    .name      = "pci",

    .match     = pci_bus_match,

    .hotplug   = pci_hotplug,

    .suspend   = pci_device_suspend,

    .resume    = pci_device_resume,

    .dev_attrs = pci_dev_attrs,

};
 

This pci_bus_type[bookmark: linuxdrive3-CHP-14-ITERM-6812]
[bookmark: linuxdrive3-CHP-14-ITERM-6813]

variable is registered with the driver core when the PCI subsystem is

loaded in the kernel with a call to

bus_register. When that happens, the driver core

creates a sysfs directory in /sys/bus/pci that

consists of two directories: devices and

drivers.

All PCI drivers must define a struct pci_driver

variable that defines the different functions that this PCI driver

can do (for more information about the PCI subsystem and how to write

a PCI driver, see Chapter 12).

That structure contains a struct device_driver

that is then initialized by the PCI core when the PCI driver is

registered:

/* initialize common driver fields */

drv->driver.name = drv->name;

drv->driver.bus = &pci_bus_type;

drv->driver.probe = pci_device_probe;

drv->driver.remove = pci_device_remove;

drv->driver.kobj.ktype = &pci_driver_kobj_type;
 

This code sets up the bus for the driver to point to the

pci_bus_type and points the

probe and remove functions

to point to functions within the PCI core. The

ktype for the driver's

kobject is set to the variable

pci_driver_kobj_type, in order for the PCI

driver's attribute files to work properly. Then the

PCI core registers the PCI driver with the driver core:

/* register with core */

error = driver_register(&drv->driver);
 

The driver is now ready to be bound to any PCI devices it supports.

The PCI core, with help from the architecture-specific code that

actually talks to the PCI bus, starts probing the PCI address space,

looking for all PCI devices. When a PCI device is found, the PCI core

creates a new variable in memory of type struct
pci_dev. A portion of the struct

pci_dev structure looks like the following:

struct pci_dev {

    /* ... */

    unsigned int   devfn;

    unsigned short vendor;

    unsigned short device;

    unsigned short subsystem_vendor;

    unsigned short subsystem_device;

    unsigned int   class;

    /* ... */

    struct pci_driver *driver;

    /* ... */

    struct device dev;

    /* ... */

};
 

The bus-specific fields of this PCI device are initialized by the PCI

core (the devfn, vendor,

device, and other fields), and the

struct device

variable's parent variable is set

to the PCI bus device that this PCI device lives on. The

bus variable is set to point at the

pci_bus_type structure. Then the

name and bus_id variables are

set, depending on the name and ID that is read from the PCI device.

After the PCI device structure is initialized, the device is

registered with the driver core with a call to:

device_register(&dev->dev);
 

Within the device_register function, the driver

core initializes a number of the device's fields,

registers the device's kobject with the kobject core

(which causes a hotplug event to be generated, but we discuss that

later in this chapter), and then adds the device to the list of

devices that are held by the device's parent. This

is done so that all devices can be walked in the proper order, always

knowing where in the hierarchy of devices each one lives.

The device is then added to the bus-specific list of all devices, in

this example, the pci_bus_type list. Then the list

of all drivers that are registered with the bus is walked, and the

match function of the bus is called for every

driver, specifying this device. For the

pci_bus_type bus, the match

function was set to point to the pci_bus_match

function by the PCI core before the device was submitted to the

driver core.

The pci_bus_match function casts the

struct device that was passed

to it by the driver core, back into a struct
pci_dev. It also casts the

struct device_driver back into

a struct pci_driver and then

looks at the PCI device-specific information of the device and driver

to see if the driver states that it can support this kind of device.

If the match is not successful, the function returns

0 back to the driver core, and the driver core

moves on to the next driver in its list.

If the match is successful, the function returns 1

back to the driver core. This causes the driver core to set the

driver pointer in the struct
device to point to this driver, and then it calls

the probe function that is specified in the

struct device_driver.

Earlier, before the PCI driver was registered with the driver core,

the probe variable was set to point at the

pci_device_probe function. This function casts

(yet again) the struct device

back into a struct pci_dev and

the struct driver that is set

in the device back into a struct
pci_driver. It again verifies that this driver

states that it can support this device (which seems to be a redundant

extra check for some unknown reason), increments the reference count

of the device, and then calls the PCI driver's

probe function with a pointer to the

struct pci_dev structure it

should bind to.

If the PCI driver's probe

function determines that it can not handle this device for some

reason, it returns a negative error value, which is propagated back

to the driver core and causes it to continue looking through the list

of drivers to match one up with this device. If the

probe function can claim the device, it does all

the initialization that it needs to do to handle the device properly,

and then it returns 0 back up to the driver core.

This causes the driver core to add the device to the list of all

devices currently bound by this specific driver and creates a symlink

within the driver's directory in sysfs to the device

that it is now controlling. This symlink allows users to see exactly

which devices are bound to which devices. This can be seen as:

[bookmark: linuxdrive3-CHP-14-ITERM-6814][bookmark: linuxdrive3-CHP-14-ITERM-6815][bookmark: linuxdrive3-CHP-14-ITERM-6816]$ tree /sys/bus/pci

/sys/bus/pci/

|-- devices

|   |-- 0000:00:00.0 -> ../../../devices/pci0000:00/0000:00:00.0

|   |-- 0000:00:00.1 -> ../../../devices/pci0000:00/0000:00:00.1

|   |-- 0000:00:00.2 -> ../../../devices/pci0000:00/0000:00:00.2

|   |-- 0000:00:02.0 -> ../../../devices/pci0000:00/0000:00:02.0

|   |-- 0000:00:04.0 -> ../../../devices/pci0000:00/0000:00:04.0

|   |-- 0000:00:06.0 -> ../../../devices/pci0000:00/0000:00:06.0

|   |-- 0000:00:07.0 -> ../../../devices/pci0000:00/0000:00:07.0

|   |-- 0000:00:09.0 -> ../../../devices/pci0000:00/0000:00:09.0

|   |-- 0000:00:09.1 -> ../../../devices/pci0000:00/0000:00:09.1

|   |-- 0000:00:09.2 -> ../../../devices/pci0000:00/0000:00:09.2

|   |-- 0000:00:0c.0 -> ../../../devices/pci0000:00/0000:00:0c.0

|   |-- 0000:00:0f.0 -> ../../../devices/pci0000:00/0000:00:0f.0

|   |-- 0000:00:10.0 -> ../../../devices/pci0000:00/0000:00:10.0

|   |-- 0000:00:12.0 -> ../../../devices/pci0000:00/0000:00:12.0

|   |-- 0000:00:13.0 -> ../../../devices/pci0000:00/0000:00:13.0

|   `-- 0000:00:14.0 -> ../../../devices/pci0000:00/0000:00:14.0

`-- drivers

    |-- ALI15x3_IDE

    |   `-- 0000:00:0f.0 -> ../../../../devices/pci0000:00/0000:00:0f.0

    |-- ehci_hcd

    |   `-- 0000:00:09.2 -> ../../../../devices/pci0000:00/0000:00:09.2

    |-- ohci_hcd

    |   |-- 0000:00:02.0 -> ../../../../devices/pci0000:00/0000:00:02.0

    |   |-- 0000:00:09.0 -> ../../../../devices/pci0000:00/0000:00:09.0

    |   `-- 0000:00:09.1 -> ../../../../devices/pci0000:00/0000:00:09.1

    |-- orinoco_pci

    |   `-- 0000:00:12.0 -> ../../../../devices/pci0000:00/0000:00:12.0

    |-- radeonfb

    |   `-- 0000:00:14.0 -> ../../../../devices/pci0000:00/0000:00:14.0

    |-- serial

    `-- trident

        `-- 0000:00:04.0 -> ../../../../devices/pci0000:00/0000:00:04



.0
 

[bookmark: linuxdrive3-CHP-14-SECT-6.2]
14.6.2. Remove a Device

A PCI device

can[bookmark: linuxdrive3-CHP-14-ITERM-6817]
[bookmark: linuxdrive3-CHP-14-ITERM-6818]
[bookmark: linuxdrive3-CHP-14-ITERM-6819]

be removed from a system in a number of different ways. All CardBus

devices are really PCI devices in a different physical form factor,

and the kernel PCI core does not differenciate between them. Systems

that allow the removal or addition of PCI devices while the machine

is still running are becoming more popular, and Linux supports them.

There is also a fake PCI Hotplug driver that allows developers to

test to see if their PCI driver properly handles the removal of a

device while the system is running. This module is called

fakephp and causes the kernel to think the PCI

device is gone, but it does not allow users to physically remove a

PCI device from a system that does not have the proper hardware to do

so. See the documentation with this driver for more information on

how to use it to test your PCI drivers.

The PCI core exerts a lot less effort to remove a device than it does

to add it. When a PCI device is to be removed, the

[bookmark: linuxdrive3-CHP-14-ITERM-6820]
[bookmark: linuxdrive3-CHP-14-ITERM-6821]pci_remove_bus_device

function is called. This function does some PCI-specific cleanups and

housekeeping, and then calls the

device_unregister function with a pointer to the

struct
pci_dev's

struct device member.

In the device_unregister function, the driver

core merely unlinks the sysfs files from the driver bound to the

device (if there was one), removes the device from its internal list

of devices, and calls kobject_del with a pointer

to the struct kobject that is contained in the

struct device structure. That function makes a

hotplug call to user space stating that the kobject is now removed

from the system, and then it deletes all sysfs files associated with

the kobject and the sysfs directory itself that the kobject had

originally created.

The kobject_del function also removes the

kobject reference of the device itself. If that reference was the

last one (meaning no user-space files were open for the sysfs entry

of the device), then the release function for

the PCI device itself, pci_release_dev, is

called. That function merely frees up the memory that the

struct pci_dev took up.

After this, all sysfs entries associated with the device are removed,

and the memory associated with the device is released. The PCI device

is now totally removed from the system.

[bookmark: linuxdrive3-CHP-14-SECT-6.3]
14.6.3. Add a Driver

A PCI driver is added

[bookmark: linuxdrive3-CHP-14-ITERM-6822]
[bookmark: linuxdrive3-CHP-14-ITERM-6823]
[bookmark: linuxdrive3-CHP-14-ITERM-6824]to

the PCI core when it calls the

pci_register_driver function. This function

merely initializes the struct
device_driver structure that is contained within

the struct pci_driver

structure, as previously mentioned in the section about adding a

device. Then the PCI core calls the

driver_register function in the driver core with

a pointer to the structdevice_driver structure

contained in the struct
pci_driver structure.

The driver_register function initializes a few

locks in the struct
device_driver structure, and then calls the

[bookmark: linuxdrive3-CHP-14-ITERM-6825]
[bookmark: linuxdrive3-CHP-14-ITERM-6826]bus_add_driver

function. This function does the following steps:

	Looks up the bus that the driver is to be associated with. If this

bus is not found, the function instantly returns.

	The driver's sysfs directory is created based on the

name of the driver and the bus that it is associated with.

	The bus's internal lock is grabbed, and then all

devices that have been registered with the bus are walked, and the

match function is called for them, just like when a new device is

added. If that match function succeeds, then the rest of the binding

process occurs, as described in the previous section.



[bookmark: linuxdrive3-CHP-14-SECT-6.4]
14.6.4. Remove a Driver

Removing a driver is

[bookmark: linuxdrive3-CHP-14-ITERM-6827]
[bookmark: linuxdrive3-CHP-14-ITERM-6828]
[bookmark: linuxdrive3-CHP-14-ITERM-6829]a

very simple action. For a PCI driver, the driver calls the

pci_unregister_driver function. This function

merely calls the driver core function

driver_unregister, with a pointer to the

struct device_driver portion of

the struct pci_driver structure

passed to it.

The [bookmark: linuxdrive3-CHP-14-ITERM-6830]
[bookmark: linuxdrive3-CHP-14-ITERM-6831]driver_unregister

function handles some basic housekeeping by cleaning up some sysfs

attributes that were attached to the driver's entry

in the sysfs tree. It then iterates over all devices that were

attached to this driver and calls the release

function for it. This happens exactly like the previously mentioned

release function for when a device is removed

from the system.

After all devices are unbound from the driver, the driver code does

this unique bit of logic:

down(&drv->unload_sem);

up(&drv->unload_sem);
 

This is done right before returning to the caller of the function.

This lock is grabbed because the code needs to wait for all reference

counts on this driver to be dropped to 0 before it

is safe to return. This is needed because the

driver_unregister function is most commonly

called as the exit path of a module that is being unloaded. The

module needs to remain in memory for as long as the driver is being

referenced by devices and by waiting for this lock to be freed, this

allows the kernel to know when it is safe to remove the driver

from[bookmark: linuxdrive3-CHP-14-ITERM-6832]
[bookmark: linuxdrive3-CHP-14-ITERM-6833]
[bookmark: linuxdrive3-CHP-14-ITERM-6834]
[bookmark: linuxdrive3-CHP-14-ITERM-6835]
[bookmark: linuxdrive3-CHP-14-ITERM-6836] memory.







[bookmark: linuxdrive3-CHP-14-SECT-7]
14.7. Hotplug

There are two different ways to[bookmark: linuxdrive3-CHP-14-ITERM-6837]
[bookmark: linuxdrive3-CHP-14-ITERM-6838]
[bookmark: linuxdrive3-CHP-14-ITERM-6839]
[bookmark: linuxdrive3-CHP-14-ITERM-6840]
[bookmark: linuxdrive3-CHP-14-ITERM-6841] view hotplugging. The kernel

views hotplugging as an interaction between the hardware, the kernel,

and the kernel driver. Users view hotplugging as the interaction

between the kernel and user space through the program called

/sbin/hotplug. This program is called by the

kernel when it wants to notify user space that some type of hotplug

event has just happened within the kernel.

[bookmark: linuxdrive3-CHP-14-SECT-7.1]
14.7.1. Dynamic Devices

The most commonly used meaning [bookmark: linuxdrive3-CHP-14-ITERM-6842]
[bookmark: linuxdrive3-CHP-14-ITERM-6843]of

the term "hotplug" happens when

discussing the fact that most all computer systems can now handle

devices appearing or disappearing while the system is powered on.

This is very different from the computer systems of only a few years

ago, where the programmers knew that they needed to scan for all

devices only at boot time, and they never had to worry about their

devices disappearing until the power was turned off to the whole

machine. Now, with the advent of USB, CardBus, PCMCIA, IEEE1394, and

PCI Hotplug controllers, the Linux kernel needs to be able to

reliably run no matter what hardware is added or removed from the

system. This places an added burden on the device driver author, as

they must now always handle a device being suddenly ripped out from

underneath them without any notice.

Each different bus type handles the loss of a device in a different

way. For example, when a PCI, CardBus, or PCMCIA device is removed

from the system, it is usually a while before the driver is notified

of this action through its remove function.

Before that happens, all reads from the PCI bus return all bits set.

This means that drivers need to always check the value of the data

they read from the PCI bus and properly be able to handle a

0xff value.

An example of this can be seen in the

drivers/usb/host/ehci-hcd.c driver, which is a

PCI driver for a USB 2.0 (high-speed) controller card. It has the

following code in its main handshake loop to detect if the controller

card has been removed from the system:

result = readl(ptr);

if (result =  = ~(u32)0)    /* card removed */

    return -ENODEV;
 

For USB drivers, when the device that a USB driver is bound to is

removed from the system, any pending urbs that were submitted to the

device start failing with the error -ENODEV. The

driver needs to recognize this error and properly clean up any

pending I/O if it occurs.

Hotpluggable devices are not limited only to traditional devices such

as mice, keyboards, and network cards. There are numerous systems

that now support removal and addition of entire CPUs and memory

sticks. Fortunately the Linux kernel properly handles the addition

and removal of such core "system"

devices so that individual device drivers do not need to pay

attention to these things.

[bookmark: linuxdrive3-CHP-14-SECT-7.2]
14.7.2. The /sbin/hotplug Utility

As alluded to earlier in this chapter, whenever a device is added or

removed from the system, a "hotplug

event" is generated. This means that the kernel

calls the user-space program [bookmark: linuxdrive3-CHP-14-ITERM-6844]
[bookmark: linuxdrive3-CHP-14-ITERM-6845]
[bookmark: linuxdrive3-CHP-14-ITERM-6846]/sbin/hotplug.

This program is typically a very small bash script that merely passes

execution on to a list of other programs that are placed in the

/etc/hotplug.d/ directory tree. For most Linux

distributions, this script looks like the following:

DIR="/etc/hotplug.d"

for I in "${DIR}/$1/"*.hotplug "${DIR}/"default/*.hotplug ; do

    if [ -f $I ]; then

        test -x $I && $I $1 ;

    fi

done

exit 1
 

In other words, the script searches for all programs bearing a

.hotplug suffix that might be interested in this

event and invokes them, passing to them a number of different

environment variables that have been set by the kernel. More details

about how the /sbin/hotplug script works can be

found in the comments in the program and in the

hotplug(8) manpage.

As mentioned previously, /sbin/hotplug is called

whenever a kobject is created or destroyed. The hotplug program is

called with a single command-line argument providing a name for the

event. The core kernel and specific subsystem involved also set a

series of environment variables (described below) with information on

what has just occurred. These variables are used by the hotplug

programs to determine what has just happened in the kernel, and if

there is any specific action that should take place.

The command-line argument passed to

/sbin/hotplug is the name associated with this

hotplug event, as determined by the kset assigned to the kobject.

This name can be set by a call to the name

function that is part of the kset's

hotplug_ops structure described earlier in this

chapter; if that function is not present or never called, the name is

that of the kset itself.

The default environment variables that are always set for the

/sbin/hotplug program are:

[bookmark: linuxdrive3-CHP-14-ITERM-6847][bookmark: linuxdrive3-CHP-14-ITERM-6848][bookmark: linuxdrive3-CHP-14-ITERM-6849][bookmark: linuxdrive3-CHP-14-ITERM-6850][bookmark: linuxdrive3-CHP-14-ITERM-6851][bookmark: linuxdrive3-CHP-14-ITERM-6852][bookmark: linuxdrive3-CHP-14-ITERM-6853][bookmark: linuxdrive3-CHP-14-ITERM-6854]

	ACTION[bookmark: linuxdrive3-CHP-14-ITERM-6847]
[bookmark: linuxdrive3-CHP-14-ITERM-6848] 

	
The string add or remove,

depending on whether the object in question was just created or

destroyed.





	DEVPATH[bookmark: linuxdrive3-CHP-14-ITERM-6849]
[bookmark: linuxdrive3-CHP-14-ITERM-6850] 

	
A directory path, within the sysfs filesystem, that points to the

kobject that is being either created or destroyed. Note that the

mount point of the sysfs filesystem is not added to this path, so it

is up to the user-space program to determine that.





	SEQNUM[bookmark: linuxdrive3-CHP-14-ITERM-6851]
[bookmark: linuxdrive3-CHP-14-ITERM-6852] 

	
The sequence number for this hotplug event. The sequence number is a

64-bit number that is incremented for every hotplug event that is

generated. This allows user space to sort the hotplug events in the

order in which the kernel generates them, as it is possible for a

user-space program to be run out of order.





	SUBSYSTEM [bookmark: linuxdrive3-CHP-14-ITERM-6853]
[bookmark: linuxdrive3-CHP-14-ITERM-6854]

	
The same string passed as the command-line argument as described

above.





A number of the different bus subsystems all add their own

environment variables to the /sbin/hotplug call,

when devices associated with the bus are added or removed from the

system. They do this in their hotplug callback

that is specified in the struct
kset_hotplug_ops assigned to their bus (as

described in Section 14.3.1). This allows user space to be able

to automatically load any necessary module that might be needed to

control the device that has been found by the bus. Here is a list of

the different bus types and what environment variables they add to

the /sbin/hotplug call.

[bookmark: linuxdrive3-CHP-14-SECT-7.2.1]
14.7.2.1 IEEE1394 (FireWire)

Any devices on the [bookmark: linuxdrive3-CHP-14-ITERM-6855]
[bookmark: linuxdrive3-CHP-14-ITERM-6856]
[bookmark: linuxdrive3-CHP-14-ITERM-6857]
[bookmark: linuxdrive3-CHP-14-ITERM-6858]IEEE1394 bus, also known as

Firewire, have the /sbin/hotplug parameter name

and the SUBSYSTEM environment variable set to the

value ieee1394. The ieee1394

subsystem also always adds the following four environment variables:



	VENDOR_ID 

	
The 24-bit vendor ID for the IEEE1394 device





	MODEL_ID 

	
The 24-bit model ID for the IEEE1394 device





	GUID 

	
The 64-bit GUID for the device





	SPECIFIER_ID 

	
The 24-bit value specifying the owner of the protocol spec for this

device





	VERSION 

	
The value that specifies the version of the protocol spec for this

device





[bookmark: linuxdrive3-CHP-14-SECT-7.2.2]
14.7.2.2 Networking

All [bookmark: linuxdrive3-CHP-14-ITERM-6859]
[bookmark: linuxdrive3-CHP-14-ITERM-6860]network

devices create a hotplug event when the device is registered or

unregistered in the kernel. The /sbin/hotplug

call has the parameter name and the SUBSYSTEM

environment variable set to the value net, and

just adds the following environment variable:



	INTERFACE 

	
The name of the interface that has been registered or unregistered

from the kernel. Examples of this are lo and

eth0.





[bookmark: linuxdrive3-CHP-14-SECT-7.2.3]
14.7.2.3 PCI

Any devices on the PCI bus have the parameter name and the

SUBSYSTEM environment variable set to the value

pci. The PCI subsystem also always adds the

following four environment variables:

[bookmark: linuxdrive3-CHP-14-ITERM-6861][bookmark: linuxdrive3-CHP-14-ITERM-6862][bookmark: linuxdrive3-CHP-14-ITERM-6863][bookmark: linuxdrive3-CHP-14-ITERM-6864][bookmark: linuxdrive3-CHP-14-ITERM-6865][bookmark: linuxdrive3-CHP-14-ITERM-6866][bookmark: linuxdrive3-CHP-14-ITERM-6867][bookmark: linuxdrive3-CHP-14-ITERM-6868]

	PCI_CLASS[bookmark: linuxdrive3-CHP-14-ITERM-6861]
[bookmark: linuxdrive3-CHP-14-ITERM-6862] 

	
The PCI class number for the device, in hex.





	PCI_ID[bookmark: linuxdrive3-CHP-14-ITERM-6863]
[bookmark: linuxdrive3-CHP-14-ITERM-6864] 

	
The PCI vendor and device IDs for the device, in hex, combined in the

format vendor:device.





	PCI_SUBSYS_ID[bookmark: linuxdrive3-CHP-14-ITERM-6865]
[bookmark: linuxdrive3-CHP-14-ITERM-6866] 

	
The PCI subsystem vendor and subsystem device IDs, combined in the

format

subsys_vendor:subsys_device.





	PCI_SLOT_NAME[bookmark: linuxdrive3-CHP-14-ITERM-6867]
[bookmark: linuxdrive3-CHP-14-ITERM-6868] 

	
The PCI slot "name" that is given

to the device by the kernel. It is in the format

domain:bus:slot:function.

An example might be 0000:00:0d.0.





[bookmark: linuxdrive3-CHP-14-SECT-7.2.4]
14.7.2.4 Input

For all [bookmark: linuxdrive3-CHP-14-ITERM-6869]
[bookmark: linuxdrive3-CHP-14-ITERM-6870]
[bookmark: linuxdrive3-CHP-14-ITERM-6871]
[bookmark: linuxdrive3-CHP-14-ITERM-6872]
[bookmark: linuxdrive3-CHP-14-ITERM-6873]input devices (mice, keyboards,

joysticks, etc.), a hotplug event is generated when the device is

added and removed from the kernel. The

/sbin/hotplug parameter and the

SUBSYSTEM environment variable are set to the

value input. The input subsystem also always adds

the following environment variable:

[bookmark: linuxdrive3-CHP-14-ITERM-6874][bookmark: linuxdrive3-CHP-14-ITERM-6875]

	PRODUCT[bookmark: linuxdrive3-CHP-14-ITERM-6874]
[bookmark: linuxdrive3-CHP-14-ITERM-6875] 

	
A multivalue string listing values in hex with no leading zeros. It

is in the format

bustype:vendor:product:version.





The following environment variables may be present, if the device

supports it:

[bookmark: linuxdrive3-CHP-14-ITERM-6876][bookmark: linuxdrive3-CHP-14-ITERM-6877][bookmark: linuxdrive3-CHP-14-ITERM-6878][bookmark: linuxdrive3-CHP-14-ITERM-6879]

	NAME[bookmark: linuxdrive3-CHP-14-ITERM-6876]
[bookmark: linuxdrive3-CHP-14-ITERM-6877] 

	
The name of the input device as given by the device.





	PHYS[bookmark: linuxdrive3-CHP-14-ITERM-6878]
[bookmark: linuxdrive3-CHP-14-ITERM-6879] 

	
The device's physical address that the input

subsystem gave to this device. It is supposed to be stable, depending

on the bus position into which the device was plugged.





	EV



	KEY



	REL



	ABS



	MSC



	LED



	SND



	FF

	
These all come from the input device descriptor and are set to the

appropriate values if the specific input device supports it.





[bookmark: linuxdrive3-CHP-14-SECT-7.2.5]
14.7.2.5 USB

Any devices on the [bookmark: linuxdrive3-CHP-14-ITERM-6880]USB bus

have [bookmark: linuxdrive3-CHP-14-ITERM-6881]the parameter name and the

SUBSYSTEM environment variable set to the value

usb. The USB subsystem also always adds the

following environment variables:

[bookmark: linuxdrive3-CHP-14-ITERM-6882][bookmark: linuxdrive3-CHP-14-ITERM-6883][bookmark: linuxdrive3-CHP-14-ITERM-6884][bookmark: linuxdrive3-CHP-14-ITERM-6885]

	PRODUCT[bookmark: linuxdrive3-CHP-14-ITERM-6882]
[bookmark: linuxdrive3-CHP-14-ITERM-6883] 

	
A string in the format

idVendor/idProduct/bcdDevice

that specifies those USB device-specific fields





	TYPE[bookmark: linuxdrive3-CHP-14-ITERM-6884]
[bookmark: linuxdrive3-CHP-14-ITERM-6885] 

	
A string in the format

bDeviceClass/bDeviceSubClass/bDeviceProtocol

that specifies those USB device-specific fields





If the bDeviceClass field is set to

0, the following environment variable is also set:

[bookmark: linuxdrive3-CHP-14-ITERM-6886][bookmark: linuxdrive3-CHP-14-ITERM-6887]

	INTERFACE[bookmark: linuxdrive3-CHP-14-ITERM-6886]
[bookmark: linuxdrive3-CHP-14-ITERM-6887] 

	
A string in the format

bInterfaceClass/bInterfaceSubClass/bInterfaceProtocol

that specifies those USB device-specific fields.





If the kernel build option, CONFIG_USB_DEVICEFS,

which selects the usbfs filesystem to be built in

the kernel, is selected, the following environment variable is also

set:

[bookmark: linuxdrive3-CHP-14-ITERM-6888][bookmark: linuxdrive3-CHP-14-ITERM-6889]

	DEVICE[bookmark: linuxdrive3-CHP-14-ITERM-6888]
[bookmark: linuxdrive3-CHP-14-ITERM-6889] 

	
A string that shows where in the usbfs filesystem

the device is located. This string is in the format

/proc/bus/usb/USB_BUS_NUMBER/USB_DEVICE_NUMBER, in

which USB_BUS_NUMBER is the three-digit number of

the USB bus that the device is on, and

USB_DEVICE_NUMBER is the three-digit number that

has been assigned by the kernel to that USB device.





[bookmark: linuxdrive3-CHP-14-SECT-7.2.6]
14.7.2.6 SCSI

All SCSI devices create a hotplug event when the

[bookmark: linuxdrive3-CHP-14-ITERM-6890]
[bookmark: linuxdrive3-CHP-14-ITERM-6891]SCSI

device is created or removed from the kernel. The

/sbin/hotplug call has the parameter name and

the SUBSYSTEM environment variable set to the

value scsi for every SCSI device that is added or

removed from the system. There are no additional environment

variables added by the SCSI system, but it is mentioned here because

there is a SCSI-specific user-space script that can determine what

SCSI drivers (disk, tape, generic, etc.) should be loaded for the

specified SCSI device.

[bookmark: linuxdrive3-CHP-14-SECT-7.2.7]
14.7.2.7 Laptop docking stations

If a Plug-and-Play-supported [bookmark: linuxdrive3-CHP-14-ITERM-6892]laptop docking station is added or

removed from the running Linux system (by inserting the laptop into

the station, or removing it), a hotplug event is created. The

/sbin/hotplug call has the parameter name and

the SUBSYSTEM environment variable set to the

value dock. No other environment variables are

set.

[bookmark: linuxdrive3-CHP-14-SECT-7.2.8]
14.7.2.8 S/390 and zSeries

On the [bookmark: linuxdrive3-CHP-14-ITERM-6893]
[bookmark: linuxdrive3-CHP-14-ITERM-6894]
[bookmark: linuxdrive3-CHP-14-ITERM-6895]
[bookmark: linuxdrive3-CHP-14-ITERM-6896]S/390

architecture, the channel bus architecture supports a wide range of

hardware, all of which generate /sbin/hotplug

events when they are added or removed from the Linux virtual system.

These devices all have the /sbin/hotplug

parameter name and the SUBSYSTEM environment

variable set to the value dasd. No other

environment variables are set.

[bookmark: linuxdrive3-CHP-14-SECT-7.3]
14.7.3. Using /sbin/hotplug

Now that the Linux kernel is calling

/sbin/hotplug for every device added and removed

from the kernel, a number of very useful tools have been created in

user space that take advantage of this. Two of the most popular tools

are the Linux Hotplug scripts and udev.

[bookmark: linuxdrive3-CHP-14-SECT-7.3.1]
14.7.3.1 Linux hotplug scripts

The Linux hotplug[bookmark: linuxdrive3-CHP-14-ITERM-6897]
[bookmark: linuxdrive3-CHP-14-ITERM-6898]

scripts started out as the very first user of the

/sbin/hotplug call. These scripts look at the

different environment variables that the kernel sets to describe the

device that was just discovered and then tries to find a kernel

module that matches up with that device.

As has been described before, when a driver uses the

MODULE_DEVICE_TABLE macro, the program,

depmod, takes that information and creates the

files located in

/lib/module/KERNEL_VERSION/modules.*map. The

* is different, depending on the bus type that the

driver supports. Currently, the module map files are generated for

drivers that work for devices that support the PCI, USB, IEEE1394,

INPUT, ISAPNP, and CCW subsystems.

The hotplug scripts use these module map text files to determine what

module to try to load to support the device that was recently

discovered by the kernel. They load all modules and do not stop at

the first match, in order to let the kernel work out what module

works best. These scripts do not unload any modules when devices are

removed. If they were to try to do that, they could accidentally shut

down devices that were also controlled by the same driver of the

device that was removed.

Note, now that the modprobe program can read the

MODULE_DEVICE_TABLE information directly from the

modules without the need of the module map files, the hotplug scripts

might be reduced to a small wrapper around the

modprobe program.

[bookmark: linuxdrive3-CHP-14-SECT-7.3.2]
14.7.3.2 udev

One of the main reasons for creating the unified driver model in the

kernel was to allow user space to manage the

/dev tree in a dynamic fashion. This had

previously been done in user space with the implementation of devfs,

but that code base has slowly rotted away, due to a lack of an active

maintainer and some unfixable core bugs. A number of kernel

developers realized that if all device information was exported to

user space, it could perform all the necessary management of the

/dev tree.

devfs has some very fundamental flaws in its design. It requires

every device driver to be modified to support it, and it requires

that device driver to specify the name and location within

the[bookmark: linuxdrive3-CHP-14-ITERM-6899]
[bookmark: linuxdrive3-CHP-14-ITERM-6900] /dev

tree where it is placed. It also does not properly handle dynamic

major and minor numbers, and it does not allow user space to override

the naming of a device in a simple manner, forcing the device naming

policy to reside within the kernel and not in user space. Linux

kernel developers really hate having policy within the kernel, and

since the devfs naming policy does not follow the Linux Standard Base

specification, it really bothers them.

As the Linux kernel started to be installed on huge servers, a lot of

users ran into the problem of how to manage very large numbers of

devices. Disk drive arrays of over 10,000 unique devices presented

the very difficult task of ensuring that a specific disk was always

named with the same exact name, no matter where it was placed in the

disk array or when it was discovered by the kernel. This same problem

also plagued desktop users who tried to plug two USB printers into

their system and then realized that they had no way of ensuring that

the printer known as /dev/lpt0 would not change

and be assigned to the other printer if the system was rebooted.

So, udev was created. It relies on all device

information being exported to user space through sysfs and on being

notified by /sbin/hotplug that a device was

added or removed. Policy decisions, such as what name to give a

device, can be specified in user space, outside of the kernel. This

ensures that the naming policy is removed from the kernel and allows

a large amount of flexibility about the name of each device.

For more information on how to use udev and how

to configure it, please see the documentation that comes included

with the udev package in your distribution.

All that a device driver needs to do, for udev

to work properly with it, is ensure that any major and minor numbers

assigned to a device controlled by the driver are exported to user

space through sysfs. For any driver that uses a subsystem to assign

it a major and minor number, this is already done by the subsystem,

and the driver doesn't have to do any work. Examples

of subsystems that do this are the tty, misc, usb, input, scsi,

block, i2c, network, and frame buffer subsystems. If your driver

handles getting a major and minor number on its own, through a call

to the cdev_init function or the older

[bookmark: linuxdrive3-CHP-14-ITERM-6901]
[bookmark: linuxdrive3-CHP-14-ITERM-6902]register_chrdev

function, the driver needs to be modified in order for

udev to work properly with it.

udev looks for a file called

dev in the /class/ tree of

sysfs, in order to determine what major and minor number is assigned

to a specific device when it is called by the kernel through the

/sbin/hotplug interface. A device driver merely

needs to create that file for every device it controls. The

class_simple interface is usually the easiest way

to do this.

As mentioned in Section 14.5.1 the first step in using the

class_simple interface is to create a

struct class_simple with a call

to the [bookmark: linuxdrive3-CHP-14-ITERM-6903]
[bookmark: linuxdrive3-CHP-14-ITERM-6904]class_simple_create

function:

static struct class_simple *foo_class;

...

foo_class = class_simple_create(THIS_MODULE, "foo");

if (IS_ERR(foo_class)) {

    printk(KERN_ERR "Error creating foo class.\n");

    goto error;

}
 

This code creates a directory in sysfs in

/sys/class/foo.

Whenever a new device is found by your driver, and you assign it a

minor number as described in Chapter 3, the driver should call the

class_simple_device_add[bookmark: linuxdrive3-CHP-14-ITERM-6905]
[bookmark: linuxdrive3-CHP-14-ITERM-6906]

function:

class_simple_device_add(foo_class, MKDEV(FOO_MAJOR, minor), NULL, "foo%d", minor);
 

This code causes a subdirectory under

/sys/class/foo to be created called

fooN, where N is the minor

number for this device. There is one file created in this directory,

dev, which is exactly what

udev needs in order to create a device node for

your device.

When your driver is unbound from a device, and you give up the minor

number that it was attached to, a call to

[bookmark: linuxdrive3-CHP-14-ITERM-6907]
[bookmark: linuxdrive3-CHP-14-ITERM-6908]class_simple_device_remove

is needed to remove the sysfs entries for this device:

class_simple_device_remove(MKDEV(FOO_MAJOR, minor));
 

Later, when your entire driver is being shut down, a call to

class_simple_destroy is needed to remove the

class that you created originally with the call to

class_simple_create:

class_simple_destroy(foo_class);
 

The dev file that is created by the call to

class_simple_device_add consists of the major

and minor numbers, separated by a : character. If

your driver does not want to use the class_simple

interface because you want to provide other files within the class

directory for the subsystem, use the print_dev_t

function to properly format the major and minor number for

the[bookmark: linuxdrive3-CHP-14-ITERM-6909]
[bookmark: linuxdrive3-CHP-14-ITERM-6910]
[bookmark: linuxdrive3-CHP-14-ITERM-6911]
[bookmark: linuxdrive3-CHP-14-ITERM-6912]
[bookmark: linuxdrive3-CHP-14-ITERM-6913]

specific device.







[bookmark: linuxdrive3-CHP-14-SECT-8]
14.8. Dealing with Firmware

As a driver author, you may find [bookmark: linuxdrive3-CHP-14-ITERM-6914] [bookmark: linuxdrive3-CHP-14-ITERM-6915]
[bookmark: linuxdrive3-CHP-14-ITERM-6916]
[bookmark: linuxdrive3-CHP-14-ITERM-6917]
[bookmark: linuxdrive3-CHP-14-ITERM-6918]yourself confronted with a device

that must have firmware downloaded into it before it functions

properly. The competition in many parts of the hardware market is so

intense that even the cost of a bit of EEPROM for the

device's controlling firmware is more than the

manufacturer is willing to spend. So the firmware is distributed on a

CD with the hardware, and the operating system is charged with

conveying the firmware to the device itself.

You may be tempted to solve the firmware problem with a declaration

like this:

static char my_firmware[  ] = { 0x34, 0x78, 0xa4, ... };
 

That approach is almost certainly a mistake, however. Coding firmware

into a driver bloats the driver code, makes upgrading the firmware

hard, and is very likely to run into licensing problems. It is highly

unlikely that the vendor has released the firmware image under the

GPL, so mixing it with GPL-licensed code is usually a mistake. For

this reason, drivers containing wired-in firmware are unlikely to be

accepted into the mainline kernel or included by Linux distributors.

[bookmark: linuxdrive3-CHP-14-SECT-8.1]
14.8.1. The Kernel Firmware Interface

The proper solution is to obtain

the[bookmark: linuxdrive3-CHP-14-ITERM-6919]
[bookmark: linuxdrive3-CHP-14-ITERM-6920]

firmware from user space when you need it. Please resist the

temptation to try to open a file containing firmware directly from

kernel space, however; that is an error-prone operation, and it puts

policy (in the form of a file name) into the kernel. Instead, the

correct approach is to use the firmware interface, which was created

just for this purpose:

#include <linux/firmware.h>

int request_firmware(const struct firmware **fw, char *name,

                     struct device *device);
 

A call to request_firmware requests that user

space locate and provide a firmware image to the kernel; we look at

the details of how it works in a moment. The name

should identify the firmware that is desired; the normal usage is the

name of the firmware file as provided by the vendor. Something like

my_firmware.bin is typical. If the firmware is

successfully loaded, the return value is 0

(otherwise the usual error code is returned), and the

fw argument is pointed to one of these structures:

struct firmware {

        size_t size;

        u8 *data;

};
 

That structure contains the actual firmware, which can now be

downloaded to the device. Be aware that this firmware is unchecked

data from user space; you should apply any and all tests you can

think of to convince yourself that it is a proper firmware image

before sending it to the hardware. Device firmware usually contains

identification strings, checksums, and so on; check them all before

trusting the data.

After you have sent the firmware to the device, you should release

the in-kernel structure with:

void release_firmware(struct firmware *fw);
 

Since

request_firmware[bookmark: linuxdrive3-CHP-14-ITERM-6921]
[bookmark: linuxdrive3-CHP-14-ITERM-6922]

asks user space to help, it is guaranteed to sleep before returning.

If your driver is not in a position to sleep when it must ask for

firmware, the asynchronous alternative may be used:

int request_firmware_nowait(struct module *module, 

                            char *name, struct device *device, void *context,

                            void (*cont)(const struct firmware *fw, void *context));
 

The additional arguments here are module (which

will almost always be THIS_MODULE),

context (a private data pointer that is not used

by the firmware subsystem), and cont. If all goes

well, request_firmware_nowait begins the

firmware load process and returns 0. At some

future time, cont will be called with the result

of the load. If the firmware load fails for some reason,

fw is NULL.

[bookmark: linuxdrive3-CHP-14-SECT-8.2]
14.8.2. How It Works

The firmware subsystem

works[bookmark: linuxdrive3-CHP-14-ITERM-6923]
[bookmark: linuxdrive3-CHP-14-ITERM-6924]
[bookmark: linuxdrive3-CHP-14-ITERM-6925]

with sysfs and the hotplug mechanism. When a call is made to

request_firmware, a new directory is created

under /sys/class/firmware using your

device's name. That directory contains three

attributes:

[bookmark: linuxdrive3-CHP-14-ITERM-6926][bookmark: linuxdrive3-CHP-14-ITERM-6927][bookmark: linuxdrive3-CHP-14-ITERM-6928][bookmark: linuxdrive3-CHP-14-ITERM-6929][bookmark: linuxdrive3-CHP-14-ITERM-6930][bookmark: linuxdrive3-CHP-14-ITERM-6931]

	loading[bookmark: linuxdrive3-CHP-14-ITERM-6926]
[bookmark: linuxdrive3-CHP-14-ITERM-6927]

	
This attribute should be set to one by the user-space process that is

loading the firmware. When the load process is complete, it should be

set to 0. Writing a value of -1

to loading aborts the firmware loading process.





	data[bookmark: linuxdrive3-CHP-14-ITERM-6928]
[bookmark: linuxdrive3-CHP-14-ITERM-6929]

	
data is a binary attribute that receives the

firmware data itself. After setting loading, the

user-space process should write the firmware to this attribute.





	device[bookmark: linuxdrive3-CHP-14-ITERM-6930]
[bookmark: linuxdrive3-CHP-14-ITERM-6931]

	
This attribute is a symbolic link to the associated entry under

/sys/devices.





Once the sysfs entries have been created, the kernel generates a

hotplug event for your device. The environment passed to the hotplug

handler includes a variable FIRMWARE, which is set

to the name provided to request_firmware. The

handler should locate the firmware file, and copy it into the kernel

using the attributes provided. If the file cannot be found, the

handler should set the loading attribute to

-1.

If a firmware request is not serviced within 10 seconds, the kernel

gives up and returns a failure status to the driver. That time-out

period can be changed via the sysfs attribute

/sys/class/firmware/timeout.

Using the request_firmware interface allows you

to distribute the device firmware with your driver. When properly

integrated into the hotplug mechanism, the firmware loading subsystem

allows devices to simply work "out of the

box." It is clearly the best way of handling the

problem.

Please indulge us as we pass on one more warning, however: device

firmware should not be distributed without the permission of the

manufacturer. Many manufacturers will agree to license their firmware

under reasonable terms when asked politely; some others can be less

cooperative. Either way, copying and distributing their firmware

without permission is a violation of copyright[bookmark: linuxdrive3-CHP-14-ITERM-6932] [bookmark: linuxdrive3-CHP-14-ITERM-6933] [bookmark: linuxdrive3-CHP-14-ITERM-6934] [bookmark: linuxdrive3-CHP-14-ITERM-6935] [bookmark: linuxdrive3-CHP-14-ITERM-6936] law and an

invitation for trouble.







[bookmark: linuxdrive3-CHP-14-SECT-9]
14.9. Quick Reference

Many functions have been introduced in this chapter; here is a quick

summary of them all.

[bookmark: linuxdrive3-CHP-14-SECT-9.1]
14.9.1. Kobjects



	#include <linux/kobject.h>

	
The include file containing definitions for kobjects, related

structures, and functions.





	void kobject_init(struct kobject *kobj);



	int kobject_set_name(struct kobject *kobj, const char *format, ...);

	
Functions for kobject initialization.





	struct kobject *kobject_get(struct kobject *kobj);



	void kobject_put(struct kobject *kobj);

	
Functions that manage reference counts for kobjects.





	struct kobj_type;



	struct kobj_type *get_ktype(struct kobject *kobj);

	
Represents the type of structure within which a kobject is embedded.

Use get_ktype to get the

kobj_type associated with a given kobject.





	int kobject_add(struct kobject *kobj);



	extern int kobject_register(struct kobject *kobj);



	void kobject_del(struct kobject *kobj);



	void kobject_unregister(struct kobject *kobj);

	
kobject_add adds a kobject to the system,

handling kset membership, sysfs representation, and hotplug event

generation. kobject_register is a convenience

function that combines kobject_init and

kobject_add. Use

kobject_del to remove a kobject or

kobject_unregister, which combines

kobject_del and

kobject_put.





	void kset_init(struct kset *kset);



	int kset_add(struct kset *kset);



	int kset_register(struct kset *kset);



	void kset_unregister(struct kset *kset);

	
Initialization and registration functions for ksets.





	decl_subsys(name, type, hotplug_ops);

	
A macro that makes it easier to declare subsystems.





	void subsystem_init(struct subsystem *subsys);



	int subsystem_register(struct subsystem *subsys);



	void subsystem_unregister(struct subsystem *subsys);



	struct subsystem *subsys_get(struct subsystem *subsys)



	void subsys_put(struct subsystem *subsys);

	
Operations on subsystems.





[bookmark: linuxdrive3-CHP-14-SECT-9.2]
14.9.2. Sysfs Operations

[bookmark: linuxdrive3-CHP-14-ITERM-6937][bookmark: linuxdrive3-CHP-14-ITERM-6938][bookmark: linuxdrive3-CHP-14-ITERM-6939]

	#include <linux/sysfs.h>

	
The include file containing [bookmark: linuxdrive3-CHP-14-ITERM-6937]
[bookmark: linuxdrive3-CHP-14-ITERM-6938]
[bookmark: linuxdrive3-CHP-14-ITERM-6939]declarations for sysfs.





	int sysfs_create_file(struct kobject *kobj, struct attribute *attr);



	int sysfs_remove_file(struct kobject *kobj, struct attribute *attr);



	int sysfs_create_bin_file(struct kobject *kobj, struct bin_attribute *attr);



	int sysfs_remove_bin_file(struct kobject *kobj, struct bin_attribute *attr);



	int sysfs_create_link(struct kobject *kobj, struct kobject *target, char 



	 *name);



	void sysfs_remove_link(struct kobject *kobj, char *name);

	
Functions for creating and removing attribute files associated with a

kobject.





[bookmark: linuxdrive3-CHP-14-SECT-9.3]
14.9.3. Buses, Devices, and Drivers
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	int bus_register(struct bus_type *bus);



	void bus_unregister(struct bus_type *bus);

	
Functions that

[bookmark: linuxdrive3-CHP-14-ITERM-6940]
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registration and unregistration of buses in the device model.





	int bus_for_each_dev(struct bus_type *bus, struct device *start, void *data,  



	 int (*fn)(struct device *, void *));



	int bus_for_each_drv(struct bus_type *bus, struct device_driver *start, void 



	 *data, int (*fn)(struct device_driver *, void *));

	
Functions that iterate over each of the devices and drivers,

respectively, that are attached to the given bus.





	BUS_ATTR(name, mode, show, store);



	int bus_create_file(struct bus_type *bus, struct bus_attribute *attr);



	void bus_remove_file(struct bus_type *bus, struct bus_attribute *attr);

	
The BUS_ATTR macro may be used to declare a

bus_attribute structure, which may then be added

and removed with the above two functions.





	int device_register(struct device *dev);



	void device_unregister(struct device *dev);

	
Functions that handle device registration.





	DEVICE_ATTR(name, mode, show, store);



	int device_create_file(struct device *device, struct device_attribute *entry);



	void device_remove_file(struct device *dev, struct device_attribute *attr);

	
Macros and functions that deal with device attributes.





	int driver_register(struct device_driver *drv);



	void driver_unregister(struct device_driver *drv);

	
Functions that register and unregister a device driver.





	DRIVER_ATTR(name, mode, show, store);



	int driver_create_file(struct device_driver *drv, struct driver_attribute 



	 *attr);



	void driver_remove_file(struct device_driver *drv, struct driver_attribute 



	 *attr);

	
Macros and functions that manage driver attributes.





[bookmark: linuxdrive3-CHP-14-SECT-9.4]
14.9.4. Classes

[bookmark: linuxdrive3-CHP-14-ITERM-6946][bookmark: linuxdrive3-CHP-14-ITERM-6947]

	struct class_simple *class_simple_create(struct module *owner, char *name);[bookmark: linuxdrive3-CHP-14-ITERM-6946]
[bookmark: linuxdrive3-CHP-14-ITERM-6947]



	void class_simple_destroy(struct class_simple *cs);



	struct class_device *class_simple_device_add(struct class_simple *cs, dev_t 



	 devnum, struct device *device, const char *fmt, ...);



	void class_simple_device_remove(dev_t dev);



	int class_simple_set_hotplug(struct class_simple *cs, int (*hotplug)(struct 



	 class_device *dev, char **envp, int num_envp, char *buffer, int 



	 buffer_size));

	
Functions that implement the class_simple

interface; they manage simple class entries containing a

dev attribute and little else.





	int class_register(struct class *cls);



	void class_unregister(struct class *cls);

	
Registration and unregistration of classes.





	CLASS_ATTR(name, mode, show, store);



	int class_create_file(struct class *cls, const struct class_attribute *attr);



	void class_remove_file(struct class *cls, const struct class_attribute *attr);

	
The usual macros and functions for dealing with class attributes.





	int class_device_register(struct class_device *cd);



	void class_device_unregister(struct class_device *cd);



	int class_device_rename(struct class_device *cd, char *new_name);



	CLASS_DEVICE_ATTR(name, mode, show, store);



	int class_device_create_file(struct class_device *cls, const struct 



	 class_device_attribute *attr);



	void class_device_remove_file(struct class_device *cls, const struct 



	 class_device_attribute *attr);

	
Functions and macros that implement the class device interface.





	int class_interface_register(struct class_interface *intf);



	void class_interface_unregister(struct class_interface *intf);

	
Functions that add an interface to a class (or remove it).





[bookmark: linuxdrive3-CHP-14-SECT-9.5]
14.9.5. Firmware

[bookmark: linuxdrive3-CHP-14-ITERM-6948][bookmark: linuxdrive3-CHP-14-ITERM-6949]

	#include <linux/firmware.h>[bookmark: linuxdrive3-CHP-14-ITERM-6948]
[bookmark: linuxdrive3-CHP-14-ITERM-6949]



	int request_firmware(const struct firmware **fw, char *name, struct device 



	 *device);



	int request_firmware_nowait(struct module *module, char *name, struct device 



	 *device, void *context, void (*cont)(const struct firmware *fw, void 



	 *context));



	void release_firmware(struct firmware *fw);

	
Functions that implement the kernel firmware-loading interface.











[bookmark: linuxdrive3-CHP-15]

Chapter 15. Memory Mapping and DMA

This chapter delves into the area of Linux memory management, with an

emphasis on techniques that are useful to the device driver writer.

Many types of driver programming require some understanding of how

the virtual memory subsystem works; the material we cover in this

chapter comes in handy more than once as we get into some of the more

complex and performance-critical subsystems. The virtual memory

subsystem is also a highly interesting part of the core Linux kernel

and, therefore, it merits a look.

The material in this chapter is divided into three sections:

	The first covers the implementation of the mmap

system call, which allows the mapping of device memory directly into

a user process's address space. Not all devices

require mmap support, but, for some, mapping

device memory can yield significant performance improvements.

	We then look at crossing the boundary from the other direction with a

discussion of direct access to user-space pages. Relatively few

drivers need this capability; in many cases, the kernel performs this

sort of mapping without the driver even being aware of it. But an

awareness of how to map user-space memory into the kernel (with

get_user_pages) can be useful.

	The final section covers [bookmark: linuxdrive3-CHP-15-ITERM-6950]
[bookmark: linuxdrive3-CHP-15-ITERM-6951]
[bookmark: linuxdrive3-CHP-15-ITERM-6952]direct

memory access (DMA) I/O operations, which provide peripherals with

direct access to system memory.



Of course, all of these techniques require an understanding of how

Linux memory management works, so we start with an overview of that

subsystem.







[bookmark: linuxdrive3-CHP-15-SECT-1]
15.1. Memory Management in Linux

Rather than describing [bookmark: linuxdrive3-CHP-15-ITERM-6953]
[bookmark: linuxdrive3-CHP-15-ITERM-6954]
[bookmark: linuxdrive3-CHP-15-ITERM-6955]
[bookmark: linuxdrive3-CHP-15-ITERM-6956]the

theory of memory management in operating systems, this section tries

to pinpoint the main features of the Linux implementation. Although

you do not need to be a Linux virtual memory guru to implement

mmap, a basic overview of how things work is

useful. What follows is a fairly lengthy description of the data

structures used by the kernel to manage memory. Once the necessary

background has been covered, we can get into working with these

structures.

[bookmark: linuxdrive3-CHP-15-SECT-1.1]
15.1.1. Address Types

[bookmark: linuxdrive3-CHP-15-ITERM-6957]
[bookmark: linuxdrive3-CHP-15-ITERM-6958]Linux

is, of course, a [bookmark: linuxdrive3-CHP-15-ITERM-6959]virtual memory

[bookmark: linuxdrive3-CHP-15-ITERM-6960]system, meaning that the

addresses seen by user programs do not directly correspond to the

physical addresses used by the hardware. Virtual memory introduces a

layer of indirection that allows a number of nice things. With

virtual memory, programs running on the system can allocate far more

memory than is physically available; indeed, even a single process

can have a virtual address space larger than the

system's physical memory. Virtual memory also allows

the program to play a number of tricks with the

process's address space, including mapping the

program's memory to device memory.

Thus far, we have talked about virtual and physical addresses, but a

number of the details have been glossed over. The Linux system deals

with several types of addresses, each with its own semantics.

Unfortunately, the kernel code is not always very clear on exactly

which type of address is being used in each situation, so the

programmer must be careful.

The following is a list of address types used in Linux. Figure 15-1 shows how these address

types relate to physical memory.

[bookmark: linuxdrive3-CHP-15-ITERM-6961][bookmark: linuxdrive3-CHP-15-ITERM-6962][bookmark: linuxdrive3-CHP-15-ITERM-6963][bookmark: linuxdrive3-CHP-15-ITERM-6964][bookmark: linuxdrive3-CHP-15-ITERM-6965][bookmark: linuxdrive3-CHP-15-ITERM-6966][bookmark: linuxdrive3-CHP-15-ITERM-6967][bookmark: linuxdrive3-CHP-15-ITERM-6968]

	User virtual addresses

	
[bookmark: linuxdrive3-CHP-15-ITERM-6961]These

are the regular addresses seen by user-space programs. User addresses

are either 32 or 64 bits in length, depending on the underlying

hardware architecture, and each process has its own virtual address

space.





	Physical addresses

	
[bookmark: linuxdrive3-CHP-15-ITERM-6962]The

addresses used between the processor and the

system's memory. Physical addresses are 32- or

64-bit quantities; even 32-bit systems can use larger physical

addresses in some situations.





	Bus addresses

	
[bookmark: linuxdrive3-CHP-15-ITERM-6963]The

addresses used between peripheral buses and memory. Often, they are

the same as the physical addresses used by the processor, but that is

not necessarily the case. Some architectures can provide an I/O

[bookmark: linuxdrive3-CHP-15-ITERM-6964]memory management unit (IOMMU) that remaps

addresses between a bus and main memory. An IOMMU can make life

easier in a number of ways (making a buffer scattered in memory

appear contiguous to the device, for example), but programming the

IOMMU is an extra step that must be performed when setting up DMA

operations. Bus addresses are highly architecture dependent, of

course.





	Kernel logical addresses

	
These make up the normal

[bookmark: linuxdrive3-CHP-15-ITERM-6965] [bookmark: linuxdrive3-CHP-15-ITERM-6966]address space of the kernel. These

addresses map some portion (perhaps all) of main memory and are often

treated as if they were physical addresses. On most architectures,

logical addresses and their associated physical addresses differ only

by a constant offset. Logical addresses use the

hardware's native pointer size and, therefore, may

be unable to address all of physical memory on heavily equipped

32-bit systems. Logical addresses are usually stored in variables of

type unsigned long or

void *. Memory returned from

kmalloc has a kernel logical address.





	Kernel virtual addresses

	
Kernel virtual addresses

are[bookmark: linuxdrive3-CHP-15-ITERM-6967] [bookmark: linuxdrive3-CHP-15-ITERM-6968] similar to logical addresses in that

they are a mapping from a kernel-space address to a physical address.

Kernel virtual addresses do not necessarily have the linear,

one-to-one mapping to physical addresses that characterize the

logical address space, however. All logical addresses

are kernel virtual addresses, but many kernel

virtual addresses are not logical addresses. For example, memory

allocated by vmalloc has a virtual address (but

no direct physical mapping). The kmap function

(described later in this chapter) also returns virtual addresses.

Virtual addresses are usually stored in pointer variables.





[bookmark: linuxdrive3-CHP-15-FIG-1]
Figure 15-1. Address types used in Linux

[image: ]

 

If you have a logical address, the macro _ _pa(

) (defined in <asm/page.h>)

returns its associated physical address. Physical addresses can be

mapped back to logical addresses with _ _va( ),

but only for low-memory pages.

Different kernel functions require different types of addresses. It

would be nice if there were different C types defined, so that the

required address types were explicit, but we have no such luck. In

this chapter, we try to be clear on which types of addresses are used

where.

[bookmark: linuxdrive3-CHP-15-SECT-1.2]
15.1.2. Physical Addresses and Pages

Physical memory

[bookmark: linuxdrive3-CHP-15-ITERM-6969] [bookmark: linuxdrive3-CHP-15-ITERM-6970]is divided

into discrete units called pages. Much of the

system's internal handling of memory is done on a

per-page basis. Page size varies from one architecture to the next,

although most systems currently use 4096-byte pages. The constant

PAGE_SIZE (defined in

<asm/page.h>) gives the page size on any

given architecture.

If you look at a memory address�virtual or physical�it is

divisible into a page number and an offset within the page. If

4096-byte pages are being used, for example, the 12 least-significant

bits are the offset, and the remaining, higher bits indicate the page

number. If you discard the offset and shift the rest of an offset to

the right, the result is called a page frame

number[bookmark: linuxdrive3-CHP-15-ITERM-6971] [bookmark: linuxdrive3-CHP-15-ITERM-6972]
[bookmark: linuxdrive3-CHP-15-ITERM-6973]

(PFN). Shifting bits to convert between page frame numbers and

addresses is a fairly common[bookmark: linuxdrive3-CHP-15-ITERM-6974] operation; the macro

PAGE_SHIFT[bookmark: linuxdrive3-CHP-15-ITERM-6975]
[bookmark: linuxdrive3-CHP-15-ITERM-6976]

tells how many bits must be shifted to make this conversion.

[bookmark: linuxdrive3-CHP-15-SECT-1.3]
15.1.3. High and Low Memory

[bookmark: linuxdrive3-CHP-15-ITERM-6977]
[bookmark: linuxdrive3-CHP-15-ITERM-6978][bookmark: linuxdrive3-CHP-15-ITERM-6979][bookmark: linuxdrive3-CHP-15-ITERM-6980][bookmark: linuxdrive3-CHP-15-ITERM-6981][bookmark: linuxdrive3-CHP-15-ITERM-6982]The difference between logical and kernel

virtual addresses is highlighted on 32-bit systems that are equipped

with large amounts of memory. With 32 bits, it is possible to address

4 GB of memory. Linux on 32-bit systems has, until recently, been

limited to substantially less memory than that, however, because of

the way it sets up the virtual address space.

The kernel (on the x86 architecture, in the default configuration)

splits the 4-GB virtual address space between user-space and the

kernel; the same set of mappings is used in both contexts. A typical

split dedicates 3 GB to user space, and 1 GB for kernel

space.[1] The kernel's code and

data structures must fit into that space, but the biggest consumer of

kernel address space is virtual mappings for physical memory. The

kernel cannot directly manipulate memory that is not mapped into the

kernel's address space. The kernel, in other words,

needs its own virtual address for any memory it must touch directly.

Thus, for many years, the maximum amount of physical memory that

could be handled by the kernel was the amount that could be mapped

into the kernel's portion of the virtual address

space, minus the space needed for the kernel code itself. As a

result, x86-based Linux systems could work with a maximum of a little

under 1 GB of physical memory.
[bookmark: linuxdrive3-CHP-15-FNOTE-1][1] Many non-x86 architectures are able to

efficiently do without the kernel/user-space split described here, so

they can work with up to a 4-GB kernel address space on 32-bit

systems. The constraints described in this section still apply to

such systems when more than 4 GB of memory are installed,

however.


In response to commercial pressure to support more memory while not

breaking 32-bit application and the system's

compatibility, the processor manufacturers have added

"address extension" features to

their products. The result is that, in many cases, even 32-bit

processors can address more than 4 GB of physical memory. The

limitation on how much memory can be directly mapped with logical

addresses remains, however. Only the lowest portion of memory (up to

1 or 2 GB, depending on the hardware and the kernel configuration)

has logical addresses;[2] the rest (high

memory) does not. Before accessing a specific high-memory page, the

kernel must set up an explicit virtual mapping to make that page

available in the kernel's address space. Thus, many

kernel data structures must be placed in low memory; high memory

tends to be reserved for user-space process pages.
[bookmark: linuxdrive3-CHP-15-FNOTE-2][2] The 2.6 kernel (with an added

patch) can support a "4G/4G" mode

on x86 hardware, which enables larger kernel and user virtual address

spaces at a mild performance cost.


The term "high memory" can be

confusing to some, especially since it has other meanings in the PC

world. So, to make things clear, we'll define the

terms here:



	Low memory

	
Memory for which logical addresses exist in kernel space. On almost

every system you will likely encounter, all memory is low memory.





	High memory

	
Memory for which logical addresses do not exist, because it is beyond

the address range set aside for kernel virtual addresses.





On i386 systems, the boundary between low and high memory is usually

set at just under 1 GB, although that boundary can be changed at

kernel configuration time. This boundary is not related in any way to

the old 640 KB limit found on the original PC, and its placement is

not dictated by the hardware. It is, instead, a limit set by the

kernel itself as it splits the 32-bit address space between kernel

and user space.

We will point out[bookmark: linuxdrive3-CHP-15-ITERM-6983] [bookmark: linuxdrive3-CHP-15-ITERM-6984] [bookmark: linuxdrive3-CHP-15-ITERM-6985] [bookmark: linuxdrive3-CHP-15-ITERM-6986] limitations on the use of high memory

as we come to them in this chapter.

[bookmark: linuxdrive3-CHP-15-SECT-1.4]
15.1.4. The Memory Map and Struct Page

Historically, the kernel [bookmark: linuxdrive3-CHP-15-ITERM-6987]
[bookmark: linuxdrive3-CHP-15-ITERM-6988]
[bookmark: linuxdrive3-CHP-15-ITERM-6989]has

used logical addresses to refer to pages of physical memory. The

addition of high-memory support, however, has exposed an obvious

problem with that approach�logical addresses are not available

for high memory. Therefore, kernel functions that deal with memory

are increasingly using pointers to struct
page (defined in

<linux/mm.h>) instead. This data structure

is used to keep track of just about everything the kernel needs to

know about physical memory; there is one struct

page for each physical page on the system. Some of the

fields of this structure include the following:

[bookmark: linuxdrive3-CHP-15-ITERM-6990][bookmark: linuxdrive3-CHP-15-ITERM-6991][bookmark: linuxdrive3-CHP-15-ITERM-6992][bookmark: linuxdrive3-CHP-15-ITERM-6993][bookmark: linuxdrive3-CHP-15-ITERM-6994][bookmark: linuxdrive3-CHP-15-ITERM-6995][bookmark: linuxdrive3-CHP-15-ITERM-6996][bookmark: linuxdrive3-CHP-15-ITERM-6997]

	atomic_t count;[bookmark: linuxdrive3-CHP-15-ITERM-6990]

	
The number of references there are to this page. When the count drops

to 0, the page is returned to the free list.





	void *virtual;[bookmark: linuxdrive3-CHP-15-ITERM-6991]

	
The kernel virtual address of the page, if it is mapped;

NULL, otherwise. Low-memory pages are always

mapped; high-memory pages usually are not. This field does not appear

on all architectures; it generally is compiled only where the kernel

virtual address of a page cannot be easily calculated. If you want to

look at this field, the proper method is to use the

page_address[bookmark: linuxdrive3-CHP-15-ITERM-6992]
[bookmark: linuxdrive3-CHP-15-ITERM-6993]

macro, described below.





	unsigned long flags;[bookmark: linuxdrive3-CHP-15-ITERM-6994]

	
[bookmark: linuxdrive3-CHP-15-ITERM-6995]
[bookmark: linuxdrive3-CHP-15-ITERM-6996][bookmark: linuxdrive3-CHP-15-ITERM-6997]A set of bit flags describing the status of

the page. These include PG_locked, which indicates

that the page has been locked in memory, and

PG_reserved, which prevents the memory management

system from working with the page at all.





There is much more information within struct page,

but it is part of the deeper black magic of memory management and is

not of concern to driver writers.

The kernel maintains one or

[bookmark: linuxdrive3-CHP-15-ITERM-6998]more arrays of struct

page entries that track all of the physical memory on the

system. On some systems, there is a single array called

mem_map. On some systems, however, the situation

is more complicated. [bookmark: linuxdrive3-CHP-15-ITERM-6999]
[bookmark: linuxdrive3-CHP-15-ITERM-7000]Nonuniform memory access (NUMA)

systems and those with widely discontiguous physical memory may have

more than one memory map array, so code that is meant to be portable

should avoid direct access to the array whenever possible.

Fortunately, it is usually quite easy to just work with

struct page pointers without worrying about where

they come from.

Some functions and macros are defined for translating between

struct page pointers and virtual addresses:

[bookmark: linuxdrive3-CHP-15-ITERM-7001][bookmark: linuxdrive3-CHP-15-ITERM-7002][bookmark: linuxdrive3-CHP-15-ITERM-7003][bookmark: linuxdrive3-CHP-15-ITERM-7004][bookmark: linuxdrive3-CHP-15-ITERM-7005][bookmark: linuxdrive3-CHP-15-ITERM-7006]

	struct page *virt_to_page(void *kaddr);[bookmark: linuxdrive3-CHP-15-ITERM-7001]
[bookmark: linuxdrive3-CHP-15-ITERM-7002]

	
This macro, defined in <asm/page.h>, takes

a kernel logical address and returns its associated struct

page pointer. Since it requires a logical address, it does

not work with memory from vmalloc or high

memory.





	struct page *pfn_to_page(int pfn);[bookmark: linuxdrive3-CHP-15-ITERM-7003]
[bookmark: linuxdrive3-CHP-15-ITERM-7004]

	
Returns the struct page pointer for the given page

frame number. If necessary, it checks a page frame number for

validity with pfn_valid before passing it to

pfn_to_page.





	void *page_address(struct page *page);

	
Returns the kernel virtual address of this page, if such an address

exists. For high memory, that address exists only if the page has

been mapped. This function is defined in

<linux/mm.h>. In most situations, you want

to use a version of kmap rather than

page_address.





	#include <linux/highmem.h>



	void *kmap(struct page *page);



	void kunmap(struct page *page);

	
kmap[bookmark: linuxdrive3-CHP-15-ITERM-7005]
[bookmark: linuxdrive3-CHP-15-ITERM-7006]

returns a kernel virtual address for any page in the system. For

low-memory pages, it just returns the logical address of the page;

for high-memory pages, kmap creates a special

mapping in a dedicated part of the kernel address space. Mappings

created with kmap should always be freed with

kunmap; a limited number of such mappings is

available, so it is better not to hold on to them for too long.

kmap calls maintain a counter, so if two or more

functions both call kmap on the same page, the

right thing happens. Note also that kmap can

sleep if no mappings are available.





	#include <linux/highmem.h>



	#include <asm/kmap_types.h>



	void *kmap_atomic(struct page *page, enum km_type type);



	void kunmap_atomic(void *addr, enum km_type type);

	
kmap_atomic is a high-performance form of

kmap. Each architecture maintains a small list

of slots (dedicated page table entries) for atomic kmaps; a caller of

kmap_atomic must tell the system which of those

slots to use in the type argument. The only slots

that make sense for drivers are KM_USER0 and

KM_USER1 (for code running directly from a call

from user space), and KM_IRQ0 and

KM_IRQ1 (for interrupt handlers). Note that atomic

kmaps must be handled atomically; your code cannot sleep while

holding one. Note also that nothing in the kernel keeps two functions

from trying to use the same slot and interfering with each other

(although there is a unique set of slots for each CPU). In practice,

contention for atomic kmap slots seems to not be a problem.





We see some uses of these [bookmark: linuxdrive3-CHP-15-ITERM-7007] [bookmark: linuxdrive3-CHP-15-ITERM-7008] [bookmark: linuxdrive3-CHP-15-ITERM-7009]functions when we get into the example

code, later in this chapter and in subsequent chapters.

[bookmark: linuxdrive3-CHP-15-SECT-1.5]
15.1.5. Page Tables

On any

[bookmark: linuxdrive3-CHP-15-ITERM-7010]
[bookmark: linuxdrive3-CHP-15-ITERM-7011]
[bookmark: linuxdrive3-CHP-15-ITERM-7012]
[bookmark: linuxdrive3-CHP-15-ITERM-7013]modern system,

the processor must have a mechanism for translating virtual addresses

into its corresponding physical addresses. This mechanism is called a

page table; it is essentially a multilevel

tree-structured array containing virtual-to-physical mappings and a

few associated flags. The Linux kernel maintains a set of page tables

even on architectures that do not use such tables directly.

A number of operations commonly performed by device drivers can

involve manipulating page tables. Fortunately for the driver author,

the 2.6 kernel has eliminated any need to work with page tables

directly. As a result, we do not describe them in any detail; curious

readers may want to have a look at Understanding The Linux

Kernel by Daniel P. Bovet and Marco Cesati

(O'Reilly) for the full story.

[bookmark: linuxdrive3-CHP-15-SECT-1.6]
15.1.6. Virtual Memory Areas

The [bookmark: linuxdrive3-CHP-15-ITERM-7014]virtual memory area (VMA) is

[bookmark: linuxdrive3-CHP-15-ITERM-7015]
[bookmark: linuxdrive3-CHP-15-ITERM-7016]
[bookmark: linuxdrive3-CHP-15-ITERM-7017] [bookmark: linuxdrive3-CHP-15-ITERM-7018]the

kernel data structure used to manage distinct regions of a

process's address space. A VMA represents a

homogeneous region in the virtual memory of a process: a contiguous

range of virtual addresses that have the same permission flags and

are backed up by the same object (a file, say, or swap space). It

corresponds loosely to the concept of a

"segment," although it is better

described as "a memory object with its own

properties." The memory map of a process is made up

of (at least) the following areas:

	An area for the program's executable code (often

called text)

	[bookmark: linuxdrive3-CHP-15-ITERM-7019]Multiple areas

for data, including initialized data (that which has an explicitly

assigned value at the beginning of execution), uninitialized data

(BSS),[3] and the program stack
[bookmark: linuxdrive3-CHP-15-FNOTE-3][3] The name BSS is a

historical relic from an old assembly operator meaning

"block started by symbol." The BSS

segment of executable files isn't stored on disk,

and the kernel maps the zero page to the BSS address range.


	One area for each active memory mapping



The memory areas of a process can be seen by looking in

/proc/<pid/maps> (in

which pid, of course, is replaced by a process

ID). /proc/self is a special case of

/proc/pid, because it

always refers to the current process. As an example, here are a

couple of memory maps (to which we have added short comments in

italics):

# cat /proc/1/maps   look at init

08048000-0804e000 r-xp 00000000 03:01 64652      /sbin/init   text

0804e000-0804f000 rw-p 00006000 03:01 64652      /sbin/init   data

0804f000-08053000 rwxp 00000000 00:00 0           zero-mapped BSS

40000000-40015000 r-xp 00000000 03:01 96278      /lib/ld-2.3.2.so   text

40015000-40016000 rw-p 00014000 03:01 96278      /lib/ld-2.3.2.so   data

40016000-40017000 rw-p 00000000 00:00 0           BSS for ld.so

42000000-4212e000 r-xp 00000000 03:01 80290      /lib/tls/libc-2.3.2.so   text

4212e000-42131000 rw-p 0012e000 03:01 80290      /lib/tls/libc-2.3.2.so   data

42131000-42133000 rw-p 00000000 00:00 0           BSS for libc

bffff000-c0000000 rwxp 00000000 00:00 0           Stack segment

ffffe000-fffff000 ---p 00000000 00:00 0           vsyscall page



# rsh wolf cat /proc/self/maps  #### x86-64 (trimmed)

00400000-00405000 r-xp 00000000 03:01 1596291     /bin/cat     text

00504000-00505000 rw-p 00004000 03:01 1596291     /bin/cat     data

00505000-00526000 rwxp 00505000 00:00 0                        bss

3252200000-3252214000 r-xp 00000000 03:01 1237890 /lib64/ld-2.3.3.so

3252300000-3252301000 r--p 00100000 03:01 1237890 /lib64/ld-2.3.3.so

3252301000-3252302000 rw-p 00101000 03:01 1237890 /lib64/ld-2.3.3.so

7fbfffe000-7fc0000000 rw-p 7fbfffe000 00:00 0                  stack

ffffffffff600000-ffffffffffe00000 ---p 00000000 00:00 0        vsyscall
 

The fields in each line are:

start-end perm offset major:minor inode image
 

Each field in /proc/*/maps[bookmark: linuxdrive3-CHP-15-ITERM-7020] (except the

image name) corresponds to a field in struct
vm_area_struct:



	start



	end

	
The beginning and ending virtual addresses for this memory area.





	perm

	
A bit mask with the memory area's read, write, and

execute permissions. This field describes what the process is allowed

to do with pages belonging to the area. The last character in the

field is either p for

"private" or s

for "shared."





	offset

	
Where the memory area begins in the file that it is mapped to. An

offset of 0 means that the beginning of the memory

area corresponds to the beginning of the file.





	major



	minor

	
The major and minor numbers of the device holding the file that has

been mapped. Confusingly, for device mappings, the major and minor

numbers refer to the disk partition holding the device special file

that was opened by the user, and not the device itself.





	inode

	
The inode number of the mapped file.





	image

	
The name of the file (usually an executable image) that has been

mapped.





[bookmark: linuxdrive3-CHP-15-SECT-1.6.1]
15.1.6.1 The vm_area_struct structure

[bookmark: linuxdrive3-CHP-15-ITERM-7021]
[bookmark: linuxdrive3-CHP-15-ITERM-7022][bookmark: linuxdrive3-CHP-15-ITERM-7023]When a user-space process calls

mmap to map device memory into its address

space, the system responds by creating a new VMA to represent that

mapping. A driver that supports mmap (and, thus,

that implements the mmap method) needs to help

that process by completing the initialization of that VMA. The driver

writer should, therefore, have at least a minimal understanding of

VMAs in order to support mmap.

Let's look at the most important fields in

struct vm_area_struct (defined

in <linux/mm.h>). These fields may be used

by device drivers in their

mmap[bookmark: linuxdrive3-CHP-15-ITERM-7024] implementation.

Note that the kernel maintains lists and trees of VMAs to optimize

area lookup, and several fields of vm_area_struct

are used to maintain this organization. Therefore, VMAs

can't be created at will by a driver, or the

structures break. The main fields of VMAs are as follows (note the

similarity between these fields and the /proc

output we just saw):

[bookmark: linuxdrive3-CHP-15-ITERM-7025][bookmark: linuxdrive3-CHP-15-ITERM-7026][bookmark: linuxdrive3-CHP-15-ITERM-7027]

	unsigned long vm_start;



	unsigned long vm_end;

	
The virtual address range covered by this VMA. These fields are the

first two fields shown in /proc/*/maps.





	struct file *vm_file;

	
A pointer to the struct file structure associated

with this area (if any).





	unsigned long vm_pgoff;

	
The offset of the area in the file, in pages. When a file or device

is mapped, this is the file position of the first page mapped in this

area.





	unsigned long vm_flags;

	
[bookmark: linuxdrive3-CHP-15-ITERM-7025]
[bookmark: linuxdrive3-CHP-15-ITERM-7026][bookmark: linuxdrive3-CHP-15-ITERM-7027]A set of flags describing this area. The

flags of the most interest to device driver writers are

VM_IO and VM_RESERVED.

VM_IO marks a VMA as being a memory-mapped I/O

region. Among other things, the VM_IO flag

prevents the region from being included in process core dumps.

VM_RESERVED tells the memory management system not

to attempt to swap out this VMA; it should be set in most device

mappings.





	struct vm_operations_struct *vm_ops;

	
A set of functions that the kernel may invoke to operate on this

memory area. Its presence indicates that the memory area is a kernel

"object," like the

struct file we have been using

throughout the book.





	void *vm_private_data;

	
A field that may be used by the driver to store its own information.





[bookmark: linuxdrive3-CHP-15-ITERM-7028]
[bookmark: linuxdrive3-CHP-15-ITERM-7029]Like

struct vm_area_struct, the

vm_operations_struct is defined in

<linux/mm.h>; it includes the operations

listed below. These operations are the only ones needed to handle the

process's memory needs, and they are listed in the

order they are declared. Later in this chapter, some of these

functions are implemented.

[bookmark: linuxdrive3-CHP-15-ITERM-7030][bookmark: linuxdrive3-CHP-15-ITERM-7031][bookmark: linuxdrive3-CHP-15-ITERM-7032][bookmark: linuxdrive3-CHP-15-ITERM-7033][bookmark: linuxdrive3-CHP-15-ITERM-7034][bookmark: linuxdrive3-CHP-15-ITERM-7035][bookmark: linuxdrive3-CHP-15-ITERM-7036][bookmark: linuxdrive3-CHP-15-ITERM-7037][bookmark: linuxdrive3-CHP-15-ITERM-7038][bookmark: linuxdrive3-CHP-15-ITERM-7039][bookmark: linuxdrive3-CHP-15-ITERM-7040][bookmark: linuxdrive3-CHP-15-ITERM-7041][bookmark: linuxdrive3-CHP-15-ITERM-7042][bookmark: linuxdrive3-CHP-15-ITERM-7043][bookmark: linuxdrive3-CHP-15-ITERM-7044][bookmark: linuxdrive3-CHP-15-ITERM-7045][bookmark: linuxdrive3-CHP-15-ITERM-7046]

	void (*open)(struct vm_area_struct *vma);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7030]
[bookmark: linuxdrive3-CHP-15-ITERM-7031]
[bookmark: linuxdrive3-CHP-15-ITERM-7032]The

open method is called by the kernel to allow the

subsystem implementing the VMA to initialize the area. This method is

invoked any time a new reference to the VMA is made (when a process

forks, for example). The one exception happens when the VMA is first

created by mmap; in this case, the

driver's mmap method is called

instead.





	void (*close)(struct vm_area_struct *vma);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7033]
[bookmark: linuxdrive3-CHP-15-ITERM-7034]
[bookmark: linuxdrive3-CHP-15-ITERM-7035]When

an area is destroyed, the kernel calls its close

operation. Note that there's no usage count

associated with VMAs; the area is opened and closed exactly once by

each process that uses it.





	struct page *(*nopage)(struct vm_area_struct *vma, unsigned long address, int 



	 *type);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7036]
[bookmark: linuxdrive3-CHP-15-ITERM-7037]
[bookmark: linuxdrive3-CHP-15-ITERM-7038]When

a process tries to access a page that belongs to a valid VMA, but

that is currently not in memory, the nopage

method is called (if it is defined) for the related area. The method

returns the struct page pointer for the physical

page after, perhaps, having read it in from secondary storage. If the

nopage method isn't defined for

the area, an empty page is allocated by the kernel.





	int (*populate)(struct vm_area_struct *vm, unsigned long address, unsigned 



	 long len, pgprot_t prot, unsigned long pgoff, int nonblock);

	
This method allows the kernel to

"prefault" pages into memory before

they are accessed by user space.

There[bookmark: linuxdrive3-CHP-15-ITERM-7039] is [bookmark: linuxdrive3-CHP-15-ITERM-7040] [bookmark: linuxdrive3-CHP-15-ITERM-7041] [bookmark: linuxdrive3-CHP-15-ITERM-7042] [bookmark: linuxdrive3-CHP-15-ITERM-7043]generally no need

for drivers to implement the

populate[bookmark: linuxdrive3-CHP-15-ITERM-7044]
[bookmark: linuxdrive3-CHP-15-ITERM-7045]
[bookmark: linuxdrive3-CHP-15-ITERM-7046]

method.





[bookmark: linuxdrive3-CHP-15-SECT-1.7]
15.1.7. The Process Memory Map

The final piece of the

memory[bookmark: linuxdrive3-CHP-15-ITERM-7047]
[bookmark: linuxdrive3-CHP-15-ITERM-7048]
[bookmark: linuxdrive3-CHP-15-ITERM-7049]
[bookmark: linuxdrive3-CHP-15-ITERM-7050] management puzzle is the process

memory map structure, which holds all of the other data structures

together. Each process in the system (with the exception of a few

kernel-space helper threads) has a struct
mm_struct (defined in

<linux/sched.h>) that contains the

process's list of virtual memory areas, page tables,

and various other bits of memory management housekeeping information,

along with a semaphore (mmap_sem) and a spinlock

(page_table_lock). The pointer to this structure

is found in the task structure; in the rare cases where a driver

needs to access it, the usual way is to use

current->mm. Note that the memory management

structure can be shared between processes; the Linux implementation

of threads works in this way, for example.

[bookmark: linuxdrive3-CHP-15-ITERM-7051][bookmark: linuxdrive3-CHP-15-ITERM-7052]That

concludes our overview of Linux memory management data structures.

With that out of the way, we can now proceed to the implementation of

the mmap system call.







[bookmark: linuxdrive3-CHP-15-SECT-2]
15.2. The mmap Device Operation

Memory mapping is one of the [bookmark: linuxdrive3-CHP-15-ITERM-7053] [bookmark: linuxdrive3-CHP-15-ITERM-7054] [bookmark: linuxdrive3-CHP-15-ITERM-7055] [bookmark: linuxdrive3-CHP-15-ITERM-7056] [bookmark: linuxdrive3-CHP-15-ITERM-7057] [bookmark: linuxdrive3-CHP-15-ITERM-7058]most interesting features of modern

Unix systems. As far as drivers are concerned, memory mapping can be

implemented to provide user programs with direct access to device

memory.

A definitive example of mmap usage can be seen

by looking at a subset of the virtual memory areas for the X Window

System server:

cat /proc/731/maps

000a0000-000c0000 rwxs 000a0000 03:01 282652      /dev/mem

000f0000-00100000 r-xs 000f0000 03:01 282652      /dev/mem

00400000-005c0000 r-xp 00000000 03:01 1366927     /usr/X11R6/bin/Xorg

006bf000-006f7000 rw-p 001bf000 03:01 1366927     /usr/X11R6/bin/Xorg

2a95828000-2a958a8000 rw-s fcc00000 03:01 282652  /dev/mem

2a958a8000-2a9d8a8000 rw-s e8000000 03:01 282652  /dev/mem

...
 

The full list of the X server's VMAs is lengthy, but

most of the entries are not of interest here. We do see, however,

four separate mappings of /dev/mem, which give

some insight into how the X server works with the video card. The

first mapping is at a0000, which is the standard

location for video RAM in the 640-KB ISA hole. Further down, we see a

large mapping at e8000000, an address which is

above the highest RAM address on the system. This is a direct mapping

of the [bookmark: linuxdrive3-CHP-15-ITERM-7059]
[bookmark: linuxdrive3-CHP-15-ITERM-7060]video memory on the adapter.

These regions can also be seen in /proc/iomem:

000a0000-000bffff : Video RAM area

000c0000-000ccfff : Video ROM

000d1000-000d1fff : Adapter ROM

000f0000-000fffff : System ROM

d7f00000-f7efffff : PCI Bus #01

  e8000000-efffffff : 0000:01:00.0

fc700000-fccfffff : PCI Bus #01

  fcc00000-fcc0ffff : 0000:01:00.0
 

Mapping a device means associating a range of user-space addresses to

device memory. Whenever the program reads or writes in the assigned

address range, it is actually accessing the device. In the X server

example, using mmap allows quick and easy access

to the video card's memory. For a

performance-critical application like this, direct access makes a

large difference.

[bookmark: linuxdrive3-CHP-15-ITERM-7061]
[bookmark: linuxdrive3-CHP-15-ITERM-7062]As

you might suspect, not every device lends itself to the

mmap abstraction; it makes no sense, for

instance, for serial ports and other stream-oriented devices. Another

limitation of mmap is that mapping is

PAGE_SIZE grained. The kernel can manage virtual

addresses only at the level of page tables; therefore, the mapped

area must be a multiple of PAGE_SIZE and must live

in physical memory starting at an address that is a multiple of

PAGE_SIZE. The kernel forces size granularity by

making a region slightly bigger if its size isn't a

multiple of the page size.

These limits are not a big constraint for drivers, because the

program accessing the device is device dependent anyway. Since the

program must know about how the device works, the programmer is not

unduly bothered by the need to see to details like page alignment. A

bigger constraint exists when ISA devices are used on some non-x86

platforms, because their hardware view of ISA may not be contiguous.

For example, some Alpha computers see ISA memory as a scattered set

of 8-bit, 16-bit, or 32-bit items, with no direct mapping. In such

cases, you can't use mmap at

all. The inability to perform direct mapping of ISA addresses to

Alpha addresses is due to the incompatible data transfer

specifications of the two systems. Whereas early Alpha processors

could issue only 32-bit and 64-bit memory accesses, ISA can do only

8-bit and 16-bit transfers, and there's no way to

transparently map one protocol onto the other.

[bookmark: linuxdrive3-CHP-15-ITERM-7063]There are sound advantages to using

mmap when it's feasible to do

so. For instance, we have already looked at the X server, which

transfers a lot of data to and from video memory; mapping the graphic

display to user space dramatically improves the throughput, as

opposed to an lseek/write

implementation. Another typical example is a program controlling a

PCI device. Most PCI peripherals map their control registers to a

memory address, and a high-performance application might prefer to

have direct access to the registers instead of repeatedly having to

call ioctl to get its work done.

[bookmark: linuxdrive3-CHP-15-ITERM-7064]
[bookmark: linuxdrive3-CHP-15-ITERM-7065]The

mmap method is part of the

file_operations structure and is invoked when the

mmap system call is issued. With

mmap, the kernel performs a good deal of work

before the actual method is invoked, and, therefore, the prototype of

the method is quite different from that of the system call. This is

unlike calls such as ioctl and

poll, where the kernel does not do much before

calling the method.

The system call is declared as follows (as described in the

mmap(2) manual page):

mmap (caddr_t addr, size_t len, int prot, int flags, int fd, off_t offset)
 

On the other hand, the file operation is declared as:

int (*mmap) (struct file *filp, struct vm_area_struct *vma);
 

The filp argument in the method is the same as

that introduced in Chapter 3,

while vma contains the information about the

virtual address range that is used to access the device. Therefore,

much of the work has been done by the kernel; to implement

mmap, the driver only has to build suitable page

tables for the address range and, if necessary, replace

vma->vm_ops with a new set of operations.

There are two ways of building the page tables: doing it all at once

with a function called remap_pfn_range or doing it

a page at a time via the nopage VMA method. Each

method has its advantages and limitations. We start with the

"all at once" approach, which is

simpler. From there, we add the complications needed for a real-world

implementation.

[bookmark: linuxdrive3-CHP-15-SECT-2.1]
15.2.1. Using remap_pfn_range

The job of building new page [bookmark: linuxdrive3-CHP-15-ITERM-7066]
[bookmark: linuxdrive3-CHP-15-ITERM-7067]tables

to map a range of physical addresses is handled by

remap_pfn_range and

io_remap_page_range, which have the following

prototypes:

int remap_pfn_range(struct vm_area_struct *vma, 

                     unsigned long virt_addr, unsigned long pfn,

                     unsigned long size, pgprot_t prot);

int io_remap_page_range(struct vm_area_struct *vma, 

                        unsigned long virt_addr, unsigned long phys_addr,

                        unsigned long size, pgprot_t prot);
 

The value returned by the function is the usual 0

or a negative error code. Let's look at the exact

meaning of the function's arguments:



	vma

	
The virtual memory area into which the page range is being mapped.





	virt_addr

	
The user virtual address where remapping should begin. The function

builds page tables for the virtual address range between

virt_addr and virt_addr+size.





	pfn

	
The page frame number corresponding to the physical address to which

the virtual address should be mapped. The page frame number is simply

the physical address right-shifted by PAGE_SHIFT

bits. For most uses, the vm_pgoff field of the VMA

structure contains exactly the value you need. The function affects

physical addresses from (pfn<<PAGE_SHIFT) to

(pfn<<PAGE_SHIFT)+size.





	size

	
The dimension, in bytes, of the area being remapped.





	prot

	
The "protection" requested for the

new VMA. The driver can (and should) use the value found in

vma->vm_page_prot.





[bookmark: linuxdrive3-CHP-15-ITERM-7068]
[bookmark: linuxdrive3-CHP-15-ITERM-7069][bookmark: linuxdrive3-CHP-15-ITERM-7070]The arguments to

remap_pfn_range are fairly straightforward, and

most of them are already provided to you in the VMA when your

mmap method is called. You may be wondering why

there are two functions, however. The first

(remap_pfn_range) is intended for situations

where pfn refers to actual system RAM, while

io_remap_page_range should be used when

phys_addr points to I/O memory. In practice, the

two functions are identical on every architecture except the SPARC,

and you see remap_pfn_range used in most

situations. In the interest of writing portable drivers, however, you

should use the variant of remap_pfn_range that

is suited to your particular situation.

One other complication has to do with caching: usually, references to

device memory should not be cached by the processor. Often the system

BIOS sets things up properly, but it is also possible to disable

caching of specific VMAs via the protection field. Unfortunately,

disabling caching at this level is highly processor dependent. The

curious reader may wish to look at the

pgprot_noncached function from

drivers/char/mem.c to see

what's involved. We won't discuss

the topic further here.

[bookmark: linuxdrive3-CHP-15-SECT-2.2]
15.2.2. A Simple Implementation

If your driver needs to do a simple, linear mapping of device memory

into a user address space, remap_pfn_range is

almost all you really need to do the job. The following code is

derived from drivers/char/mem.c and shows how

this task is performed in a typical module called

simple (Simple Implementation Mapping Pages with

Little Enthusiasm):

static int simple_remap_mmap(struct file *filp, struct vm_area_struct *vma)

{

    if (remap_pfn_range(vma, vma->vm_start, vm->vm_pgoff,

                vma->vm_end - vma->vm_start,

                vma->vm_page_prot))

        return -EAGAIN;



    vma->vm_ops = &simple_remap_vm_ops;

    simple_vma_open(vma);

    return 0;

}
 

As you can see, remapping memory just a matter of calling

remap_pfn_range to create the necessary page

tables.

[bookmark: linuxdrive3-CHP-15-SECT-2.3]
15.2.3. Adding VMA Operations

[bookmark: linuxdrive3-CHP-15-ITERM-7071][bookmark: linuxdrive3-CHP-15-ITERM-7072]As

we have seen, the vm_area_struct structure

contains a set of operations that may be applied to the VMA.

[bookmark: linuxdrive3-CHP-15-ITERM-7073]
[bookmark: linuxdrive3-CHP-15-ITERM-7074]
[bookmark: linuxdrive3-CHP-15-ITERM-7075]Now we look at providing those

operations in a simple way. In particular, we provide

open and close operations

for our VMA. These operations are called whenever a process opens or

closes the VMA; in particular, the open method

is invoked anytime a process forks and creates a new reference to the

VMA. The open and close VMA

methods are called in addition to the processing performed by the

kernel, so they need not reimplement any of the work done there. They

exist as a way for drivers to do any additional processing that they

may require.

As it turns out, a simple driver such as simple

need not do any extra processing in particular. So we have created

open and close methods,

which print a message to the system log informing the world that they

have been called. Not particularly useful, but it does allow us to

show how these methods can be provided, and see when they are

invoked.

To this end, we override the default

vma->vm_ops with operations that call

printk:

void simple_vma_open(struct vm_area_struct *vma)

{

    printk(KERN_NOTICE "Simple VMA open, virt %lx, phys %lx\n",

            vma->vm_start, vma->vm_pgoff << PAGE_SHIFT);

}



void simple_vma_close(struct vm_area_struct *vma)

{

    printk(KERN_NOTICE "Simple VMA close.\n");

}



static struct vm_operations_struct simple_remap_vm_ops = {

    .open =  simple_vma_open,

    .close = simple_vma_close,

};
 

To make these operations active for a specific mapping, it is

necessary to store a pointer to

simple_remap_vm_ops in the

vm_ops field of the relevant VMA. This is usually

done in the mmap method. If you turn back to the

simple_remap_mmap example, you see these lines

of code:

vma->vm_ops = &simple_remap_vm_ops;

simple_vma_open(vma);
 

Note the explicit call to simple_vma_open. Since

the open method is not invoked on the initial

mmap, we must call it explicitly if we want it

to run.

[bookmark: linuxdrive3-CHP-15-SECT-2.4]
15.2.4. Mapping Memory with nopage

Although remap_pfn_range works

[bookmark: linuxdrive3-CHP-15-ITERM-7076]
[bookmark: linuxdrive3-CHP-15-ITERM-7077]well for many, if not most, driver

mmap implementations, sometimes it is necessary

to be a little more flexible. In such situations, an implementation

using the nopage VMA method may be called for.

[bookmark: linuxdrive3-CHP-15-ITERM-7078][bookmark: linuxdrive3-CHP-15-ITERM-7079]One situation in which the

nopage approach is useful can be brought about

by the mremap system call, which is used by

applications to change the bounding addresses of a mapped region. As

it happens, the kernel does not notify drivers directly when a mapped

VMA is changed by mremap. If the VMA is reduced

in size, the kernel can quietly flush out the unwanted pages without

telling the driver. If, instead, the VMA is expanded, the driver

eventually finds out by way of calls to nopage

when mappings must be set up for the new pages, so there is no need

to perform a separate notification. The nopage

method, therefore, must be implemented if you want to support the

mremap system call. Here, we show a simple

implementation of nopage for the

simple device.

The nopage[bookmark: linuxdrive3-CHP-15-ITERM-7080]
[bookmark: linuxdrive3-CHP-15-ITERM-7081]

method, remember, has the following prototype:

struct page *(*nopage)(struct vm_area_struct *vma, 

                       unsigned long address, int *type);
 

[bookmark: linuxdrive3-CHP-15-ITERM-7082]
[bookmark: linuxdrive3-CHP-15-ITERM-7083]When

a user process attempts to access a page in a VMA that is not present

in memory, the associated nopage function is

called. The address parameter contains the virtual

address that caused the fault, rounded down to the beginning of the

page. The nopage function must locate and return

the struct page pointer that refers to the page

the user wanted. This function must also take care to increment the

usage count for the page it returns by calling the

get_page macro:

 get_page(struct page *pageptr);
 

This step is necessary to keep the reference counts correct on the

mapped pages. The kernel maintains this count for every page; when

the count goes to 0, the kernel knows that the

page may be placed on the free list. When a VMA is unmapped, the

kernel decrements the usage count for every page in the area. If your

driver does not increment the count when adding a page to the area,

the usage count becomes 0 prematurely, and the

integrity of the system is compromised.

The nopage method should also store the type of

fault in the location pointed to by the type

argument�but only if that argument is not

NULL. In device drivers, the proper value for

type will invariably be

VM_FAULT_MINOR.

If you are using nopage, there is usually very

little work to be done when mmap is called; our

version looks like this:

static int simple_nopage_mmap(struct file *filp, struct vm_area_struct *vma)

{

    unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;



    if (offset >= _ _pa(high_memory) || (filp->f_flags & O_SYNC))

        vma->vm_flags |= VM_IO;

    vma->vm_flags |= VM_RESERVED;



    vma->vm_ops = &simple_nopage_vm_ops;

    simple_vma_open(vma);

    return 0;

}
 

The main thing mmap has to do is to replace the

default (NULL) vm_ops pointer

with our own operations. The nopage method then

takes care of "remapping" one page

at a time and returning the address of its struct
page structure. Because we are just implementing a

window onto physical memory here, the remapping step is simple: we

only need to locate and return a pointer to the

struct page for the desired

address. Our nopage method looks like the

following:

struct page *simple_vma_nopage(struct vm_area_struct *vma,

                unsigned long address, int *type)

{

    struct page *pageptr;

    unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;

    unsigned long physaddr = address - vma->vm_start + offset;

    unsigned long pageframe = physaddr >> PAGE_SHIFT;



    if (!pfn_valid(pageframe))

        return NOPAGE_SIGBUS;

    pageptr = pfn_to_page(pageframe);

    get_page(pageptr);

    if (type)

        *type = VM_FAULT_MINOR;

    return pageptr;

}
 

Since, once again, we are simply mapping main memory here, the

nopage function need only find the correct

struct page for the faulting

address and increment its reference count. Therefore, the required

sequence of events is to calculate the desired physical address, and

turn it into a page frame number by right-shifting it

PAGE_SHIFT bits. Since user space can give us any

address it likes, we must ensure that we have a valid page frame; the

pfn_valid function does that for us. If the

address is out of range, we return NOPAGE_SIGBUS,

which causes a bus signal to be delivered to the calling process.

Otherwise, pfn_to_page gets the necessary

struct page pointer; we can

increment its reference count (with a call to

get_page) and return it.

The nopage method normally returns a pointer to

a struct page. If, for some reason, a normal page

cannot be returned (e.g., the requested address is beyond the

device's memory region),

NOPAGE_SIGBUS can be returned to signal the error;

that is what the simple code above does.

nopage can also return

NOPAGE_OOM to indicate failures caused by resource

limitations.

Note that this implementation works for ISA memory regions but not

for those on the PCI bus. PCI memory is mapped above the highest

system memory, and there are no entries in the system memory map for

those addresses. Because there is no struct page

to return a pointer to, nopage cannot be used in

these situations; you must use remap_pfn_range

instead.

If the nopage method is left

NULL, kernel code that handles page faults maps

the zero page to the faulting virtual address. The zero

page is a copy-on-write page that reads as

0 and that is used, for example, to map the BSS

segment. Any process referencing the zero page sees exactly that: a

page filled with zeroes. If the process writes to the page, it ends

up modifying a private copy. Therefore, if a process extends a mapped

region by calling mremap, and the driver

hasn't implemented nopage, the

process ends up with zero-filled memory instead of a segmentation

fault.

[bookmark: linuxdrive3-CHP-15-SECT-2.5]
15.2.5. Remapping Specific I/O Regions

All the examples we've seen

so[bookmark: linuxdrive3-CHP-15-ITERM-7084]
[bookmark: linuxdrive3-CHP-15-ITERM-7085] far are reimplementations of

/dev/mem; they remap physical addresses into

user space. The typical driver, however, wants to map only the small

address range that applies to its peripheral device, not all memory.

In order to map to user space only a subset of the whole memory

range, the driver needs only to play with the offsets. The following

does the trick for a driver mapping a region of

simple_region_size bytes, beginning at physical

address simple_region_start (which should be

page-aligned):

unsigned long off = vma->vm_pgoff << PAGE_SHIFT;

unsigned long physical = simple_region_start + off;

unsigned long vsize = vma->vm_end - vma->vm_start;

unsigned long psize = simple_region_size - off;



if (vsize > psize)

    return -EINVAL; /*  spans too high */

remap_pfn_range(vma, vma_>vm_start, physical, vsize, vma->vm_page_prot);
 

In addition to calculating the offsets, this code introduces a check

that reports an error when the program tries to map more memory than

is available in the I/O region of the target device. In this code,

psize is the physical I/O size that is left after

the offset has been specified, and vsize is the

requested size of virtual memory; the function refuses to map

addresses that extend beyond the allowed memory range.

[bookmark: linuxdrive3-CHP-15-ITERM-7086][bookmark: linuxdrive3-CHP-15-ITERM-7087]Note that the user process can always

use mremap to extend its mapping, possibly past

the end of the physical device area. If your driver fails to define a

nopage method, it is never notified of this

extension, and the additional area maps to the zero page. As a driver

writer, you may well want to prevent this sort of behavior; mapping

the zero page onto the end of your region is not an explicitly bad

thing to do, but it is highly unlikely that the programmer wanted

that to happen.

The simplest way to prevent extension of the mapping is to implement

a simple nopage method that always causes a bus

signal to be sent to the faulting process. Such a method would look

like this:

struct page *simple_nopage(struct vm_area_struct *vma,

                           unsigned long address, int *type);

{ return NOPAGE_SIGBUS; /* send a SIGBUS */}
 

As we have seen, the nopage method is called

only when the process dereferences an address that is within a known

VMA but for which there is currently no valid page table entry. If we

have used remap_pfn_range to map the entire

device region, the nopage method shown here is

called only for references outside of that region. Thus, it can

safely return NOPAGE_SIGBUS to signal an error. Of

course, a more thorough implementation of nopage

could check to see whether the faulting address is within the device

area, and perform the remapping if that is the case. Once again,

however, nopage does not work with PCI memory

areas, so extension of PCI mappings is not possible.

[bookmark: linuxdrive3-CHP-15-SECT-2.6]
15.2.6. Remapping RAM

An interesting limitation of [bookmark: linuxdrive3-CHP-15-ITERM-7088]
[bookmark: linuxdrive3-CHP-15-ITERM-7089]remap_pfn_range
[bookmark: linuxdrive3-CHP-15-ITERM-7090]
[bookmark: linuxdrive3-CHP-15-ITERM-7091]
[bookmark: linuxdrive3-CHP-15-ITERM-7092]is that it gives access only to reserved

pages and physical addresses above the top of physical memory. In

Linux, a page of physical addresses is marked as

"reserved" in the memory map to

indicate that it is not available for memory management. On the PC,

for example, the range between 640 KB and 1 MB is marked as reserved,

as are the pages that host the kernel code itself. Reserved pages are

locked in memory and are the only ones that can be safely mapped to

user space; this limitation is a basic requirement for system

stability.

Therefore, remap_pfn_range

won't allow you to remap conventional addresses,

which include the ones you obtain by calling

get_free_page. Instead, it maps in the zero

page. Everything appears to work, with the exception that the process

sees private, zero-filled pages rather than the remapped RAM that it

was hoping for. Nonetheless, the function does everything that most

hardware drivers need it to do, because it can remap high PCI buffers

and ISA memory.

[bookmark: linuxdrive3-CHP-15-ITERM-7093]
[bookmark: linuxdrive3-CHP-15-ITERM-7094]The

limitations of remap_pfn_range can be seen by

running mapper, one of the sample programs in

misc-progs in the files provided on

O'Reilly's FTP site.

mapper is a simple tool that can be used to

quickly test the mmap system call; it maps

read-only parts of a file specified by command-line options and dumps

the mapped region to standard output. The following session, for

instance, shows that /dev/mem

doesn't map the physical page located at address 64

KB�instead, we see a page full of zeros (the host computer in

this example is a PC, but the result would be the same on other

platforms):

morgana.root# ./mapper /dev/mem 0x10000 0x1000 | od -Ax -t x1

mapped "/dev/mem" from 65536 to 69632

000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

001000
 

The inability of remap_pfn_range to deal with

RAM suggests that memory-based devices like

scull can't easily implement

mmap, because its device memory is conventional

RAM, not I/O memory. Fortunately, a relatively easy workaround is

available to any driver that needs to map RAM into user space; it

uses the nopage method that we have seen

earlier.

[bookmark: linuxdrive3-CHP-15-SECT-2.6.1]
15.2.6.1 Remapping RAM with the nopage method

The way to map real RAM to user[bookmark: linuxdrive3-CHP-15-ITERM-7095]
[bookmark: linuxdrive3-CHP-15-ITERM-7096]

space is to use vm_ops->nopage to deal with

page faults one at a time. A sample implementation is part of the

scullp module, introduced in Chapter 8.

scullp is a page-oriented char device. Because

it is page oriented, it can implement mmap on

its memory. The code implementing memory mapping uses some of the

concepts introduced in Section 15.1.

Before examining the code, let's look at the design

choices that affect the mmap implementation in

scullp[bookmark: linuxdrive3-CHP-15-ITERM-7097]:

	scullp doesn't release device

memory as long as the device is mapped. This is a matter of policy

rather than a requirement, and it is different from the behavior of

scull and similar devices, which are truncated

to a length of 0 when opened for writing. Refusing

to free a mapped scullp device allows a process

to overwrite regions actively mapped by another process, so you can

test and see how processes and device memory interact. To avoid

releasing a mapped device, the driver must keep a count of active

mappings; the vmas field in the device structure

is used for this purpose.

	Memory mapping is performed only when the scullp
order parameter (set at module load time) is

0. The parameter controls how _

_get_free_pages is invoked (see Section 8.3).

The zero-order limitation

(which forces pages to be allocated one at a time, rather than in

larger groups) is dictated by the internals of _

_get_free_pages, the allocation function used by

scullp. To maximize allocation performance, the

Linux kernel maintains a list of free pages for each allocation

order, and only the reference count of the first page in a cluster is

incremented by get_free_pages and decremented by

free_pages. The mmap method

is disabled for a scullp device if the

allocation order is greater than zero, because

nopage deals with single pages rather than

clusters of pages. scullp simply does not know

how to properly manage reference counts for pages that are part of

higher-order allocations. (Return to Section 8.3.1

if you need a refresher on

scullp and the memory allocation order value.)



[bookmark: linuxdrive3-CHP-15-ITERM-7098]The [bookmark: linuxdrive3-CHP-15-ITERM-7099]zero-order limitation is mostly

intended to keep the code simple. It is possible

to correctly implement mmap for multipage

allocations by playing with the usage count of the pages, but it

would only add to the complexity of the example without introducing

any interesting information.

Code that is intended to map RAM according to the rules just outlined

needs to implement the open,

close, and nopage VMA

methods; it also needs to access the memory map to adjust the page

usage counts.

This implementation of scullp_mmap is very

short, because it relies on the nopage function

to do all the interesting work:

int scullp_mmap(struct file *filp, struct vm_area_struct *vma)

{

    struct inode *inode = filp->f_dentry->d_inode;



    /* refuse to map if order is not 0 */

    if (scullp_devices[iminor(inode)].order)

        return -ENODEV;



    /* don't do anything here: "nopage" will fill the holes */

    vma->vm_ops = &scullp_vm_ops;

    vma->vm_flags |= VM_RESERVED;

    vma->vm_private_data = filp->private_data;

    scullp_vma_open(vma);

    return 0;

}
 

The purpose of the if statement is to avoid

mapping devices whose allocation order is not 0.

scullp's operations are stored

in the vm_ops field, and a pointer to the device

structure is stashed in the vm_private_data field.

At the end, vm_ops->open is called to update

the count of active mappings for the device.

open and close simply keep

track of the mapping count and are defined as follows:

void scullp_vma_open(struct vm_area_struct *vma)

{

    struct scullp_dev *dev = vma->vm_private_data;



    dev->vmas++;

}



void scullp_vma_close(struct vm_area_struct *vma)

{

    struct scullp_dev *dev = vma->vm_private_data;



    dev->vmas--;

}
 

Most of the work is then performed by nopage. In

the scullp implementation, the

address parameter to nopage

is used to calculate an offset into the device; the offset is then

used to look up the correct page in the scullp

memory tree:

struct page *scullp_vma_nopage(struct vm_area_struct *vma,

                                unsigned long address, int *type)

{

    unsigned long offset;

    struct scullp_dev *ptr, *dev = vma->vm_private_data;

    struct page *page = NOPAGE_SIGBUS;

    void *pageptr = NULL; /* default to "missing" */



    down(&dev->sem);

    offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);

    if (offset >= dev->size) goto out; /* out of range */



    /*

     * Now retrieve the scullp device from the list,then the page.

     * If the device has holes, the process receives a SIGBUS when

     * accessing the hole.

     */

    offset >>= PAGE_SHIFT; /* offset is a number of pages */

    for (ptr = dev; ptr && offset >= dev->qset;) {

        ptr = ptr->next;

        offset -= dev->qset;

    }

    if (ptr && ptr->data) pageptr = ptr->data[offset];

    if (!pageptr) goto out; /* hole or end-of-file */

    page = virt_to_page(pageptr);

    

    /* got it, now increment the count */

    get_page(page);

    if (type)

        *type = VM_FAULT_MINOR;

  out:

    up(&dev->sem);

    return page;

}
 

scullp uses memory obtained with

get_free_pages. That memory is addressed using

logical addresses, so all scullp_nopage has to

do to get a struct page pointer

is to call virt_to_page.

The scullp device now works as expected, as you

can see in this sample output from the mapper

utility. Here, we send a directory listing of

/dev (which is long) to the

scullp device and then use the

mapper utility to look at pieces of that listing

with mmap:

morgana% ls -l /dev > /dev/scullp

morgana% ./mapper /dev/scullp 0 140

mapped "/dev/scullp" from 0 (0x00000000) to 140 (0x0000008c)

total 232

crw-------    1 root     root      10,  10 Sep 15 07:40 adbmouse

crw-r--r--    1 root     root      10, 175 Sep 15 07:40 agpgart

morgana% ./mapper /dev/scullp 8192 200

mapped "/dev/scullp" from 8192 (0x00002000) to 8392 (0x000020c8)

d0h1494

brw-rw----    1 root     floppy     2,  92 Sep 15 07:40 fd0h1660

brw-rw----    1 root     floppy     2,  20 Sep 15 07:40 fd0h360

brw-rw----    1 root     floppy     2,  12 Sep 15 07:40 fd0H360
 

[bookmark: linuxdrive3-CHP-15-SECT-2.7]
15.2.7. Remapping Kernel Virtual Addresses

Although it's rarely

[bookmark: linuxdrive3-CHP-15-ITERM-7100]
[bookmark: linuxdrive3-CHP-15-ITERM-7101] [bookmark: linuxdrive3-CHP-15-ITERM-7102]
[bookmark: linuxdrive3-CHP-15-ITERM-7103]necessary,

it's interesting to see how a driver can map a

kernel virtual address to user space using mmap.

A true kernel virtual address, remember, is an address returned by a

function[bookmark: linuxdrive3-CHP-15-ITERM-7104] such as

vmalloc�that is, a virtual address mapped

in the kernel page tables. The code in this section is taken from

scullv, which is the module that works like

scullp but allocates its storage through

vmalloc.

Most of the scullv implementation is like the

one we've just seen for scullp,

except that there is no need to check the order

parameter that controls memory allocation. The reason for this is

that vmalloc allocates its pages one at a time,

because single-page allocations are far more likely to succeed than

multipage allocations. Therefore, the allocation order problem

doesn't apply to vmalloced

space.

Beyond that, there is only one difference between the

nopage implementations used by

scullp and scullv. Remember

that scullp, once it found the page of interest,

would obtain the corresponding struct
page pointer with

virt_to_page. That function does not work with

kernel virtual addresses, however. Instead, you must use

vmalloc_to_page. So the final part of the

scullv version of nopage

looks like:

  /*

   * After scullv lookup, "page" is now the address of the page

   * needed by the current process. Since it's a vmalloc address,

   * turn it into a struct page.

   */

  page = vmalloc_to_page(pageptr);

    

  /* got it, now increment the count */

  get_page(page);

  if (type)

      *type = VM_FAULT_MINOR;

out:

  up(&dev->sem);

  return page;
 

Based on this discussion, [bookmark: linuxdrive3-CHP-15-ITERM-7105] [bookmark: linuxdrive3-CHP-15-ITERM-7106] [bookmark: linuxdrive3-CHP-15-ITERM-7107] [bookmark: linuxdrive3-CHP-15-ITERM-7108] [bookmark: linuxdrive3-CHP-15-ITERM-7109] [bookmark: linuxdrive3-CHP-15-ITERM-7110]you might also want to map addresses

returned by ioremap to user space. That would be

a mistake, however; addresses from ioremap are

special and cannot be treated like normal kernel virtual addresses.

Instead, you should use remap_pfn_range to remap

I/O memory areas into user space.







[bookmark: linuxdrive3-CHP-15-SECT-3]
15.3. Performing Direct I/O

Most I/O operations are [bookmark: linuxdrive3-CHP-15-ITERM-7111] [bookmark: linuxdrive3-CHP-15-ITERM-7112] [bookmark: linuxdrive3-CHP-15-ITERM-7113]
[bookmark: linuxdrive3-CHP-15-ITERM-7114]
[bookmark: linuxdrive3-CHP-15-ITERM-7115]buffered

[bookmark: linuxdrive3-CHP-15-ITERM-7116]through the kernel. The use of

a kernel-space buffer allows a degree of separation between user

space and the actual device; this separation can make programming

easier and can also yield performance benefits in many situations.

There are cases, however, where it can be beneficial to perform I/O

directly to or from a user-space buffer. If the amount of data being

transferred is large, transferring data directly without an extra

copy through kernel space can speed things up.

One example of direct I/O use in the 2.6 kernel is the SCSI tape

driver. Streaming tapes can pass a lot of data through the system,

and tape transfers are usually record-oriented, so there is little

benefit to buffering data in the kernel. So, when the conditions are

right (the user-space buffer is page-aligned, for example), the SCSI

tape driver performs its I/O without copying the data.

That said, it is important to recognize that direct I/O does not

always provide the performance boost that one might expect. The

overhead of setting up direct I/O (which involves faulting in and

pinning down the relevant user pages) can be significant, and the

benefits of buffered I/O are lost. For example, the use of direct I/O

requires that the write system call operate

synchronously; otherwise the application does not know when it can

reuse its I/O buffer. Stopping the application until each write

completes can slow things down, which is why applications that use

direct I/O often use asynchronous I/O operations as well.

The real moral of the story, in any case, is that implementing direct

I/O in a char driver is usually unnecessary and can be hurtful. You

should take that step only if you are sure that the overhead of

buffered I/O is truly slowing things down. Note also that block and

network drivers need not worry about implementing direct I/O at all;

in both cases, higher-level code in the kernel sets up and makes use

of direct I/O when it is indicated, and driver-level code need not

even know that direct I/O is being performed.

The key to implementing direct I/O in the 2.6 kernel is a function

called

get_user_pages[bookmark: linuxdrive3-CHP-15-ITERM-7117]
[bookmark: linuxdrive3-CHP-15-ITERM-7118],

which is declared in <linux/mm.h> with the

following prototype:

int get_user_pages(struct task_struct *tsk, 

                   struct mm_struct *mm, 

                   unsigned long start,

                   int len, 

                   int write, 

                   int force, 

                   struct page **pages, 

                   struct vm_area_struct **vmas);
 

This function has several arguments:



	tsk

	
A pointer to the task performing the I/O; its main purpose is to tell

the kernel who should be charged for any page faults incurred while

setting up the buffer. This argument is almost always passed as

current.





	mm

	
A pointer to the memory management structure describing the address

space to be mapped. The mm_struct structure is the

piece that ties together all of the parts (VMAs) of a

process's virtual address space. For driver use,

this argument should always be current->mm.





	start



	len

	
start is the (page-aligned) address of the

user-space buffer, and len is the length of the

buffer in pages.





	write



	force

	
If write is nonzero, the pages are mapped for

write access (implying, of course, that user space is performing a

read operation). The force flag tells

get_user_pages to override the protections on

the given pages to provide the requested access; drivers should

always pass 0 here.





	pages



	vmas

	
Output parameters. Upon successful completion,

pages contain a list of pointers to the

struct page structures describing the user-space

buffer, and vmas contains pointers to the

associated VMAs. The parameters should, obviously, point to arrays

capable of holding at least len pointers. Either

parameter can be NULL, but you need, at least, the

struct page pointers to

actually operate on the buffer.





get_user_pages is a low-level memory management

function, with a suitably complex interface. It also requires that

the mmap reader/writer semaphore for the address space be obtained in

read mode before the call. As a result, calls to

get_user_pages usually look something like:

down_read(&current->mm->mmap_sem);

result = get_user_pages(current, current->mm, ...);

up_read(&current->mm->mmap_sem);
 

The return value is the number of pages actually mapped, which could

be fewer than the number requested (but greater than zero).

Upon successful completion, the caller has a pages

array pointing to the user-space

buffer,[bookmark: linuxdrive3-CHP-15-ITERM-7119] which is locked into memory. To

operate on the buffer directly, the kernel-space code must turn each

struct page pointer into a

kernel virtual address with kmap or

kmap_atomic. Usually, however, devices for which

direct I/O is justified are using DMA operations, so your driver will

probably want to create a scatter/gather list from the array of

struct page pointers. We

discuss how to do this in the section, Section 15.4.4.7.

Once your direct I/O operation is complete, you must release the user

pages. Before doing so, however, you must inform the kernel if you

changed the contents of those pages. Otherwise, the kernel may think

that the pages are "clean," meaning

that they match a copy found on the swap device, and free them

without writing them out to backing store. So, if you have changed

the pages (in response to a user-space read request), you must mark

each affected page dirty with a call to:

void SetPageDirty(struct page *page);
 

(This macro is defined in

<linux/page-flags.h>). Most code that

performs this operation checks first to ensure that the page is not

in the reserved part of the memory map, which is never swapped out.

Therefore, the code usually looks like:

if (! PageReserved(page))

    SetPageDirty(page);
 

Since user-space [bookmark: linuxdrive3-CHP-15-ITERM-7120]memory is not normally marked reserved,

this check should not strictly be necessary, but when you are getting

your hands dirty deep within the memory management subsystem, it is

best to be thorough and careful.

Regardless of whether the pages have been changed, they must be freed

from the page cache, or they stay there forever. The call to use is:

void page_cache_release(struct page *page);
 

This call should, of course, be made after the

page has been marked dirty, if need be.

[bookmark: linuxdrive3-CHP-15-SECT-3.1]
15.3.1. Asynchronous I/O

One of the new features added to the 2.6 kernel was the

asynchronous I/O[bookmark: linuxdrive3-CHP-15-ITERM-7121] [bookmark: linuxdrive3-CHP-15-ITERM-7122]

capability. Asynchronous I/O allows user space to initiate operations

without waiting for their completion; thus, an application can do

other processing while its I/O is in flight. A complex,

high-performance application can also use asynchronous I/O to have

multiple operations going at the same time.

The implementation of

[bookmark: linuxdrive3-CHP-15-ITERM-7123]asynchronous I/O is optional, and very few

driver authors bother; most devices do not benefit from this

capability. As we will see in the coming chapters, block and network

drivers are fully asynchronous at all times, so only char drivers are

candidates for explicit asynchronous I/O support. A char device can

benefit from this support if there are good reasons for having more

than one I/O operation outstanding at any given time. One good

example is streaming tape drives, where the drive can stall and slow

down significantly if I/O operations do not arrive quickly enough. An

application trying to get the best performance out of a streaming

drive could use asynchronous I/O to have multiple operations ready to

go at any given time.

For the rare driver author who needs to implement asynchronous I/O,

we present a quick overview of how it works. We cover asynchronous

I/O in this chapter, because its implementation almost always

involves direct I/O operations as well (if you are buffering data in

the kernel, you can usually implement asynchronous behavior without

imposing the added complexity on user space).

Drivers supporting asynchronous I/O should include

<linux/aio.h>. There are three

file_operations methods for the implementation

of asynchronous I/O:

ssize_t (*aio_read) (struct kiocb *iocb, char *buffer, 

                     size_t count, loff_t offset);

ssize_t (*aio_write) (struct kiocb *iocb, const char *buffer, 

                      size_t count, loff_t offset);

int (*aio_fsync) (struct kiocb *iocb, int datasync);
 

The aio_fsync[bookmark: linuxdrive3-CHP-15-ITERM-7124]
[bookmark: linuxdrive3-CHP-15-ITERM-7125]
[bookmark: linuxdrive3-CHP-15-ITERM-7126]

operation is only of interest to filesystem code, so we do not

discuss it further here. The other two, aio_read

and aio_write, look very much like the regular

read and write methods but

with a couple of exceptions. One is that the

offset parameter is passed by value; asynchronous

operations never change the file position, so there is no reason to

pass a pointer to it. These methods also take the

iocb ("I/O control

block") parameter, which we get to in a moment.

The purpose of the aio_read and

aio_write methods is to initiate a read or write

operation that may or may not be complete by the time they return. If

it is possible to complete the operation

immediately, the method should do so and return the usual status: the

number of bytes transferred or a negative error code. Thus, if your

driver has a read method called

my_read, the following

aio_read method is entirely correct (though

rather pointless):

static ssize_t my_aio_read(struct kiocb *iocb, char *buffer, 

                           ssize_t count, loff_t offset)

{

    return my_read(iocb->ki_filp, buffer, count, &offset);

}
 

Note that the struct file

pointer is found in the ki_filp field of the

kiocb structure.

If you support asynchronous I/O, you must be aware of the fact that

the kernel can, on occasion, create "synchronous

IOCBs." These are, essentially, asynchronous

operations that must actually be executed synchronously. One may well

wonder why things are done this way, but it's best

to just do what the kernel asks. Synchronous operations are marked in

the IOCB; your driver should query that status with:

int is_sync_kiocb(struct kiocb *iocb);
 

If this function returns a nonzero value, your driver must execute

the operation synchronously.

In the end, however, the point of all this structure is to enable

asynchronous operations. If your driver is able to initiate the

operation (or, simply, to queue it until some future time when it can

be executed), it must do two things: remember everything it needs to

know about the operation, and return -EIOCBQUEUED

to the caller. Remembering the operation information includes

arranging access to the user-space buffer; once you return, you will

not again have the opportunity to access that buffer while running in

the context of the calling process. In general, that means you will

likely have to set up a direct kernel mapping (with

get_user_pages) or a DMA mapping. The

-EIOCBQUEUED error code indicates that the

operation is not yet complete, and its final status will be posted

later.

When "later" comes, your driver

must inform the kernel that the operation has completed. That is done

with a call to aio_complete:

int aio_complete(struct kiocb *iocb, long res, long res2);
 

Here, iocb is the same IOCB that was initially

passed to you, and res is the usual result status

for the operation. res2 is a second result code

that will be returned to user space; most asynchronous I/O

implementations pass res2 as 0.

Once you call aio_complete, you should not touch

the IOCB or user buffer again.

[bookmark: linuxdrive3-CHP-15-SECT-3.1.1]
15.3.1.1 An asynchronous I/O example

The page-oriented scullp driver in the example

source implements asynchronous I/O. The implementation is simple, but

it is enough to show how asynchronous operations should be

structured.

The aio_read and aio_write

methods don't actually do much:

static ssize_t scullp_aio_read(struct kiocb *iocb, char *buf, size_t count,

        loff_t pos)

{

    return scullp_defer_op(0, iocb, buf, count, pos);

}



static ssize_t scullp_aio_write(struct kiocb *iocb, const char *buf,

        size_t count, loff_t pos)

{

    return scullp_defer_op(1, iocb, (char *) buf, count, pos);

}
 

These methods simply call a common function:

struct async_work {

    struct kiocb *iocb;

    int result;

    struct work_struct work;

};



static int scullp_defer_op(int write, struct kiocb *iocb, char *buf,

        size_t count, loff_t pos)

{

    struct async_work *stuff;

    int result;



    /* Copy now while we can access the buffer */

    if (write)

        result = scullp_write(iocb->ki_filp, buf, count, &pos);

    else

        result = scullp_read(iocb->ki_filp, buf, count, &pos);



    /* If this is a synchronous IOCB, we return our status now. */

    if (is_sync_kiocb(iocb))

        return result;



    /* Otherwise defer the completion for a few milliseconds. */

    stuff = kmalloc (sizeof (*stuff), GFP_KERNEL);

    if (stuff =  = NULL)

        return result; /* No memory, just complete now */

    stuff->iocb = iocb;

    stuff->result = result;

    INIT_WORK(&stuff->work, scullp_do_deferred_op, stuff);

    schedule_delayed_work(&stuff->work, HZ/100);

    return -EIOCBQUEUED;

}
 

A more complete implementation would use

get_user_pages to map the user buffer into

kernel space. We chose to keep life simple by just copying over the

data at the outset. Then a call is made to

is_sync_kiocb to see if this operation must be

completed synchronously; if so, the result status is returned, and we

are done. Otherwise we remember the relevant information in a little

structure, arrange for "completion"

via a workqueue, and return -EIOCBQUEUED. At this

point, control returns to user space.

Later on, the workqueue executes our completion function:

static void scullp_do_deferred_op(void *p)

{

    struct async_work *stuff = (struct async_work *) p;

    aio_complete(stuff->iocb, stuff->result, 0);

    kfree(stuff);

}
 

Here, it is simply a matter of calling

aio_complete with our saved information. A real

driver's asynchronous I/O implementation is somewhat

more complicated, of course, but it follows this[bookmark: linuxdrive3-CHP-15-ITERM-7127] [bookmark: linuxdrive3-CHP-15-ITERM-7128] sort [bookmark: linuxdrive3-CHP-15-ITERM-7129] [bookmark: linuxdrive3-CHP-15-ITERM-7130] [bookmark: linuxdrive3-CHP-15-ITERM-7131] [bookmark: linuxdrive3-CHP-15-ITERM-7132] [bookmark: linuxdrive3-CHP-15-ITERM-7133]of structure.







[bookmark: linuxdrive3-CHP-15-SECT-4]
[bookmark: linuxdrive3-CHP-15-ITERM-7134]15.4. Direct Memory Access

[bookmark: linuxdrive3-CHP-15-ITERM-7135]Direct memory access, or DMA[bookmark: linuxdrive3-CHP-15-ITERM-7136]
[bookmark: linuxdrive3-CHP-15-ITERM-7137]
[bookmark: linuxdrive3-CHP-15-ITERM-7138] [bookmark: linuxdrive3-CHP-15-ITERM-7139] [bookmark: linuxdrive3-CHP-15-ITERM-7140]
[bookmark: linuxdrive3-CHP-15-ITERM-7141], is the advanced topic that completes our

overview of memory issues. DMA is the

[bookmark: linuxdrive3-CHP-15-ITERM-7142]hardware

mechanism that allows peripheral components to transfer their I/O

data directly to and from main memory without the need to involve the

system processor. Use of this mechanism can greatly increase

throughput to and from a device, because a great deal of

computational overhead is eliminated.

[bookmark: linuxdrive3-CHP-15-SECT-4.1]
15.4.1. Overview of a DMA Data Transfer

Before introducing the programming details, let's

review how a DMA transfer takes place, considering only input

transfers to simplify the discussion.

Data transfer can be triggered in two ways: either the software asks

for data (via a function such as read) or the

hardware asynchronously pushes data to the system.

In the first case, the steps involved can be summarized as follows:

	When a process calls read, the driver method

allocates a DMA buffer and instructs the hardware to transfer its

data into that buffer. The process is put to sleep.


	The hardware writes data to the DMA buffer and raises an interrupt

when it's done.


	The interrupt handler gets the input data, acknowledges the

interrupt, and awakens the process, which is now able to read data.





[bookmark: linuxdrive3-CHP-15-ITERM-7143]The second

case comes about when DMA is used asynchronously. This happens, for

example, with data acquisition devices that go on pushing data even

if nobody is reading them. In this case, the driver should maintain a

buffer so that a subsequent read call will

return all the accumulated data to user space. The steps involved in

this kind of transfer are slightly different:

	The hardware raises an interrupt to announce that new data has

arrived.


	The interrupt handler allocates a buffer and tells the hardware where

to transfer its data.


	The peripheral device writes the data to the buffer and raises

another interrupt when it's done.


	The handler dispatches the new data, wakes any relevant process, and

takes care of housekeeping.





[bookmark: linuxdrive3-CHP-15-ITERM-7144]
[bookmark: linuxdrive3-CHP-15-ITERM-7145]
[bookmark: linuxdrive3-CHP-15-ITERM-7146]A variant of the asynchronous approach

is often seen with network cards. These cards often expect to see a

[bookmark: linuxdrive3-CHP-15-ITERM-7147]circular buffer (often called a

DMA ring buffer) established in memory shared

with the processor; each incoming packet is placed in the next

available buffer in the ring, and an interrupt is signaled. The

driver then passes the network packets to the rest of the kernel and

places a new DMA buffer in the ring.

The processing steps in all of these cases emphasize that efficient

DMA handling relies on interrupt reporting. While it is possible to

implement DMA with a polling driver, it wouldn't

make sense, because a polling driver would waste the performance

benefits that DMA offers over the easier processor-driven

I/O.[4]
[bookmark: linuxdrive3-CHP-15-FNOTE-4][4] There are, of course, exceptions to everything;

see Section 15.2.6 

for a demonstration of how

high-performance network drivers are best implemented using

polling.


Another relevant item introduced here is the DMA buffer. DMA requires

device drivers to allocate one or more special buffers suited to DMA.

Note that many drivers allocate their buffers at initialization time

and use them until shutdown�the word

allocate in the previous lists, therefore, means

"get hold of a previously allocated

buffer."

[bookmark: linuxdrive3-CHP-15-SECT-4.2]
15.4.2. Allocating the DMA Buffer

This section covers the allocation

[bookmark: linuxdrive3-CHP-15-ITERM-7148]of DMA buffers at a

low level; we introduce a higher-level interface shortly, but it is

still a good idea to understand the material presented here.

The main issue that arrises with DMA buffers is that, when they are

bigger than one page, they must occupy contiguous pages in physical

memory because the device transfers data using the ISA or PCI system

bus, both of which carry physical addresses. It's

interesting to note that this constraint doesn't

apply to the SBus (see Section 12.5),

which uses

virtual addresses on the peripheral bus. Some architectures

can also use virtual addresses on the PCI bus,

but a portable driver cannot count on that capability.

Although DMA buffers can be allocated either at system boot or at

runtime, modules can allocate their buffers only at runtime. 

Driver

writers must take care to allocate the right kind of memory when it

is used for DMA operations; not all memory zones are suitable. In

particular, high memory may not work for DMA on some systems and with

some devices�the peripherals simply cannot work with addresses

that high.

Most devices on modern buses can handle 32-bit addresses, meaning

that normal memory allocations work just fine for them. Some PCI

devices, however, fail to implement the full PCI standard and cannot

work with 32-bit addresses. And ISA devices, of course, are limited

to 24-bit addresses only.

For devices with this kind of limitation, memory should be allocated

from the DMA zone by adding the GFP_DMA flag to

the kmalloc or

get_free_pages call. When this flag is present,

only memory that can be addressed with 24 bits is allocated.

Alternatively, you can use the generic DMA layer (which we discuss

shortly) to allocate buffers that work around your

device's limitations.

[bookmark: linuxdrive3-CHP-15-SECT-4.2.1]
15.4.2.1 Do-it-yourself allocation

[bookmark: linuxdrive3-CHP-15-ITERM-7149]
[bookmark: linuxdrive3-CHP-15-ITERM-7150][bookmark: linuxdrive3-CHP-15-ITERM-7151]
[bookmark: linuxdrive3-CHP-15-ITERM-7152]
[bookmark: linuxdrive3-CHP-15-ITERM-7153]We

have seen how get_free_pages can allocate up to

a few megabytes (as order can range up to

MAX_ORDER, currently 11), but high-order requests

are prone to fail even when the requested buffer is far less than 128

KB, because system memory becomes fragmented over time.[5]
[bookmark: linuxdrive3-CHP-15-FNOTE-5][5] The word fragmentation is usually

applied to disks to express the idea that files are not stored

consecutively on the magnetic medium. The same concept applies to

memory, where each virtual address space gets scattered throughout

physical RAM, and it becomes difficult to retrieve consecutive free

pages when a DMA buffer is requested.


When the kernel cannot return the requested amount of memory or when

you need more than 128 KB (a common requirement for PCI frame

grabbers, for example), an alternative to returning

-ENOMEM is to allocate memory at boot time or

reserve the top of physical RAM for your buffer. We described

allocation at boot time in Section 8.6,

but it is not available to

modules. Reserving the top of RAM is accomplished by passing a

mem= argument to the kernel at boot time. For

example, if you have 256 MB, the argument mem=255M

keeps the kernel from using the top megabyte. Your module could later

use the following code to gain access to such memory:

dmabuf = ioremap (0xFF00000 /* 255M */, 0x100000 /* 1M */);
 

The allocator, part of the sample code

accompanying the book, offers a simple API to probe and manage such

reserved RAM and has been used successfully on several architectures.

However, this trick doesn't work when you have an

high-memory system (i.e., one with more physical memory than could

fit in the CPU address space).

Another option, of course, is to allocate your buffer with the

GFP_NOFAIL allocation flag. This approach does,

however, severely stress the memory management subsystem, and it runs

the risk of locking up the system altogether; it is best avoided

unless there is truly no other way.

If you are going to such lengths to allocate a large DMA buffer,

however, it is worth putting some thought into alternatives. If your

device can do scatter/gather I/O, you can allocate your buffer in

smaller pieces and let the device do the rest. Scatter/gather I/O can

also be used when performing direct I/O into user space, which may

well be the best solution when a truly huge buffer is required.

[bookmark: linuxdrive3-CHP-15-SECT-4.3]
15.4.3. Bus Addresses

[bookmark: linuxdrive3-CHP-15-ITERM-7154]
[bookmark: linuxdrive3-CHP-15-ITERM-7155]A

device driver using DMA has to talk to hardware connected to the

interface bus, which uses physical addresses, whereas program code

uses virtual addresses.

As a matter of fact, the situation is slightly more complicated than

that. DMA-based hardware uses bus, rather than

physical, addresses. Although ISA and PCI bus

addresses are simply physical addresses on the PC, this is not true

for every platform. Sometimes the interface bus is connected through

bridge circuitry that maps I/O addresses to different physical

addresses. Some systems even have a page-mapping scheme that can make

arbitrary pages appear contiguous to the peripheral bus.

At the lowest level (again, we'll look at a

higher-level solution shortly), the Linux kernel provides a portable

solution by exporting the following functions, defined in

<asm/io.h>. The use of these functions is

strongly discouraged, because they work properly only on systems with

a very simple I/O architecture; nonetheless, you may encounter them

when working with kernel code.

unsigned long virt_to_bus(volatile void *address);

void *bus_to_virt(unsigned long address);
 

[bookmark: linuxdrive3-CHP-15-ITERM-7156] [bookmark: linuxdrive3-CHP-15-ITERM-7157]
[bookmark: linuxdrive3-CHP-15-ITERM-7158]These functions perform a simple

conversion between kernel logical addresses and bus addresses. They

do not work in any situation where an I/O memory management unit must

be programmed or where bounce buffers must be used. The right way of

performing this conversion is with the generic DMA layer, so we now

move on to that topic.

[bookmark: linuxdrive3-CHP-15-SECT-4.4]
15.4.4. The Generic DMA Layer

DMA operations, in the[bookmark: linuxdrive3-CHP-15-ITERM-7159]
[bookmark: linuxdrive3-CHP-15-ITERM-7160] end, come down to allocating a buffer and

passing bus addresses to your device. However, the task of writing

portable drivers that perform DMA safely and correctly on all

architectures is harder than one might think. Different systems have

different ideas of how cache coherency should work; if you do not

handle this issue correctly, your driver may corrupt memory. Some

systems have complicated bus hardware that can make the DMA task

easier�or harder. And not all systems can perform DMA out of

all parts of memory. Fortunately, the kernel provides a bus- and

architecture-independent DMA layer that hides most of these issues

from the driver author. We strongly encourage you to use this layer

for DMA operations in any driver you write.

Many of the functions below require a pointer to a struct

device. This structure is the low-level representation of a

device within the Linux device model. It is not something that

drivers often have to work with directly, but you do need it when

using the generic DMA layer. Usually, you can find this structure

buried inside the bus specific that describes your device. For

example, it can be found as the dev field in

struct pci_device or struct

usb_device. The device structure is

covered in detail in Chapter 14.

Drivers that use the following functions should include

<linux/dma-mapping.h>.

[bookmark: linuxdrive3-CHP-15-SECT-4.4.1]
15.4.4.1 Dealing with difficult hardware

The first question

that[bookmark: linuxdrive3-CHP-15-ITERM-7161]
[bookmark: linuxdrive3-CHP-15-ITERM-7162] must be answered before attempting

DMA is whether the given device is capable of such an operation on

the current host. Many devices are limited in the range of memory

they can address, for a number of reasons. By default, the kernel

assumes that your device can perform DMA to any 32-bit address. If

this is not the case, you should inform the kernel of that fact with

a call to:

    int dma_set_mask(struct device *dev, u64 mask);
 

The mask should show the bits that your device can

address; if it is limited to 24 bits, for example, you would pass

mask as 0x0FFFFFF. The return

value is nonzero if DMA is possible with the given

mask; if dma_set_mask returns

0, you are not able to use DMA operations with

this device. Thus, the initialization code in a driver for a device

limited to 24-bit DMA operations might look like:

if (dma_set_mask (dev, 0xffffff))

    card->use_dma = 1;

else {

    card->use_dma = 0;   /* We'll have to live without DMA */

    printk (KERN_WARN, "mydev: DMA not supported\n");

}
 

Again, if your device supports normal, 32-bit DMA operations, there

is no need to call dma_set_mask.

[bookmark: linuxdrive3-CHP-15-SECT-4.4.2]
15.4.4.2 DMA mappings

A DMA mapping is a

[bookmark: linuxdrive3-CHP-15-ITERM-7163]combination

of allocating a DMA buffer and generating an address for that buffer

that is accessible by the device. It is tempting to get that address

with a simple call to virt_to_bus, but there are

strong reasons for avoiding that approach. The first of those is that

reasonable hardware comes with an [bookmark: linuxdrive3-CHP-15-ITERM-7164]IOMMU that provides a

set of mapping

registers[bookmark: linuxdrive3-CHP-15-ITERM-7165]
[bookmark: linuxdrive3-CHP-15-ITERM-7166]
[bookmark: linuxdrive3-CHP-15-ITERM-7167]

for the bus. The IOMMU can arrange for any physical memory to appear

within the address range accessible by the device, and it can cause

physically scattered buffers to look contiguous to the device. Making

use of the IOMMU requires using the generic DMA layer;

virt_to_bus is not up to the task.

Note that not all architectures have an IOMMU; in particular, the

popular x86 platform has no IOMMU support. A properly written driver

need not be aware of the I/O support hardware it is running over,

however.

[bookmark: linuxdrive3-CHP-15-ITERM-7168]
[bookmark: linuxdrive3-CHP-15-ITERM-7169]Setting

up a useful address for the

device[bookmark: linuxdrive3-CHP-15-ITERM-7170] may also, in some cases, require the

establishment of a bounce buffer. Bounce

buffers are created when a driver attempts to perform DMA on an

address that is not reachable by the peripheral device�a

high-memory address, for example. Data is then copied to and from the

bounce buffer as needed. Needless to say, use of bounce buffers can

slow things down, but sometimes there is no alternative.

DMA mappings must also address the issue of cache coherency. Remember

that modern processors keep copies of recently accessed memory areas

in a fast, local cache; without this cache, reasonable performance is

not possible. If your device changes an area of main memory, it is

imperative that any processor caches covering that area be

invalidated; otherwise the processor may work with an incorrect image

of main memory, and data corruption results. Similarly, when your

device uses DMA to read data from main memory, any changes to that

memory residing in processor caches must be flushed out first. These

cache

coherency[bookmark: linuxdrive3-CHP-15-ITERM-7171]
[bookmark: linuxdrive3-CHP-15-ITERM-7172]
[bookmark: linuxdrive3-CHP-15-ITERM-7173]

issues can create no end of obscure and difficult-to-find bugs if the

programmer is not careful. Some architectures manage cache coherency

in the hardware, but others require software support. The generic DMA

layer goes to great lengths to ensure that things work correctly on

all architectures, but, as we will see, proper behavior requires

adherence to a small set of rules.

The DMA mapping sets up a new type, dma_addr_t, to

represent bus addresses. Variables of type

dma_addr_t should be treated as opaque by the

driver; the only allowable operations are to pass them to the DMA

support routines and to the device itself. As a bus address,

dma_addr_t may lead to unexpected problems if used

directly by the CPU.

The PCI code distinguishes between two types of DMA mappings,

depending on how long the DMA buffer is expected to stay around:

[bookmark: linuxdrive3-CHP-15-ITERM-7174]

	Coherent DMA mappings

	
These mappings usually exist for the life of the driver. A coherent

buffer must be simultaneously available to both the CPU and the

peripheral (other types of mappings, as we will see later, can be

available only to one or the other at any given time). As a result,

coherent mappings must live in cache-coherent memory. Coherent

mappings can be expensive to set up and use.





	Streaming DMA mappings

	
[bookmark: linuxdrive3-CHP-15-ITERM-7174]Streaming mappings are usually set up

for a single operation. Some architectures allow for significant

optimizations when streaming mappings are used, as we see, but these

mappings also are subject to a stricter set of rules in how they may

be accessed. The kernel developers recommend the use of streaming

mappings over coherent mappings whenever possible. There are two

reasons for this recommendation. The first is that, on systems that

support mapping registers, each DMA mapping uses one or more of them

on the bus. Coherent mappings, which have a long lifetime, can

monopolize these registers for a long time, even when they are not

being used. The other reason is that, on some hardware, streaming

mappings can be optimized in ways that are not available to coherent

mappings.





The two mapping types must be manipulated in different ways;

it's time to look at the details.

[bookmark: linuxdrive3-CHP-15-SECT-4.4.3]
15.4.4.3 Setting up coherent DMA mappings

A driver can set up a

[bookmark: linuxdrive3-CHP-15-ITERM-7175]
[bookmark: linuxdrive3-CHP-15-ITERM-7176]coherent

mapping with a call to dma_alloc_coherent:

void *dma_alloc_coherent(struct device *dev, size_t size,

                         dma_addr_t *dma_handle, int flag);
 

This function handles both the allocation and the mapping of the

buffer. The first two arguments are the device structure and the size

of the buffer needed. The function returns the result of the DMA

mapping in two places. The return value from the function is a kernel

virtual address for the buffer, which may be used by the driver; the

associated bus address, meanwhile, is returned in

dma_handle. Allocation is handled in this function

so that the buffer is placed in a location that works with DMA;

usually the memory is just allocated with

get_free_pages (but note that the size is in

bytes, rather than an order value). The flag

argument is the usual GFP_ value describing how

the memory is to be allocated; it should usually be

GFP_KERNEL (usually) or

GFP_ATOMIC (when running in atomic context).

[bookmark: linuxdrive3-CHP-15-ITERM-7177]
[bookmark: linuxdrive3-CHP-15-ITERM-7178]When

the buffer is no longer needed (usually at module unload time), it

should be returned to the system with

dma_free_coherent:

void dma_free_coherent(struct device *dev, size_t size,

                        void *vaddr, dma_addr_t dma_handle);
 

Note that this function, like many of the generic DMA functions,

requires that all of the size, CPU address, and bus address arguments

be provided.

[bookmark: linuxdrive3-CHP-15-SECT-4.4.4]
15.4.4.4 DMA pools

A DMA pool is an allocation

[bookmark: linuxdrive3-CHP-15-ITERM-7179]mechanism

for small, coherent DMA mappings. Mappings obtained from

dma_alloc_coherent may have a minimum size of

one page. If your device needs smaller DMA areas than that, you

should probably be using a DMA pool. DMA pools are also useful in

situations where you may be tempted to perform DMA to small areas

embedded within a larger structure. Some very obscure driver bugs

have been traced down to cache coherency problems with structure

fields adjacent to small DMA areas. To avoid this problem, you should

always allocate areas for DMA operations explicitly, away from other,

non-DMA data structures.

The DMA pool functions are defined in

<linux/dmapool.h>.

A DMA pool must be created before use with a call to:

struct dma_pool *dma_pool_create(const char *name, struct device *dev, 

                                 size_t size, size_t align, 

                                 size_t allocation);
 

Here, name is a name for the pool,

dev is your device structure,

size is the size of the buffers to be allocated

from this pool, align is the required hardware

alignment for allocations from the pool (expressed in bytes), and

allocation is, if nonzero, a memory boundary that

allocations should not exceed. If allocation is

passed as 4096, for example, the buffers allocated from this pool do

not cross 4-KB boundaries.

When you are done with a pool, it

can[bookmark: linuxdrive3-CHP-15-ITERM-7180] be freed with:

void dma_pool_destroy(struct dma_pool *pool);
 

You should return all allocations to the pool before destroying it.

Allocations are handled with dma_pool_alloc:

void *dma_pool_alloc(struct dma_pool *pool, int mem_flags, 

                     dma_addr_t *handle);
 

For this call, mem_flags is the usual set of

GFP_ allocation flags. If all goes well, a region

of memory (of the size specified when the pool was created) is

allocated and returned. As with

dma_alloc_coherent, the address of the resulting

DMA buffer is returned as a kernel virtual address and stored in

handle as a bus address.

Unneeded buffers should be returned to the pool with:

void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t addr);
 

[bookmark: linuxdrive3-CHP-15-SECT-4.4.5]
15.4.4.5 Setting up streaming DMA mappings

Streaming mappings have a

more[bookmark: linuxdrive3-CHP-15-ITERM-7181]
[bookmark: linuxdrive3-CHP-15-ITERM-7182]
[bookmark: linuxdrive3-CHP-15-ITERM-7183] complicated interface than the

coherent variety, for a number of reasons. These mappings expect to

work with a buffer that has already been allocated by the driver and,

therefore, have to deal with addresses that they did not choose. On

some architectures, streaming mappings can also have multiple,

discontiguous pages and multipart

"scatter/gather" buffers. For all

of these reasons, streaming mappings have their own set of mapping

functions.

When setting up a streaming mapping, you must tell the kernel in

which direction the data is moving. Some symbols (of type

enum dma_data_direction) have

been defined for this purpose:

[bookmark: linuxdrive3-CHP-15-ITERM-7184][bookmark: linuxdrive3-CHP-15-ITERM-7185][bookmark: linuxdrive3-CHP-15-ITERM-7186][bookmark: linuxdrive3-CHP-15-ITERM-7187][bookmark: linuxdrive3-CHP-15-ITERM-7188][bookmark: linuxdrive3-CHP-15-ITERM-7189][bookmark: linuxdrive3-CHP-15-ITERM-7190][bookmark: linuxdrive3-CHP-15-ITERM-7191][bookmark: linuxdrive3-CHP-15-ITERM-7192]

	DMA_TO_DEVICE



	DMA_FROM_DEVICE

	
[bookmark: linuxdrive3-CHP-15-ITERM-7184]
[bookmark: linuxdrive3-CHP-15-ITERM-7185]
[bookmark: linuxdrive3-CHP-15-ITERM-7186]
[bookmark: linuxdrive3-CHP-15-ITERM-7187][bookmark: linuxdrive3-CHP-15-ITERM-7188]These two symbols should be reasonably

self-explanatory. If data is being sent to the device (in response,

perhaps, to a write system call),

DMA_TO_DEVICE should be used; data going to the

CPU, instead, is marked with DMA_FROM_DEVICE.





	DMA_BIDIRECTIONAL

	
[bookmark: linuxdrive3-CHP-15-ITERM-7189]
[bookmark: linuxdrive3-CHP-15-ITERM-7190]If

data can move in either direction, use

DMA_BIDIRECTIONAL.





	DMA_NONE

	
[bookmark: linuxdrive3-CHP-15-ITERM-7191]
[bookmark: linuxdrive3-CHP-15-ITERM-7192]This

symbol is provided only as a debugging aid. Attempts to use buffers

with this "direction" cause a

kernel panic.





It may be tempting to just pick DMA_BIDIRECTIONAL

at all times, but driver authors should resist that temptation. On

some architectures, there is a performance penalty to pay for that

choice.

When you have a single buffer

to[bookmark: linuxdrive3-CHP-15-ITERM-7193]
[bookmark: linuxdrive3-CHP-15-ITERM-7194]

transfer, map it with dma_map_single:

dma_addr_t dma_map_single(struct device *dev, void *buffer, size_t size, 

                          enum dma_data_direction direction);
 

The return value is the bus address that you can pass to the device

or NULL if something goes wrong.

Once the transfer is

[bookmark: linuxdrive3-CHP-15-ITERM-7195]
[bookmark: linuxdrive3-CHP-15-ITERM-7196]complete,

the mapping should be deleted with

dma_unmap_single:

void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, 

                      enum dma_data_direction direction);
 

Here, the size and direction

arguments must match those used to map the buffer.

Some important rules apply to streaming DMA mappings:

	The buffer must be used only for a transfer that matches the

direction value given when it was mapped.

	Once a buffer has been mapped, it belongs to the device, not the

processor. Until the buffer has been unmapped, the driver should not

touch its contents in any way. Only after

dma_unmap_single has been called is it safe for

the driver to access the contents of the buffer (with one exception

that we see shortly). Among other things, this rule implies that a

buffer being written to a device cannot be mapped until it contains

all the data to write.

	The buffer must not be unmapped while DMA is still active, or serious

system instability is guaranteed.



You may be wondering why the driver can no longer work with a buffer

once it has been mapped. There are actually two reasons why this rule

makes sense. First, when a buffer is mapped for DMA, the kernel must

ensure that all of the data in that buffer has actually been written

to memory. It is likely that some data is in the

processor's cache when

dma_unmap_single is issued, and must be

explicitly flushed. Data written to the buffer by the processor after

the flush may not be visible to the device.

[bookmark: linuxdrive3-CHP-15-ITERM-7197]
[bookmark: linuxdrive3-CHP-15-ITERM-7198][bookmark: linuxdrive3-CHP-15-ITERM-7199]
[bookmark: linuxdrive3-CHP-15-ITERM-7200][bookmark: linuxdrive3-CHP-15-ITERM-7201]
[bookmark: linuxdrive3-CHP-15-ITERM-7202]Second,

consider what happens if the buffer to be mapped is in a region of

memory that is not accessible to the device. Some architectures

simply fail in this case, but others create a bounce buffer. The

bounce buffer is just a separate region of memory that

is accessible to the device. If a buffer is

mapped with a direction of DMA_TO_DEVICE, and a

bounce buffer is required, the contents of the original buffer are

copied as part of the mapping operation. Clearly, changes to the

original buffer after the copy are not seen by the device. Similarly,

DMA_FROM_DEVICE bounce buffers are copied back to

the original buffer by dma_unmap_single; the

data from the device is not present until that copy has been done.

Incidentally, bounce buffers are one reason why it is important to

get the direction right. DMA_BIDIRECTIONAL bounce

buffers are copied both before and after the operation, which is

often an unnecessary waste of CPU cycles.

Occasionally a driver needs to access the contents of

a[bookmark: linuxdrive3-CHP-15-ITERM-7203] streaming DMA

buffer without unmapping it. A call has

been[bookmark: linuxdrive3-CHP-15-ITERM-7204]
[bookmark: linuxdrive3-CHP-15-ITERM-7205] provided to make this possible:

void dma_sync_single_for_cpu(struct device *dev, dma_handle_t bus_addr, 

                             size_t size, enum dma_data_direction direction);
 

This function should be called before the processor accesses a

streaming DMA buffer. Once the call has been made, the CPU

"owns" the DMA buffer and can work

with it as needed. Before the device accesses the buffer, however,

ownership should be transferred back to it with:

void dma_sync_single_for_device(struct device *dev, dma_handle_t bus_addr, 

                                size_t size, enum dma_data_direction direction);
 

The processor, once again, should not access the DMA buffer after

this call has been made.

[bookmark: linuxdrive3-CHP-15-SECT-4.4.6]
15.4.4.6 Single-page streaming mappings

Occasionally, you may want[bookmark: linuxdrive3-CHP-15-ITERM-7206]
[bookmark: linuxdrive3-CHP-15-ITERM-7207]
[bookmark: linuxdrive3-CHP-15-ITERM-7208]
[bookmark: linuxdrive3-CHP-15-ITERM-7209]
[bookmark: linuxdrive3-CHP-15-ITERM-7210] to set up a mapping on a buffer for

which you have a struct page pointer; this can

happen, for example, with user-space buffers mapped with

get_user_pages. To set up and tear down

streaming mappings using struct
page pointers, use the following:

dma_addr_t dma_map_page(struct device *dev, struct page *page,

                        unsigned long offset, size_t size,

                        enum dma_data_direction direction);



void dma_unmap_page(struct device *dev, dma_addr_t dma_address, 

                    size_t size, enum dma_data_direction direction);
 

The offset and size arguments

can be used to map part of a page. It is recommended, however, that

partial-page mappings be avoided unless you are really sure of what

you are doing. Mapping part of a page can lead to cache coherency

problems if the allocation covers only part of a cache line; that, in

turn, can lead to memory corruption and extremely difficult-to-debug

bugs.

[bookmark: linuxdrive3-CHP-15-SECT-4.4.7]
15.4.4.7 Scatter/gather mappings

[bookmark: linuxdrive3-CHP-15-ITERM-7211]
[bookmark: linuxdrive3-CHP-15-ITERM-7212][bookmark: linuxdrive3-CHP-15-ITERM-7213]Scatter/gather mappings are a

special type of streaming DMA mapping. Suppose you have several

buffers, all of which need to be transferred to or from the device.

This situation can come about in several ways, including from a

readv or writev system

call, a clustered disk I/O request, or a list of pages in a mapped

kernel I/O buffer. You could simply map each buffer, in turn, and

perform the required operation, but there are advantages to mapping

the whole list at once.

[bookmark: linuxdrive3-CHP-15-ITERM-7214]
[bookmark: linuxdrive3-CHP-15-ITERM-7215]
[bookmark: linuxdrive3-CHP-15-ITERM-7216][bookmark: linuxdrive3-CHP-15-ITERM-7217]
[bookmark: linuxdrive3-CHP-15-ITERM-7218][bookmark: linuxdrive3-CHP-15-ITERM-7219]Many

devices can accept a scatterlist of array

pointers and lengths, and transfer them all in one DMA operation; for

example, "zero-copy" networking is

easier if packets can be built in multiple pieces. Another reason to

map scatterlists as a whole is to take advantage of systems that have

mapping registers in the bus hardware. On such systems, physically

discontiguous pages can be assembled into a single, contiguous array

from the device's point of view. This technique

works only when the entries in the scatterlist are equal to the page

size in length (except the first and last), but when it does work, it

can turn multiple operations into a single DMA, and speed things up

accordingly.

Finally, if a bounce buffer must be used, it makes sense to coalesce

the entire list into a single buffer (since it is being copied

anyway).

So now you're convinced that mapping of scatterlists

is worthwhile in some situations. The first step in mapping a

scatterlist is to create and fill in an array of

struct scatterlist describing

the buffers to be transferred. This structure is architecture

dependent, and is described in

<asm/scatterlist.h>. However, it always

contains three fields:



	struct page *page;

	
The struct page pointer

corresponding to the buffer to be used in the scatter/gather

operation.





	unsigned int length;



	unsigned int offset;

	
The length of that buffer and its offset within the page





[bookmark: linuxdrive3-CHP-15-ITERM-7220]
[bookmark: linuxdrive3-CHP-15-ITERM-7221]To

map a scatter/gather DMA operation, your driver should set the

page, offset, and

length fields in a struct
scatterlist entry for each buffer to be

transferred. Then call:

int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,

               enum dma_data_direction direction)
 

where nents is the number of scatterlist entries

passed in. The return value is the number of DMA buffers to transfer;

it may be less than nents.

For each buffer in the input scatterlist,

dma_map_sg determines the proper bus address to

give to the device. As part of that task, it also coalesces buffers

that are adjacent to each other in memory. If the system your driver

is running on has an I/O memory management unit,

dma_map_sg also programs that

unit's mapping registers, with the possible result

that, from your device's point of view, you are able

to transfer a single, contiguous buffer. You will never know what the

resulting transfer will look like, however, until after the call.

Your driver should transfer each buffer returned by

pci_map_sg. The bus address and length of each

buffer are stored in the struct scatterlist

entries, but their location in the structure varies from one

architecture to the next. Two macros have been defined to make it

possible to write portable code:

[bookmark: linuxdrive3-CHP-15-ITERM-7222][bookmark: linuxdrive3-CHP-15-ITERM-7223][bookmark: linuxdrive3-CHP-15-ITERM-7224][bookmark: linuxdrive3-CHP-15-ITERM-7225]

	dma_addr_t sg_dma_address(struct scatterlist *sg);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7222]
[bookmark: linuxdrive3-CHP-15-ITERM-7223]Returns

the bus (DMA) address from this scatterlist entry.





	unsigned int sg_dma_len(struct scatterlist *sg);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7224]
[bookmark: linuxdrive3-CHP-15-ITERM-7225]Returns

the length of this buffer.





Again, remember that the address and length of the buffers to

transfer may be different from what was passed in to

dma_map_sg.

Once the transfer is complete, a scatter/gather mapping is unmapped

with a call to dma_unmap_sg:

void dma_unmap_sg(struct device *dev, struct scatterlist *list,

                  int nents, enum dma_data_direction direction);
 

Note that nents must be the number of entries that

you originally passed to dma_map_sg and not the

number of DMA buffers the function returned to you.

Scatter/gather mappings are streaming DMA mappings, and the same

access rules apply to them as to the single variety. If you must

access a mapped scatter/gather list, you must synchronize it first:

void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,

                         int nents, enum dma_data_direction direction);

void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,

                         int nents, enum dma_data_direction direction);
 

[bookmark: linuxdrive3-CHP-15-SECT-4.4.8]
15.4.4.8 PCI double-address cycle mappings

Normally, the DMA support[bookmark: linuxdrive3-CHP-15-ITERM-7226] [bookmark: linuxdrive3-CHP-15-ITERM-7227]
[bookmark: linuxdrive3-CHP-15-ITERM-7228]
[bookmark: linuxdrive3-CHP-15-ITERM-7229] layer works with 32-bit bus addresses,

possibly restricted by a specific device's DMA mask.

The PCI bus, however, also supports a 64-bit addressing mode, the

double-address cycle (DAC). The generic DMA

layer does not support this mode for a couple of reasons, the first

of which being that it is a PCI-specific feature. Also, many

implementations of DAC are buggy at best, and, because DAC is slower

than a regular, 32-bit DMA, there can be a performance cost. Even so,

there are applications where using DAC can be the right thing to do;

if you have a device that is likely to be working with very large

buffers placed in high memory, you may want to consider implementing

DAC support. This support is available only for the PCI bus, so

PCI-specific routines must be used.

To use DAC, your driver must include

<linux/pci.h>. You must set a separate DMA

mask:

int pci_dac_set_dma_mask(struct pci_dev *pdev, u64 mask);
 

You can use DAC addressing only if this call returns

0.

A special type (dma64_addr_t) is used for DAC

mappings. To establish one of these mappings, call

pci_dac_page_to_dma:

dma64_addr_t pci_dac_page_to_dma(struct pci_dev *pdev, struct page *page, 

                                 unsigned long offset, int direction);
 

DAC mappings, you will notice, can be made only from

struct page pointers (they

should live in high memory, after all, or there is no point in using

them); they must be created a single page at a time. The

direction argument is the PCI equivalent of the

enum dma_data_direction used in the generic DMA

layer; it should be PCI_DMA_TODEVICE,

PCI_DMA_FROMDEVICE, or

PCI_DMA_BIDIRECTIONAL.

DAC mappings require no external resources, so there is no need to

explicitly release them after use. It is necessary, however, to treat

DAC mappings like other streaming mappings, and observe the rules

regarding buffer ownership. There is a set of functions for

synchronizing

[bookmark: linuxdrive3-CHP-15-ITERM-7230]
[bookmark: linuxdrive3-CHP-15-ITERM-7231]DMA

buffers that is analogous to the generic variety:

void pci_dac_dma_sync_single_for_cpu(struct pci_dev *pdev,

                                     dma64_addr_t dma_addr,

                                     size_t len,

                                     int direction);



void pci_dac_dma_sync_single_for_device(struct pci_dev *pdev,

                                        dma64_addr_t dma_addr,

                                        size_t len,

                                        int direction);
 

[bookmark: linuxdrive3-CHP-15-SECT-4.4.9]
15.4.4.9 A simple PCI DMA example

[bookmark: linuxdrive3-CHP-15-ITERM-7232][bookmark: linuxdrive3-CHP-15-ITERM-7233]As an example of how the DMA mappings

might be used, we present a simple example of DMA coding for a PCI

device. The actual form of DMA operations on the PCI bus is very

dependent on the device being driven. Thus, this example does not

apply to any real device; instead, it is part of a hypothetical

driver called dad (DMA Acquisition Device). A

driver for this device might define a transfer function like this:

int dad_transfer(struct dad_dev *dev, int write, void *buffer, 

                 size_t count)

{

    dma_addr_t bus_addr;



    /* Map the buffer for DMA */

    dev->dma_dir = (write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);

    dev->dma_size = count;

    bus_addr = dma_map_single(&dev->pci_dev->dev, buffer, count, 

                              dev->dma_dir);

    dev->dma_addr = bus_addr;



    /* Set up the device */



    writeb(dev->registers.command, DAD_CMD_DISABLEDMA);

    writeb(dev->registers.command, write ? DAD_CMD_WR : DAD_CMD_RD);

    writel(dev->registers.addr, cpu_to_le32(bus_addr));

    writel(dev->registers.len, cpu_to_le32(count));



    /* Start the operation */

    writeb(dev->registers.command, DAD_CMD_ENABLEDMA);

    return 0;

}
 

This function maps the buffer to be transferred and starts the device

operation. The other half of the job must be done in the interrupt

service routine, which looks something like this:

void dad_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

    struct dad_dev *dev = (struct dad_dev *) dev_id;



    /* Make sure it's really our device interrupting */



    /* Unmap the DMA buffer */

    dma_unmap_single(dev->pci_dev->dev, dev->dma_addr, 

                     dev->dma_size, dev->dma_dir);



    /* Only now is it safe to access the buffer, copy to user, etc. */

    ...

}
 

Obviously, a great deal of detail has been left out of this example,

including whatever steps may be required to prevent attempts to start

multiple, simultaneous DMA operations.

[bookmark: linuxdrive3-CHP-15-SECT-4.5]
[bookmark: linuxdrive3-CHP-15-ITERM-7234]15.4.5. DMA for ISA Devices

[bookmark: linuxdrive3-CHP-15-ITERM-7235]The ISA bus allows for two kinds of DMA

transfers: native DMA and ISA bus master DMA. Native DMA uses

standard DMA-controller circuitry on the motherboard to drive the

signal lines on the ISA bus. ISA bus master DMA, on the other hand,

is handled entirely by the peripheral device. The latter type of DMA

is rarely used and doesn't require discussion here,

because it is similar to DMA for PCI devices, at least from the

driver's point of view. An example of an ISA bus

master is the 1542 SCSI controller, whose driver is

drivers/scsi/aha1542.c in the kernel sources.

As far as native DMA is concerned, there are three entities involved

in a DMA data transfer on the ISA bus:

[bookmark: linuxdrive3-CHP-15-ITERM-7236][bookmark: linuxdrive3-CHP-15-ITERM-7237]

	The 8237 DMA controller (DMAC)

	
[bookmark: linuxdrive3-CHP-15-ITERM-7236]The

controller holds information about the DMA transfer, such as the

direction, the memory address, and the size of the transfer. It also

contains a counter that tracks the status of ongoing transfers. When

the controller receives a DMA request signal, it gains control of the

bus and drives the signal lines so that the device can read or write

its data.





	The peripheral device

	
The device must activate the DMA request signal when

it's ready to transfer data. The actual transfer is

managed by the DMAC; the hardware device sequentially reads or writes

data onto the bus when the controller strobes the device. The device

usually raises an interrupt when the transfer is over.





	[bookmark: linuxdrive3-CHP-15-ITERM-7237]The device driver

	
The driver has little to do; it provides the DMA controller with the

direction, bus address, and size of the transfer. It also talks to

its peripheral to prepare it for transferring the data and responds

to the interrupt when the DMA is over.





The original DMA controller used in the PC could manage four

"channels," each associated with

one set of DMA registers. Four devices could store their DMA

information in the controller at the same time. Newer PCs contain the

equivalent of two DMAC devices:[6] the

second controller (master) is connected to the system processor, and

the first (slave) is connected to channel 0 of the

second controller.[7]
[bookmark: linuxdrive3-CHP-15-FNOTE-6][6] These circuits are

now part of the motherboard's chipset, but a few

years ago they were two separate 8237 chips.

[bookmark: linuxdrive3-CHP-15-FNOTE-7][7] The original PCs had only one

controller; the second was added in 286-based platforms. However, the

second controller is connected as the master because it handles

16-bit transfers; the first transfers only eight bits at a time and

is there for backward compatibility.


The channels are numbered from 0-7: channel 4 is not available to ISA

peripherals, because it is used internally to cascade the slave

controller onto the master. The available channels are, thus, 0-3 on

the slave (the 8-bit channels) and 5-7 on the master (the 16-bit

channels). The size of any DMA transfer, as stored in the controller,

is a 16-bit number representing the number of bus cycles. The maximum

transfer size is, therefore, 64 KB for the slave controller (because

it transfers eight bits in one cycle) and 128 KB for the master

(which does 16-bit transfers).

Because the DMA controller is a system-wide resource, the kernel

helps deal with it. It uses a DMA registry to provide a

request-and-free mechanism for the DMA channels and a set of

functions to configure channel information in the DMA controller.

[bookmark: linuxdrive3-CHP-15-SECT-4.5.1]
15.4.5.1 Registering DMA usage

[bookmark: linuxdrive3-CHP-15-ITERM-7238][bookmark: linuxdrive3-CHP-15-ITERM-7239][bookmark: linuxdrive3-CHP-15-ITERM-7240][bookmark: linuxdrive3-CHP-15-ITERM-7241]
[bookmark: linuxdrive3-CHP-15-ITERM-7242][bookmark: linuxdrive3-CHP-15-ITERM-7243]
[bookmark: linuxdrive3-CHP-15-ITERM-7244]You

should be used to kernel registries�we've

already seen them for I/O ports and interrupt lines. The DMA channel

registry is similar to the others. After

<asm/dma.h> has been included, the

following functions can be used to obtain and release ownership of a

DMA channel:

int request_dma(unsigned int channel, const char *name); 

void free_dma(unsigned int channel);
 

The channel argument is a number between 0 and 7

or, more precisely, a positive number less than

MAX_DMA_CHANNELS. On the PC,

MAX_DMA_CHANNELS is defined as

8 to match the hardware. The

name argument is a string identifying the device.

The specified name appears in the file

/proc/dma, which can be read by user programs.

The return value from request_dma is

0 for success and -EINVAL or

-EBUSY if there was an error. The former means

that the requested channel is out of range, and the latter means that

another device is holding the channel.

[bookmark: linuxdrive3-CHP-15-ITERM-7245]
[bookmark: linuxdrive3-CHP-15-ITERM-7246]We recommend that you take the

same care with DMA channels as with I/O ports and interrupt lines;

requesting the channel at open time is much

better than requesting it from the module initialization function.

Delaying the request allows some sharing between drivers; for

example, your sound card and your analog I/O interface can share the

DMA channel as long as they are not used at the same time.

We also suggest that you request the DMA channel

after you've requested the

interrupt line and that you release it before

the interrupt. This is the conventional order for requesting the two

resources; following the convention avoids possible deadlocks. Note

that every device using DMA needs an IRQ line as well; otherwise, it

couldn't signal the completion of data transfer.

In a typical case, the code for open looks like

the following, which refers to our hypothetical

dad module. The dad device

as shown uses a fast interrupt handler without support for shared IRQ

lines.

int dad_open (struct inode *inode, struct file *filp)

{

    struct dad_device *my_device; 



    /* ... */

    if ( (error = request_irq(my_device.irq, dad_interrupt,

                              SA_INTERRUPT, "dad", NULL)) )

        return error; /* or implement blocking open */



    if ( (error = request_dma(my_device.dma, "dad")) ) {

        free_irq(my_device.irq, NULL);

        return error; /* or implement blocking open */

    }

    /* ... */

    return 0;

}
 

The close implementation that matches the

open just shown looks like this:

void dad_close (struct inode *inode, struct file *filp)

{

    struct dad_device *my_device;



    /* ... */

    free_dma(my_device.dma);

    free_irq(my_device.irq, NULL);

    /* ... */

}
 

Here's how the /proc/dma file

looks on a system with the sound card installed:

merlino% cat /proc/dma

 1: Sound Blaster8

 4: cascade
 

It's interesting to note that the default sound

driver gets the DMA channel at system boot and never releases it. The

cascade entry is a placeholder, indicating that

channel 4 is not available to drivers, as explained earlier.

[bookmark: linuxdrive3-CHP-15-SECT-4.5.2]
15.4.5.2 Talking to the DMA controller

After registration, the main part of the driver's

job consists of configuring the DMA controller for proper operation.

This task is not trivial, but fortunately, the kernel exports all the

functions needed by the typical driver.

[bookmark: linuxdrive3-CHP-15-ITERM-7247]
[bookmark: linuxdrive3-CHP-15-ITERM-7248][bookmark: linuxdrive3-CHP-15-ITERM-7249]The driver needs to configure the

DMA controller either when read or

write is called, or when preparing for

asynchronous transfers. This latter task is performed either at

open time or in response to an

ioctl command, depending on the driver and the

policy it implements. The code shown here is the code that is

typically called by the read or

write device methods.

This subsection provides a quick overview of the internals of the DMA

controller so you understand the code introduced here. If you want to

learn more, we'd urge you to read

<asm/dma.h> and some hardware manuals

describing the PC architecture. In particular, we

don't deal with the issue of 8-bit versus 16-bit

data transfers. If you are writing device drivers for ISA device

boards, you should find the relevant information in the hardware

manuals for the devices.

[bookmark: linuxdrive3-CHP-15-ITERM-7250][bookmark: linuxdrive3-CHP-15-ITERM-7251]The

DMA controller is a shared resource, and confusion could arise if

more than one processor attempts to program it simultaneously. For

that reason, the controller is protected by a spinlock, called

dma_spin_lock. Drivers should not manipulate the

lock directly; however, two functions have been provided to do that

for you:

[bookmark: linuxdrive3-CHP-15-ITERM-7252][bookmark: linuxdrive3-CHP-15-ITERM-7253][bookmark: linuxdrive3-CHP-15-ITERM-7254][bookmark: linuxdrive3-CHP-15-ITERM-7255]

	unsigned long claim_dma_lock(  );

	
[bookmark: linuxdrive3-CHP-15-ITERM-7252]
[bookmark: linuxdrive3-CHP-15-ITERM-7253]Acquires

the DMA spinlock. This function also blocks interrupts on the local

processor; therefore, the return value is a set of flags describing

the previous interrupt state; it must be passed to the following

function to restore the interrupt state when you are done with the

lock.





	void release_dma_lock(unsigned long flags);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7254]
[bookmark: linuxdrive3-CHP-15-ITERM-7255]Returns

the DMA spinlock and restores the previous interrupt status.





The spinlock should be held when using the functions described next.

It should not be held during the actual I/O,

however. A driver should never sleep when holding a spinlock.

The information that must be loaded into the controller consists of

three items: the RAM address, the number of atomic items that must be

transferred (in bytes or words), and the direction of the transfer.

To this end, the following functions are exported by

<asm/dma.h>:

[bookmark: linuxdrive3-CHP-15-ITERM-7256][bookmark: linuxdrive3-CHP-15-ITERM-7257][bookmark: linuxdrive3-CHP-15-ITERM-7258][bookmark: linuxdrive3-CHP-15-ITERM-7259][bookmark: linuxdrive3-CHP-15-ITERM-7260][bookmark: linuxdrive3-CHP-15-ITERM-7261]

	void set_dma_mode(unsigned int channel, char mode);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7256]
[bookmark: linuxdrive3-CHP-15-ITERM-7257]Indicates

whether the channel must read from the device

(DMA_MODE_READ) or write to it

(DMA_MODE_WRITE). A third mode exists,

DMA_MODE_CASCADE, which is used to release control

of the bus. Cascading is the way the first controller is connected to

the top of the second, but it can also be used by true ISA bus-master

devices. We won't discuss bus mastering here.





	void set_dma_addr(unsigned int channel, unsigned int addr);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7258]
[bookmark: linuxdrive3-CHP-15-ITERM-7259]Assigns

the address of the DMA buffer. The function stores the 24 least

significant bits of addr in the controller. The

addr argument must be a bus

address (see the Section 15.4.3 earlier in this chapter).





	void set_dma_count(unsigned int channel, unsigned int count);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7260]
[bookmark: linuxdrive3-CHP-15-ITERM-7261]Assigns

the number of bytes to transfer. The count

argument represents bytes for 16-bit channels as well; in this case,

the number must be even.





In addition to these functions, there are a number of housekeeping

facilities that must be used when dealing with DMA devices:

[bookmark: linuxdrive3-CHP-15-ITERM-7262][bookmark: linuxdrive3-CHP-15-ITERM-7263][bookmark: linuxdrive3-CHP-15-ITERM-7264][bookmark: linuxdrive3-CHP-15-ITERM-7265][bookmark: linuxdrive3-CHP-15-ITERM-7266][bookmark: linuxdrive3-CHP-15-ITERM-7267][bookmark: linuxdrive3-CHP-15-ITERM-7268][bookmark: linuxdrive3-CHP-15-ITERM-7269]

	void disable_dma(unsigned int channel);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7262]
[bookmark: linuxdrive3-CHP-15-ITERM-7263]A

DMA channel can be disabled within the controller. The channel should

be disabled before the controller is configured to prevent improper

operation. (Otherwise, corruption can occur because the controller is

programmed via 8-bit data transfers and, therefore, none of the

previous functions is executed atomically).





	void enable_dma(unsigned int channel);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7264]
[bookmark: linuxdrive3-CHP-15-ITERM-7265]This

function tells the controller that the DMA channel contains valid

data.





	int get_dma_residue(unsigned int channel);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7266]
[bookmark: linuxdrive3-CHP-15-ITERM-7267]The

driver sometimes needs to know whether a DMA transfer has been

completed. This function returns the number of bytes that are still

to be transferred. The return value is 0 after a

successful transfer and is unpredictable (but not

0) while the controller is working. The

unpredictability springs from the need to obtain the 16-bit residue

through two 8-bit input operations.





	void clear_dma_ff(unsigned int channel)

	
[bookmark: linuxdrive3-CHP-15-ITERM-7268]
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function clears the DMA flip-flop. The flip-flop is used to control

access to 16-bit registers. The registers are accessed by two

consecutive 8-bit operations, and the flip-flop is used to select the

least significant byte (when it is clear) or the most significant

byte (when it is set). The flip-flop automatically toggles when eight

bits have been transferred; the programmer must clear the flip-flop

(to set it to a known state) before accessing the DMA registers.





Using these functions, a driver can implement a function like the

following to prepare for a DMA transfer:

int dad_dma_prepare(int channel, int mode, unsigned int buf,

                    unsigned int count)

{

    unsigned long flags;



    flags = claim_dma_lock(  );

    disable_dma(channel);

    clear_dma_ff(channel);

    set_dma_mode(channel, mode);

    set_dma_addr(channel, virt_to_bus(buf));

    set_dma_count(channel, count);

    enable_dma(channel);

    release_dma_lock(flags);



    return 0;

}
 

Then, a function like the next one is used to check for

successful[bookmark: linuxdrive3-CHP-15-ITERM-7270] completion of DMA:

int dad_dma_isdone(int channel)

{

    int residue;

    unsigned long flags = claim_dma_lock (  );

    residue = get_dma_residue(channel);

    release_dma_lock(flags);

    return (residue =  = 0);

}
 

The only thing that remains to be done is to configure the device

board. This device-specific task usually consists of reading or

writing a few I/O ports. Devices differ in significant ways. For

example, some devices expect the programmer to tell the hardware how

big the DMA buffer is, and sometimes the driver has to read a value

that is hardwired into the device. For configuring the[bookmark: linuxdrive3-CHP-15-ITERM-7271] [bookmark: linuxdrive3-CHP-15-ITERM-7272] [bookmark: linuxdrive3-CHP-15-ITERM-7273] [bookmark: linuxdrive3-CHP-15-ITERM-7274] [bookmark: linuxdrive3-CHP-15-ITERM-7275] board, the

hardware manual is your [bookmark: linuxdrive3-CHP-15-ITERM-7276]only [bookmark: linuxdrive3-CHP-15-ITERM-7277]friend. [bookmark: linuxdrive3-CHP-15-ITERM-7278]







[bookmark: linuxdrive3-CHP-15-SECT-5]
15.5. Quick Reference

This chapter introduced the following symbols related to memory

handling.

[bookmark: linuxdrive3-CHP-15-SECT-5.1]
15.5.1. Introductory Material



	#include <linux/mm.h>



	#include <asm/page.h>

	
Most of the functions and structures related to memory management are

prototyped and defined in these header files.





	void *_ _va(unsigned long physaddr);



	unsigned long _ _pa(void *kaddr);

	
Macros that convert between kernel logical addresses and physical

addresses.





	PAGE_SIZE



	PAGE_SHIFT

	
Constants that give the size (in bytes) of a page on the underlying

hardware and the number of bits that a page frame number must be

shifted to turn it into a physical address.





	struct page

	
Structure that represents a hardware page in the system memory map.





	struct page *virt_to_page(void *kaddr);



	void *page_address(struct page *page);



	struct page *pfn_to_page(int pfn);

	
Macros that convert between kernel logical addresses and their

associated memory map entries. page_address

works only for low-memory pages or high-memory pages that have been

explicitly mapped. pfn_to_page converts a page

frame number to its associated struct
page pointer.





	unsigned long kmap(struct page *page);



	void kunmap(struct page *page);

	
kmap returns a kernel virtual address that is

mapped to the given page, creating the mapping if need be.

kunmap deletes the mapping for the given page.





	#include <linux/highmem.h>



	#include <asm/kmap_types.h>



	void *kmap_atomic(struct page *page, enum km_type type);



	void kunmap_atomic(void *addr, enum km_type type);

	
The high-performance version of kmap; the

resulting mappings can be held only by atomic code. For drivers,

type should be KM_USER0,

KM_USER1, KM_IRQ0, or

KM_IRQ1.





	struct vm_area_struct;

	
Structure describing a VMA.





[bookmark: linuxdrive3-CHP-15-SECT-5.2]
15.5.2. Implementing mmap
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	int remap_pfn_range(struct vm_area_struct *vma, unsigned long virt_add, 



	 unsigned long pfn, unsigned long size, pgprot_t prot);



	int io_remap_page_range(struct vm_area_struct *vma, unsigned long virt_add, 



	 unsigned long phys_add, unsigned long size, pgprot_t prot);

	
Functions[bookmark: linuxdrive3-CHP-15-ITERM-7279]
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that sit at the heart of mmap. They map

size bytes of physical addresses, starting at the

page number indicated by pfn to the virtual

address virt_add. The protection bits associated

with the virtual space are specified in prot.

io_remap_page_range should be used when the

target address is in I/O memory space.





	struct page *vmalloc_to_page(void *vmaddr);

	
Converts a kernel virtual address obtained from

vmalloc to its corresponding struct

page pointer.
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15.5.3. Implementing Direct I/O

[bookmark: linuxdrive3-CHP-15-ITERM-7281][bookmark: linuxdrive3-CHP-15-ITERM-7282][bookmark: linuxdrive3-CHP-15-ITERM-7283]

	int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned 



	 long start, int len, int write, int force, struct page **pages, struct 



	 vm_area_struct **vmas);

	
Function that locks a user-space buffer into memory and returns the

corresponding struct page pointers. The caller

must hold mm->mmap_sem.





	SetPageDirty(struct page *page);

	
Macro that

[bookmark: linuxdrive3-CHP-15-ITERM-7281] [bookmark: linuxdrive3-CHP-15-ITERM-7282]
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the given page as "dirty"

(modified) and in need of writing to its backing store before it can

be freed.





	void page_cache_release(struct page *page);

	
Frees the given page from the page cache.





	int is_sync_kiocb(struct kiocb *iocb);

	
Macro that returns nonzero if the given IOCB requires synchronous

execution.





	int aio_complete(struct kiocb *iocb, long res, long res2);

	
Function that indicates completion of an asynchronous I/O operation.





[bookmark: linuxdrive3-CHP-15-SECT-5.4]
15.5.4. Direct Memory Access
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	#include <asm/io.h>



	unsigned long virt_to_bus(volatile void * address);



	void * bus_to_virt(unsigned long address);

	
Obsolete and deprecated functions that convert between kernel,

virtual, and bus addresses. Bus addresses must be used to talk to

peripheral devices.





	#include <linux/dma-mapping.h>

	
Header file required to define the generic DMA functions.





	int dma_set_mask(struct device *dev, u64 mask);

	
For
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that cannot address the full 32-bit range, this function informs the

kernel of the addressable range and returns nonzero if DMA is

possible.





	void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t 



	 *bus_addr, int flag)



	void dma_free_coherent(struct device *dev, size_t size, void *cpuaddr, 



	 dma_handle_t bus_addr);

	
Allocate and free coherent DMA mappings for a buffer that will last

the lifetime of the driver.





	#include <linux/dmapool.h>



	struct dma_pool *dma_pool_create(const char *name, struct device *dev, 



	 size_t size, size_t align, size_t allocation);



	void dma_pool_destroy(struct dma_pool *pool);



	void *dma_pool_alloc(struct dma_pool *pool, int mem_flags, dma_addr_t



	 *handle);



	void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t handle);

	
Functions that create, destroy, and use DMA pools to manage small DMA

areas.





	enum dma_data_direction;



	DMA_TO_DEVICE



	DMA_FROM_DEVICE



	DMA_BIDIRECTIONAL



	DMA_NONE

	
[bookmark: linuxdrive3-CHP-15-ITERM-7288]
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mapping functions the direction in which data is moving to or from

the buffer.





	dma_addr_t dma_map_single(struct device *dev, void *buffer, size_t size, enum 



	 dma_data_direction direction);



	void dma_unmap_single(struct device *dev, dma_addr_t bus_addr, size_t size, 



	 enum dma_data_direction direction);

	
Create and destroy a single-use, streaming DMA mapping.





	void dma_sync_single_for_cpu(struct device *dev, dma_handle_t bus_addr, size_t 



	 size, enum dma_data_direction direction);



	void dma_sync_single_for_device(struct device *dev, dma_handle_t bus_addr, 



	 size_t size, enum dma_data_direction direction);

	
Synchronizes a buffer that has a streaming mapping. These functions

must be used if the processor must access a buffer while the

streaming mapping is in place (i.e., while the device owns the

buffer).





	#include <asm/scatterlist.h>



	struct scatterlist { /* ... */ };



	dma_addr_t sg_dma_address(struct scatterlist *sg);



	unsigned int sg_dma_len(struct scatterlist *sg);

	
[bookmark: linuxdrive3-CHP-15-ITERM-7293]
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scatterlist structure describes an I/O operation

that involves more than one buffer. The macros

sg_dma_address and

sg_dma_len may be used to extract bus addresses

and buffer lengths to pass to the device when implementing

scatter/gather operations.





	dma_map_sg(struct device *dev, struct scatterlist *list, int nents, 



	 enum dma_data_direction direction);



	dma_unmap_sg(struct device *dev, struct scatterlist *list, int nents, enum 



	 dma_data_direction direction);



	void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int



	 nents, enum dma_data_direction direction);



	void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int



	 nents, enum dma_data_direction direction);

	
dma_map_sg maps a scatter/gather operation, and

dma_unmap_sg undoes that mapping. If the buffers

must be accessed while the mapping is active,

dma_sync_sg_* may be used to synchronize things.





	/proc/dma

	
File that contains a textual snapshot of the allocated channels in

the DMA controllers. PCI-based DMA is not shown because each board

works independently, without the need to allocate a channel in the

DMA controller.





	#include <asm/dma.h>

	
Header that defines or prototypes all the functions and macros

related to DMA. It must be included to use any of the following

symbols.





	int request_dma(unsigned int channel, const char *name);



	void free_dma(unsigned int channel);

	
Access the DMA registry. Registration must be performed before using

ISA DMA channels.





	unsigned long claim_dma_lock(  );



	void release_dma_lock(unsigned long flags);

	
Acquire and release the DMA spinlock, which must be held prior to

calling the other ISA DMA functions described later in this list.

They also disable and reenable interrupts on the local processor.





	void set_dma_mode(unsigned int channel, char mode);



	void set_dma_addr(unsigned int channel, unsigned int addr);



	void set_dma_count(unsigned int channel, unsigned int count);

	
Program DMA information in the DMA controller.

addr is a bus address.





	void disable_dma(unsigned int channel);



	void enable_dma(unsigned int channel);

	
A DMA channel must be disabled during configuration. These functions

change the status of the DMA channel.





	int get_dma_residue(unsigned int channel);

	
If the driver needs to know how a DMA transfer is proceeding, it can

call this function, which returns the number of data transfers that

are yet to be completed. After successful completion of DMA, the

function returns 0; the value is unpredictable

while data is being transferred.





	void clear_dma_ff(unsigned int channel)

	
The DMA flip-flop is used by the controller to transfer 16-bit values

by means of two 8-bit operations. It must be cleared before sending

any data to the controller.
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Chapter 16. Block Drivers

So far, our discussion has been limited to char drivers. There are

other types of drivers in Linux systems, however, and the time has

come for us to widen our focus somewhat. Accordingly, this chapter

discusses block drivers.

A block driver provides access to devices that transfer randomly

accessible data in fixed-size blocks�disk drives, primarily.

The Linux kernel sees block devices as being fundamentally different

from char devices; as a result, block drivers have a distinct

interface and their own particular challenges.

Efficient

[bookmark: linuxdrive3-CHP-16-ITERM-7299]block drivers are critical for

performance�and not just for explicit reads and writes in user

applications. Modern systems with virtual memory work by shifting

(hopefully) unneeded data to secondary storage, which is usually a

disk drive. Block drivers are the conduit between core memory and

secondary storage; therefore, they can be seen as making up part of

the virtual memory subsystem. While it is possible to write a block

driver without knowing about struct
page and other important memory concepts, anybody

needing to write a high-performance driver has to draw upon the

material covered in Chapter 15.

Much of the design of the block layer is centered on performance.

Many char devices can run below their maximum speed, and the

performance of the system as a whole is not affected. The system

cannot run well, however, if its block I/O subsystem is not

well-tuned. The Linux block driver interface allows you to get the

most out of a block device but imposes, necessarily, a degree of

complexity that you must deal with. Happily, the 2.6 block interface

is much improved over what was found in older kernels.

The discussion in this chapter is, as one would expect, centered on

an example driver that implements a block-oriented, memory-based

device. It is, essentially, a ramdisk. The kernel already contains a

far superior ramdisk implementation, but our driver (called

sbull) lets us demonstrate the creation of a

block driver while minimizing unrelated complexity.

Before getting into the details, let's define a

couple of terms precisely. A block is a

fixed-size chunk of data, the size being determined by the kernel.

Blocks are often 4096 bytes, but that value can vary depending on the

architecture and the exact filesystem being used. A

sector, in contrast, is a small block whose

size is usually determined by the underlying hardware. The kernel

expects to be dealing with devices that implement 512-byte sectors.

If your device uses a different size, the kernel adapts and avoids

generating I/O requests that the hardware cannot handle. It is worth

keeping in mind, however, that any time the kernel presents you with

a sector number, it is working in a world of 512-byte sectors. If you

are using a different hardware sector size, you have to scale the

kernel's sector numbers accordingly. We see how that

is done in the sbull driver.
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16.1. Registration

Block drivers, like char[bookmark: linuxdrive3-CHP-16-ITERM-7300]
[bookmark: linuxdrive3-CHP-16-ITERM-7301]
[bookmark: linuxdrive3-CHP-16-ITERM-7302] drivers, must use a set of

registration interfaces to make their devices available to the

kernel. The concepts are similar, but the details of block device

registration are all different. You have a whole new set of data

structures and device operations to learn.

[bookmark: linuxdrive3-CHP-16-SECT-1.1]
16.1.1. Block Driver Registration

The first step taken by most block drivers is to register themselves

with the kernel. The function for this task

is[bookmark: linuxdrive3-CHP-16-ITERM-7303]
[bookmark: linuxdrive3-CHP-16-ITERM-7304]
register_blkdev (which is declared in

<linux/fs.h>):

int register_blkdev(unsigned int major, const char *name);
 

The arguments are the major number that your device will be using and

the associated name (which the kernel will display in

/proc/devices). If major is

passed as 0, the kernel allocates a new major

number and returns it to the caller. As always, a negative return

value from register_blkdev indicates that an

error has occurred.

The corresponding function for canceling a block driver registration

is:

int unregister_blkdev(unsigned int major, const char *name);
 

Here, the arguments must match those passed to

register_blkdev, or the function returns

-EINVAL and not unregister anything.

In the 2.6 kernel, the call to register_blkdev

is entirely optional. The functions performed by

register_blkdev have been decreasing over time;

the only tasks performed by this call at this point are (1)

allocating a dynamic major number if requested, and (2) creating an

entry in /proc/devices. In future kernels,

register_blkdev may be removed altogether.

Meanwhile, however, most drivers still call it; it's

traditional.

[bookmark: linuxdrive3-CHP-16-SECT-1.2]
16.1.2. Disk Registration

While register_blkdev can be

[bookmark: linuxdrive3-CHP-16-ITERM-7305]
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to obtain a major number, it does not make any disk drives available

to the system. There is a separate registration interface that you

must use to manage individual drives. Using this interface requires

familiarity with a pair of new structures, so that is where we start.

[bookmark: linuxdrive3-CHP-16-SECT-1.2.1]
16.1.2.1 Block device operations

Char devices[bookmark: linuxdrive3-CHP-16-ITERM-7307]
[bookmark: linuxdrive3-CHP-16-ITERM-7308] make their operations available to the

system by way of the file_operations structure. A

similar structure is used with block devices; it is

struct block_device_operations,

which is declared in <linux/fs.h>. The

following is a brief overview of the fields found in this structure;

we revisit them in more detail when we get into the details of the

sbull driver:



	int (*open)(struct inode *inode, struct file *filp);



	int (*release)(struct inode *inode, struct file *filp);

	
Functions that work just like their char driver equivalents; they are

called whenever the device is opened and closed. A block driver might

respond to an open call by spinning up the device, locking the door

(for removable media), etc. If you lock media into the device, you

should certainly unlock it in the release

method.





	int (*ioctl)(struct inode *inode, struct file *filp, unsigned int cmd, 



	 unsigned long arg);

	
Method that implements the ioctl system call.

The block layer first intercepts a large number of standard requests,

however; so most block driver ioctl methods are

fairly short.





	int (*media_changed) (struct gendisk *gd);

	
Method called by the kernel to check whether the user has changed the

media in the drive, returning a nonzero value if so. Obviously, this

method is only applicable to drives that support removable media (and

that are smart enough to make a "media

changed" flag available to the driver); it can be

omitted in other cases.





The struct gendisk argument is how the kernel

represents a single disk; we will be looking at that structure in the

next section.



	int (*revalidate_disk) (struct gendisk *gd);

	
The revalidate_disk method is called in response

to a media change; it gives the driver a chance to perform whatever

work is required to make the new media ready for use. The function

returns an int value, but that value is ignored by

the kernel.





	struct module *owner;

	
A pointer to the module that owns this structure; it should usually

be initialized to THIS_MODULE.





Attentive readers may have noticed an interesting omission from this

list: there are no functions that actually read or write data. In the

block I/O subsystem, these operations are handled by the

request function, which deserves a large section

of its own and is discussed later in the chapter. Before we can talk

about servicing requests, we must complete our discussion of disk

registration.

[bookmark: linuxdrive3-CHP-16-SECT-1.2.2]
16.1.2.2 The gendisk structure

struct
gendisk[bookmark: linuxdrive3-CHP-16-ITERM-7309]
[bookmark: linuxdrive3-CHP-16-ITERM-7310]

(declared in <linux/genhd.h>) is the

kernel's representation of an individual disk

device. In fact, the kernel also uses gendisk

structures to represent partitions, but driver authors need not be

aware of that. There are several fields in struct

gendisk that must be initialized by a block driver:
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	int major;[bookmark: linuxdrive3-CHP-16-ITERM-7311]



	int first_minor;



	int minors;[bookmark: linuxdrive3-CHP-16-ITERM-7312]

	
Fields that describe the device number(s) used by the disk. At a

minimum, a drive must use at least one minor number. If your drive is

to be partitionable, however (and most should be), you want to

allocate one minor number for each possible partition as well. A

common value for minors is 16, which allows for

the "full disk" device and 15

partitions. Some disk drivers use 64 minor numbers for each device.





	char disk_name[32];[bookmark: linuxdrive3-CHP-16-ITERM-7313]

	
Field that should be set to the name of the disk device. It shows up

in /proc/partitions and sysfs.





	struct block_device_operations *fops;[bookmark: linuxdrive3-CHP-16-ITERM-7314]

	
Set of device operations from the previous section.





	struct request_queue *queue;[bookmark: linuxdrive3-CHP-16-ITERM-7315]

	
Structure used by the kernel to manage I/O requests for this device;

we examine it in Section 16.3.





	int flags;[bookmark: linuxdrive3-CHP-16-ITERM-7316]

	
A (little-used) set of flags describing the state of the drive. If

your device has removable media, you should set

GENHD_FL_REMOVABLE. CD-ROM drives can set

GENHD_FL_CD. If, for some reason, you do not want

partition information to show up in

/proc/partitions, set

GENHD_FL_SUPPRESS_PARTITION_INFO.





	sector_t capacity;[bookmark: linuxdrive3-CHP-16-ITERM-7317]

	
The capacity of this drive, in 512-byte sectors. The

sector_t type can be 64 bits wide. Drivers should

not set this field directly; instead, pass the number of sectors to

set_capacity.





	void *private_data;[bookmark: linuxdrive3-CHP-16-ITERM-7318]

	
Block drivers may use this field for a pointer to their own internal

data.





The kernel provides a small set of functions for working with

gendisk structures. We introduce them here, then

see how sbull uses them to make its disk devices

available to the system.

struct gendisk is a dynamically

allocated structure that requires special kernel manipulation to be

[bookmark: linuxdrive3-CHP-16-ITERM-7319]initialized; drivers cannot allocate

the structure on their own. Instead, you must call:

struct gendisk *alloc_disk(int minors);
 

The minors argument should be the number of minor

numbers this disk uses; note that you cannot change the

minors field later and expect things to work

properly.

When a disk is no longer needed, it should

be[bookmark: linuxdrive3-CHP-16-ITERM-7320]
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freed with:

void del_gendisk(struct gendisk *gd);
 

A gendisk is a reference-counted structure (it

contains a kobject). There are get_disk and

put_disk functions available to manipulate the

reference count, but drivers should never need to do that. Normally,

the call to del_gendisk removes the final

reference to a gendisk, but there are no guarantees of that. Thus, it

is possible that the structure could continue to exist (and your

methods could be called) after a call to

del_gendisk. If you delete the structure when

there are no users (that is, after the final

release or in your module

cleanup function), however, you can be sure that

you will not hear from it again.

Allocating a

gendisk[bookmark: linuxdrive3-CHP-16-ITERM-7322] structure does not make the disk

available to the system. To do that, you must initialize the

structure and call add_disk:

void add_disk(struct gendisk *gd);
 

Keep one important thing in mind here: as soon as you call

add_disk, the disk is

"live" and its methods can be

called at any time. In fact, the first such calls will probably

happen even before add_disk returns; the kernel

will read the first few blocks in an attempt to find a partition

table. So you should not call add_disk until

your driver is completely initialized and ready to respond to

requests on that disk.

[bookmark: linuxdrive3-CHP-16-SECT-1.3]
16.1.3. Initialization in sbull

It is time to get down to

[bookmark: linuxdrive3-CHP-16-ITERM-7323] [bookmark: linuxdrive3-CHP-16-ITERM-7324]
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sbull driver (available from

O'Reilly's FTP site with the rest

of the example source) implements a set of in-memory virtual disk

drives. For each drive, sbull allocates (with

vmalloc, for simplicity) an array of memory; it

then makes that array available via block operations. The

sbull driver can be tested by partitioning the

virtual device, building filesystems on it, and mounting it in the

system hierarchy.

Like our other example drivers, sbull allows a

major number to be specified at compile or module load time. If no

number is specified, one is allocated dynamically. Since a call to

register_blkdev is required for dynamic

allocation, sbull does so:

sbull_major = register_blkdev(sbull_major, "sbull");

if (sbull_major <= 0) {

    printk(KERN_WARNING "sbull: unable to get major number\n");

    return -EBUSY;

 }
 

Also, like the other virtual devices we have presented in this book,

the sbull device is described by an internal

structure:

struct sbull_dev {

        int size;                       /* Device size in sectors */

        u8 *data;                       /* The data array */

        short users;                    /* How many users */

        short media_change;             /* Flag a media change? */

        spinlock_t lock;                /* For mutual exclusion */

        struct request_queue *queue;    /* The device request queue */

        struct gendisk *gd;             /* The gendisk structure */

        struct timer_list timer;        /* For simulated media changes */

};
 

Several steps are required to initialize this structure and make the

associated device available to the system. We start with basic

initialization and allocation of the underlying memory:

memset (dev, 0, sizeof (struct sbull_dev));

dev->size = nsectors*hardsect_size;

dev->data = vmalloc(dev->size);

if (dev->data =  = NULL) {

    printk (KERN_NOTICE "vmalloc failure.\n");

    return;

}

spin_lock_init(&dev->lock);
 

It's important to allocate and initialize a spinlock

before the next step, which is the allocation of the request queue.

We look at this process in more detail when we get to request

processing; for now, suffice it to say that the necessary call is:

dev->queue = blk_init_queue(sbull_request, &dev->lock);
 

Here,

sbull_request[bookmark: linuxdrive3-CHP-16-ITERM-7330]
[bookmark: linuxdrive3-CHP-16-ITERM-7331]

is our request function�the function that

actually performs block read and write requests. When we allocate a

request queue, we must provide a spinlock that controls access to

that queue. The lock is provided by the driver rather than the

general parts of the kernel because, often, the request queue and

other driver data structures fall within the same critical section;

they tend to be accessed together. As with any function that

allocates memory, blk_init_queue can fail, so

you must check the return value before continuing.

Once we have our device memory and request queue in place, we can

allocate, initialize, and install the corresponding

gendisk structure. The code that does this work

is:

dev->gd = alloc_disk(SBULL_MINORS);

if (! dev->gd) {

    printk (KERN_NOTICE "alloc_disk failure\n");

    goto out_vfree;

}

dev->gd->major = sbull_major;

dev->gd->first_minor = which*SBULL_MINORS;

dev->gd->fops = &sbull_ops;

dev->gd->queue = dev->queue;

dev->gd->private_data = dev;

snprintf (dev->gd->disk_name, 32, "sbull%c", which + 'a');

set_capacity(dev->gd, nsectors*(hardsect_size/KERNEL_SECTOR_SIZE));

add_disk(dev->gd);
 

Here, SBULL_MINORS is the number of minor numbers

each sbull device supports. When we set the

first minor number for each device, we must take into account all of

the numbers taken by prior devices. The name of the disk is set such

that the first one is sbulla, the second

sbullb, and so on. User space can then add

partition numbers so that the third partition on the second device

might be /dev/sbullb3.

Once everything is set up, we finish with a call to

add_disk. Chances are that several of our

methods will have been called for that disk by the time

add_disk returns, so we take care to make that

call the very last step in the initialization of our device.

[bookmark: linuxdrive3-CHP-16-SECT-1.4]
16.1.4. A Note on Sector Sizes

As we have mentioned[bookmark: linuxdrive3-CHP-16-ITERM-7332]
[bookmark: linuxdrive3-CHP-16-ITERM-7333] before, the kernel treats every disk

as a linear array of 512-byte sectors. Not all hardware uses that

sector size, however. Getting a device with a different sector size

to work is not particularly hard; it is just a matter of taking care

of a few details. The sbull device exports a

hardsect_size parameter that can be used to change

the "hardware" sector size of the

device; by looking at its implementation, you can see how to add this

sort of support to your own drivers.

The first of those details is to inform the kernel of the sector size

your device supports. The hardware sector size is a parameter in the

request queue, rather than in the gendisk

structure. This size is set with a call to

blk_queue_hardsect_size[bookmark: linuxdrive3-CHP-16-ITERM-7334]
[bookmark: linuxdrive3-CHP-16-ITERM-7335]

immediately after the queue is allocated:

blk_queue_hardsect_size(dev->queue, hardsect_size);
 

Once that is done, the kernel adheres to your

device's hardware sector size. All I/O requests are

properly aligned at the beginning of a hardware sector, and the

length of each request is an integral number of sectors. You must

remember, however, that the kernel always expresses itself in

512-byte sectors; thus, it is necessary to translate all sector

numbers accordingly. So, for example, when sbull

sets the capacity of the device in its gendisk

structure, the call looks like:

set_capacity(dev->gd, nsectors*(hardsect_size/KERNEL_SECTOR_SIZE));
 

KERNEL_SECTOR_SIZE is a locally-defined constant

that we use to scale between the kernel's 512-byte

sectors and whatever size we have been told to use. This sort of

calculation pops up frequently as we [bookmark: linuxdrive3-CHP-16-ITERM-7336] [bookmark: linuxdrive3-CHP-16-ITERM-7337] [bookmark: linuxdrive3-CHP-16-ITERM-7338]look at the sbull

request processing logic.







[bookmark: linuxdrive3-CHP-16-SECT-2]
16.2. The Block Device Operations

We had a brief introduction [bookmark: linuxdrive3-CHP-16-ITERM-7339]
[bookmark: linuxdrive3-CHP-16-ITERM-7340]
[bookmark: linuxdrive3-CHP-16-ITERM-7341]to the

block_device_operations structure in the previous

section. Now we take some time to look at these operations in a bit

more detail before getting into request processing. To that end, it

is time to mention one other feature of the

sbull driver: it pretends to be a removable

device. Whenever the last user closes the device, a 30-second timer

is set; if the device is not opened during that time, the contents of

the device are cleared, and the kernel will be told that the media

has been changed. The 30-second delay gives the user time to, for

example, mount an sbull device after creating a

filesystem on it.

[bookmark: linuxdrive3-CHP-16-SECT-2.1]
16.2.1. The open and release Methods

To implement the [bookmark: linuxdrive3-CHP-16-ITERM-7342]
[bookmark: linuxdrive3-CHP-16-ITERM-7343] [bookmark: linuxdrive3-CHP-16-ITERM-7344]
[bookmark: linuxdrive3-CHP-16-ITERM-7345]simulated media removal,

sbull must know when the last user has closed

the device. A count of users is maintained by the driver. It is the

job of the open and close

methods to keep that count current.

The open method looks very similar to its

char-driver equivalent; it takes the relevant

inode and file structure

pointers as arguments. When an inode refers to a block device, the

field i_bdev->bd_disk contains a pointer to the

associated gendisk structure; this pointer can be

used to get to a driver's internal data structures

for the device. That is, in fact, the first thing that the

sbull open method does:

static int sbull_open(struct inode *inode, struct file *filp)

{

    struct sbull_dev *dev = inode->i_bdev->bd_disk->private_data;



    del_timer_sync(&dev->timer);

    filp->private_data = dev;

    spin_lock(&dev->lock);

    if (! dev->users) 

        check_disk_change(inode->i_bdev);

    dev->users++;

    spin_unlock(&dev->lock);

    return 0;

}
 

Once sbull_open has its device structure

pointer, it calls del_timer_sync to remove the

"media removal" timer, if any is

active. Note that we do not lock the device spinlock until after the

timer has been deleted; doing otherwise invites deadlock if the timer

function runs before we can delete it. With the device locked, we

call a kernel function called check_disk_change

to check whether a media change has happened. One might argue that

the kernel should make that call, but the standard pattern is for

drivers to handle it at open time.

The last step is to increment the user count and return.

The task of the release method is, in contrast,

to decrement the user count and, if indicated, start the media

removal timer:

static int sbull_release(struct inode *inode, struct file *filp)

{

    struct sbull_dev *dev = inode->i_bdev->bd_disk->private_data;



    spin_lock(&dev->lock);

    dev->users--;



    if (!dev->users) {

        dev->timer.expires = jiffies + INVALIDATE_DELAY;

        add_timer(&dev->timer);

    }

    spin_unlock(&dev->lock);



    return 0;

}
 

In a driver that handles a real, hardware device, the

open and release methods

would set the state of the driver and hardware accordingly. This work

could involve spinning the disk up or down, locking the door of a

removable device, allocating DMA buffers, etc.

You may be wondering who actually opens a block device. There are

some operations that cause a block device to be opened directly from

user space; these include partitioning a disk, building a filesystem

on a partition, or running a filesystem checker. A block driver also

sees an open call when a partition is mounted.

In this case, there is no user-space process holding an open file

descriptor for the device; the open file is, instead, held by the

kernel itself. A block driver cannot tell the difference between a

mount operation (which opens the device from

kernel space) and the invocation of a utility such as

mkfs (which opens it from user space).

[bookmark: linuxdrive3-CHP-16-SECT-2.2]
16.2.2. Supporting Removable Media

The block_device_operations
[bookmark: linuxdrive3-CHP-16-ITERM-7346]
[bookmark: linuxdrive3-CHP-16-ITERM-7347]
[bookmark: linuxdrive3-CHP-16-ITERM-7348]structure includes two

methods for supporting removable media. If you are writing a driver

for a nonremovable device, you can safely omit these methods. Their

implementation is relatively straightforward.

The

media_changed[bookmark: linuxdrive3-CHP-16-ITERM-7349]
[bookmark: linuxdrive3-CHP-16-ITERM-7350]

method is called (from check_disk_change) to see

whether the media has been changed; it should return a nonzero value

if this has happened. The sbull implementation

is simple; it queries a flag that has been set if the media removal

timer has expired:

int sbull_media_changed(struct gendisk *gd)

{

    struct sbull_dev *dev = gd->private_data;

    

    return dev->media_change;

}
 

The revalidate[bookmark: linuxdrive3-CHP-16-ITERM-7351]
[bookmark: linuxdrive3-CHP-16-ITERM-7352]

method is called after a media change; its job is to do whatever is

required to prepare the driver for operations on the new media, if

any. After the call to revalidate, the kernel

attempts to reread the partition table and start over with the

device. The sbull implementation simply resets

the

media_change[bookmark: linuxdrive3-CHP-16-ITERM-7353]

flag and zeroes out the device memory to simulate the insertion of a

blank disk.

int sbull_revalidate(struct gendisk *gd)

{

    struct sbull_dev *dev = gd->private_data;

    

    if (dev->media_change) {

        dev->media_change = 0;

        memset (dev->data, 0, dev->size);

    }

    return 0;

}
 

[bookmark: linuxdrive3-CHP-16-SECT-2.3]
16.2.3. The ioctl Method

Block devices can provide an

ioctl[bookmark: linuxdrive3-CHP-16-ITERM-7354]
[bookmark: linuxdrive3-CHP-16-ITERM-7355] method to perform device control

functions. The higher-level block subsystem code intercepts a number

of ioctl commands before your driver ever gets

to see them, however (see drivers/block/ioctl.c

in the kernel source for the full set). In fact, a modern block

driver may not have to implement very many ioctl

commands at all.

The sbull[bookmark: linuxdrive3-CHP-16-ITERM-7356]
[bookmark: linuxdrive3-CHP-16-ITERM-7357] ioctl method

handles only one command�a request for the

device's geometry:

int sbull_ioctl (struct inode *inode, struct file *filp,

                 unsigned int cmd, unsigned long arg)

{

    long size;

    struct hd_geometry geo;

    struct sbull_dev *dev = filp->private_data;



    switch(cmd) {

        case HDIO_GETGEO:

        /*

         * Get geometry: since we are a virtual device, we have to make

         * up something plausible.  So we claim 16 sectors, four heads,

         * and calculate the corresponding number of cylinders.  We set the

         * start of data at sector four.

         */

        size = dev->size*(hardsect_size/KERNEL_SECTOR_SIZE);

        geo.cylinders = (size & ~0x3f) >> 6;

        geo.heads = 4;

        geo.sectors = 16;

        geo.start = 4;

        if (copy_to_user((void _ _user *) arg, &geo, sizeof(geo)))

            return -EFAULT;

        return 0;

    }



    return -ENOTTY; /* unknown command */

}
 

Providing geometry information may seem like a curious task, since

our device is purely virtual and has nothing to do with tracks and

cylinders. Even most real-block hardware has been furnished with much

more complicated structures for many years. The kernel is not

concerned with a block device's geometry; it sees it

simply as a linear array of sectors. There are certain user-space

utilities that still expect to be able to query a

disk's geometry, however. In particular, the

fdisk tool, which edits partition tables,

depends on cylinder information and does not function properly if

that information is not available.

We would like the sbull device to be

partitionable, even with older, simple-minded tools. So, we have

provided an ioctl method that comes up with a

credible fiction for a geometry that could match the capacity of our

device. Most disk drivers do something similar. Note that, as usual,

the sector count is translated, if need be, to match the 512-byte

convention used by the[bookmark: linuxdrive3-CHP-16-ITERM-7358] [bookmark: linuxdrive3-CHP-16-ITERM-7359] [bookmark: linuxdrive3-CHP-16-ITERM-7360] kernel.







[bookmark: linuxdrive3-CHP-16-SECT-3]
16.3. Request Processing

The core of every block driver[bookmark: linuxdrive3-CHP-16-ITERM-7361] [bookmark: linuxdrive3-CHP-16-ITERM-7362] [bookmark: linuxdrive3-CHP-16-ITERM-7363]
[bookmark: linuxdrive3-CHP-16-ITERM-7364] is its

request function. This function is where the

real work gets done�or at least started; all the rest is

overhead. Consequently, we spend a fair amount of time looking at

request processing in block drivers.

A disk driver's performance can be a critical part

of the performance of the system as a whole. Therefore, the

kernel's block subsystem has been written with

performance very much in mind; it does everything possible to enable

your driver to get the most out of the devices it controls. This is a

good thing, in that it enables blindingly fast I/O. On the other

hand, the block subsystem unnecessarily exposes a great deal of

complexity in the driver API. It is possible to write a very simple

request function (we will see one shortly), but

if your driver must perform at a high level on complex hardware, it

will be anything but simple.

[bookmark: linuxdrive3-CHP-16-SECT-3.1]
16.3.1. Introduction to the request Method

The block driver request method has the

following prototype:

void request(request_queue_t *queue);
 

This function is called whenever the kernel believes it is time for

your driver to process some reads, writes, or other operations on the

device. The request function does not need to

actually complete all of the requests on the queue before it returns;

indeed, it probably does not complete any of them for most real

devices. It must, however, make a start on those requests and ensure

that they are all, eventually, processed by the driver.

Every device has a request queue. This is because actual transfers to

and from a disk can take place far away from the time the kernel

requests them, and because the kernel needs the flexibility to

schedule each transfer at the most propitious moment (grouping

together, for instance, requests that affect sectors close together

on the disk). And the request function, you may

remember, is associated with a request queue when that queue is

created. Let us look back at how sbull makes its

queue:

dev->queue = blk_init_queue(sbull_request, &dev->lock);
 

Thus, when the queue

is[bookmark: linuxdrive3-CHP-16-ITERM-7365] created, the

request function is associated with it. We also

provided a spinlock as part of the queue creation process. Whenever

our request function is called, that lock is

held by the kernel. As a result, the request

function is running in an atomic context; it must follow all of the

usual rules for atomic code discussed in Chapter 5.

The queue lock also prevents the kernel from queuing any other

requests for your device while your request

function holds the lock. Under some conditions, you may want to

consider dropping that lock while the request

function runs. If you do so, however, you must be sure not to access

the request queue, or any other data structure protected by the lock,

while the lock is not held. You must also reacquire the lock before

the request function returns.

Finally, the invocation of the request function

is (usually) entirely asynchronous with respect to the actions of any

user-space process. You cannot assume that the kernel is running in

the context of the process that initiated the current request. You do

not know if the I/O buffer provided by the request is in kernel or

user space. So any sort of operation that explicitly accesses user

space is in error and will certainly lead to trouble. As you will

see, everything your driver needs to know about the request is

contained within the structures passed to you via the request queue.

[bookmark: linuxdrive3-CHP-16-SECT-3.2]
16.3.2. A Simple request Method

The sbull example driver

[bookmark: linuxdrive3-CHP-16-ITERM-7366]
[bookmark: linuxdrive3-CHP-16-ITERM-7367]provides a few different methods for

request processing. By default, sbull uses a

method called sbull_request, which is meant to

be an example of the simplest possible request

method. Without further ado, here it is:

static void sbull_request(request_queue_t *q)

{

    struct request *req;



    while ((req = elv_next_request(q)) != NULL) {

        struct sbull_dev *dev = req->rq_disk->private_data;

        if (! blk_fs_request(req)) {

            printk (KERN_NOTICE "Skip non-fs request\n");

            end_request(req, 0);

            continue;

        }

        sbull_transfer(dev, req->sector, req->current_nr_sectors,

                req->buffer, rq_data_dir(req));

        end_request(req, 1);

    }

}
 

This function introduces the

struct[bookmark: linuxdrive3-CHP-16-ITERM-7368]
[bookmark: linuxdrive3-CHP-16-ITERM-7369] request structure.

We will examine struct request

in great detail later on; for now, suffice it to say that it

represents a block I/O request for us to execute.

The kernel provides the function

elv_next_request[bookmark: linuxdrive3-CHP-16-ITERM-7370]
[bookmark: linuxdrive3-CHP-16-ITERM-7371]

to obtain the first incomplete request on the queue; that function

returns NULL when there are no requests to be

processed. Note that elv_next_request does not

remove the request from the queue. If you call it twice with no

intervening operations, it returns the same

request structure both times. In this simple mode

of operation, requests are taken off the queue only when they are

complete.

A block request queue can contain requests that do not actually move

blocks to and from a disk. Such requests can include vendor-specific,

low-level diagnostics operations or instructions relating to

specialized device modes, such as the packet writing mode for

recordable media. Most block drivers do not know how to handle such

requests and simply fail them; sbull works in

this way as well. The call to block_fs_request

tells us whether we are looking at a filesystem request�one

that moves blocks of data. If a request is not a filesystem request,

we pass it to end_request:

void end_request(struct request *req, int succeeded);
 

When we dispose of nonfilesystem requests, we pass

succeeded as 0 to indicate that

we did not successfully complete the request. Otherwise, we call

sbull_transfer to actually move the data, using

a set of fields provided in the request structure:

[bookmark: linuxdrive3-CHP-16-ITERM-7372][bookmark: linuxdrive3-CHP-16-ITERM-7373][bookmark: linuxdrive3-CHP-16-ITERM-7374][bookmark: linuxdrive3-CHP-16-ITERM-7375]

	sector_t sector;[bookmark: linuxdrive3-CHP-16-ITERM-7372]

	
The index of the beginning sector on our device. Remember that this

sector number, like all such numbers passed between the kernel and

the driver, is expressed in 512-byte sectors. If your hardware uses a

different sector size, you need to scale sector

accordingly. For example, if the hardware uses 2048-byte sectors, you

need to divide the beginning sector number by four before putting it

into a request for the hardware.





	unsigned long nr_sectors;[bookmark: linuxdrive3-CHP-16-ITERM-7373]

	
The number of (512-byte) sectors to be transferred.





	char *buffer;[bookmark: linuxdrive3-CHP-16-ITERM-7374]

	
A pointer to the buffer to or from which the data should be

transferred. This pointer is a kernel virtual address and can be

dereferenced directly by the driver if need be.





	rq_data_dir(struct request *req);[bookmark: linuxdrive3-CHP-16-ITERM-7375]

	
This macro extracts the direction of the transfer from the request; a

zero return value denotes a read from the device, and a nonzero

return value denotes a write to the device.





Given this information, the sbull driver can

implement the actual data transfer with a simple

memcpy call�our data is already in memory,

after all. The function that performs this copy operation

(sbull_transfer) also handles the scaling of

sector sizes and ensures that we do not try to copy beyond the end of

our virtual device:

static void sbull_transfer(struct sbull_dev *dev, unsigned long sector,

        unsigned long nsect, char *buffer, int write)

{

    unsigned long offset = sector*KERNEL_SECTOR_SIZE;

    unsigned long nbytes = nsect*KERNEL_SECTOR_SIZE;



    if ((offset + nbytes) > dev->size) {

        printk (KERN_NOTICE "Beyond-end write (%ld %ld)\n", offset, nbytes);

        return;

    }

    if (write)

        memcpy(dev->data + offset, buffer, nbytes);

    else

        memcpy(buffer, dev->data + offset, nbytes);

}
 

With the code, sbull implements a complete,

simple RAM-based disk device. It is not, however, a realistic driver

for many types of devices, for a couple of reasons.

The first of those reasons is that sbull

executes requests synchronously, one at a time. High-performance disk

devices are capable of having numerous requests outstanding at the

same time; the disk's onboard controller can then

choose to execute them in the optimal order (one hopes). As long as

we process only the first request in the queue, we can never have

multiple requests being fulfilled at a given time. Being able to work

with more than one request requires a deeper understanding of request

queues and the request structure; the next few

sections help build that understanding.

There is another issue to consider, however. The best performance is

obtained from disk devices when the system performs large transfers

involving multiple sectors that are located together on the disk. The

highest cost in a disk operation is always the positioning of the

read and write heads; once that is done, the time required to

actually read or write the data is almost insignificant. The

developers who design and implement filesystems and virtual memory

subsystems understand this, so they do their best to locate related

data contiguously on the disk and to transfer as many sectors as

possible in a single request. The block subsystem also helps in this

regard; request queues contain a great deal of logic aimed at finding

adjacent requests and coalescing them into larger operations.

The sbull driver, however, takes all that work

and simply ignores it. Only one buffer is transferred at a time,

meaning that the largest single transfer is almost never going to

exceed the size of a single page. A block driver can do much better

than that, but it requires a deeper understanding of

request structures and the bio

structures from which requests are built.

The next few sections delve more deeply into how the block layer does

its job and the data structures that result from that work.

[bookmark: linuxdrive3-CHP-16-SECT-3.3]
16.3.3. Request Queues

In the simplest sense,

a[bookmark: linuxdrive3-CHP-16-ITERM-7376] block request queue is exactly that: a

queue of block I/O requests. If you look under the hood, a request

queue turns out to be a surprisingly complex data structure.

Fortunately, drivers need not worry about most of that complexity.

Request queues keep track of outstanding block I/O requests. But they

also play a crucial role in the creation of those requests. The

request queue stores parameters that describe what kinds of requests

the device is able to service: their maximum size, how many separate

segments may go into a request, the hardware sector size, alignment

requirements, etc. If your request queue is properly configured, it

should never present you with a request that your device cannot

handle.

Request queues also implement a plug-in interface that allows the use

of

multiple[bookmark: linuxdrive3-CHP-16-ITERM-7377]
[bookmark: linuxdrive3-CHP-16-ITERM-7378]
[bookmark: linuxdrive3-CHP-16-ITERM-7379]
I/O schedulers (or

elevators) to be used. An I/O

scheduler's job is to present I/O requests to your

driver in a way that maximizes performance. To this end, most I/O

schedulers accumulate a batch of requests, sort them into increasing

(or decreasing) block index order, and present the requests to the

driver in that order. The disk head, when given a sorted list of

requests, works its way from one end of the disk to the other, much

like a full elevator moves in a single direction until all of its

"requests" (people waiting to get

off) have been satisfied. The 2.6 kernel includes a

"[bookmark: linuxdrive3-CHP-16-ITERM-7380]deadline scheduler,"

which makes an effort to ensure that every request is satisfied

within a preset maximum time, and an "anticipatory

scheduler," which actually stalls a device briefly

after a read request in anticipation that another, adjacent read will

arrive almost immediately. As of this writing, the default scheduler

is the anticipatory scheduler, which seems to give the best

interactive system performance.

The I/O scheduler is also charged with merging adjacent requests.

When a new I/O request is handed to the scheduler, it searches the

queue for requests involving adjacent sectors; if one is found and if

the resulting request would not be too large, the two requests are

merged.

Request queues have a type of struct request_queue

or request_queue_t. This type, and the many

functions that operate on it, are defined in

<linux/blkdev.h>. If you are interested in

the implementation of request queues, you can find most of the code

in drivers/block/ll_rw_block.c and

elevator.c.

[bookmark: linuxdrive3-CHP-16-SECT-3.3.1]
16.3.3.1 Queue creation and deletion

As we saw in our

example[bookmark: linuxdrive3-CHP-16-ITERM-7381]
[bookmark: linuxdrive3-CHP-16-ITERM-7382]
[bookmark: linuxdrive3-CHP-16-ITERM-7383]

code, a request queue is a dynamic data structure that must be

created by the block I/O subsystem. The function to create and

initialize a request queue is:

request_queue_t *blk_init_queue(request_fn_proc *request, spinlock_t *lock);
 

The arguments are, of course, the request

function for this queue and a spinlock that controls access to the

queue. This function allocates memory (quite a bit of memory,

actually) and can fail because of this; you should always check the

return value before attempting to use the queue.

As part of the initialization of a request queue, you can set the

field queuedata (which is a void

* pointer) to any value you like. This field is the request

queue's equivalent to the

private_data we have seen in other structures.

To return a request queue to the system (at module unload time,

generally), call

blk_cleanup_queue[bookmark: linuxdrive3-CHP-16-ITERM-7384]
[bookmark: linuxdrive3-CHP-16-ITERM-7385]:

void blk_cleanup_queue(request_queue_t *);
 

After this call, your driver sees no more requests from the given

queue and should not reference it again.

[bookmark: linuxdrive3-CHP-16-SECT-3.3.2]
16.3.3.2 Queueing functions

There is a very small set

[bookmark: linuxdrive3-CHP-16-ITERM-7386]
[bookmark: linuxdrive3-CHP-16-ITERM-7387]of

functions for the manipulation of requests on queues�at least,

as far as drivers are concerned. You must hold the queue lock before

you call these functions.

The function that returns the next request to process is

elv_next_request[bookmark: linuxdrive3-CHP-16-ITERM-7388]
[bookmark: linuxdrive3-CHP-16-ITERM-7389]:

struct request *elv_next_request(request_queue_t *queue);
 

We have already seen this function in the simple

sbull example. It returns a pointer to the next

request to process (as determined by the I/O scheduler) or

NULL if no more requests remain to be processed.

elv_next_request leaves the request on the queue

but marks it as being active; this mark prevents the I/O scheduler

from attempting to merge other requests with this one once you start

to execute it.

To actually remove a request from a queue, use

blkdev_dequeue_request[bookmark: linuxdrive3-CHP-16-ITERM-7390]
[bookmark: linuxdrive3-CHP-16-ITERM-7391]:

void blkdev_dequeue_request(struct request *req);
 

If your driver operates on multiple requests from the same queue

simultaneously, it must dequeue them in this manner.

Should you need to put a dequeued request back on the queue for some

reason, you can call:

void elv_requeue_request(request_queue_t *queue, struct request *req);
 

[bookmark: linuxdrive3-CHP-16-SECT-3.3.3]
16.3.3.3 Queue control functions

The block layer exports a[bookmark: linuxdrive3-CHP-16-ITERM-7392]
[bookmark: linuxdrive3-CHP-16-ITERM-7393] set of functions that can be used

by a driver to control how a request queue operates. These functions

include:

[bookmark: linuxdrive3-CHP-16-ITERM-7394][bookmark: linuxdrive3-CHP-16-ITERM-7395][bookmark: linuxdrive3-CHP-16-ITERM-7396][bookmark: linuxdrive3-CHP-16-ITERM-7397][bookmark: linuxdrive3-CHP-16-ITERM-7398][bookmark: linuxdrive3-CHP-16-ITERM-7399][bookmark: linuxdrive3-CHP-16-ITERM-7400][bookmark: linuxdrive3-CHP-16-ITERM-7401][bookmark: linuxdrive3-CHP-16-ITERM-7402][bookmark: linuxdrive3-CHP-16-ITERM-7403][bookmark: linuxdrive3-CHP-16-ITERM-7404][bookmark: linuxdrive3-CHP-16-ITERM-7405][bookmark: linuxdrive3-CHP-16-ITERM-7406][bookmark: linuxdrive3-CHP-16-ITERM-7407][bookmark: linuxdrive3-CHP-16-ITERM-7408][bookmark: linuxdrive3-CHP-16-ITERM-7409][bookmark: linuxdrive3-CHP-16-ITERM-7410][bookmark: linuxdrive3-CHP-16-ITERM-7411][bookmark: linuxdrive3-CHP-16-ITERM-7412][bookmark: linuxdrive3-CHP-16-ITERM-7413][bookmark: linuxdrive3-CHP-16-ITERM-7414][bookmark: linuxdrive3-CHP-16-ITERM-7415][bookmark: linuxdrive3-CHP-16-ITERM-7416][bookmark: linuxdrive3-CHP-16-ITERM-7417]

	void blk_stop_queue(request_queue_t *queue);[bookmark: linuxdrive3-CHP-16-ITERM-7394]
[bookmark: linuxdrive3-CHP-16-ITERM-7395]



	void blk_start_queue(request_queue_t *queue);[bookmark: linuxdrive3-CHP-16-ITERM-7396]
[bookmark: linuxdrive3-CHP-16-ITERM-7397]

	
If your device has reached a state where it can handle no more

outstanding commands, you can call

blk_stop_queue to tell the block layer. After

this call, your request function will not be

called until you call blk_start_queue. Needless

to say, you should not forget to restart the queue when your device

can handle more requests. The queue lock must be held when calling

either of these functions.





	void blk_queue_bounce_limit(request_queue_t *queue, u64 dma_addr);[bookmark: linuxdrive3-CHP-16-ITERM-7398]
[bookmark: linuxdrive3-CHP-16-ITERM-7399]

	
Function that tells the kernel the highest physical address to which

your device can perform DMA. If a request comes in containing a

reference to memory above the limit, a bounce buffer will be used for

the operation; this is, of course, an expensive way to perform block

I/O and should be avoided whenever possible. You can provide any

reasonable physical address in this argument, or make use of the

predefined symbols

BLK_BOUNCE_HIGH[bookmark: linuxdrive3-CHP-16-ITERM-7400]
[bookmark: linuxdrive3-CHP-16-ITERM-7401]

(use [bookmark: linuxdrive3-CHP-16-ITERM-7402]
[bookmark: linuxdrive3-CHP-16-ITERM-7403]bounce buffers for high-memory pages),

BLK_BOUNCE_ISA (the driver can DMA only into the

16-MB ISA zone), or BLK_BOUNCE_ANY (the driver can

perform DMA to any address). The default value is

BLK_BOUNCE_HIGH.





	void blk_queue_max_sectors(request_queue_t *queue, unsigned short max);[bookmark: linuxdrive3-CHP-16-ITERM-7404]
[bookmark: linuxdrive3-CHP-16-ITERM-7405]



	void blk_queue_max_phys_segments(request_queue_t *queue, unsigned short max);[bookmark: linuxdrive3-CHP-16-ITERM-7406]
[bookmark: linuxdrive3-CHP-16-ITERM-7407]



	void blk_queue_max_hw_segments(request_queue_t *queue, unsigned short max);[bookmark: linuxdrive3-CHP-16-ITERM-7408]
[bookmark: linuxdrive3-CHP-16-ITERM-7409]



	void blk_queue_max_segment_size(request_queue_t *queue, unsigned int max);[bookmark: linuxdrive3-CHP-16-ITERM-7410]
[bookmark: linuxdrive3-CHP-16-ITERM-7411]

	
Functions that set parameters describing the requests that can be

satisfied by this device. blk_queue_max_sectors

can be used to set the maximum size of any request in (512-byte)

sectors; the default is 255.

blk_queue_max_phys_segments and

blk_queue_max_hw_segments both control how many

physical segments (nonadjacent areas in system memory) may be

contained within a single request. Use

blk_queue_max_phys_segments to say how many

segments your driver is prepared to cope with; this may be the size

of a staticly allocated scatterlist, for example.

blk_queue_max_hw_segments, in contrast, is the

maximum number of segments that the device itself can handle. Both of

these parameters default to 128. Finally,

blk_queue_max_segment_size tells the kernel how

large any individual segment of a request can be in bytes; the

default is 65,536 bytes.





	blk_queue_segment_boundary(request_queue_t *queue, unsigned long mask);[bookmark: linuxdrive3-CHP-16-ITERM-7412]
[bookmark: linuxdrive3-CHP-16-ITERM-7413]

	
Some devices cannot handle requests that cross a particular size

memory boundary; if your device is one of those, use this function to

tell the kernel about that boundary. For example, if your device has

trouble with requests that cross a 4-MB boundary, pass in a mask of

0x3fffff. The default mask is

0xffffffff.





	void blk_queue_dma_alignment(request_queue_t *queue, int mask);[bookmark: linuxdrive3-CHP-16-ITERM-7414]
[bookmark: linuxdrive3-CHP-16-ITERM-7415]

	
Function that tells the kernel about the memory alignment constraints

your device imposes on DMA transfers. All requests are created with

the given alignment, and the length of the request also matches the

alignment. The default mask is 0x1ff, which causes

all requests to be aligned on 512-byte boundaries.





	void blk_queue_hardsect_size(request_queue_t *queue, unsigned short max);[bookmark: linuxdrive3-CHP-16-ITERM-7416]
[bookmark: linuxdrive3-CHP-16-ITERM-7417]

	
Tells the kernel about your device's hardware sector

size. All requests generated by the kernel are a multiple of this

size and are properly aligned. All communications between the block

layer and the driver continues to be expressed in 512-byte sectors,

however.





[bookmark: linuxdrive3-CHP-16-SECT-3.4]
16.3.4. The Anatomy of a Request

In our simple example, we encountered the request

structure. However, we have barely scratched the surface of that

complicated data structure. In this section, we look, in some detail,

at how block I/O requests are represented in the Linux kernel.

Each request structure represents one block I/O

request, although it may have been formed through a merger of several

independent requests at a higher level. The sectors to be transferred

for any particular request may be distributed throughout main memory,

although they always correspond to a set of consecutive sectors on

the block device. The request is represented as a set of segments,

each of which corresponds to one in-memory buffer. The kernel may

join multiple requests that involve adjacent sectors on the disk, but

it never combines read and write operations within a single

request structure. The kernel also makes sure not

to combine requests if the result would violate any of the request

queue limits described in the previous section.

A request structure is implemented, essentially,

as a linked list of bio structures combined with

some housekeeping information to enable the driver to keep track of

its position as it works through the request. The

bio structure is a low-level description of a

portion of a block I/O request; we take a look at it now.

[bookmark: linuxdrive3-CHP-16-SECT-3.4.1]
16.3.4.1 The bio structure

When the kernel, in the form of a filesystem, the virtual memory

subsystem, or a system call, decides that a set of blocks must be

transferred to or from a block I/O device; it puts together a

bio structure to describe that operation. That

structure is then handed to the block I/O code, which merges it into

an existing request structure or, if need be,

creates a new one. The bio structure contains

everything that a block driver needs to carry out the request without

reference to the user-space process that caused that request to be

initiated.

The bio[bookmark: linuxdrive3-CHP-16-ITERM-7418]
[bookmark: linuxdrive3-CHP-16-ITERM-7419]

structure, which is defined in

<linux/bio.h>, contains a number of fields

that may be of use to driver authors:

[bookmark: linuxdrive3-CHP-16-ITERM-7420][bookmark: linuxdrive3-CHP-16-ITERM-7421][bookmark: linuxdrive3-CHP-16-ITERM-7422][bookmark: linuxdrive3-CHP-16-ITERM-7423][bookmark: linuxdrive3-CHP-16-ITERM-7424]

	sector_t bi_sector;[bookmark: linuxdrive3-CHP-16-ITERM-7420]

	
The first (512-byte) sector to be transferred for this

bio.





	unsigned int bi_size;[bookmark: linuxdrive3-CHP-16-ITERM-7421]

	
The size of the data to be transferred, in bytes. Instead, it is

often easier to use bio_sectors(bio), a macro that

gives the size in sectors.





	unsigned long bi_flags;[bookmark: linuxdrive3-CHP-16-ITERM-7422]

	
A set of flags describing the bio; the least

significant bit is set if this is a write request (although the macro

bio_data_dir(bio) should be used instead of

looking at the flags directly).





	unsigned short bio_phys_segments;[bookmark: linuxdrive3-CHP-16-ITERM-7423]



	unsigned short bio_hw_segments;[bookmark: linuxdrive3-CHP-16-ITERM-7424]

	
The number of physical segments contained within this BIO and the

number of segments seen by the hardware after DMA mapping is done,

respectively.





The core of a bio, however, is an array called

bi_io_vec[bookmark: linuxdrive3-CHP-16-ITERM-7425]
[bookmark: linuxdrive3-CHP-16-ITERM-7426],

which is made up of the following structure:

struct bio_vec {

        struct page     *bv_page;

        unsigned int    bv_len;

        unsigned int    bv_offset;

};
 

Figure 16-1 shows how these

structures all tie together. As you can see, by the time a block I/O

request is turned into a bio structure, it has

been broken down into individual pages of physical memory. All a

driver needs to do is to step through this array of structures (there

are bi_vcnt of them), and transfer data within

each page (but only len bytes starting at

offset).

[bookmark: linuxdrive3-CHP-16-FIG-1]
Figure 16-1. The bio structure
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Working directly with the bi_io_vec array is

discouraged in the interest of kernel developers being able to change

the bio structure in the future without breaking

things. To that end, a set of macros has been provided to ease the

process of working with the bio structure. The

place to start is with bio_for_each_segment, which

simply loops through every unprocessed entry in the

bi_io_vec array. This macro should be used as

follows:

int segno;

struct bio_vec *bvec;



bio_for_each_segment(bvec, bio, segno) {

    /* Do something with this segment

}
 

Within this loop, bvec points to the current

bio_vec entry, and segno is the

current segment number. These values can be used to set up DMA

transfers (an alternative way using

blk_rq_map_sg is described in Section 16.3.5.2). If you need to access the pages directly,

you should first ensure that a proper kernel virtual address exists;

to that end, you can use:

char *_ _bio_kmap_atomic(struct bio *bio, int i, enum km_type type);

void _ _bio_kunmap_atomic(char *buffer, enum km_type type);
 

This low-level function allows you to directly map the buffer found

in a given bio_vec, as indicated by the index

i. An atomic kmap is created; the caller must

provide the appropriate slot to use (as described in the section

Section 15.1.4).

The block layer also maintains a set of pointers within the

bio structure to keep track of the current

[bookmark: linuxdrive3-CHP-16-ITERM-7427]
[bookmark: linuxdrive3-CHP-16-ITERM-7428]state of request processing.

Several macros exist to provide access to that state:



	struct page *bio_page(struct bio *bio);

	
Returns a pointer to the page structure

representing the page to be transferred next.





	int bio_offset(struct bio *bio);

	
Returns the offset within the page for the data to be transferred.





	int bio_cur_sectors(struct bio *bio);

	
Returns the number of sectors to be transferred out of the current

page.





	char *bio_data(struct bio *bio);

	
Returns a kernel logical address pointing to the data to be

transferred. Note that this address is available only if the page in

question is not located in high memory; calling it in other

situations is a bug. By default, the block subsystem does not pass

high-memory buffers to your driver, but if you have changed that

setting with blk_queue_bounce_limit, you

probably should not be using bio_data.





	char *bio_kmap_irq(struct bio *bio, unsigned long *flags);



	void bio_kunmap_irq(char *buffer, unsigned long *flags);

	
bio_kmap_irq returns a kernel virtual address

for any buffer, regardless of whether it resides in high or low

memory. An atomic kmap is used, so your driver cannot sleep while

this mapping is active. Use bio_kunmap_irq to

unmap the buffer. Note that the flags argument is

passed by pointer here. Note also that since an atomic kmap is used,

you cannot map more than one segment at a time.





All of the functions just described access the

"current" buffer�the first

buffer that, as far as the kernel knows, has not been transferred.

Drivers often want to work through several buffers in the

bio before signaling completion on any of them

(with end_that_request_first, to be described

shortly), so these functions are often not useful. Several other

macros exist for working with the internals of the

bio structure (see

<linux/bio.h> for details).

[bookmark: linuxdrive3-CHP-16-SECT-3.4.2]
16.3.4.2 Request structure fields

Now that we have an idea of how the bio structure

works, we can get deep into struct
request and see how request processing works. The

fields of this structure include:



	sector_t hard_sector;



	unsigned long hard_nr_sectors;



	unsigned int hard_cur_sectors;

	
Fields that track the sectors that the driver has yet to complete.

The first sector that has not been transferred

is stored in hard_sector, the total number of

sectors yet to transfer is in hard_nr_sectors, and

the number of sectors remaining in the current bio

is hard_cur_sectors. These fields are intended for

use only within the block subsystem; drivers should not make use of

them.





	struct bio *bio;

	
bio is the linked list of bio

structures for this request. You should not access this field

directly; use rq_for_each_bio (described later)

instead.





	char *buffer;

	
The simple driver example earlier in this chapter used this field to

find the buffer for the transfer. With our deeper understanding, we

can now see that this field is simply the result of calling

bio_data on the current bio.





	unsigned short nr_phys_segments;

	
The number of distinct segments occupied by this request in physical

memory after adjacent pages have been merged.





	struct list_head queuelist;

	
The linked-list structure (as described in Section 11.5)

that links the request

into the request queue. If (and only if) you remove the request from

the queue with blkdev_dequeue_request, you may

use this list head to track the request in an internal list

maintained by your driver.





Figure 16-2 shows how the

request structure and its component bio structures fit together. In

the figure, the request has been partially satisfied; the

cbio and buffer fields point to

the first bio that has not yet been transferred.

[bookmark: linuxdrive3-CHP-16-FIG-2]
Figure 16-2. A request queue with a partially processed request
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There are many other fields inside the request

structure, but the list in this section should be enough for most

driver writers.

[bookmark: linuxdrive3-CHP-16-SECT-3.4.3]
16.3.4.3 Barrier requests

The block layer reorders

requests[bookmark: linuxdrive3-CHP-16-ITERM-7429]

before your driver sees them to improve I/O performance. Your driver,

too, can reorder requests if there is a reason to do so. Often, this

reordering happens by passing multiple requests to the drive and

letting the hardware figure out the optimal ordering. There is a

problem with unrestricted reordering of requests, however: some

applications require guarantees that certain operations will complete

before others are started. Relational database managers, for example,

must be absolutely sure that their journaling information has been

flushed to the drive before executing a transaction on the database

contents. Journaling filesystems, which are now in use on most Linux

systems, have very similar ordering constraints. If the wrong

operations are reordered, the result can be severe, undetected data

corruption.

The 2.6 block layer addresses this problem with the concept of a

barrier request. If a request is marked with

the REQ_HARDBARRER flag, it must be written to the

drive before any following request is initiated. By

"written to the drive," we mean

that the data must actually reside and be persistent on the physical

media. Many drives perform caching of write requests; this caching

improves performance, but it can defeat the purpose of barrier

requests. If a power failure occurs when the critical data is still

sitting in the drive's cache, that data is still

lost even if the drive has reported completion. So a driver that

implements barrier requests must take steps to force the drive to

actually write the data to the media.

If your driver honors barrier requests, the first step is to inform

the block layer of this fact. Barrier handling is another of the

request queues; it is set with:

void blk_queue_ordered(request_queue_t *queue, int flag);
 

To indicate that your driver implements barrier requests, set the

flag parameter to a nonzero value.

The actual implementation of barrier requests is simply a matter of

testing for the associated flag in the request

structure. A macro has been provided to perform this test:

int blk_barrier_rq(struct request *req);
 

If this macro returns a nonzero value, the request is a barrier

request. Depending on how your hardware works, you may have to stop

taking requests from the queue until the barrier request has been

completed. Other drives can understand barrier requests themselves;

in this case, all your driver has to do is to issue the proper

operations for those drives.

[bookmark: linuxdrive3-CHP-16-SECT-3.4.4]
16.3.4.4 Nonretryable requests

Block drivers often[bookmark: linuxdrive3-CHP-16-ITERM-7430] attempt to retry requests that fail

the first time. This behavior can lead to a more reliable system and

help to avoid data loss. The kernel, however, sometimes marks

requests as not being retryable. Such requests should simply fail as

quickly as possible if they cannot be executed on the first try.

If your driver is considering retrying a failed request, it should

first make a call to:

int blk_noretry_request(struct request *req);
 

If this macro returns a nonzero value, your driver should simply

abort the request with an error code instead of retrying it.

[bookmark: linuxdrive3-CHP-16-SECT-3.5]
16.3.5. Request Completion Functions

There are, as we will see,

[bookmark: linuxdrive3-CHP-16-ITERM-7431]several different ways of working

through a request structure. All of them make use

of a couple of common functions, however, which handle the completion

of an I/O request or parts of a request. Both of these functions are

atomic and can be safely called from an atomic context.

When your device has completed transferring some or all of the

sectors in an I/O request, it must inform the block subsystem with:

int end_that_request_first(struct request *req, int success, int count);
 

This function tells the block code that your driver has finished with

the transfer of count sectors starting where you

last left off. If the I/O was successful, pass

success as 1; otherwise pass

0. Note that you must signal completion in order

from the first sector to the last; if your driver and device somehow

conspire to complete requests out of order, you have to store the

out-of-order completion status until the intervening sectors have

been transferred.

The return value from end_that_request_first is

an indication of whether all sectors in this request have been

transferred or not. A return value of 0 means that

all sectors have been transferred and that the request is complete.

At that point, you must dequeue the request with

blkdev_dequeue_request (if you have not already

done so) and pass it to:

void end_that_request_last(struct request *req);
 

end_that_request_last informs whoever is waiting

for the request that it has completed and recycles the

request structure; it must be called with the

queue lock held.

In our simple sbull example, we

didn't use any of the above functions. That example,

instead, is called end_request. To show the

effects of this call, here is the entire

end_request function as seen in the 2.6.10

kernel:

void end_request(struct request *req, int uptodate)

{

    if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {

        add_disk_randomness(req->rq_disk);

        blkdev_dequeue_request(req);

        end_that_request_last(req);

    }

}
 

The function add_disk_randomness uses the timing

of block I/O requests to contribute entropy to the

system's random number pool; it should be called

only if the disk's timing is truly random. That is

true for most mechanical devices, but it is not true for a

memory-based virtual device, such as sbull. For

this reason, the more complicated version of

sbull shown in the next section does not call

add_disk_randomness.

[bookmark: linuxdrive3-CHP-16-SECT-3.5.1]
16.3.5.1 Working with bios

You now know enough to [bookmark: linuxdrive3-CHP-16-ITERM-7432]
[bookmark: linuxdrive3-CHP-16-ITERM-7433]write

a block driver that works directly with the bio

structures that make up a request. An example might help, however. If

the sbull driver is loaded with the

request_mode parameter set to

1, it registers a bio-aware

request function instead of the simple function

we saw above. That function looks like this:

static void sbull_full_request(request_queue_t *q)

{

    struct request *req;

    int sectors_xferred;

    struct sbull_dev *dev = q->queuedata;



    while ((req = elv_next_request(q)) != NULL) {

        if (! blk_fs_request(req)) {

            printk (KERN_NOTICE "Skip non-fs request\n");

            end_request(req, 0);

            continue;

        }

        sectors_xferred = sbull_xfer_request(dev, req);

        if (! end_that_request_first(req, 1, sectors_xferred)) {

            blkdev_dequeue_request(req);

            end_that_request_last(req);

        }

    }

}
 

This function simply takes each request, passes it to

sbull_xfer_request, then completes it with

end_that_request_first and, if necessary,

end_that_request_last. Thus, this function is

handling the high-level queue and request management parts of the

problem. The job of actually executing a request, however, falls to

sbull_xfer_request:

static int sbull_xfer_request(struct sbull_dev *dev, struct request *req)

{

    struct bio *bio;

    int nsect = 0;

    

    rq_for_each_bio(bio, req) {

        sbull_xfer_bio(dev, bio);

        nsect += bio->bi_size/KERNEL_SECTOR_SIZE;

    }

    return nsect;

}
 

Here we introduce another macro:

rq_for_each_bio. As you might expect, this macro

simply steps through each bio structure in the

request, giving us a pointer that we can pass to

sbull_xfer_bio for the transfer. That function

looks like:

static int sbull_xfer_bio(struct sbull_dev *dev, struct bio *bio)

{

    int i;

    struct bio_vec *bvec;

    sector_t sector = bio->bi_sector;



    /* Do each segment independently. */

    bio_for_each_segment(bvec, bio, i) {

        char *buffer = _ _bio_kmap_atomic(bio, i, KM_USER0);

        sbull_transfer(dev, sector, bio_cur_sectors(bio),

                buffer, bio_data_dir(bio) =  = WRITE);

        sector += bio_cur_sectors(bio);

        _ _bio_kunmap_atomic(bio, KM_USER0);

    }

    return 0; /* Always "succeed" */

}
 

This function simply steps through each segment in the

bio structure, gets a kernel virtual address to

access the buffer, then calls the same

sbull_transfer function we saw earlier to copy

the data over.

Each device has its own needs, but, as a general rule, the code just

shown should serve as a model for many situations where digging

through the bio structures is needed.

[bookmark: linuxdrive3-CHP-16-SECT-3.5.2]
16.3.5.2 Block requests and DMA

If you are working on a [bookmark: linuxdrive3-CHP-16-ITERM-7434]high-performance block driver, chances are

you will be using DMA for the actual data transfers. A block driver

can certainly step through the bio structures, as

described above, create a DMA mapping for each one, and pass the

result to the device. There is an easier way, however, if your device

can do scatter/gather I/O. The function:

int blk_rq_map_sg(request_queue_t *queue, struct request *req, 

                  struct scatterlist *list);
 

fills in the given list with the full set of

segments from the given request. Segments that are adjacent in memory

are coalesced prior to insertion into the scatterlist, so you need

not try to detect them yourself. The return value is the number of

entries in the list. The function also passes back, in its third

argument, a scatterlist suitable for passing to

dma_map_sg. (See Section 15.4.4.7 

for more information on

dma_map_sg.)

Your driver must allocate the storage for the scatterlist before

calling blk_rq_map_sg. The list must be able to

hold at least as many entries as the request has physical segments;

the struct request field

nr_phys_segments holds that count, which will not

exceed the maximum number of physical segments specified with

blk_queue_max_phys_segments.

If you do not want blk_rq_map_sg to coalesce

adjacent segments, you can change the default behavior with a call

such as:

clear_bit(QUEUE_FLAG_CLUSTER, &queue->queue_flags);
 

Some SCSI disk drivers mark their request queue in this way, since

they do not benefit from the coalescing of requests.

[bookmark: linuxdrive3-CHP-16-SECT-3.5.3]
16.3.5.3 Doing without a request queue

Previously, we have discussed the work the kernel does to optimize

the order of requests in the queue; this work involves sorting

requests and, perhaps, even stalling the queue to allow an

anticipated request to arrive. These techniques help the

system's performance when dealing with a real,

spinning disk drive. They are completely wasted, however, with a

device like sbull. Many block-oriented devices,

such as flash memory arrays, readers for media cards used in digital

cameras, and RAM disks have truly random-access performance and do

not benefit from advanced-request queueing logic. Other devices, such

as software RAID arrays or virtual disks created by logical volume

managers, do not have the performance characteristics for which the

block layer's request queues are optimized. For this

kind of device, it would be better to accept requests directly from

the block layer and not bother with the request queue at all.

For these situations, the block layer supports a "no

queue" mode of operation. To make use of this mode,

your driver must provide a "make

request" function, rather than a

request function. The

make_request function has this prototype:

typedef int (make_request_fn) (request_queue_t *q, struct bio *bio);
 

Note that a request queue is still present, even though it will never

actually hold any requests. The make_request

function takes as its main parameter a bio

structure, which represents one or more buffers to be transferred.

The make_request function can do one of two

things: it can either perform the transfer directly, or it can

redirect the request to another device.

Performing the transfer directly is just a matter of working through

the bio with the accessor methods we described

earlier. Since there is no request structure to

work with, however, your function should signal completion directly

to the creator of the bio structure with a call to

bio_endio:

void bio_endio(struct bio *bio, unsigned int bytes, int error);
 

Here, bytes is the number of bytes you have

transferred so far. It can be less than the number of bytes

represented by the bio as a whole; in this way,

you can signal partial completion, and update the internal

"current buffer" pointers within

the bio. You should either call

bio_endio again as your device makes further

process, or signal an error if you are unable to complete the

request. Errors are indicated by providing a nonzero value for the

error parameter; this value is normally an error

code such as -EIO. The

make_request should return 0,

regardless of whether the I/O is successful.

If sbull is loaded with

request_mode=2, it operates with a

make_request function. Since

sbull already has a function that can transfer a

single bio, the make_request

function is simple:

static int sbull_make_request(request_queue_t *q, struct bio *bio)

{

    struct sbull_dev *dev = q->queuedata;

    int status;



    status = sbull_xfer_bio(dev, bio);

    bio_endio(bio, bio->bi_size, status);

    return 0;

}
 

Please note that you should never call bio_endio

from a regular request function; that job is

handled by end_that_request_first instead.

Some block drivers, such as those implementing volume managers and

software RAID arrays, really need to redirect the request to another

device that handles the actual I/O. Writing such a driver is beyond

the scope of this book. We note, however, that if the

make_request function returns a nonzero value,

the bio is submitted again. A

"stacking" driver can, therefore,

modify the bi_bdev field to point to a different

device, change the starting sector value, then return; the block

system then passes the bio to the new device.

There is also a bio_split call that can be used

to split a bio into multiple chunks for submission

to more than one device. Although if the queue parameters are set up

correctly, splitting a bio in this way should

almost never be necessary.

Either way, you must tell the block subsystem that your driver is

using a custom make_request function. To do so,

you must allocate a request queue with:

request_queue_t *blk_alloc_queue(int flags);
 

This function differs from blk_init_queue in

that it does not actually set up the queue to hold requests. The

flags argument is a set of allocation flags to be

used in allocating memory for the queue; usually the right value is

GFP_KERNEL. Once you have a queue, pass it and

your make_request function to

blk_queue_make_request:

void blk_queue_make_request(request_queue_t *queue, make_request_fn *func);
 

The sbull code to set up the

make_request function looks like:

dev->queue = blk_alloc_queue(GFP_KERNEL);

if (dev->queue =  = NULL)

    goto out_vfree;

blk_queue_make_request(dev->queue, sbull_make_request);
 

For the curious, some time spent digging through

drivers/block/ll_rw_block.c shows that all

queues have a make_request function. The default

version, generic_make_request, handles the

incorporation of the bio into a

request structure. By providing a

make_request function of its own, a driver is

really just overriding a specific request queue

method and[bookmark: linuxdrive3-CHP-16-ITERM-7435] [bookmark: linuxdrive3-CHP-16-ITERM-7436] [bookmark: linuxdrive3-CHP-16-ITERM-7437] [bookmark: linuxdrive3-CHP-16-ITERM-7438] sorting out much of the work.
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16.4. Some Other Details

This section covers a few other aspects of the block layer that may

be of interest for advanced drivers. None of the following facilities

need to be used to write a correct driver, but they may be helpful in

some situations.

[bookmark: linuxdrive3-CHP-16-SECT-4.1]
16.4.1. Command Pre-Preparation

The block layer provides a [bookmark: linuxdrive3-CHP-16-ITERM-7439]
[bookmark: linuxdrive3-CHP-16-ITERM-7440] [bookmark: linuxdrive3-CHP-16-ITERM-7441]mechanism for

drivers to examine and preprocess requests before they are returned

from elv_next_request. This mechanism allows

drivers to set up the actual drive commands ahead of time, decide

whether the request can be handled at all, or perform other sorts of

housekeeping.

If you want to use this feature, create a command preparation

function that fits this prototype:

typedef int (prep_rq_fn) (request_queue_t *queue, struct request *req);
 

The request structure includes a field called

cmd[bookmark: linuxdrive3-CHP-16-ITERM-7442], which is an array of

BLK_MAX_CDB bytes; this array may be used by the

preparation function to store the actual hardware command (or any

other useful information). This function should return one of the

following values:



	BLKPREP_OK

	
Command preparation went normally, and the request can be handed to

your driver's request function.





	BLKPREP_KILL

	
This request cannot be completed; it is failed with an error code.





	BLKPREP_DEFER

	
This request cannot be completed at this time. It stays at the front

of the queue but is not handed to the request

function.





The preparation function is called

by[bookmark: linuxdrive3-CHP-16-ITERM-7443]
[bookmark: linuxdrive3-CHP-16-ITERM-7444]
elv_next_request immediately before the request

is returned to your driver. If this function returns

BLKPREP_DEFER, the return value from

elv_next_request to your driver is

NULL. This mode of operation can be useful if, for

example, your device has reached the maximum number of requests it

can have outstanding.

To have the block layer call your

[bookmark: linuxdrive3-CHP-16-ITERM-7445]preparation function, pass it to:

void blk_queue_prep_rq(request_queue_t *queue, prep_rq_fn *func);
 

By default, request queues have no preparation function.

[bookmark: linuxdrive3-CHP-16-SECT-4.2]
16.4.2. Tagged Command Queueing

Hardware that can have [bookmark: linuxdrive3-CHP-16-ITERM-7446] [bookmark: linuxdrive3-CHP-16-ITERM-7447] [bookmark: linuxdrive3-CHP-16-ITERM-7448] [bookmark: linuxdrive3-CHP-16-ITERM-7449]
[bookmark: linuxdrive3-CHP-16-ITERM-7450]multiple requests active at once usually

supports some form of tagged command queueing

(TCQ). TCQ is simply the technique of attaching an integer

"tag" to each request so that when

the drive completes one of those requests, it can tell the driver

which one. In previous versions of the kernel, block drivers that

implemented TCQ had to do all of the work themselves; in 2.6, a TCQ

support infrastructure has been added to the block layer for all

drivers to use.

If your drive performs tagged command queueing, you should inform the

kernel of that fact at initialization time with a call to:

int blk_queue_init_tags(request_queue_t *queue, int depth, 

                        struct blk_queue_tag *tags);
 

Here, queue is your request queue, and

depth is the number of tagged requests your device

can have outstanding at any given time. tags is an

optional pointer to an array of struct

blk_queue_tag structures; there must be

depth of them. Normally, tags

can be passed as NULL, and

blk_queue_init_tags allocates the array. If,

however, you need to share the same tags between multiple devices,

you can pass the tags array pointer (stored in the

queue_tags field) from another request queue. You

should never actually allocate the tags array

yourself; the block layer needs to initialize the array and does not

export the initialization function to modules.

Since blk_queue_init_tags allocates memory, it

can fail; it returns a negative error code to the caller in that

case.

If the number of tags your device can handle changes, you can inform

the kernel with:

int blk_queue_resize_tags(request_queue_t *queue, int new_depth);
 

The queue lock must be held during the call. This call can fail,

returning a negative error code in that case.

The association of a tag with a request structure

is done with blk_queue_start_tag, which must be

called with the queue lock held:

int blk_queue_start_tag(request_queue_t *queue, struct request *req);
 

If a tag is available, this function allocates it for this request,

stores the tag number in req->tag, and returns

0. It also dequeues the request from the queue and

links it into its own tag-tracking structure, so your driver should

take care not to dequeue the request itself if it's

using tags. If no more tags are available,

blk_queue_start_tag leaves the request on the

queue and returns a nonzero value.

When all transfers for a given request have been completed, your

driver should return the tag with:

void blk_queue_end_tag(request_queue_t *queue, struct request *req);
 

Once again, you must hold the queue lock before calling this

function. The call should be made after

end_that_request_first returns

0 (meaning that the request is complete) but

before calling end_that_request_last. Remember

that the request is already dequeued, so it would be a mistake for

your driver to do so at this point.

If you need to find the request associated with a given tag (when the

drive reports completion, for example), use

blk_queue_find_tag:

struct request *blk_queue_find_tag(request_queue_t *qeue, int tag);
 

The return value is the associated request

structure, unless something has gone truly wrong.

If things really do go wrong, your driver may find itself having to

reset or perform some other act of violence against one of its

devices. In that case, any outstanding tagged commands will not be

completed. The block layer provides a function that can help with the

recovery effort in such situations:

void blk_queue_invalidate_tags(request_queue_t *queue);
 

This function returns all outstanding tags to the pool and puts the

associated requests back into the request[bookmark: linuxdrive3-CHP-16-ITERM-7451] [bookmark: linuxdrive3-CHP-16-ITERM-7452] [bookmark: linuxdrive3-CHP-16-ITERM-7453] [bookmark: linuxdrive3-CHP-16-ITERM-7454] [bookmark: linuxdrive3-CHP-16-ITERM-7455] queue. The queue

lock must be held when you call this function.







[bookmark: linuxdrive3-CHP-16-SECT-5]
16.5. Quick Reference

[bookmark: linuxdrive3-CHP-16-ITERM-7456][bookmark: linuxdrive3-CHP-16-ITERM-7457][bookmark: linuxdrive3-CHP-16-ITERM-7458][bookmark: linuxdrive3-CHP-16-ITERM-7459][bookmark: linuxdrive3-CHP-16-ITERM-7460][bookmark: linuxdrive3-CHP-16-ITERM-7461]

	#include <linux/fs.h>



	int register_blkdev(unsigned int major, const char *name);



	int unregister_blkdev(unsigned int major, const char *name);

	
register_blkdev [bookmark: linuxdrive3-CHP-16-ITERM-7456]
[bookmark: linuxdrive3-CHP-16-ITERM-7457]
[bookmark: linuxdrive3-CHP-16-ITERM-7458]registers a block driver with the

kernel and, optionally, obtains a major number. A driver can be

unregistered with unregister_blkdev.





	struct block_device_operations

	
Structure that holds most of the methods for block drivers.





	#include <linux/genhd.h>



	struct gendisk;

	
Structure that describes a single block device within the kernel.





	struct gendisk *alloc_disk(int minors);



	void add_disk(struct gendisk *gd);

	
Functions that allocate gendisk structures and

return them to the system.





	void set_capacity(struct gendisk *gd, sector_t sectors);

	
Stores the capacity of the device (in 512-byte sectors) within the

gendisk structure.





	void add_disk(struct gendisk *gd);

	
Adds a disk to the kernel. As soon as this function is called, your

disk's methods can be invoked by the kernel.





	int check_disk_change(struct block_device *bdev);

	
A kernel function that checks for a media change in the given disk

drive and takes the required cleanup action when such a change is

detected.





	#include <linux/blkdev.h>



	request_queue_t blk_init_queue(request_fn_proc *request, spinlock_t *lock);



	void blk_cleanup_queue(request_queue_t *);

	
Functions that handle the creation and deletion of block request

queues.





	struct request *elv_next_request(request_queue_t *queue);



	void end_request(struct request *req, int success);

	
elv_next_request obtains the next request from a

request queue; end_request may be used in very

simple drivers to mark the completion of (or part of) a request.





	void blkdev_dequeue_request(struct request *req);



	void elv_requeue_request(request_queue_t *queue, struct request *req);

	
Functions that remove a request from a queue and put it back on if

necessary.





	void blk_stop_queue(request_queue_t *queue);



	void blk_start_queue(request_queue_t *queue);

	
If you need to prevent further calls to your

request method, a call to

blk_stop_queue does the trick. A call to

blk_start_queue is necessary to cause your

request method to be invoked again.





	void blk_queue_bounce_limit(request_queue_t *queue, u64 dma_addr);



	void blk_queue_max_sectors(request_queue_t *queue, unsigned short max);



	void blk_queue_max_phys_segments(request_queue_t *queue, unsigned short max);



	void blk_queue_max_hw_segments(request_queue_t *queue, unsigned short max);



	void blk_queue_max_segment_size(request_queue_t *queue, unsigned int max);



	blk_queue_segment_boundary(request_queue_t *queue, unsigned long mask);



	void blk_queue_dma_alignment(request_queue_t *queue, int mask);



	void blk_queue_hardsect_size(request_queue_t *queue, unsigned short max);

	
Functions that set various queue parameters that control how requests

are created for a particular device; the parameters are described in

the Section 16.3.3.3.





	#include <linux/bio.h>



	struct bio;

	
Low-level structure representing a portion of a block I/O request.





	bio_sectors(struct bio *bio);



	bio_data_dir(struct bio *bio);

	
Two macros that yield the size and direction of a transfer described

by a bio structure.





	bio_for_each_segment(bvec, bio, segno);

	
A pseudocontrol structure used to loop through the segments that make

up a bio structure.





	char *_ _bio_kmap_atomic(struct bio *bio, int i, enum km_type type);



	void _ _bio_kunmap_atomic(char *buffer, enum km_type type);

	
_ _bio_kmap_atomic may be used to create a

kernel virtual address for a given segment within a

bio structure. The mapping must be undone with

_ _bio_kunmap_atomic.





	struct page *bio_page(struct bio *bio);



	int bio_offset(struct bio *bio);



	int bio_cur_sectors(struct bio *bio);



	char *bio_data(struct bio *bio);



	char *bio_kmap_irq(struct bio *bio, unsigned long *flags);



	void bio_kunmap_irq(char *buffer, unsigned long *flags);

	
A set of accessor macros that provide access to the

"current" segment within a

bio structure.





	void blk_queue_ordered(request_queue_t *queue, int flag);



	int blk_barrier_rq(struct request *req);

	
Call blk_queue_ordered if your driver implements

barrier requests�as it should. The macro

blk_barrier_rq returns a nonzero value if the

current request is a barrier request.





	int blk_noretry_request(struct request *req);

	
This macro returns a nonzero value if the given request should not be

retried on errors.





	int end_that_request_first(struct request *req, int success, int count);



	void end_that_request_last(struct request *req);

	
Use end_that_request_first to indicate

completion of a portion of a block I/O request. When that function

returns 0, the request is complete and should be

passed to end_that_request_last.





	rq_for_each_bio(bio, request)

	
Another macro-implemented control structure; it steps through each

bio that makes up a request.





	int blk_rq_map_sg(request_queue_t *queue, struct request *req, struct 



	 scatterlist *list);

	
Fills the given scatterlist with the information needed to map the

buffers in the given request for a DMA transfer.





	typedef int (make_request_fn) (request_queue_t *q, struct bio *bio);

	
The prototype for the make_request function.





	void bio_endio(struct bio *bio, unsigned int bytes, int error);

	
Signal completion for a given bio. This function

should be used only if your driver obtained the

bio directly from the block layer via the

make_request function.





	request_queue_t *blk_alloc_queue(int flags);



	void blk_queue_make_request(request_queue_t *queue, make_request_fn *func);

	
Use blk_alloc_queue to allocate a request queue

that is used with a custom make_request

function. That function should be set with

blk_queue_make_request.





	typedef int (prep_rq_fn) (request_queue_t *queue, struct request *req);



	void blk_queue_prep_rq(request_queue_t *queue, prep_rq_fn *func);

	
The prototype and setup functions for a command preparation function,

which can be used to prepare the necessary hardware command before

the request is passed to your request function.





	int blk_queue_init_tags(request_queue_t *queue, int depth, struct 



	 blk_queue_tag *tags);



	int blk_queue_resize_tags(request_queue_t *queue, int new_depth);



	int blk_queue_start_tag(request_queue_t *queue, struct request *req);



	void blk_queue_end_tag(request_queue_t *queue, struct request *req);



	struct request *blk_queue_find_tag(request_queue_t *qeue, int tag);



	void blk_queue_invalidate_tags(request_queue_t *queue);

	
Support functions for drivers using tagged command [bookmark: linuxdrive3-CHP-16-ITERM-7459] [bookmark: linuxdrive3-CHP-16-ITERM-7460] [bookmark: linuxdrive3-CHP-16-ITERM-7461]queueing.
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Chapter 17. Network Drivers

Having discussed char and block drivers, we are now ready to move on

to the world of networking. Network interfaces are the third standard

class of Linux devices, and this chapter describes how they interact

with the rest of the kernel.

The role of a network interface within the system

[bookmark: linuxdrive3-CHP-17-ITERM-7463]
[bookmark: linuxdrive3-CHP-17-ITERM-7464]is

similar to that of a mounted block device. A block device registers

its disks and methods with the kernel, and then

"transmits" and

"receives" blocks on request, by

means of its request function. Similarly, a

network interface must register itself within specific kernel data

structures in order to be invoked when packets are exchanged with the

outside world.

There are a few important differences between mounted disks and

packet-delivery interfaces. To begin with, a disk exists as a special

file in the /dev directory, whereas a network

interface has no such entry point. The normal file operations (read,

write, and so on) do not make sense when applied to network

interfaces, so it is not possible to apply the Unix

"everything is a file" approach to

them. Thus, network interfaces exist in their own namespace and

export a different set of operations.

Although you may object that applications use the

read and write system calls

when using sockets, those calls act on a software object that is

distinct from the interface. Several hundred sockets can be

multiplexed on the same physical interface.

But the most important difference between the two is that block

drivers operate only in response to requests from the kernel, whereas

network drivers receive packets asynchronously from the outside.

Thus, while a block driver is asked to send a

buffer toward the kernel, the network device

asks to push incoming packets toward the kernel.

The kernel interface for network drivers is designed for this

different mode of operation.

Network drivers also have to be prepared to support a number of

administrative tasks, such as setting addresses, modifying

transmission parameters, and maintaining traffic and error

statistics. The API for network drivers reflects this need and,

therefore, looks somewhat different from the interfaces we have seen

so far.

The network subsystem of the Linux kernel is designed to be

completely protocol-independent. This applies to both networking

protocols ([bookmark: linuxdrive3-CHP-17-ITERM-7465] [bookmark: linuxdrive3-CHP-17-ITERM-7466]Internet protocol [IP] versus IPX or other

protocols) and hardware protocols (Ethernet versus token ring, etc.).

Interaction between a network driver and the kernel properly deals

with one network packet at a time; this allows protocol issues to be

hidden neatly from the driver and the physical transmission to be

hidden from the protocol.

This chapter describes how the network interfaces fit in with the

rest of the Linux kernel and provides examples in the form of a

memory-based modularized network interface, which is called (you

guessed it) snull. To simplify the discussion,

the interface uses the Ethernet hardware protocol and transmits IP

packets. The knowledge you acquire from examining

snull can be readily applied to protocols other

than IP, and writing a non-Ethernet driver is different only in tiny

details related to the actual network protocol.

This chapter doesn't talk about IP numbering

schemes, network protocols, or other general networking concepts.

Such topics are not (usually) of concern to the driver writer, and

it's impossible to offer a satisfactory overview of

networking technology in less than a few hundred pages. The

interested reader is urged to refer to other books describing

networking issues.

[bookmark: linuxdrive3-CHP-17-ITERM-7467]One note on

terminology is called for before getting into network devices. The

networking world uses the term octet to refer to

a group of eight bits, which is generally the smallest unit

understood by networking devices and protocols. The term byte is

almost never encountered in this context. In keeping with standard

usage, we will use octet when talking about networking devices.

The term "header" also merits a

quick mention. A header is a set of bytes (err, octets) prepended to

a packet as it is passed through the various layers of the networking

subsystem. When an application sends a block of data through a TCP

socket, the networking subsystem breaks that data up into packets and

puts a TCP header, describing where each packet fits within the

stream, at the beginning. The lower levels then put an IP header,

used to route the packet to its destination, in front of the TCP

header. If the packet moves over an Ethernet-like medium, an Ethernet

header, interpreted by the hardware, goes in front of the rest.

Network drivers need not concern themselves with higher-level headers

(usually), but they often must be involved in the creation of the

hardware-level header.







[bookmark: linuxdrive3-CHP-17-SECT-1]
17.1. How snull Is Designed

This section discusses the [bookmark: linuxdrive3-CHP-17-ITERM-7468] [bookmark: linuxdrive3-CHP-17-ITERM-7469]
[bookmark: linuxdrive3-CHP-17-ITERM-7470] [bookmark: linuxdrive3-CHP-17-ITERM-7471]design

concepts that led to the snull network

interface. Although this information might appear to be of marginal

use, failing to understand it might lead to problems when you play

with the sample code.

[bookmark: linuxdrive3-CHP-17-ITERM-7472]
[bookmark: linuxdrive3-CHP-17-ITERM-7473]The

first, and most important, design decision was that the sample

interfaces should remain independent of real hardware, just like most

of the sample code used in this book. This constraint led to

something that resembles the loopback interface.

snull is not a loopback interface; however, it

simulates conversations with real remote hosts in order to better

demonstrate the task of writing a network driver. The Linux loopback

driver is actually quite simple; it can be found in

drivers/net/loopback.c.

Another feature of snull is that it supports

only IP traffic. This is a consequence of the internal workings of

the interface�snull has to look inside and

interpret the packets to properly emulate a pair of hardware

interfaces. Real interfaces don't depend on the

protocol being transmitted, and this limitation of

snull doesn't affect the

fragments of code shown in this chapter.

[bookmark: linuxdrive3-CHP-17-SECT-1.1]
17.1.1. Assigning IP Numbers

The snull module creates

[bookmark: linuxdrive3-CHP-17-ITERM-7474]
[bookmark: linuxdrive3-CHP-17-ITERM-7475]two interfaces. These

interfaces are different from a simple loopback, in that whatever you

transmit through one of the interfaces loops back to the other one,

not to itself. It looks like you have two external links, but

actually your computer is replying to itself.

Unfortunately, this effect can't be accomplished

through IP number assignments alone, because the kernel

wouldn't send out a packet through interface A that

was directed to its own interface B. Instead, it would use the

loopback channel without passing through snull.

To be able to establish a communication through the

snull interfaces, the source and destination

addresses need to be modified during data transmission. In other

words, packets sent through one of the interfaces should be received

by the other, but the receiver of the outgoing packet

shouldn't be recognized as the local host. The same

applies to the source address of received packets.

To achieve this kind of "hidden

loopback," the snull interface

toggles the least significant bit of the third octet of both the

source and destination addresses; that is, it changes both the

network number and the host number of class C IP numbers. The net

effect is that packets sent to network A (connected to

sn0, the first interface) appear on the

sn1 interface as packets belonging to network B.

To avoid dealing with too many numbers, let's assign

symbolic[bookmark: linuxdrive3-CHP-17-ITERM-7476] names to the IP numbers involved:

	snullnet0[bookmark: linuxdrive3-CHP-17-ITERM-7477] is the network that is connected to the

sn0 interface. Similarly,

snullnet1 is the network connected to

sn1. The addresses of these networks should differ

only in the least significant bit of the third octet. These networks

must have 24-bit netmasks.

	local0[bookmark: linuxdrive3-CHP-17-ITERM-7478] is the IP address assigned to the

sn0 interface; it belongs to

snullnet0. The address associated with

sn1 is local1.

local0 and local1 must differ

in the least significant bit of their third octet and in the fourth

octet.

	remote0[bookmark: linuxdrive3-CHP-17-ITERM-7479] is a host in

snullnet0, and its fourth octet is the same as

that of local1. Any packet sent to

remote0 reaches local1 after

its network address has been modified by the interface code. The host

remote1 belongs to snullnet1,

and its fourth octet is the same as that of

local0.



The operation of

the[bookmark: linuxdrive3-CHP-17-ITERM-7480] [bookmark: linuxdrive3-CHP-17-ITERM-7481] snull

interfaces is depicted in Figure 17-1, in which the hostname

associated with each interface is printed near the interface name.

[bookmark: linuxdrive3-CHP-17-FIG-1]
Figure 17-1. How a host sees its interfaces

[image: ]

 

[bookmark: linuxdrive3-CHP-17-ITERM-7482]
[bookmark: linuxdrive3-CHP-17-ITERM-7483]Here

are possible values for the network numbers. Once you put these lines

in /etc/networks, you can call your networks by

name. The values were chosen from the range of numbers reserved for

private use.

snullnet0       192.168.0.0

snullnet1       192.168.1.0
 

The following are possible host numbers to put into

/etc/hosts:

192.168.0.1   local0

192.168.0.2   remote0

192.168.1.2   local1

192.168.1.1   remote1
 

The important feature of these numbers is that the host portion of

local0 is the same as that of

remote1, and the host portion of

local1 is the same as that of

remote0. You can use completely different numbers

as long as this relationship applies.

Be careful, however, if your

[bookmark: linuxdrive3-CHP-17-ITERM-7484]computer is already connected to a

network. The numbers you choose might be real Internet or intranet

numbers, and assigning them to your interfaces prevents communication

with the real hosts. For example, although the numbers just shown are

not routable Internet numbers, they could already be used by your

private network.

Whatever numbers you choose, you can correctly set up the interfaces

for operation by issuing the following commands:

[bookmark: linuxdrive3-CHP-17-ITERM-7485][bookmark: linuxdrive3-CHP-17-ITERM-7486]ifconfig sn0 local0

ifconfig sn1 local1
 

You may need to add the netmask 255.255.255.0

parameter if the address range chosen is not a class C range.

At this point, the "remote" end of

the interface can be reached. The following screendump shows how a

host reaches remote0 and

remote1 through the snull

interface:

morgana% ping -c 2 remote0

64 bytes from 192.168.0.99: icmp_seq=0 ttl=64 time=1.6 ms

64 bytes from 192.168.0.99: icmp_seq=1 ttl=64 time=0.9 ms

2 packets transmitted, 2 packets received, 0% packet loss



morgana% ping -c 2 remote1

64 bytes from 192.168.1.88: icmp_seq=0 ttl=64 time=1.8 ms

64 bytes from 192.168.1.88: icmp_seq=1 ttl=64 time=0.9 ms

2 packets transmitted, 2 packets received, 0% packet loss
 

Note that you won't be able to reach any other

"host" belonging to the two

networks, because the packets are discarded by your computer after

the address has been modified and the packet has been received. For

example, a packet aimed at 192.168.0.32 will leave through

sn0 and reappear at sn1 with a

destination address of 192.168.1.32, which is not a local address for

the host computer.

[bookmark: linuxdrive3-CHP-17-SECT-1.2]
[bookmark: linuxdrive3-CHP-17-ITERM-7487][bookmark: linuxdrive3-CHP-17-ITERM-7488]17.1.2. The Physical Transport of Packets

[bookmark: linuxdrive3-CHP-17-ITERM-7489][bookmark: linuxdrive3-CHP-17-ITERM-7490][bookmark: linuxdrive3-CHP-17-ITERM-7491]As

[bookmark: linuxdrive3-CHP-17-ITERM-7492]far

as data transport is concerned, the snull

interfaces belong to the Ethernet class.

[bookmark: linuxdrive3-CHP-17-ITERM-7493]snull emulates

Ethernet because the vast majority of existing networks�at

least the segments that a workstation connects to�are based on

Ethernet technology, be it 10base-T, 100base-T, or Gigabit.

Additionally, the kernel offers some generalized support for Ethernet

devices, and there's no reason not to use it. The

advantage of being an Ethernet device is so strong that even the

plip interface (the interface that uses the

printer ports) declares itself as an Ethernet device.

[bookmark: linuxdrive3-CHP-17-ITERM-7494]
[bookmark: linuxdrive3-CHP-17-ITERM-7495]The

last advantage of using the Ethernet setup for

snull is that you can run

tcpdump on the interface to see the packets go

by. Watching the interfaces with tcpdump can be

a useful way to see how the two interfaces work.

As was mentioned previously, snull works only

with IP packets. This limitation is a result of the fact that

snull snoops in the packets and even modifies

them, in order for the code to work. The code modifies the source,

destination, and checksum in the IP header of each packet without

checking whether it actually conveys IP information. This

quick-and-dirty data modification destroys non-IP packets. If you

want to deliver other protocols[bookmark: linuxdrive3-CHP-17-ITERM-7496] [bookmark: linuxdrive3-CHP-17-ITERM-7497] [bookmark: linuxdrive3-CHP-17-ITERM-7498] [bookmark: linuxdrive3-CHP-17-ITERM-7499] through snull,

you must modify the module's source code.







[bookmark: linuxdrive3-CHP-17-SECT-2]
17.2. Connecting to the Kernel

We start looking at the[bookmark: linuxdrive3-CHP-17-ITERM-7500] [bookmark: linuxdrive3-CHP-17-ITERM-7501] [bookmark: linuxdrive3-CHP-17-ITERM-7502] [bookmark: linuxdrive3-CHP-17-ITERM-7503] structure of network

drivers by dissecting the snull source. Keeping

the source code for several drivers handy might help you follow the

discussion and to see how real-world Linux network drivers operate.

As a place to start, we suggest loopback.c,

plip.c, and e100.c, in

order of increasing complexity. All these files live in

drivers/net, within the kernel source tree.

[bookmark: linuxdrive3-CHP-17-SECT-2.1]
17.2.1. Device Registration

When a driver module is loaded into

a[bookmark: linuxdrive3-CHP-17-ITERM-7504]
[bookmark: linuxdrive3-CHP-17-ITERM-7505]

running kernel, it requests resources and offers facilities;

there's nothing new in that. And

there's also nothing new in the way resources are

requested. The driver should probe for its device and its hardware

location (I/O ports and IRQ line)�but not register

them�as described in Section 10.2.

The way a network driver

is registered by its module initialization function is different from

char and block drivers. Since there is no equivalent of major and

minor numbers for network interfaces, a network driver does not

request such a number. Instead, the driver inserts a data structure

for each newly detected interface into a global list of network

devices.

[bookmark: linuxdrive3-CHP-17-ITERM-7506]
[bookmark: linuxdrive3-CHP-17-ITERM-7507]Each

interface is described by a struct net_device

item, which is defined in

<linux/netdevice.h>. The

snull driver keeps pointers to two of these

structures (for sn0 and sn1) in

a simple array:

struct net_device *snull_devs[2];
 

The net_device structure, like many other kernel

structures, contains a kobject and is, therefore, reference-counted

and exported via sysfs. As with other such structures, it must be

allocated dynamically. The kernel function provided to perform this

allocation is alloc_netdev, which has the

following prototype:

struct net_device *alloc_netdev(int sizeof_priv, 

                                const char *name,

                                void (*setup)(struct net_device *));
 

Here, sizeof_priv is the size of the

driver's "private

data" area; with network devices, that area is

allocated along with the net_device structure. In

fact, the two are allocated together in one large chunk of memory,

but driver authors should pretend that they don't

know that. name is the name of this interface, as

is seen by user space; this name can have a

printf-style %d in it. The

kernel replaces the %d with the next available

interface number. Finally, setup is a pointer to

an initialization function that is called to set up the rest of

the[bookmark: linuxdrive3-CHP-17-ITERM-7508] net_device

structure. We get to the initialization function shortly, but, for

now, suffice it to say that snull allocates its

two [bookmark: linuxdrive3-CHP-17-ITERM-7509]device structures in

this way:

snull_devs[0] = alloc_netdev(sizeof(struct snull_priv), "sn%d",

        snull_init);

snull_devs[1] = alloc_netdev(sizeof(struct snull_priv), "sn%d",

        snull_init);

if (snull_devs[0] =  = NULL || snull_devs[1] =  = NULL)

    goto out;
 

As always, we must check the return value to ensure that the

allocation succeeded.

The networking subsystem provides a number of helper functions

wrapped around alloc_netdev for various types of

interfaces. The most common is alloc_etherdev,

which is defined in <linux/etherdevice.h>:

struct net_device *alloc_etherdev(int sizeof_priv);
 

This function allocates a network device using

eth%d for the name argument. It provides its own

initialization function (ether_setup) that sets

several net_device fields with appropriate values

for Ethernet devices. Thus, there is no driver-supplied

initialization function for alloc_etherdev; the

driver should simply do its required initialization directly after a

successful allocation. Writers of drivers for other types of devices

may want to take advantage of one of the other helper functions, such

as alloc_fcdev (defined in

<linux/fcdevice.h>) for fiber-channel

devices, alloc_fddidev

(<linux/fddidevice.h>) for FDDI devices,

or alloc_trdev

(<linux/trdevice.h>) for token ring

devices.

snull could use

alloc_etherdev without trouble; we chose to use

alloc_netdev instead, as a way of demonstrating

the lower-level interface and to give us control over the name

assigned to the interface.

Once the net_device

structure[bookmark: linuxdrive3-CHP-17-ITERM-7510] has been initialized, completing

the process is just a matter of passing the structure to

register_netdev. In snull,

the call looks as follows:

for (i = 0; i < 2;  i++)

    if ((result = register_netdev(snull_devs[i])))

        printk("snull: error %i registering device \"%s\"\n",

                result, snull_devs[i]->name);
 

The usual cautions apply here: as soon as you call

register_netdev, your driver may be called to

operate on the device. Thus, you should not register the device until

everything has been completely initialized.

[bookmark: linuxdrive3-CHP-17-SECT-2.2]
17.2.2. Initializing Each Device

We have looked at the

allocation[bookmark: linuxdrive3-CHP-17-ITERM-7511]
[bookmark: linuxdrive3-CHP-17-ITERM-7512]

and registration of net_device structures, but we

passed over the intermediate step of completely initializing that

structure. Note that struct net_device is always

put together at runtime; it cannot be set up at compile time in the

same manner as a file_operations or

block_device_operations structure. This

initialization must be complete before

calling[bookmark: linuxdrive3-CHP-17-ITERM-7513]
[bookmark: linuxdrive3-CHP-17-ITERM-7514]
register_netdev. The

net_device structure is large and complicated;

fortunately, the kernel takes care of some Ethernet-wide defaults

through the

ether_setup[bookmark: linuxdrive3-CHP-17-ITERM-7515]
[bookmark: linuxdrive3-CHP-17-ITERM-7516]

function (which is called by alloc_etherdev).

Since snull uses

alloc_netdev[bookmark: linuxdrive3-CHP-17-ITERM-7517]
[bookmark: linuxdrive3-CHP-17-ITERM-7518],

it has a separate initialization function. The core of this function

(snull_init) is as follows:

ether_setup(dev); /* assign some of the fields */



dev->open            = snull_open;

dev->stop            = snull_release;

dev->set_config      = snull_config;

dev->hard_start_xmit = snull_tx;

dev->do_ioctl        = snull_ioctl;

dev->get_stats       = snull_stats;

dev->rebuild_header  = snull_rebuild_header;

dev->hard_header     = snull_header;

dev->tx_timeout      = snull_tx_timeout;

dev->watchdog_timeo = timeout;

/* keep the default flags, just add NOARP */

dev->flags           |= IFF_NOARP;

dev->features        |= NETIF_F_NO_CSUM;

dev->hard_header_cache = NULL;      /* Disable caching */
 

[bookmark: linuxdrive3-CHP-17-ITERM-7519]
[bookmark: linuxdrive3-CHP-17-ITERM-7520][bookmark: linuxdrive3-CHP-17-ITERM-7521]The above code is a fairly routine

initialization of the net_device structure; it is

mostly a matter of storing pointers to our various driver functions.

The single unusual feature of the code is setting

IFF_NOARP in the flags. This specifies that the

interface cannot use the [bookmark: linuxdrive3-CHP-17-ITERM-7522]Address Resolution Protocol (ARP). ARP

is a low-level Ethernet protocol; its job is to turn IP addresses

into Ethernet [bookmark: linuxdrive3-CHP-17-ITERM-7523]
[bookmark: linuxdrive3-CHP-17-ITERM-7524]medium

access control (MAC) addresses. Since the

"remote" systems simulated by

snull do not really exist, there is nobody

available to answer ARP requests for them. Rather than complicate

snull with the addition of an ARP

implementation, we chose to mark the interface as being unable to

handle that protocol. The assignment to

hard_header_cache is there for a similar reason:

it disables the caching of the (nonexistent) ARP replies on this

interface. This topic is discussed in detail in Section 17.11 later in this chapter.

[bookmark: linuxdrive3-CHP-17-ITERM-7525][bookmark: linuxdrive3-CHP-17-ITERM-7526]The initialization code also sets a

couple of fields (tx_timeout and

watchdog_timeo) that relate to the handling of

transmission timeouts. We cover this topic thoroughly in the section

Section 17.5.2.

[bookmark: linuxdrive3-CHP-17-ITERM-7527]We look now

at one more struct net_device field,

priv. Its role is similar to that of the

private_data pointer that we used for char

drivers. Unlike fops->private_data, this

priv pointer is allocated along with the

net_device structure. Direct access to the

priv field is also discouraged, for performance

and flexibility reasons. When a driver needs to get access to the

private data pointer, it should use the netdev_priv

function. Thus, the snull driver is

full of declarations such as:

struct snull_priv *priv = netdev_priv(dev);
 

The snull module declares a

snull_priv data structure to be used for

priv:

struct snull_priv {

    struct net_device_stats stats;

    int status;

    struct snull_packet *ppool;

    struct snull_packet *rx_queue;  /* List of incoming packets */

    int rx_int_enabled;

    int tx_packetlen;

    u8 *tx_packetdata;

    struct sk_buff *skb;

    spinlock_t lock;

};
 

[bookmark: linuxdrive3-CHP-17-ITERM-7528]
[bookmark: linuxdrive3-CHP-17-ITERM-7529]The

structure includes, among other things, an instance of

struct net_device_stats, which

is the standard place to hold interface statistics. The following

lines in snull_init allocate and initialize

dev->priv:

priv = netdev_priv(dev);

memset(priv, 0, sizeof(struct snull_priv));

spin_lock_init(&priv->lock);

snull_rx_ints(dev, 1);      /* enable receive interrupts */
 

[bookmark: linuxdrive3-CHP-17-SECT-2.3]
17.2.3. Module Unloading

Nothing special happens

[bookmark: linuxdrive3-CHP-17-ITERM-7530]
[bookmark: linuxdrive3-CHP-17-ITERM-7531]when

the module is unloaded. The module cleanup function simply

unregisters the interfaces, performs whatever internal cleanup is

required, and releases the net_device structure

back to the system:

void snull_cleanup(void)

{

    int i;

    

    for (i = 0; i < 2;  i++) {

        if (snull_devs[i]) {

            unregister_netdev(snull_devs[i]);

            snull_teardown_pool(snull_devs[i]);

            free_netdev(snull_devs[i]);

        }

    }

    return;

}
 

The call to

unregister_netdev[bookmark: linuxdrive3-CHP-17-ITERM-7532]
[bookmark: linuxdrive3-CHP-17-ITERM-7533]

removes the interface from the system;

free_netdev returns the

net_device structure to the kernel. If a reference

to that structure exists somewhere, it may continue to exist, but

your driver need not care about that. Once you have unregistered the

interface, the kernel no longer calls its methods.

Note that our internal cleanup (done in

snull_teardown_pool) cannot happen until the

device has been unregistered. It must, however, happen before we

return the net_device structure to the system;

once we have called

free_netdev[bookmark: linuxdrive3-CHP-17-ITERM-7534]
[bookmark: linuxdrive3-CHP-17-ITERM-7535],

we cannot make any further references to the device or our private

area.







[bookmark: linuxdrive3-CHP-17-SECT-3]
17.3. The net_device Structure in Detail

The net_device structure is at the [bookmark: linuxdrive3-CHP-17-ITERM-7536] [bookmark: linuxdrive3-CHP-17-ITERM-7537]very

core of the network driver layer and deserves a complete description.

This list describes all the fields, but more to provide a reference

than to be memorized. The rest of this chapter briefly describes each

field as soon as it is used in the sample code, so you

don't need to keep referring back to this section.

[bookmark: linuxdrive3-CHP-17-SECT-3.1]
17.3.1. Global Information

The first part of struct net_device is composed of

the following fields:

[bookmark: linuxdrive3-CHP-17-ITERM-7538][bookmark: linuxdrive3-CHP-17-ITERM-7539][bookmark: linuxdrive3-CHP-17-ITERM-7540][bookmark: linuxdrive3-CHP-17-ITERM-7541][bookmark: linuxdrive3-CHP-17-ITERM-7542]

	char name[IFNAMSIZ];[bookmark: linuxdrive3-CHP-17-ITERM-7538]

	
The name of the device. If the name set by the driver contains a

%d format string,

register_netdev replaces it with a number to

make a unique name; assigned numbers start at 0.





	unsigned long state;

	
Device[bookmark: linuxdrive3-CHP-17-ITERM-7539] state. The field includes several

flags. Drivers do not normally manipulate these flags directly;

instead, a set of utility functions has been provided. These

functions are discussed shortly when we get into driver operations.





	struct net_device *next;

	
Pointer to the next [bookmark: linuxdrive3-CHP-17-ITERM-7540]device in the global

linked list. This field shouldn't be touched by the

driver.





	int (*init)(struct net_device *dev);

	
An initialization [bookmark: linuxdrive3-CHP-17-ITERM-7541]function. If this pointer

[bookmark: linuxdrive3-CHP-17-ITERM-7542]is set, the function is called by

register_netdev to complete the initialization

of the net_device structure. Most modern network

drivers do not use this function any longer; instead, initialization

is performed before registering the interface.





[bookmark: linuxdrive3-CHP-17-SECT-3.2]
17.3.2. Hardware Information

The following

fields[bookmark: linuxdrive3-CHP-17-ITERM-7543] contain low-level hardware

information for relatively simple devices. They are a holdover from

the earlier days of Linux networking; most modern drivers do make use

of them (with the possible exception of if_port).

We list them here for completeness.

[bookmark: linuxdrive3-CHP-17-ITERM-7544][bookmark: linuxdrive3-CHP-17-ITERM-7545][bookmark: linuxdrive3-CHP-17-ITERM-7546][bookmark: linuxdrive3-CHP-17-ITERM-7547][bookmark: linuxdrive3-CHP-17-ITERM-7548]

	unsigned long rmem_end;



	unsigned long rmem_start;



	unsigned long mem_end;



	unsigned long mem_start;

	
[bookmark: linuxdrive3-CHP-17-ITERM-7544]
[bookmark: linuxdrive3-CHP-17-ITERM-7545]
[bookmark: linuxdrive3-CHP-17-ITERM-7546]Device

memory information. These fields hold the beginning and ending

addresses of the shared memory used by the device. If the device has

different receive and transmit memories, the mem

fields are used for transmit memory and the rmem

fields for receive memory. The rmem fields are

never referenced outside of the driver itself. By convention, the

end fields are set so that end
- start is the amount of

available onboard memory.





	unsigned long base_addr;

	
The I/O base address of the network interface. This field, like the

previous ones, is assigned by the driver during the device probe. The

ifconfig command can be used to display or

modify the current value. The base_addr can be

explicitly assigned on the kernel command line at system boot (via

the neTDev= parameter) or at module load time. The

field, like the memory fields described above, is not used by the

kernel.





	unsigned char irq;

	
The assigned interrupt number. The value of

dev->irq is printed by

ifconfig when interfaces are listed. This value

can usually be set at boot or load time and modified later using

ifconfig.





	unsigned char if_port;

	
The port in use on multiport devices. This field is used, for

example, with devices that support both coaxial

(IF_PORT_10BASE2) and twisted-pair

(IF_PORT_100BASET) Ethernet connections. The full

set of known port types is defined in

<linux/netdevice.h>.





	unsigned char dma;

	
The DMA channel allocated by the device. The field makes sense only

with some peripheral buses, such as ISA. It is not used outside of

the device driver itself but for informational[bookmark: linuxdrive3-CHP-17-ITERM-7547] [bookmark: linuxdrive3-CHP-17-ITERM-7548] purposes (in

ifconfig).





[bookmark: linuxdrive3-CHP-17-SECT-3.3]
17.3.3. Interface Information

Most of the information about the interface is correctly set up by

the ether_setup [bookmark: linuxdrive3-CHP-17-ITERM-7549] [bookmark: linuxdrive3-CHP-17-ITERM-7550]
[bookmark: linuxdrive3-CHP-17-ITERM-7551]function (or whatever other setup

function is appropriate for the given hardware type). Ethernet cards

can rely on this general-purpose function for most of these fields,

but the flags and dev_addr

fields are device specific and must be explicitly assigned at

initialization time.

[bookmark: linuxdrive3-CHP-17-ITERM-7552]
[bookmark: linuxdrive3-CHP-17-ITERM-7553]Some [bookmark: linuxdrive3-CHP-17-ITERM-7554]
[bookmark: linuxdrive3-CHP-17-ITERM-7555]
[bookmark: linuxdrive3-CHP-17-ITERM-7556]non-Ethernet interfaces can use

helper functions similar to ether_setup.

drivers/net/net_init.c exports a number of such

functions, including the following:

[bookmark: linuxdrive3-CHP-17-ITERM-7557][bookmark: linuxdrive3-CHP-17-ITERM-7558][bookmark: linuxdrive3-CHP-17-ITERM-7559][bookmark: linuxdrive3-CHP-17-ITERM-7560][bookmark: linuxdrive3-CHP-17-ITERM-7561][bookmark: linuxdrive3-CHP-17-ITERM-7562][bookmark: linuxdrive3-CHP-17-ITERM-7563][bookmark: linuxdrive3-CHP-17-ITERM-7564][bookmark: linuxdrive3-CHP-17-ITERM-7565][bookmark: linuxdrive3-CHP-17-ITERM-7566][bookmark: linuxdrive3-CHP-17-ITERM-7567][bookmark: linuxdrive3-CHP-17-ITERM-7568][bookmark: linuxdrive3-CHP-17-ITERM-7569][bookmark: linuxdrive3-CHP-17-ITERM-7570][bookmark: linuxdrive3-CHP-17-ITERM-7571]

	void ltalk_setup(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7557]
[bookmark: linuxdrive3-CHP-17-ITERM-7558][bookmark: linuxdrive3-CHP-17-ITERM-7559]Sets up the

fields for a LocalTalk device





	void fc_setup(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7560]
[bookmark: linuxdrive3-CHP-17-ITERM-7561][bookmark: linuxdrive3-CHP-17-ITERM-7562]Initializes fields

for fiber-channel devices





	void fddi_setup(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7563]
[bookmark: linuxdrive3-CHP-17-ITERM-7564][bookmark: linuxdrive3-CHP-17-ITERM-7565]Configures an

interface for a Fiber Distributed Data Interface (FDDI) network





	void hippi_setup(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7566]
[bookmark: linuxdrive3-CHP-17-ITERM-7567][bookmark: linuxdrive3-CHP-17-ITERM-7568]Prepares fields

for a High-Performance Parallel Interface (HIPPI) high-speed

interconnect driver





	void tr_setup(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7569]
[bookmark: linuxdrive3-CHP-17-ITERM-7570][bookmark: linuxdrive3-CHP-17-ITERM-7571]Handles

setup for token ring network interfaces





Most devices are covered by one of these classes. If yours is

something radically new and different, however, you need to assign

the following fields by hand:

[bookmark: linuxdrive3-CHP-17-ITERM-7572][bookmark: linuxdrive3-CHP-17-ITERM-7573][bookmark: linuxdrive3-CHP-17-ITERM-7574]

	unsigned short hard_header_len;

	
The hardware header length, that is, the number of octets that lead

the transmitted packet before the IP header, or other protocol

information. The value of hard_header_len is

14 (ETH_HLEN) for Ethernet

interfaces.





	unsigned mtu;

	
The maximum transfer unit (MTU). This field is used by the network

layer to drive packet transmission. Ethernet has an MTU of 1500

octets (ETH_DATA_LEN). This value can be changed

with ifconfig.





	unsigned long tx_queue_len;

	
The maximum number of frames that can be queued on the

device's transmission queue. This value is set to

1000 by ether_setup, but you can change it. For

example, plip uses 10 to avoid wasting system

memory (plip has a lower throughput than a real

Ethernet interface).





	unsigned short type;

	
The hardware type of the interface. The type field

is used by ARP to determine what kind of hardware address the

interface supports. The proper value for Ethernet interfaces is

ARPHRD_ETHER, and that is the value set by

ether_setup. The recognized types are defined in

<linux/if_arp.h>.





	unsigned char addr_len;



	unsigned char broadcast[MAX_ADDR_LEN];



	unsigned char dev_addr[MAX_ADDR_LEN];

	
[bookmark: linuxdrive3-CHP-17-ITERM-7572]
[bookmark: linuxdrive3-CHP-17-ITERM-7573][bookmark: linuxdrive3-CHP-17-ITERM-7574]Hardware (MAC)

address length and device hardware addresses. The Ethernet address

length is six octets (we are referring to the hardware ID of the

interface board), and the broadcast address is made up of six

0xff octets; ether_setup

arranges for these values to be correct. The device address, on the

other hand, must be read from the interface board in a

device-specific way, and the driver should copy it to

dev_addr. The hardware address is used to generate

correct Ethernet headers before the packet is handed over to the

driver for transmission. The snull device

doesn't use a physical interface, and it invents its

own hardware address.





	unsigned short flags;



	int features;

	
Interface flags (detailed next).





[bookmark: linuxdrive3-CHP-17-ITERM-7575]
[bookmark: linuxdrive3-CHP-17-ITERM-7576][bookmark: linuxdrive3-CHP-17-ITERM-7577][bookmark: linuxdrive3-CHP-17-ITERM-7578][bookmark: linuxdrive3-CHP-17-ITERM-7579]The flags field is a bit

mask including the following bit values. The IFF_

prefix stands for "interface

flags." Some flags are managed by the kernel, and

some are set by the interface at initialization time to assert

various capabilities and other features of the interface. The valid

flags, which are defined in <linux/if.h>,

are:

[bookmark: linuxdrive3-CHP-17-ITERM-7580][bookmark: linuxdrive3-CHP-17-ITERM-7581][bookmark: linuxdrive3-CHP-17-ITERM-7582][bookmark: linuxdrive3-CHP-17-ITERM-7583][bookmark: linuxdrive3-CHP-17-ITERM-7584][bookmark: linuxdrive3-CHP-17-ITERM-7585][bookmark: linuxdrive3-CHP-17-ITERM-7586][bookmark: linuxdrive3-CHP-17-ITERM-7587][bookmark: linuxdrive3-CHP-17-ITERM-7588][bookmark: linuxdrive3-CHP-17-ITERM-7589][bookmark: linuxdrive3-CHP-17-ITERM-7590][bookmark: linuxdrive3-CHP-17-ITERM-7591][bookmark: linuxdrive3-CHP-17-ITERM-7592][bookmark: linuxdrive3-CHP-17-ITERM-7593][bookmark: linuxdrive3-CHP-17-ITERM-7594][bookmark: linuxdrive3-CHP-17-ITERM-7595][bookmark: linuxdrive3-CHP-17-ITERM-7596][bookmark: linuxdrive3-CHP-17-ITERM-7597][bookmark: linuxdrive3-CHP-17-ITERM-7598][bookmark: linuxdrive3-CHP-17-ITERM-7599][bookmark: linuxdrive3-CHP-17-ITERM-7600][bookmark: linuxdrive3-CHP-17-ITERM-7601][bookmark: linuxdrive3-CHP-17-ITERM-7602][bookmark: linuxdrive3-CHP-17-ITERM-7603][bookmark: linuxdrive3-CHP-17-ITERM-7604][bookmark: linuxdrive3-CHP-17-ITERM-7605][bookmark: linuxdrive3-CHP-17-ITERM-7606][bookmark: linuxdrive3-CHP-17-ITERM-7607][bookmark: linuxdrive3-CHP-17-ITERM-7608][bookmark: linuxdrive3-CHP-17-ITERM-7609][bookmark: linuxdrive3-CHP-17-ITERM-7610][bookmark: linuxdrive3-CHP-17-ITERM-7611][bookmark: linuxdrive3-CHP-17-ITERM-7612][bookmark: linuxdrive3-CHP-17-ITERM-7613][bookmark: linuxdrive3-CHP-17-ITERM-7614][bookmark: linuxdrive3-CHP-17-ITERM-7615]

	IFF_UP[bookmark: linuxdrive3-CHP-17-ITERM-7580]
[bookmark: linuxdrive3-CHP-17-ITERM-7581]

	
This flag is read-only for the driver. The kernel turns it on when

the interface is active and ready to transfer packets.





	IFF_BROADCAST[bookmark: linuxdrive3-CHP-17-ITERM-7582]
[bookmark: linuxdrive3-CHP-17-ITERM-7583]

	
This flag (maintained by the networking code) states that the

interface allows broadcasting. Ethernet boards do.





	IFF_DEBUG[bookmark: linuxdrive3-CHP-17-ITERM-7584]
[bookmark: linuxdrive3-CHP-17-ITERM-7585]

	
This marks debug mode. The flag can be used to control the verbosity

of your printk calls or for other debugging

purposes. Although no in-tree driver currently uses this flag, it can

be set and reset by user programs via ioctl, and

your driver can use it. The

misc-progs/netifdebug program can be used to

turn the flag on and off.





	IFF_LOOPBACK[bookmark: linuxdrive3-CHP-17-ITERM-7586]
[bookmark: linuxdrive3-CHP-17-ITERM-7587]

	
This flag should be set only in the loopback interface. The kernel

checks for IFF_LOOPBACK instead of hardwiring the

lo name as a special interface.





	IFF_POINTOPOINT[bookmark: linuxdrive3-CHP-17-ITERM-7588]
[bookmark: linuxdrive3-CHP-17-ITERM-7589]

	
This flag signals that the interface is connected to a point-to-point

link. It is set by the driver or, sometimes, by

ifconfig. For example, plip

and the PPP driver have it set.





	IFF_NOARP[bookmark: linuxdrive3-CHP-17-ITERM-7590]
[bookmark: linuxdrive3-CHP-17-ITERM-7591]

	
[bookmark: linuxdrive3-CHP-17-ITERM-7592]This means that the interface

can't perform ARP. For example, point-to-point

interfaces don't need to run ARP, which would only

impose additional traffic without retrieving useful information.

snull runs without ARP capabilities, so it sets

the flag.





	IFF_PROMISC[bookmark: linuxdrive3-CHP-17-ITERM-7593]
[bookmark: linuxdrive3-CHP-17-ITERM-7594]

	
This flag is set (by the networking code) to activate promiscuous

operation. By default, Ethernet interfaces use a hardware filter to

ensure that they receive broadcast packets and packets directed to

that interface's hardware address only. Packet

sniffers such as tcpdump set promiscuous mode on

the interface in order to retrieve all packets that travel on the

interface's transmission medium.





	IFF_MULTICAST[bookmark: linuxdrive3-CHP-17-ITERM-7595]
[bookmark: linuxdrive3-CHP-17-ITERM-7596]

	
[bookmark: linuxdrive3-CHP-17-ITERM-7597]This flag is set by drivers to mark

interfaces that are capable of multicast transmission.

ether_setup sets

IFF_MULTICAST by default, so if your driver does

not support multicast, it must clear the flag at initialization time.





	IFF_ALLMULTI[bookmark: linuxdrive3-CHP-17-ITERM-7598]
[bookmark: linuxdrive3-CHP-17-ITERM-7599]

	
This flag tells the interface to receive all multicast packets. The

kernel sets it when the host performs multicast routing, only if

IFF_MULTICAST is set.

IFF_ALLMULTI is read-only for the driver.

Multicast flags are used in Section 17.14

later in this chapter.





	IFF_MASTER[bookmark: linuxdrive3-CHP-17-ITERM-7600]
[bookmark: linuxdrive3-CHP-17-ITERM-7601]



	IFF_SLAVE[bookmark: linuxdrive3-CHP-17-ITERM-7602]
[bookmark: linuxdrive3-CHP-17-ITERM-7603]

	
These flags are used by the load equalization code. The interface

driver doesn't need to know about them.





	IFF_PORTSEL[bookmark: linuxdrive3-CHP-17-ITERM-7604]
[bookmark: linuxdrive3-CHP-17-ITERM-7605]



	IFF_AUTOMEDIA[bookmark: linuxdrive3-CHP-17-ITERM-7606]
[bookmark: linuxdrive3-CHP-17-ITERM-7607]

	
These flags signal that the device is capable of switching between

multiple media types; for example, [bookmark: linuxdrive3-CHP-17-ITERM-7608] [bookmark: linuxdrive3-CHP-17-ITERM-7609]unshielded twisted

pair (UTP) versus coaxial Ethernet cables. If

IFF_AUTOMEDIA is set, the device selects the

proper medium automatically. In practice, the kernel makes no use of

either flag.





	IFF_DYNAMIC[bookmark: linuxdrive3-CHP-17-ITERM-7610]
[bookmark: linuxdrive3-CHP-17-ITERM-7611]

	
This flag, set by the driver, indicates that the address of this

interface can change. It is not currently used by the kernel.





	IFF_RUNNING[bookmark: linuxdrive3-CHP-17-ITERM-7612]
[bookmark: linuxdrive3-CHP-17-ITERM-7613]

	
This flag indicates that the interface is up and running. It is

mostly present for BSD compatibility; the kernel makes little use of

it. Most network drivers need not worry about

IFF_RUNNING.





	IFF_NOTRAILERS[bookmark: linuxdrive3-CHP-17-ITERM-7614]
[bookmark: linuxdrive3-CHP-17-ITERM-7615]

	
This flag is unused in Linux, but it exists for BSD compatibility.





When a program changes IFF_UP, the

open or stop device method

is called. Furthermore, when IFF_UP or any other

flag is modified, the

set_multicast_list[bookmark: linuxdrive3-CHP-17-ITERM-7616]
[bookmark: linuxdrive3-CHP-17-ITERM-7617]

method is invoked. If the driver needs to perform some action in

response to a modification of the flags, it must take that action in

set_multicast_list. For example, when

IFF_PROMISC is set or reset,

set_multicast_list must notify the onboard

hardware filter. The responsibilities of this device method are

outlined in Section 17.14.

The features field of the

net_device structure is set by the driver to tell

the kernel about any special hardware capabilities that this

interface has. We will discuss some of these features; others are

beyond the scope of this book. The full set is:



	NETIF_F_SG



	NETIF_F_FRAGLIST

	
Both of these flags control the use of scatter/gather I/O. If your

interface can transmit a packet that has been split into several

distinct memory segments, you should set

NETIF_F_SG. Of course, you have to actually

implement the scatter/gather I/O (we describe how that is done in the

Section 17.5.3). NETIF_F_FRAGLIST states

that your interface can cope with packets that have been fragmented;

only the loopback driver does this in 2.6.





Note that the kernel does not perform scatter/gather I/O to your

device if it does not also provide some form of checksumming as well.

The reason is that, if the kernel has to make a pass over a

fragmented ("nonlinear") packet to

calculate the checksum, it might as well copy the data and coalesce

the packet at the same time.



	NETIF_F_IP_CSUM



	NETIF_F_NO_CSUM



	NETIF_F_HW_CSUM

	
These flags are all ways of telling the kernel that it need not apply

checksums to some or all packets leaving the system by this

interface. Set NETIF_F_IP_CSUM if your interface

can checksum IP packets but not others. If no checksums are ever

required for this interface, set NETIF_F_NO_CSUM.

The loopback driver sets this flag, and snull

does, too; since packets are only transferred through system memory,

there is (one hopes!) no opportunity for them to be corrupted, and no

need to check them. If your hardware does checksumming itself, set

NETIF_F_HW_CSUM.





	NETIF_F_HIGHDMA

	
Set this flag if your device can perform DMA to high memory. In the

absence of this flag, all packet buffers provided to your driver are

allocated in low memory.





	NETIF_F_HW_VLAN_TX



	NETIF_F_HW_VLAN_RX



	NETIF_F_HW_VLAN_FILTER



	NETIF_F_VLAN_CHALLENGED

	
These options describe your hardware's support for

802.1q VLAN packets. VLAN support is beyond what we can cover in this

chapter. If VLAN packets confuse your device (which they really

shouldn't), set the

NETIF_F_VLAN_CHALLENGED flag.





	NETIF_F_TSO

	
Set this flag if your device can perform TCP segmentation offloading.

TSO is an advanced feature that we cannot cover here.





[bookmark: linuxdrive3-CHP-17-SECT-3.4]
17.3.4. The Device Methods

As happens with the

[bookmark: linuxdrive3-CHP-17-ITERM-7618]
[bookmark: linuxdrive3-CHP-17-ITERM-7619]char

and block drivers, each network device declares the functions that

act on it. Operations that can be performed on network interfaces are

listed in this section. Some of the operations can be left

NULL, and others are usually untouched because

ether_setup assigns suitable methods to them.

Device methods for a network interface can be divided into two

groups: fundamental and optional. Fundamental methods include those

that are needed to be able to use the interface; optional methods

implement more advanced functionalities that are not strictly

required. The following are the fundamental methods:

[bookmark: linuxdrive3-CHP-17-ITERM-7620][bookmark: linuxdrive3-CHP-17-ITERM-7621][bookmark: linuxdrive3-CHP-17-ITERM-7622][bookmark: linuxdrive3-CHP-17-ITERM-7623][bookmark: linuxdrive3-CHP-17-ITERM-7624][bookmark: linuxdrive3-CHP-17-ITERM-7625][bookmark: linuxdrive3-CHP-17-ITERM-7626][bookmark: linuxdrive3-CHP-17-ITERM-7627][bookmark: linuxdrive3-CHP-17-ITERM-7628][bookmark: linuxdrive3-CHP-17-ITERM-7629][bookmark: linuxdrive3-CHP-17-ITERM-7630][bookmark: linuxdrive3-CHP-17-ITERM-7631][bookmark: linuxdrive3-CHP-17-ITERM-7632][bookmark: linuxdrive3-CHP-17-ITERM-7633][bookmark: linuxdrive3-CHP-17-ITERM-7634][bookmark: linuxdrive3-CHP-17-ITERM-7635][bookmark: linuxdrive3-CHP-17-ITERM-7636][bookmark: linuxdrive3-CHP-17-ITERM-7637][bookmark: linuxdrive3-CHP-17-ITERM-7638][bookmark: linuxdrive3-CHP-17-ITERM-7639][bookmark: linuxdrive3-CHP-17-ITERM-7640]

	int (*open)(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7620]
[bookmark: linuxdrive3-CHP-17-ITERM-7621]Opens the interface. The interface is

opened whenever ifconfig activates it. The

open method should register any system resource

it needs (I/O ports, IRQ, DMA, etc.), turn on the hardware, and

perform any other setup your device requires.





	int (*stop)(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7622]
[bookmark: linuxdrive3-CHP-17-ITERM-7623]Stops

the interface. The interface is stopped when it is brought down. This

function should reverse operations performed at open time.





	int (*hard_start_xmit) (struct sk_buff *skb, struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7624]
[bookmark: linuxdrive3-CHP-17-ITERM-7625]Method

that initiates the transmission of a packet. The full packet

(protocol headers and all) is contained in a socket buffer

(sk_buff) structure. Socket buffers are introduced

later in this chapter.





	int (*hard_header) (struct sk_buff *skb, struct net_device *dev, unsigned 



	 short type, void *daddr, void *saddr, unsigned len);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7626]
[bookmark: linuxdrive3-CHP-17-ITERM-7627][bookmark: linuxdrive3-CHP-17-ITERM-7628][bookmark: linuxdrive3-CHP-17-ITERM-7629]Function

(called before hard_start_xmit) that builds the

hardware header from the source and destination hardware addresses

that were previously retrieved; its job is to organize the

information passed to it as arguments into an appropriate,

device-specific hardware header. eth_header is

the default function for Ethernet-like interfaces, and

ether_setup assigns this field accordingly.





	int (*rebuild_header)(struct sk_buff *skb);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7630]
[bookmark: linuxdrive3-CHP-17-ITERM-7631]Function

used to rebuild the hardware header after ARP resolution completes

but before a packet is transmitted. The default function used by

Ethernet devices uses the ARP support code to fill the packet with

missing information.





	void (*tx_timeout)(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7632]
[bookmark: linuxdrive3-CHP-17-ITERM-7633][bookmark: linuxdrive3-CHP-17-ITERM-7634]Method called by the networking code when

a packet transmission fails to complete within a reasonable period,

on the assumption that an interrupt has been missed or the interface

has locked up. It should handle the problem and resume packet

transmission.





	struct net_device_stats *(*get_stats)(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7635]
[bookmark: linuxdrive3-CHP-17-ITERM-7636][bookmark: linuxdrive3-CHP-17-ITERM-7637]Whenever an application needs to

get statistics for the interface, this method is called. This

happens, for example, when ifconfig or

netstat -i is run. A sample implementation for

snull is introduced in Section 17.13.





	int (*set_config)(struct net_device *dev, struct ifmap *map);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7638]
[bookmark: linuxdrive3-CHP-17-ITERM-7639][bookmark: linuxdrive3-CHP-17-ITERM-7640]Changes the interface configuration.

This method is the entry point for configuring the driver. The I/O

address for the device and its interrupt number can be changed at

runtime using set_config. This capability can be

used by the system administrator if the interface cannot be probed

for. Drivers for modern hardware normally do not need to implement

this method.





The remaining

device[bookmark: linuxdrive3-CHP-17-ITERM-7641]
[bookmark: linuxdrive3-CHP-17-ITERM-7642]
[bookmark: linuxdrive3-CHP-17-ITERM-7643]

operations are optional:

[bookmark: linuxdrive3-CHP-17-ITERM-7644][bookmark: linuxdrive3-CHP-17-ITERM-7645][bookmark: linuxdrive3-CHP-17-ITERM-7646][bookmark: linuxdrive3-CHP-17-ITERM-7647][bookmark: linuxdrive3-CHP-17-ITERM-7648][bookmark: linuxdrive3-CHP-17-ITERM-7649][bookmark: linuxdrive3-CHP-17-ITERM-7650][bookmark: linuxdrive3-CHP-17-ITERM-7651][bookmark: linuxdrive3-CHP-17-ITERM-7652][bookmark: linuxdrive3-CHP-17-ITERM-7653][bookmark: linuxdrive3-CHP-17-ITERM-7654][bookmark: linuxdrive3-CHP-17-ITERM-7655][bookmark: linuxdrive3-CHP-17-ITERM-7656][bookmark: linuxdrive3-CHP-17-ITERM-7657][bookmark: linuxdrive3-CHP-17-ITERM-7658][bookmark: linuxdrive3-CHP-17-ITERM-7659][bookmark: linuxdrive3-CHP-17-ITERM-7660][bookmark: linuxdrive3-CHP-17-ITERM-7661][bookmark: linuxdrive3-CHP-17-ITERM-7662][bookmark: linuxdrive3-CHP-17-ITERM-7663][bookmark: linuxdrive3-CHP-17-ITERM-7664][bookmark: linuxdrive3-CHP-17-ITERM-7665][bookmark: linuxdrive3-CHP-17-ITERM-7666]

	int weight;



	int (*poll)(struct net_device *dev; int *quota);

	
Method [bookmark: linuxdrive3-CHP-17-ITERM-7644]
[bookmark: linuxdrive3-CHP-17-ITERM-7645]provided

by NAPI-compliant drivers to operate the interface in a polled mode,

with interrupts disabled. NAPI (and the weight

field) are covered in Section 17.8.





	void (*poll_controller)(struct net_device *dev);

	
Function that asks the driver to check for events on the interface in

situations where interrupts are disabled. It is used for specific

in-kernel networking tasks, such as remote consoles and kernel

debugging over the network.





	int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7646]
[bookmark: linuxdrive3-CHP-17-ITERM-7647][bookmark: linuxdrive3-CHP-17-ITERM-7648]Performs interface-specific

ioctl commands. (Implementation of those

commands is described in Section 17.12.) The corresponding field in

struct net_device can be left

as NULL if the interface doesn't

need any interface-specific commands.





	void (*set_multicast_list)(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7649]
[bookmark: linuxdrive3-CHP-17-ITERM-7650]Method

called when the multicast list for the device changes and when the

flags change. See the Section 17.14

for further details and a sample implementation.





	int (*set_mac_address)(struct net_device *dev, void *addr);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7651]
[bookmark: linuxdrive3-CHP-17-ITERM-7652][bookmark: linuxdrive3-CHP-17-ITERM-7653][bookmark: linuxdrive3-CHP-17-ITERM-7654]Function that can be implemented if the

interface supports the ability to change its hardware address. Many

interfaces don't support this ability at all. Others

use the default eth_mac_addr implementation

(from drivers/net/net_init.c).

eth_mac_addr only copies the new address into

dev->dev_addr, and it does so only if the

interface is not running. Drivers that use

eth_mac_addr should set the hardware MAC address

from dev->dev_addr in their

open method.





	int (*change_mtu)(struct net_device *dev, int new_mtu);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7655]
[bookmark: linuxdrive3-CHP-17-ITERM-7656][bookmark: linuxdrive3-CHP-17-ITERM-7657]Function that takes action

if there is a change in the maximum transfer unit (MTU) for the

interface. If the driver needs to do anything particular when the MTU

is changed by the user, it should declare its own function;

otherwise, the default does the right thing.

snull has a template for the function if you are

interested.





	int (*header_cache) (struct neighbour *neigh, struct hh_cache *hh);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7658]
[bookmark: linuxdrive3-CHP-17-ITERM-7659]header_cache

is called to fill in the hh_cache structure with

the results of an ARP query. Almost all Ethernet-like drivers can use

the default eth_header_cache implementation.





	int (*header_cache_update) (struct hh_cache *hh, struct net_device *dev, 



	 unsigned char *haddr);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7660]
[bookmark: linuxdrive3-CHP-17-ITERM-7661]Method

that updates the destination address in the

hh_cache structure in response to a change.

Ethernet devices use eth_header_cache_update.





	int (*hard_header_parse) (struct sk_buff *skb, unsigned char *haddr);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7662][bookmark: linuxdrive3-CHP-17-ITERM-7663]The hard_header_parse

method extracts the source address from the packet contained in

skb, copying it into the buffer at

haddr. The return value from the function is the

[bookmark: linuxdrive3-CHP-17-ITERM-7664]
[bookmark: linuxdrive3-CHP-17-ITERM-7665]
[bookmark: linuxdrive3-CHP-17-ITERM-7666]length

of that address. Ethernet devices normally use

eth_header_parse.





[bookmark: linuxdrive3-CHP-17-SECT-3.5]
17.3.5. Utility Fields

[bookmark: linuxdrive3-CHP-17-ITERM-7667] [bookmark: linuxdrive3-CHP-17-ITERM-7668]The remaining struct

net_device data fields are used by the interface to hold

useful status information. Some of the fields are used by

ifconfig and netstat to

provide the user with information about the current configuration.

Therefore, an interface should assign values to these fields:

[bookmark: linuxdrive3-CHP-17-ITERM-7669][bookmark: linuxdrive3-CHP-17-ITERM-7670][bookmark: linuxdrive3-CHP-17-ITERM-7671][bookmark: linuxdrive3-CHP-17-ITERM-7672][bookmark: linuxdrive3-CHP-17-ITERM-7673][bookmark: linuxdrive3-CHP-17-ITERM-7674][bookmark: linuxdrive3-CHP-17-ITERM-7675]

	unsigned long trans_start;



	unsigned long last_rx;

	
[bookmark: linuxdrive3-CHP-17-ITERM-7669]
[bookmark: linuxdrive3-CHP-17-ITERM-7670]Fields

that hold a jiffies value. The driver is responsible for updating

these values when transmission begins and when a packet is received,

respectively. The trans_start value is used by the

networking subsystem to detect transmitter lockups.

last_rx is currently unused, but the driver should

maintain this field anyway to be prepared for future use.





	int watchdog_timeo;

	
[bookmark: linuxdrive3-CHP-17-ITERM-7671][bookmark: linuxdrive3-CHP-17-ITERM-7672]The minimum time (in

jiffies) that should pass before the networking layer decides that a

transmission timeout has occurred and calls the

driver's tx_timeout function.





	void *priv;

	
The equivalent of filp->private_data. In modern

drivers, this field is set by alloc_netdev and

should not be accessed directly; use netdev_priv

instead.





	struct dev_mc_list *mc_list;



	int mc_count;

	
Fields that handle multicast transmission.

mc_count is the count of items in

mc_list. See the Section 17.14

for further details.





	spinlock_t xmit_lock;



	int xmit_lock_owner;

	
[bookmark: linuxdrive3-CHP-17-ITERM-7673]
[bookmark: linuxdrive3-CHP-17-ITERM-7674]
[bookmark: linuxdrive3-CHP-17-ITERM-7675]The

xmit_lock is used to avoid multiple simultaneous

calls to the driver's

hard_start_xmit function.

xmit_lock_owner is the number of the CPU that has

obtained xmit_lock. The driver should make no

changes to these fields.





There are other fields in [bookmark: linuxdrive3-CHP-17-ITERM-7676] [bookmark: linuxdrive3-CHP-17-ITERM-7677] [bookmark: linuxdrive3-CHP-17-ITERM-7678] [bookmark: linuxdrive3-CHP-17-ITERM-7679]struct net_device,

but they are not used by network drivers.







[bookmark: linuxdrive3-CHP-17-SECT-4]
17.4. Opening and Closing

Our driver can probe for the[bookmark: linuxdrive3-CHP-17-ITERM-7680]
[bookmark: linuxdrive3-CHP-17-ITERM-7681]
[bookmark: linuxdrive3-CHP-17-ITERM-7682] [bookmark: linuxdrive3-CHP-17-ITERM-7683] [bookmark: linuxdrive3-CHP-17-ITERM-7684] interface at module load time

or at kernel boot. Before the interface can carry packets, however,

the kernel must open it and assign an address to it. The kernel opens

or closes an interface in response to the

ifconfig command.

When ifconfig is used to assign an address to

the interface, it performs two tasks. First, it assigns the address

by means of ioctl(SIOCSIFADDR) (Socket I/O Control

Set Interface Address). Then it sets the IFF_UP

bit in dev->flag by means of

ioctl(SIOCSIFFLAGS) (Socket I/O Control Set

Interface Flags) to turn the interface on.

As far as the device is concerned,

ioctl(SIOCSIFADDR) does nothing. No driver

function is invoked�the task is device independent, and the

kernel performs it. The latter command

(ioctl(SIOCSIFFLAGS)), however, calls the

open method for the device.

Similarly, when the interface is shut down,

ifconfig uses

ioctl(SIOCSIFFLAGS) to clear

IFF_UP, and the stop method

is called.

Both device methods return 0 in case of success

and the usual negative value in case of error.

As far as the actual code is concerned, the driver has to perform

many of the same tasks as the char and block drivers do.

open requests any system resources it needs and

tells the interface to come up; stop shuts down

the interface and releases system resources. Network drivers must

perform some additional steps at open time,

however.

[bookmark: linuxdrive3-CHP-17-ITERM-7685]
[bookmark: linuxdrive3-CHP-17-ITERM-7686]
[bookmark: linuxdrive3-CHP-17-ITERM-7687][bookmark: linuxdrive3-CHP-17-ITERM-7688]First, the hardware (MAC) address needs to

be copied from the hardware device to

dev->dev_addr before the interface can

communicate with the outside world. The hardware address can then be

copied to the device at open time. The snull

software interface assigns it from within open;

it just fakes a hardware number using an ASCII string of length

ETH_ALEN, the length of Ethernet hardware

addresses.

[bookmark: linuxdrive3-CHP-17-ITERM-7689]
[bookmark: linuxdrive3-CHP-17-ITERM-7690]
[bookmark: linuxdrive3-CHP-17-ITERM-7691]The open method

should also start the interface's transmit queue

(allowing it to accept packets for transmission) once it is ready to

start sending data. The kernel provides a function to start the

queue:

void netif_start_queue(struct net_device *dev);
 

The open code for snull

looks like the following:

int snull_open(struct net_device *dev)

{

    /* request_region(  ), request_irq(  ), ....  (like fops->open) */



    /* 

     * Assign the hardware address of the board: use "\0SNULx", where

     * x is 0 or 1. The first byte is '\0' to avoid being a multicast

     * address (the first byte of multicast addrs is odd).

     */

    memcpy(dev->dev_addr, "\0SNUL0", ETH_ALEN);

    if (dev =  = snull_devs[1])

        dev->dev_addr[ETH_ALEN-1]++; /* \0SNUL1 */

    netif_start_queue(dev);

    return 0;

}
 

As you can see, in the absence of real hardware, there is little to

do in the open method. The same is true of the

stop method; it just reverses the operations of

open. For this reason, the function implementing

stop is often called close

or release.

int snull_release(struct net_device *dev)

{

    /* release ports, irq and such -- like fops->close */



    netif_stop_queue(dev); /* can't transmit any more */

    return 0;

}
 

[bookmark: linuxdrive3-CHP-17-ITERM-7692]
[bookmark: linuxdrive3-CHP-17-ITERM-7693]The

function:

void netif_stop_queue(struct net_device *dev);
 

is the opposite of netif_start_queue; it marks

the device as being unable to transmit any more packets. The function

must be called when the interface is closed (in the

stop method) but can also be used [bookmark: linuxdrive3-CHP-17-ITERM-7694] [bookmark: linuxdrive3-CHP-17-ITERM-7695] [bookmark: linuxdrive3-CHP-17-ITERM-7696] [bookmark: linuxdrive3-CHP-17-ITERM-7697] [bookmark: linuxdrive3-CHP-17-ITERM-7698]to temporarily stop

transmission, as explained in the next section.







[bookmark: linuxdrive3-CHP-17-SECT-5]
17.5. Packet Transmission

The most important tasks [bookmark: linuxdrive3-CHP-17-ITERM-7699]
[bookmark: linuxdrive3-CHP-17-ITERM-7700]performed by network interfaces are data

transmission and reception. We start with transmission because it is

slightly easier to understand.

[bookmark: linuxdrive3-CHP-17-ITERM-7701]
[bookmark: linuxdrive3-CHP-17-ITERM-7702][bookmark: linuxdrive3-CHP-17-ITERM-7703][bookmark: linuxdrive3-CHP-17-ITERM-7704][bookmark: linuxdrive3-CHP-17-ITERM-7705]Transmission refers

to the act of sending a packet over a network link. Whenever the

kernel needs to transmit a data packet, it calls the

driver's hard_start_transmit

method to put the data on an outgoing queue. Each packet handled by

the kernel is contained in a socket buffer structure

(struct sk_buff), whose

definition is found in <linux/skbuff.h>.

The structure gets its name from the Unix abstraction used to

represent a network connection, the socket. Even

if the interface has nothing to do with sockets, each network packet

belongs to a socket in the higher network layers, and the

input/output buffers of any socket are lists of

struct sk_buff structures. The

same sk_buff structure is used to host network

data throughout all the Linux network subsystems, but a socket buffer

is just a packet as far as the interface is concerned.

A pointer to sk_buff is usually called

skb, and we follow this practice both in the

sample code and in the text.

The socket buffer is a complex structure, and the kernel offers a

number of functions to act on it. The functions are described later

in Section 17.10; for now, a few basic facts about

sk_buff are enough for us to write a working

driver.

[bookmark: linuxdrive3-CHP-17-ITERM-7706]
[bookmark: linuxdrive3-CHP-17-ITERM-7707]The

socket buffer passed to hard_start_xmit contains

the physical packet as it should appear on the media, complete with

the transmission-level headers. The interface

doesn't need to modify the data being transmitted.

skb->data points to the packet being

transmitted, and skb->len is its length in

octets. This situation gets a little more complicated if your driver

can handle scatter/gather I/O; we get to that in Section 17.5.3.

The snull packet transmission code follows; the

physical transmission machinery has been isolated in another

function, because every interface driver must implement it according

to the specific hardware being driven:

int snull_tx(struct sk_buff *skb, struct net_device *dev)

{

    int len;

    char *data, shortpkt[ETH_ZLEN];

    struct snull_priv *priv = netdev_priv(dev);

    

    data = skb->data;

    len = skb->len;

    if (len < ETH_ZLEN) {

        memset(shortpkt, 0, ETH_ZLEN);

        memcpy(shortpkt, skb->data, skb->len);

        len = ETH_ZLEN;

        data = shortpkt;

    }

    dev->trans_start = jiffies; /* save the timestamp */



    /* Remember the skb, so we can free it at interrupt time */

    priv->skb = skb;



    /* actual deliver of data is device-specific, and not shown here */

    snull_hw_tx(data, len, dev);



    return 0; /* Our simple device can not fail */

}
 

The transmission function, thus, just performs some sanity checks on

the packet and transmits the data through the hardware-related

function. Do note, however, the care that is taken when the packet to

be transmitted is shorter than the minimum length supported by the

underlying media (which, for snull, is our

virtual "Ethernet"). Many Linux

network drivers (and those for other operating systems as well) have

been found to leak data in such situations. Rather than create that

sort of security vulnerability, we copy short packets into a separate

array that we can explicitly zero-pad out to the full length required

by the media. (We can safely put that data on the stack, since the

minimum length�60 bytes�is quite small).

The return value from hard_start_xmit should be

0 on success; at that point, your driver has taken

responsibility for the packet, should make its best effort to ensure

that transmission succeeds, and must free the skb at the end. A

nonzero return value indicates that the packet could not be

transmitted at this time; the kernel will retry later. In this

situation, your driver should stop the queue until whatever situation

caused the failure has been resolved.

The "hardware-related" transmission

function (snull_hw_tx) is omitted here since it

is entirely occupied with implementing the trickery of the

snull device, including manipulating the source

and destination addresses, and has little of interest to authors of

real network drivers. It is present, of course, in the sample source

for those who want to go in and see how it works.

[bookmark: linuxdrive3-CHP-17-SECT-5.1]
17.5.1. Controlling Transmission Concurrency

[bookmark: linuxdrive3-CHP-17-ITERM-7708][bookmark: linuxdrive3-CHP-17-ITERM-7709][bookmark: linuxdrive3-CHP-17-ITERM-7710]The

hard_start_xmit function is

protected[bookmark: linuxdrive3-CHP-17-ITERM-7711]
[bookmark: linuxdrive3-CHP-17-ITERM-7712] from concurrent calls by a

spinlock (xmit_lock) in the

net_device structure. As soon as the function

returns, however, it may be called again. The function returns when

the software is done instructing the hardware about packet

transmission, but hardware transmission will likely not have been

completed. This is not an issue with snull,

which does all of its work using the CPU, so packet transmission is

complete before the transmission function returns.

Real hardware interfaces, on the other hand, transmit packets

asynchronously and have a limited amount of memory available to store

outgoing packets. When that memory is exhausted (which, for some

hardware, happens with a single outstanding packet to transmit), the

driver needs to tell the networking system not to start any more

transmissions until the hardware is ready to accept new data.

[bookmark: linuxdrive3-CHP-17-ITERM-7713]
[bookmark: linuxdrive3-CHP-17-ITERM-7714]
[bookmark: linuxdrive3-CHP-17-ITERM-7715][bookmark: linuxdrive3-CHP-17-ITERM-7716]
[bookmark: linuxdrive3-CHP-17-ITERM-7717]This

notification is accomplished by calling

netif_stop_queue, the function introduced

earlier to stop the queue. Once your driver has stopped its queue, it

must arrange to restart the queue at some point

in the future, when it is again able to accept packets for

transmission. To do so, it should call:

void netif_wake_queue(struct net_device *dev);
 

This function is just like netif_start_queue,

except that it also pokes the networking system to make it start

transmitting packets again.

Most modern network hardware maintains an internal queue with

multiple packets to transmit; in this way it can get the best

performance from the network. Network drivers for these devices must

support having multiple transmisions outstanding at any given time,

but device memory can fill up whether or not the hardware supports

multiple outstanding transmissions. Whenever device memory fills to

the point that there is no room for the largest possible packet, the

driver should stop the queue until space becomes available again.

If you must disable

packet[bookmark: linuxdrive3-CHP-17-ITERM-7718] transmission from anywhere

other than your hard_start_xmit function (in

response to a reconfiguration request, perhaps), the function you

want to use is:

void netif_tx_disable(struct net_device *dev);
 

This function behaves much like

netif_stop_queue, but it also ensures that, when

it returns, your hard_start_xmit method is not

running on another CPU. The queue can be restarted with

netif_wake_queue, as usual.

[bookmark: linuxdrive3-CHP-17-SECT-5.2]
17.5.2. Transmission Timeouts

[bookmark: linuxdrive3-CHP-17-ITERM-7719][bookmark: linuxdrive3-CHP-17-ITERM-7720]Most drivers that deal with real hardware

have to be prepared for that hardware to fail to respond

occasionally. Interfaces can forget what they are doing, or the

system can lose an interrupt. This sort of problem is common with

some devices designed to run on personal computers.

Many drivers handle this problem by setting timers; if the operation

has not completed by the time the timer expires, something is wrong.

The network system, as it happens, is essentially a complicated

assembly of state machines controlled by a mass of timers. As such,

the networking code is in a good position to detect transmission

timeouts as part of its regular operation.

[bookmark: linuxdrive3-CHP-17-ITERM-7721]Thus, network drivers need not worry

about detecting such problems themselves. Instead, they need only set

a timeout period, which goes in the watchdog_timeo

field of the net_device structure. This period,

which is in jiffies, should be long enough to account for normal

transmission delays (such as collisions caused by congestion on the

network media).

If the current system time exceeds the device's

TRans_start time by at least the timeout period,

the networking layer eventually calls the driver's

tx_timeout method. That

method's job is to do whatever is needed to clear up

the problem and to ensure the proper completion of any transmissions

that were already in progress. It is important, in particular, that

the driver not lose track of any socket buffers that have been

entrusted to it by the networking code.

snull has the ability to simulate transmitter

lockups, which is controlled by two load-time parameters:

static int lockup = 0;

module_param(lockup, int, 0);



static int timeout = SNULL_TIMEOUT;

module_param(timeout, int, 0);
 

If the driver is loaded with the parameter

lockup=n, a lockup is simulated once every

n packets transmitted, and the

watchdog_timeo field is set to the given

timeout value. When simulating lockups,

snull also calls

netif_stop_queue to prevent other transmission

attempts from occurring.

The snull transmission timeout handler looks

like this:

void snull_tx_timeout (struct net_device *dev)

{

    struct snull_priv *priv = netdev_priv(dev);



    PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,

            jiffies - dev->trans_start);

        /* Simulate a transmission interrupt to get things moving */

    priv->status = SNULL_TX_INTR;

    snull_interrupt(0, dev, NULL);

    priv->stats.tx_errors++;

    netif_wake_queue(dev);

    return;

}
 

When a transmission timeout happens, the driver must mark the error

in the interface statistics and arrange for the device to be reset to

a sane state so that new packets can be transmitted. When a timeout

happens in snull, the driver calls

snull_interrupt to fill in the

"missing" interrupt and restarts

the [bookmark: linuxdrive3-CHP-17-ITERM-7722]
[bookmark: linuxdrive3-CHP-17-ITERM-7723]transmit

queue with netif_wake_queue.

[bookmark: linuxdrive3-CHP-17-SECT-5.3]
17.5.3. Scatter/Gather I/O

The process of

creating[bookmark: linuxdrive3-CHP-17-ITERM-7724]
[bookmark: linuxdrive3-CHP-17-ITERM-7725]

a packet for transmission on the network involves assembling multiple

pieces. Packet data must often be copied in from user space, and the

headers used by various levels of the network stack must be added as

well. This assembly can require a fair amount of data copying. If,

however, the network interface that is destined to transmit the

packet can perform scatter/gather I/O, the packet need not be

assembled into a single chunk, and much of that copying can be

avoided. Scatter/gather I/O also enables

"zero-copy" transmission of network

data directly from user-space buffers.

The kernel does not pass scattered packets to your

hard_start_xmit method unless the

NETIF_F_SG bit has been set in the

features field of your device structure. If you

have set that flag, you need to look at a special

"shared info" field within the skb

to see whether the packet is made up of a single fragment or many and

to find the scattered fragments if need be. A special macro exists to

access this information; it is called

skb_shinfo. The first step when transmitting

potentially fragmented packets usually looks something like this:

if (skb_shinfo(skb)->nr_frags =  = 0) {

    /* Just use skb->data and skb->len as usual */

}
 

The nr_frags[bookmark: linuxdrive3-CHP-17-ITERM-7726] field tells how many fragments have been

used to build the packet. If it is 0, the packet

exists in a single piece and can be accessed via the

data field as usual. If, however, it is nonzero,

your driver must pass through and arrange to transfer each individual

fragment. The data field of the skb structure

points conveniently to the first fragment (as compared to the full

packet, as in the unfragmented case). The length of the fragment must

be calculated by subtracting skb->data_len from

skb->len (which still contains the length of

the full packet). The remaining fragments are to be found in an array

called frags in the shared information structure;

each entry in frags is an

skb_frag_struct structure:

struct skb_frag_struct {

    struct page *page;

    _ _u16 page_offset;

    _ _u16 size;

};
 

As you can see, we are once again dealing with

page structures, rather than kernel virtual

addresses. Your driver should loop through the fragments, mapping

each for a DMA transfer and not forgetting the first fragment, which

is pointed to by the skb directly. Your hardware, of course, must

assemble the fragments and transmit them as a single packet. Note

that, if you have set the NETIF_F_HIGHDMA feature

flag, some or all of the fragments may be located in high memory.







[bookmark: linuxdrive3-CHP-17-SECT-6]
17.6. Packet Reception

Receiving data from the network is trickier than transmitting it,

because an sk_buff must be

allocated and handed off to the upper layers from within an atomic

context. There are two modes of packet reception that may be

implemented by network drivers: interrupt driven and polled. Most

drivers implement the interrupt-driven technique, and that is the one

we cover first. Some drivers for high-bandwidth adapters may also

implement the polled technique; we look at this approach in the

Section 17.8.

The implementation of snull separates the

"hardware" details from the

device-independent housekeeping. Therefore, the function

snull_rx is called from the

snull

"interrupt" handler after the

hardware has received the packet, and it is already in the

computer's memory. snull_rx

receives a pointer to the data and the length of the packet; its sole

responsibility is to send the packet and some additional information

to the upper layers of networking code. This code is independent of

the way the data pointer and length are obtained.

void snull_rx(struct net_device *dev, struct snull_packet *pkt)

{

    struct sk_buff *skb;

    struct snull_priv *priv = netdev_priv(dev);



    /*

     * The packet has been retrieved from the transmission

     * medium. Build an skb around it, so upper layers can handle it

     */

    skb = dev_alloc_skb(pkt->datalen + 2);

    if (!skb) {

        if (printk_ratelimit(  ))

            printk(KERN_NOTICE "snull rx: low on mem - packet dropped\n");

        priv->stats.rx_dropped++;

        goto out;

    }

    memcpy(skb_put(skb, pkt->datalen), pkt->data, pkt->datalen);



    /* Write metadata, and then pass to the receive level */

    skb->dev = dev;

    skb->protocol = eth_type_trans(skb, dev);

    skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */

    priv->stats.rx_packets++;

    priv->stats.rx_bytes += pkt->datalen;

    netif_rx(skb);

  out:

    return;

}
 

The function is sufficiently general to act as a template for any

network driver, but some explanation is necessary before you can

reuse this code fragment with confidence.

[bookmark: linuxdrive3-CHP-17-ITERM-7727]
[bookmark: linuxdrive3-CHP-17-ITERM-7728]
[bookmark: linuxdrive3-CHP-17-ITERM-7729][bookmark: linuxdrive3-CHP-17-ITERM-7730]The

first step is to allocate a buffer to hold the packet. Note that the

buffer allocation function (dev_alloc_skb) needs

to know the data length. The information is used by the function to

allocate space for the buffer. dev_alloc_skb

calls kmalloc with atomic priority, so it can be

used safely at interrupt time. The kernel offers other interfaces to

socket-buffer allocation, but they are not worth introducing here;

socket buffers are explained in detail in Section 17.10.

Of course, the return value from dev_alloc_skb

must be checked, and snull does so. We call

printk_ratelimit before complaining about

failures, however. Generating hundreds or thousands of console

messages per second is a good way to bog down the system entirely and

hide the real source of problems;

printk_ratelimit helps prevent that problem by

returning 0 when too much output has gone to the

console, and things need to be slowed down a bit.

Once there is a valid skb pointer, the packet data

is copied into the buffer by calling memcpy; the

skb_put function updates the end-of-data pointer

in the buffer and returns a pointer to the newly created space.

[bookmark: linuxdrive3-CHP-17-ITERM-7731][bookmark: linuxdrive3-CHP-17-ITERM-7732]If you are writing a high-performance

driver for an interface that can do full bus-mastering I/O, there is

a possible optimization that is worth considering here. Some drivers

allocate socket buffers for incoming packets prior to their

reception, then instruct the interface to place the packet data

directly into the socket buffer's space. The

networking layer cooperates with this strategy by allocating all

socket buffers in DMA-capable space (which may be in high memory if

your device has the NETIF_F_HIGHDMA feature flag

set). Doing things this way avoids the need for a separate copy

operation to fill the socket buffer, but requires being careful with

buffer sizes because you won't know in advance how

big the incoming packet is. The implementation of a

change_mtu method is also important in this

situation, since it allows the driver to respond to a change in the

maximum packet size.

[bookmark: linuxdrive3-CHP-17-ITERM-7733]The network layer needs to have some

information spelled out before it can make sense of the packet. To

this end, the dev and protocol

fields must be assigned before the buffer is passed upstairs. The

Ethernet support code exports a helper function

(eth_type_trans), which finds an appropriate

value to put into protocol. Then we need to

specify how checksumming is to be performed or has been performed on

the packet (snull does not need to perform any

checksums). The possible policies for

skb->ip_summed are:

[bookmark: linuxdrive3-CHP-17-ITERM-7734][bookmark: linuxdrive3-CHP-17-ITERM-7735]

	CHECKSUM_HW

	
[bookmark: linuxdrive3-CHP-17-ITERM-7734]
[bookmark: linuxdrive3-CHP-17-ITERM-7735]The

device has already performed checksums in hardware. An example of a

hardware checksum is the SPARC HME interface.





	CHECKSUM_NONE

	
Checksums have not yet been verified, and the task must be

accomplished by system software. This is the default in newly

allocated buffers.





	CHECKSUM_UNNECESSARY

	
Don't do any checksums. This is the policy in

snull and in the loopback interface.





You may be wondering why the checksum status must be specified here

when we have already set a flag in the features

field of our net_device structure. The answer is

that the features flag tells the kernel about how

our device treats outgoing packets. It is not used for incoming

packets, which must, instead, be marked individually.

Finally, the driver updates its statistics counter to record that a

packet has been received. The statistics structure is made up of

several fields; the most important are rx_packets,

rx_bytes, tx_packets, and

tx_bytes, which contain the number of packets

received and transmitted and the total number of octets transferred.

All the fields are thoroughly described in Section 17.13.

The last step in packet reception is performed by

netif_rx, which hands off the socket buffer to

the upper layers. netif_rx actually returns an

integer value; NET_RX_SUCCESS

(0) means that the packet was successfully

received; any other value indicates trouble. There are three return

values (NET_RX_CN_LOW,

NET_RX_CN_MOD, and

NET_RX_CN_HIGH) that indicate increasing levels of

congestion in the networking subsystem;

NET_RX_DROP means the packet was dropped. A driver

could use these values to stop feeding packets into the kernel when

congestion gets high, but, in practice, most drivers ignore the

return value from netif_rx. If you are writing a

driver for a high-bandwidth device and wish to do the right thing in

response to congestion, the best approach is to implement NAPI, which

we get to after a quick discussion of interrupt handlers.







[bookmark: linuxdrive3-CHP-17-SECT-7]
[bookmark: linuxdrive3-CHP-17-ITERM-7736]17.7. The Interrupt Handler

[bookmark: linuxdrive3-CHP-17-ITERM-7737]
[bookmark: linuxdrive3-CHP-17-ITERM-7738]
[bookmark: linuxdrive3-CHP-17-ITERM-7739][bookmark: linuxdrive3-CHP-17-ITERM-7740][bookmark: linuxdrive3-CHP-17-ITERM-7741][bookmark: linuxdrive3-CHP-17-ITERM-7742][bookmark: linuxdrive3-CHP-17-ITERM-7743]Most hardware interfaces are

controlled by means of an interrupt handler. The hardware interrupts

the processor to signal one of two possible events: a new packet has

arrived or transmission of an outgoing packet is complete. Network

interfaces can also generate interrupts to signal errors, link status

changes, and so on.

The usual interrupt routine can tell the difference between a

new-packet-arrived interrupt and a done-transmitting notification by

checking a status register found on the physical device. The

snull interface works similarly, but its status

word is implemented in software and lives in

dev->priv. The interrupt handler for a network

interface looks like this:

static void snull_regular_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

    int statusword;

    struct snull_priv *priv;

    struct snull_packet *pkt = NULL;

    /*

     * As usual, check the "device" pointer to be sure it is

     * really interrupting.

     * Then assign "struct device *dev"

     */

    struct net_device *dev = (struct net_device *)dev_id;

    /* ... and check with hw if it's really ours */



    /* paranoid */

    if (!dev)

        return;



    /* Lock the device */

    priv = netdev_priv(dev);

    spin_lock(&priv->lock);



    /* retrieve statusword: real netdevices use I/O instructions */

    statusword = priv->status;

    priv->status = 0;

    if (statusword & SNULL_RX_INTR) {

        /* send it to snull_rx for handling */

        pkt = priv->rx_queue;

        if (pkt) {

            priv->rx_queue = pkt->next;

            snull_rx(dev, pkt);

        }

    }

    if (statusword & SNULL_TX_INTR) {

        /* a transmission is over: free the skb */

        priv->stats.tx_packets++;

        priv->stats.tx_bytes += priv->tx_packetlen;

        dev_kfree_skb(priv->skb);

    }



    /* Unlock the device and we are done */

    spin_unlock(&priv->lock);

    if (pkt) snull_release_buffer(pkt); /* Do this outside the lock! */

    return;

}
 

The handler's first task is to retrieve a pointer to

the correct struct net_device.

This pointer usually comes from the dev_id pointer

received as an argument.

The interesting part of this handler deals with the

"transmission done" situation. In

this case, the statistics are updated, and

dev_kfree_skb[bookmark: linuxdrive3-CHP-17-ITERM-7744]
[bookmark: linuxdrive3-CHP-17-ITERM-7745]

is called to return the (no longer needed) socket buffer to the

system. There are, actually, three variants of this function that may

be called:



	dev_kfree_skb(struct sk_buff *skb);

	
This version should be called when you know that your code will not

be running in interrupt context. Since snull has

no actual hardware interrupts, this is the version we use.





	dev_kfree_skb_irq(struct sk_buff *skb);

	
If you know that you will be freeing the buffer in an interrupt

handler, use this version, which is optimized for that case.





	dev_kfree_skb_any(struct sk_buff *skb);

	
This is the version to use if the relevant code could be running in

either interrupt or noninterrupt context.





Finally, if your driver has temporarily stopped the transmission

queue, this is usually the place to restart it with

netif_wake_queue.

Packet reception, in contrast to transmission,

doesn't need any special interrupt handling. Calling

snull_rx (which we have already seen) is all

that's required.







[bookmark: linuxdrive3-CHP-17-SECT-8]
17.8. Receive Interrupt Mitigation

When a network

[bookmark: linuxdrive3-CHP-17-ITERM-7746] [bookmark: linuxdrive3-CHP-17-ITERM-7747]driver is written as we have

described above, the processor is interrupted for every packet

received by your interface. In many cases, that is the desired mode

of operation, and it is not a problem. High-bandwidth interfaces,

however, can receive thousands of packets per second. With that sort

of interrupt load, the overall performance of the system can suffer.

As a way of improving the performance of Linux on high-end systems,

the networking subsystem developers have created an alternative

interface (called NAPI)[1] based on polling.

"Polling" can be a dirty word among

driver developers, who often see polling techniques as inelegant and

inefficient. Polling is inefficient, however, only if the interface

is polled when there is no work to do. When the system has a

high-speed interface handling heavy traffic, there is

always more packets to process. There is no need

to interrupt the processor in such situations; it is enough that the

new packets be collected from the interface every so often.
[bookmark: linuxdrive3-CHP-17-FNOTE-1][1] NAPI stands for

"new API"; the networking hackers

are better at creating interfaces than naming them.


Stopping receive interrupts can take a substantial amount of load off

the processor. NAPI-compliant drivers can also be told not to feed

packets into the kernel if those packets are just dropped in the

networking code due to congestion, which can also help performance

when that help is needed most. For various reasons, NAPI drivers are

also less likely to reorder packets.

Not all devices can operate in the NAPI mode, however. A NAPI-capable

interface must be able to store several packets (either on the card

itself, or in an in-memory DMA ring). The interface should be capable

of disabling interrupts for received packets, while continuing to

interrupt for successful transmissions and other events. There are

other subtle issues that can make writing a NAPI-compliant driver

harder; see

Documentation/networking/NAPI_HOWTO.txt in the

kernel source tree for the details.

Relatively few drivers implement the NAPI interface. If you are

writing a driver for an interface that may generate a huge number of

interrupts, however, taking the time to implement NAPI may well prove

worthwhile.

The snull driver, when loaded with the

use_napi parameter set to a nonzero value,

operates in the NAPI mode. At initialization time, we have to set up

a couple of extra struct net_device fields:

if (use_napi) {

    dev->poll        = snull_poll;

    dev->weight      = 2;

}
 

The poll field must be set to your

driver's polling function; we look at

snull_poll shortly. The

weight field describes the relative importance of

the interface: how much traffic should be accepted from the interface

when resources are tight. There are no strict rules for how the

weight parameter should be set; by convention, 10

MBps Ethernet interfaces set weight to

16, while faster interfaces use

64. You should not set weight

to a value greater than the number of packets your interface can

store. In snull, we set the

weight to two as a way of demonstrating deferred

packet reception.

The next step in the creation of a NAPI-compliant driver is to change

the interrupt handler. When your interface (which should start with

receive interrupts enabled) signals that a packet has arrived, the

interrupt handler should not process that

packet. Instead, it should disable further receive interrupts and

tell the kernel that it is time to start polling the interface. In

the snull

"interrupt" handler, the code that

responds to packet reception interrupts has been changed to the

following:

if (statusword & SNULL_RX_INTR) {

    snull_rx_ints(dev, 0);  /* Disable further interrupts */

    netif_rx_schedule(dev);

}
 

When the interface tells us that a packet is available, the interrupt

handler leaves it in the interface; all that needs to happen at this

point is a call to netif_rx_schedule, which

causes our poll method to be called at some

future point.

The poll method has this prototype:

int (*poll)(struct net_device *dev, int *budget);
 

The snull implementation of the

poll method looks like this:

static int snull_poll(struct net_device *dev, int *budget)

{

    int npackets = 0, quota = min(dev->quota, *budget);

    struct sk_buff *skb;

    struct snull_priv *priv = netdev_priv(dev);

    struct snull_packet *pkt;

    

    while (npackets < quota && priv->rx_queue) {

        pkt = snull_dequeue_buf(dev);

        skb = dev_alloc_skb(pkt->datalen + 2);

        if (! skb) {

            if (printk_ratelimit(  ))

                printk(KERN_NOTICE "snull: packet dropped\n");

            priv->stats.rx_dropped++;

            snull_release_buffer(pkt);

            continue;

        }

        memcpy(skb_put(skb, pkt->datalen), pkt->data, pkt->datalen);

        skb->dev = dev;

        skb->protocol = eth_type_trans(skb, dev);

        skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */

        netif_receive_skb(skb);

        

            /* Maintain stats */

        npackets++;

        priv->stats.rx_packets++;

        priv->stats.rx_bytes += pkt->datalen;

        snull_release_buffer(pkt);

    }

    /* If we processed all packets, we're done; tell the kernel and reenable ints */

    *budget -= npackets;

    dev->quota -= npackets;

    if (! priv->rx_queue) {

        netif_rx_complete(dev);

        snull_rx_ints(dev, 1);

        return 0;

    }

    /* We couldn't process everything. */

    return 1;

}
 

The central part of the function is concerned with the creation of an

skb holding the packet; this code is the same as what we saw in

snull_rx before. A number of things are

different, however:

	The budget parameter provides a maximum number of

packets that we are allowed to pass into the kernel. Within the

device structure, the quota field gives another

maximum; the poll method must respect the lower

of the two limits. It should also decrement both

dev->quota and *budget by

the number of packets actually received. The

budget value is a maximum number of packets that

the current CPU can receive from all interfaces, while

quota is a per-interface value that usually starts

out as the weight assigned to the interface at

initialization time.

	Packets should be fed to the kernel with

netif_receive_skb, rather than

netif_rx.

	If the poll method is able to process all of the

available packets within the limits given to it, it should re-enable

receive interrupts, call netif_rx_complete to

turn off polling, and return 0. A return value of

1 indicates that there are packets remaining to be

processed.



The networking subsystem guarantees that any given

device's poll method will not

be called concurrently on more than one processor. Calls to

poll can still happen concurrently with calls to

your other device methods, however.







[bookmark: linuxdrive3-CHP-17-SECT-9]
17.9. Changes in Link State

[bookmark: linuxdrive3-CHP-17-ITERM-7748]
[bookmark: linuxdrive3-CHP-17-ITERM-7749] [bookmark: linuxdrive3-CHP-17-ITERM-7750]Network connections, by

definition, deal with the world outside the local system. Therefore,

they are often affected by outside events, and they can be transient

things. The networking subsystem needs to know when network links go

up or down, and it provides a few functions that the driver may use

to convey that information.

[bookmark: linuxdrive3-CHP-17-ITERM-7751]
[bookmark: linuxdrive3-CHP-17-ITERM-7752][bookmark: linuxdrive3-CHP-17-ITERM-7753]
[bookmark: linuxdrive3-CHP-17-ITERM-7754][bookmark: linuxdrive3-CHP-17-ITERM-7755]Most networking technologies involving

an actual, physical connection provide a

carrier state; the presence of the carrier

means that the hardware is present and ready to function. Ethernet

adapters, for example, sense the carrier signal on the wire; when a

user trips over the cable, that carrier vanishes, and the link goes

down. By default, network devices are assumed to have a carrier

signal present. The driver can change that state explicitly, however,

with these functions:

void netif_carrier_off(struct net_device *dev);

void netif_carrier_on(struct net_device *dev);
 

If your driver detects a lack of carrier on one of its devices, it

should call netif_carrier_off to inform the

kernel of this change. When the carrier returns,

netif_carrier_on should be called. Some drivers

also call netif_carrier_off when making major

configuration changes (such as media type); once the adapter has

finished resetting itself, the new carrier is detected and traffic

can resume.

[bookmark: linuxdrive3-CHP-17-ITERM-7756]
[bookmark: linuxdrive3-CHP-17-ITERM-7757]An

integer function also exists:

int netif_carrier_ok(struct net_device *dev);
 

This can be used to test the current carrier state (as reflected in

the device structure).







[bookmark: linuxdrive3-CHP-17-SECT-10]
17.10. The Socket Buffers

We've now covered[bookmark: linuxdrive3-CHP-17-ITERM-7758]
[bookmark: linuxdrive3-CHP-17-ITERM-7759]

most of the issues related to network interfaces.

What's still missing is some more detailed

discussion of the sk_buff structure. The structure

is at the core of the network subsystem of the Linux kernel, and we

now introduce both the main fields of the structure and the functions

used to act on it.

Although there is no strict need to understand the internals of

sk_buff, the ability to look at its contents can

be helpful when you are tracking down problems and when you are

trying to optimize your code. For example, if you look in

loopback.c, you'll find an

optimization based on knowledge of the sk_buff

internals. The usual warning applies here: if you write code that

takes advantage of knowledge of the sk_buff

structure, you should be prepared to see it break with future kernel

releases. Still, sometimes the performance advantages justify the

additional maintenance cost.

We are not going to describe the whole structure here, just the

fields that might be used from within a driver. If you want to see

more, you can look at <linux/skbuff.h>,

where the structure is defined and the functions are prototyped.

Additional details about how the fields and functions are used can be

easily retrieved by grepping in the kernel sources.

[bookmark: linuxdrive3-CHP-17-SECT-10.1]
17.10.1. The Important Fields

[bookmark: linuxdrive3-CHP-17-ITERM-7760]
[bookmark: linuxdrive3-CHP-17-ITERM-7761]The

fields introduced here are the ones a driver might need to access.

They are listed in no particular order.



	struct net_device *dev;

	
The device receiving or sending this buffer.





	union { /* ... */ } h;



	union { /* ... */ } nh;



	union { /*... */} mac;

	
Pointers to the various levels of headers contained within the

packet. Each field of the union is a pointer to a different type of

data structure. h hosts pointers to transport

layer headers (for example, struct
tcphdr *th);

nh includes network layer headers (such as

struct iphdr
*iph); and mac collects

pointers to link-layer headers (such as struct

ethdr *ethernet).





If your driver needs to look at the source and destination addresses

of a TCP packet, it can find them in skb->h.th.

See the header file for the full set of header types that can be

accessed in this way.

Note that network drivers are responsible for setting the

mac pointer for incoming packets. This task is

normally handled by eth_type_trans, but

non-Ethernet drivers have to set skb->mac.raw

directly, as shown in Section 17.11.3.

[bookmark: linuxdrive3-CHP-17-ITERM-7762][bookmark: linuxdrive3-CHP-17-ITERM-7763][bookmark: linuxdrive3-CHP-17-ITERM-7764][bookmark: linuxdrive3-CHP-17-ITERM-7765][bookmark: linuxdrive3-CHP-17-ITERM-7766][bookmark: linuxdrive3-CHP-17-ITERM-7767]

	unsigned char *head;



	unsigned char *data;



	unsigned char *tail;



	unsigned char *end;

	
Pointers used to address the data in the packet.

head points to the beginning of the allocated

space, data is the beginning of the valid octets

(and is usually slightly greater than head),

tail is the end of the valid octets, and

end points to the maximum address

tail can reach. Another way to look at it is that

the available buffer space is

skb->end -
skb->head, and the currently

used data space is skb->tail
- skb->data.





	unsigned int len;



	unsigned int data_len;

	
len is the full length of the data in the packet,

while data_len is the length of the portion of the

packet stored in separate fragments. The data_len

field is 0 unless scatter/gather I/O is being

used.





	unsigned char ip_summed;

	
[bookmark: linuxdrive3-CHP-17-ITERM-7762]The checksum policy for this packet.

The field is set by the driver on incoming packets, as described in

the Section 17.6.





	unsigned char pkt_type;

	
[bookmark: linuxdrive3-CHP-17-ITERM-7763]
[bookmark: linuxdrive3-CHP-17-ITERM-7764][bookmark: linuxdrive3-CHP-17-ITERM-7765][bookmark: linuxdrive3-CHP-17-ITERM-7766][bookmark: linuxdrive3-CHP-17-ITERM-7767]Packet classification used in its delivery.

The driver is responsible for setting it to

PACKET_HOST (this packet is for me),

PACKET_OTHERHOST (no, this packet is not for me),

PACKET_BROADCAST, or

PACKET_MULTICAST. Ethernet drivers

don't modify pkt_type explicitly

because eth_type_trans does it for them.





	shinfo(struct sk_buff *skb);



	unsigned int shinfo(skb)->nr_frags;



	skb_frag_t shinfo(skb)->frags;

	
For performance reasons, some skb information is stored in a separate

structure that appears immediately after the skb in memory. This

"shared info" (so called because it

can be shared among copies of the skb within the networking code)

must be accessed via the shinfo macro. There are

several fields in this structure, but most of them are beyond the

scope of this book. We saw nr_frags and

frags in Section 17.5.3.





The remaining fields in the structure are not particularly

interesting. They are used to maintain lists of buffers, to account

for memory belonging to the socket that owns the buffer, and so on.

[bookmark: linuxdrive3-CHP-17-SECT-10.2]
17.10.2. Functions Acting on Socket Buffers

Network devices[bookmark: linuxdrive3-CHP-17-ITERM-7768] that use an

sk_buff structure act on it by means of the

official interface functions. Many functions operate on socket

buffers; here are the most interesting ones:

[bookmark: linuxdrive3-CHP-17-ITERM-7769][bookmark: linuxdrive3-CHP-17-ITERM-7770][bookmark: linuxdrive3-CHP-17-ITERM-7771][bookmark: linuxdrive3-CHP-17-ITERM-7772][bookmark: linuxdrive3-CHP-17-ITERM-7773][bookmark: linuxdrive3-CHP-17-ITERM-7774][bookmark: linuxdrive3-CHP-17-ITERM-7775][bookmark: linuxdrive3-CHP-17-ITERM-7776][bookmark: linuxdrive3-CHP-17-ITERM-7777][bookmark: linuxdrive3-CHP-17-ITERM-7778][bookmark: linuxdrive3-CHP-17-ITERM-7779][bookmark: linuxdrive3-CHP-17-ITERM-7780][bookmark: linuxdrive3-CHP-17-ITERM-7781][bookmark: linuxdrive3-CHP-17-ITERM-7782][bookmark: linuxdrive3-CHP-17-ITERM-7783][bookmark: linuxdrive3-CHP-17-ITERM-7784][bookmark: linuxdrive3-CHP-17-ITERM-7785][bookmark: linuxdrive3-CHP-17-ITERM-7786][bookmark: linuxdrive3-CHP-17-ITERM-7787][bookmark: linuxdrive3-CHP-17-ITERM-7788][bookmark: linuxdrive3-CHP-17-ITERM-7789][bookmark: linuxdrive3-CHP-17-ITERM-7790][bookmark: linuxdrive3-CHP-17-ITERM-7791][bookmark: linuxdrive3-CHP-17-ITERM-7792][bookmark: linuxdrive3-CHP-17-ITERM-7793][bookmark: linuxdrive3-CHP-17-ITERM-7794][bookmark: linuxdrive3-CHP-17-ITERM-7795][bookmark: linuxdrive3-CHP-17-ITERM-7796][bookmark: linuxdrive3-CHP-17-ITERM-7797][bookmark: linuxdrive3-CHP-17-ITERM-7798][bookmark: linuxdrive3-CHP-17-ITERM-7799][bookmark: linuxdrive3-CHP-17-ITERM-7800]

	struct sk_buff *alloc_skb(unsigned int len, int priority);



	struct sk_buff *dev_alloc_skb(unsigned int len);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7769]
[bookmark: linuxdrive3-CHP-17-ITERM-7770]
[bookmark: linuxdrive3-CHP-17-ITERM-7771]
[bookmark: linuxdrive3-CHP-17-ITERM-7772][bookmark: linuxdrive3-CHP-17-ITERM-7773]
[bookmark: linuxdrive3-CHP-17-ITERM-7774][bookmark: linuxdrive3-CHP-17-ITERM-7775]Allocate a buffer. The

alloc_skb function allocates a buffer and

initializes both skb->data and

skb->tail to skb->head.

The dev_alloc_skb function is a shortcut that

calls alloc_skb with

GFP_ATOMIC priority and reserves some space

between skb->head and

skb->data. This data space is used for

optimizations within the network layer and should not be touched by

the driver.





	void kfree_skb(struct sk_buff *skb);



	void dev_kfree_skb(struct sk_buff *skb);



	void dev_kfree_skb_irq(struct sk_buff *skb);



	void dev_kfree_skb_any(struct sk_buff *skb);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7776]
[bookmark: linuxdrive3-CHP-17-ITERM-7777]
[bookmark: linuxdrive3-CHP-17-ITERM-7778]
[bookmark: linuxdrive3-CHP-17-ITERM-7779][bookmark: linuxdrive3-CHP-17-ITERM-7780]
[bookmark: linuxdrive3-CHP-17-ITERM-7781]Free

a buffer. The kfree_skb call is used internally

by the kernel. A driver should use one of the forms of

dev_kfree_skb instead:

dev_kfree_skb for noninterrupt context,

dev_kfree_skb_irq for interrupt context, or

dev_kfree_skb_any for code that can run in

either context.





	unsigned char *skb_put(struct sk_buff *skb, int len);



	unsigned char *_ _skb_put(struct sk_buff *skb, int len);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7782]
[bookmark: linuxdrive3-CHP-17-ITERM-7783]Update

the tail and len fields of the

sk_buff structure; they are used to add data to

the end of the buffer. Each function's return value

is the previous value of skb->tail (in other

words, it points to the data space just created). Drivers can use the

return value to copy data by invoking

memcpy(skb_put(...), data,

len) or an equivalent. The difference between the

two functions is that skb_put checks to be sure

that the data fits in the buffer, whereas _

_skb_put omits the check.





	unsigned char *skb_push(struct sk_buff *skb, int len);



	unsigned char *_ _skb_push(struct sk_buff *skb, int len);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7784]
[bookmark: linuxdrive3-CHP-17-ITERM-7785][bookmark: linuxdrive3-CHP-17-ITERM-7786]Functions to

decrement skb->data and increment

skb->len. They are similar to

skb_put, except that data is added to the

beginning of the packet instead of the end. The return value points

to the data space just created. The functions are used to add a

hardware header before transmitting a packet. Once again, _

_skb_push differs in that it does not check for adequate

available space.





	int skb_tailroom(struct sk_buff *skb);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7787]
[bookmark: linuxdrive3-CHP-17-ITERM-7788]Returns

the amount of space available for putting data in the buffer. If a

driver puts more data into the buffer than it can hold, the system

panics. Although you might object that a printk

would be sufficient to tag the error, memory corruption is so harmful

to the system that the developers decided to take definitive action.

In practice, you shouldn't need to check the

available space if the buffer has been correctly allocated. Since

drivers usually get the packet size before allocating a buffer, only

a severely broken driver puts too much data in the buffer, and a

panic might be seen as due punishment.





	int skb_headroom(struct sk_buff *skb);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7789]
[bookmark: linuxdrive3-CHP-17-ITERM-7790]Returns

the amount of space available in front of data,

that is, how many octets one can

"push" to the buffer.





	void skb_reserve(struct sk_buff *skb, int len);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7791]
[bookmark: linuxdrive3-CHP-17-ITERM-7792]Increments

both data and tail. The

function can be used to reserve headroom before filling the buffer.

Most Ethernet interfaces reserve two bytes in front of the packet;

thus, the IP header is aligned on a 16-byte boundary, after a 14-byte

Ethernet header. snull does this as well,

although the instruction was not shown in Section 17.6 to avoid introducing extra concepts at

that point.





	unsigned char *skb_pull(struct sk_buff *skb, int len);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7793]
[bookmark: linuxdrive3-CHP-17-ITERM-7794]Removes

data from the head of the packet. The driver won't

need to use this function, but it is included here for completeness.

It decrements skb->len and increments

skb->data; this is how the hardware header

(Ethernet or equivalent) is stripped from the beginning of incoming

packets.





	int skb_is_nonlinear(struct sk_buff *skb);[bookmark: linuxdrive3-CHP-17-ITERM-7795]
[bookmark: linuxdrive3-CHP-17-ITERM-7796]

	
Returns a true value if this skb is separated into multiple fragments

for scatter/gather I/O.





	int skb_headlen(struct sk_buff *skb);[bookmark: linuxdrive3-CHP-17-ITERM-7797]
[bookmark: linuxdrive3-CHP-17-ITERM-7798]

	
Returns the length of the first segment of the skb (that part pointed

to by skb->data).





	void *kmap_skb_frag(skb_frag_t *frag);[bookmark: linuxdrive3-CHP-17-ITERM-7799]
[bookmark: linuxdrive3-CHP-17-ITERM-7800]



	void kunmap_skb_frag(void *vaddr);

	
If you must directly access fragments in a nonlinear skb from within

the kernel, these functions map and unmap them for you. An atomic

kmap is used, so you cannot have more than one fragment mapped at a

time.





The kernel defines several other functions that act on socket

buffers, but they are meant to be used in higher layers of [bookmark: linuxdrive3-CHP-17-ITERM-7801] [bookmark: linuxdrive3-CHP-17-ITERM-7802]networking code,

and the driver doesn't need them.







[bookmark: linuxdrive3-CHP-17-SECT-11]
17.11. MAC Address Resolution

[bookmark: linuxdrive3-CHP-17-ITERM-7803] [bookmark: linuxdrive3-CHP-17-ITERM-7804]
[bookmark: linuxdrive3-CHP-17-ITERM-7805] [bookmark: linuxdrive3-CHP-17-ITERM-7806][bookmark: linuxdrive3-CHP-17-ITERM-7807][bookmark: linuxdrive3-CHP-17-ITERM-7808][bookmark: linuxdrive3-CHP-17-ITERM-7809][bookmark: linuxdrive3-CHP-17-ITERM-7810]An

interesting issue with Ethernet communication is how to associate the

MAC addresses (the interface's unique hardware ID)

with the IP number. Most protocols have a similar problem, but we

concentrate on the Ethernet-like case here. We try to offer a

complete description of the issue, so we show three situations: ARP,

Ethernet headers without ARP (such as plip), and

non-Ethernet headers.

[bookmark: linuxdrive3-CHP-17-SECT-11.1]
17.11.1. Using ARP with Ethernet

[bookmark: linuxdrive3-CHP-17-ITERM-7811]
[bookmark: linuxdrive3-CHP-17-ITERM-7812][bookmark: linuxdrive3-CHP-17-ITERM-7813]The usual way to deal with address

resolution is by using the Address Resolution Protocol (ARP).

Fortunately, ARP is managed by the kernel, and an Ethernet interface

doesn't need to do anything special to support ARP.

As long as dev->addr and

dev->addr_len are correctly assigned at open

time, the driver doesn't need to worry about

resolving IP numbers to MAC addresses;

ether_setup assigns the correct device methods

to dev->hard_header and

dev->rebuild_header.

Although the kernel normally handles the details of address

resolution (and caching of the results), it calls upon the interface

driver to help in the building of the packet. After all, the driver

knows about the details of the physical layer header, while the

authors of the networking code have tried to insulate the rest of the

kernel from that knowledge. To this end, the kernel calls the

driver's

hard_header[bookmark: linuxdrive3-CHP-17-ITERM-7814]
[bookmark: linuxdrive3-CHP-17-ITERM-7815]

method to lay out the packet with the results of the ARP query.

Normally, Ethernet driver writers need not know about this

process�the common Ethernet code takes care of everything.

[bookmark: linuxdrive3-CHP-17-SECT-11.2]
17.11.2. Overriding ARP

[bookmark: linuxdrive3-CHP-17-ITERM-7816]
[bookmark: linuxdrive3-CHP-17-ITERM-7817][bookmark: linuxdrive3-CHP-17-ITERM-7818]Simple point-to-point network

interfaces, such as plip, might benefit from

using Ethernet headers, while avoiding the overhead of sending ARP

packets back and forth. The sample code in snull

also falls into this class of network devices.

snull cannot use ARP because the driver changes

IP addresses in packets being transmitted, and ARP packets exchange

IP addresses as well. Although we could have implemented a simple ARP

reply generator with little trouble, it is more illustrative to show

how to handle physical-layer headers directly.

[bookmark: linuxdrive3-CHP-17-ITERM-7819]
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your device wants to use the usual hardware header without running

ARP, you need to override the default

dev->hard_header method. This is how

snull implements it, as a very short function:

int snull_header(struct sk_buff *skb, struct net_device *dev,

                unsigned short type, void *daddr, void *saddr,

                unsigned int len)

{

    struct ethhdr *eth = (struct ethhdr *)skb_push(skb,ETH_HLEN);



    eth->h_proto = htons(type);

    memcpy(eth->h_source, saddr ? saddr : dev->dev_addr, dev->addr_len);

    memcpy(eth->h_dest,   daddr ? daddr : dev->dev_addr, dev->addr_len);

    eth->h_dest[ETH_ALEN-1]   ^= 0x01;   /* dest is us xor 1 */

    return (dev->hard_header_len);

}
 

The function simply takes the information provided by the kernel and

formats it into a standard Ethernet header. It also toggles a bit in

the destination Ethernet address, for reasons described later.

When a packet is received by the interface, the hardware header is

used in a couple of ways by eth_type_trans. We

have already seen this call in snull_rx:

skb->protocol = eth_type_trans(skb, dev);
 

The function extracts the protocol identifier

(ETH_P_IP, in this case) from the Ethernet header;

it also assigns skb->mac.raw, removes the

hardware header from packet data (with

skb_pull), and sets

skb->pkt_type. This last item defaults to

PACKET_HOST at skb allocation

(which indicates that the packet is directed to this host), and

eth_type_trans changes it to reflect the

Ethernet destination address: if that address does not match the

address of the interface that received it, the

pkt_type field is set to

PACKET_OTHERHOST. Subsequently, unless the

interface is in promiscuous mode or packet forwarding is enabled in

the kernel, netif_rx drops any packet of type

PACKET_OTHERHOST. For this reason,

snull_header is careful to make the destination

hardware address match that of the

"receiving" interface.

If your interface is a point-to-point link, you

won't want to receive unexpected multicast packets.

To avoid this problem, remember that a destination address whose

first octet has 0 as the least significant bit

(LSB) is directed to a single host (i.e., it is either

PACKET_HOST or

PACKET_OTHERHOST). The plip

driver uses 0xfc as the first octet of its

hardware address, while snull uses

0x00. Both addresses result in a working

Ethernet-like point-to-point link.

[bookmark: linuxdrive3-CHP-17-SECT-11.3]
17.11.3. Non-Ethernet Headers

[bookmark: linuxdrive3-CHP-17-ITERM-7821] [bookmark: linuxdrive3-CHP-17-ITERM-7822]
[bookmark: linuxdrive3-CHP-17-ITERM-7823][bookmark: linuxdrive3-CHP-17-ITERM-7824][bookmark: linuxdrive3-CHP-17-ITERM-7825]We have just seen that the hardware

header contains some information in addition to the destination

address, the most important being the communication protocol. We now

describe how hardware headers can be used to encapsulate relevant

information. If you need to know the details, you can extract them

from the kernel sources or the technical documentation for the

particular transmission medium. Most driver writers are able to

ignore this discussion and just use the Ethernet implementation.

It's worth noting that not all information has to be

provided by every protocol. A point-to-point link such as

plip or snull could avoid

transferring the whole Ethernet header without losing generality. The

hard_header device method, shown earlier as

implemented by snull_header, receives the

delivery information�both protocol-level and hardware

addresses�from the kernel. It also receives the 16-bit protocol

number in the type argument; IP, for example, is

identified by ETH_P_IP. The driver is expected to

correctly deliver both the packet data and the protocol number to the

receiving host. A point-to-point link could omit addresses from its

hardware header, transferring only the protocol number, because

delivery is guaranteed independent of the source and destination

addresses. An IP-only link could even avoid transmitting any hardware

header whatsoever.

When the packet is picked up at the other end of the link, the

receiving function in the driver should correctly set the fields

skb->protocol,

skb->pkt_type, and

skb->mac.raw.

skb->mac.raw is a char pointer used by the

address-resolution mechanism implemented in higher layers of the

networking code (for instance, net/ipv4/arp.c).

It must point to a machine address that matches

dev->type. The possible values for the device

type are defined in <linux/if_arp.h>;

Ethernet interfaces use ARPHRD_ETHER. For example,

here is how eth_type_trans deals with the

Ethernet header for received packets:

skb->mac.raw = skb->data;

skb_pull(skb, dev->hard_header_len);
 

In the simplest case (a point-to-point link with no headers),

skb->mac.raw can point to a static buffer

containing the hardware address of this interface,

protocol can be set to

ETH_P_IP, and packet_type can

be left with its default value of PACKET_HOST.

Because every hardware type is[bookmark: linuxdrive3-CHP-17-ITERM-7826] [bookmark: linuxdrive3-CHP-17-ITERM-7827] [bookmark: linuxdrive3-CHP-17-ITERM-7828] [bookmark: linuxdrive3-CHP-17-ITERM-7829] unique, it is hard to give more

specific advice than already discussed. The kernel is full of

examples, however. See, for example, the AppleTalk driver

(drivers/net/appletalk/cops.c), the infrared

drivers (such as drivers/net/irda/smc_ircc.c),

or the PPP driver (drivers/net/ppp_generic.c).







[bookmark: linuxdrive3-CHP-17-SECT-12]
17.12. Custom ioctl Commands

[bookmark: linuxdrive3-CHP-17-ITERM-7830]
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[bookmark: linuxdrive3-CHP-17-ITERM-7834][bookmark: linuxdrive3-CHP-17-ITERM-7835]We have seen that the

ioctl system call is implemented for sockets;

SIOCSIFADDR and SIOCSIFMAP are

examples of "socket

ioctls." Now

let's see how the third argument of the system call

is used by networking code.

When the ioctl system call is invoked on a

socket, the command number is one of the symbols defined in

<linux/sockios.h>, and the

sock_ioctl function directly invokes a

protocol-specific function (where

"protocol" refers to the main

network protocol being used, for example, IP or AppleTalk).

[bookmark: linuxdrive3-CHP-17-ITERM-7836]
[bookmark: linuxdrive3-CHP-17-ITERM-7837][bookmark: linuxdrive3-CHP-17-ITERM-7838][bookmark: linuxdrive3-CHP-17-ITERM-7839][bookmark: linuxdrive3-CHP-17-ITERM-7840]Any ioctl command

that is not recognized by the protocol layer is passed to the device

layer. These device-related ioctl commands

accept a third argument from user space, a struct
ifreq *. This structure is

defined in <linux/if.h>. The

SIOCSIFADDR and SIOCSIFMAP

commands actually work on the ifreq structure. The

extra argument to SIOCSIFMAP, although defined as

ifmap, is just a field of

ifreq.

[bookmark: linuxdrive3-CHP-17-ITERM-7841]
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addition to using the standardized calls, each interface can define

its own ioctl commands. The

plip interface, for example, allows the

interface to modify its internal timeout values via

ioctl. The ioctl

implementation for sockets recognizes 16 commands as private to the

interface: SIOCDEVPRIVATE through

SIOCDEVPRIVATE+15.[2]
[bookmark: linuxdrive3-CHP-17-FNOTE-2][2] Note that,

according to <linux/sockios.h>, the

SIOCDEVPRIVATE commands are deprecated. What

should replace them is not clear, however, and numerous in-tree

drivers still use them.


[bookmark: linuxdrive3-CHP-17-ITERM-7843]
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one of these commands is recognized,

dev->do_ioctl is called in the relevant

interface driver. The function receives the same

struct ifreq
* pointer that the general-purpose

ioctl function uses:

int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 

The ifr pointer points to a kernel-space address

that holds a copy of the structure passed by the user. After

do_ioctl returns, the structure is copied back

to user space; Therefore, the driver can use the private commands to

both receive and return data.

The device-specific commands can choose to use the fields in

struct ifreq, but they already convey a

standardized meaning, and it's unlikely that the

driver can adapt the structure to its needs. The field

ifr_data is a caddr_t item (a

pointer) that is meant to be used for device-specific needs. The

driver and the program used to invoke its ioctl

commands should agree about the use of ifr_data.

For example, pppstats uses device-specific

commands to retrieve information from the ppp

interface driver.

It's not worth showing an implementation of

do_ioctl here, but with the information in this

chapter and the kernel examples, you should be able to write one when

you need it. Note, however, that the plip

implementation uses ifr_data incorrectly and

should not be used as an example for an ioctl

implementation.







[bookmark: linuxdrive3-CHP-17-SECT-13]
17.13. Statistical Information

[bookmark: linuxdrive3-CHP-17-ITERM-7845]
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get_stats. This method returns a pointer to the

statistics for the device. Its implementation is pretty easy; the one

shown works even when several interfaces are managed by the same

driver, because the statistics are hosted within the device data

structure.

struct net_device_stats *snull_stats(struct net_device *dev)

{

    struct snull_priv *priv = netdev_priv(dev);

    return &priv->stats;

}
 

[bookmark: linuxdrive3-CHP-17-ITERM-7851]
[bookmark: linuxdrive3-CHP-17-ITERM-7852]The

real work needed to return meaningful statistics is distributed

throughout the driver, where the various fields are updated. The

following list shows the most interesting fields in

struct net_device_stats:



	unsigned long rx_packets;



	unsigned long tx_packets;

	
The total number of incoming and outgoing packets successfully

transferred by the interface.





	unsigned long rx_bytes;



	unsigned long tx_bytes;

	
The number of bytes received and transmitted by the interface.





	unsigned long rx_errors;



	unsigned long tx_errors;

	
The number of erroneous receptions and transmissions.

There's no end of things that can go wrong with

packet transmission, and the net_device_stats

structure includes six counters for specific receive errors and five

for transmit errors. See

<linux/netdevice.h> for the full list. If

possible, your driver should maintain detailed error statistics,

because they can be most helpful to system administrators trying to

track down a problem.





	unsigned long rx_dropped;



	unsigned long tx_dropped;

	
The number of packets dropped during reception and transmission.

Packets are dropped when there's no memory available

for packet data. tx_dropped is rarely used.





	unsigned long collisions;

	
The number of collisions due to congestion on the medium.





	unsigned long multicast;

	
The number of multicast packets received.





It is worth repeating that the get_stats method

can be called at any time�even when the interface is

down�so the driver must retain statistical information for as

long as the net_device structure exists.







[bookmark: linuxdrive3-CHP-17-SECT-14]
17.14. Multicast

A multicast packet is a [bookmark: linuxdrive3-CHP-17-ITERM-7853] [bookmark: linuxdrive3-CHP-17-ITERM-7854]
[bookmark: linuxdrive3-CHP-17-ITERM-7855]network

packet meant to be received by more than one host, but not by all

hosts. This functionality is obtained by assigning special hardware

addresses to groups of hosts. Packets directed to one of the special

addresses should be received by all the hosts in that group. In the

case of Ethernet, a multicast address has the least significant bit

of the first address octet set in the destination address, while

every device board has that bit clear in its own hardware address.

The tricky part of dealing with host groups and hardware addresses is

performed by applications and the kernel, and the interface driver

doesn't need to deal with these problems.

Transmission of multicast packets is a simple problem because they

look exactly like any other packets. The interface transmits them

over the communication medium without looking at the destination

address. It's the kernel that has to assign a

correct hardware destination address; the

hard_header device method, if defined,

doesn't need to look in the data it arranges.

The kernel handles the job of tracking which multicast addresses are

of interest at any given time. The list can change frequently, since

it is a function of the applications that are running at any given

time and the users' interest. It is the

driver's job to accept the list of interesting

multicast addresses and deliver to the kernel any packets sent to

those addresses. How the driver implements the multicast list is

somewhat dependent on how the underlying hardware works. Typically,

hardware belongs to one of three classes, as far as multicast is

concerned:

	Interfaces that cannot deal with multicast. These interfaces either

receive packets directed specifically to their hardware address (plus

broadcast packets) or receive every packet. They can receive

multicast packets only by receiving every packet, thus, potentially

overwhelming the operating system with a huge number of

"uninteresting" packets. You

don't usually count these interfaces as multicast

capable, and the driver won't set

IFF_MULTICAST in dev->flags.

	Point-to-point interfaces are a special case because they always

receive every packet without performing any hardware filtering.

	Interfaces that can tell multicast packets from other packets

(host-to-host or broadcast). These interfaces can be instructed to

receive every multicast packet and let the software determine if the

address is interesting for this host. The overhead introduced in this

case is acceptable, because the number of multicast packets on a

typical network is low.

	Interfaces that can perform hardware detection of multicast

addresses. These interfaces can be passed a list of multicast

addresses for which packets are to be received, and ignore other

multicast packets. This is the optimal case for the kernel, because

it doesn't waste processor time dropping

"uninteresting" packets received by

the interface.



The kernel tries to exploit the capabilities of high-level interfaces

by supporting the third device class, which is the most versatile, at

its best. Therefore, the kernel notifies the driver whenever the list

of valid multicast addresses is changed, and it passes the new list

to the driver so it can update the hardware filter according to the

new information.

[bookmark: linuxdrive3-CHP-17-SECT-14.1]
17.14.1. Kernel Support for Multicasting

[bookmark: linuxdrive3-CHP-17-ITERM-7856]
[bookmark: linuxdrive3-CHP-17-ITERM-7857]Support

for multicast

[bookmark: linuxdrive3-CHP-17-ITERM-7858]packets

is made up of several items: a device method, a data structure, and

device flags:

[bookmark: linuxdrive3-CHP-17-ITERM-7859][bookmark: linuxdrive3-CHP-17-ITERM-7860][bookmark: linuxdrive3-CHP-17-ITERM-7861][bookmark: linuxdrive3-CHP-17-ITERM-7862][bookmark: linuxdrive3-CHP-17-ITERM-7863]

	void (*dev->set_multicast_list)(struct net_device *dev);

	
[bookmark: linuxdrive3-CHP-17-ITERM-7859]Device

method called whenever the list of machine addresses associated with

the device changes. It is also called when

dev->flags is modified, because some flags

(e.g., IFF_PROMISC) may also require you to

reprogram the hardware filter. The method receives a pointer to

struct net_device as an argument and returns

void. A driver not interested in implementing this

method can leave the field set to NULL.





	struct dev_mc_list *dev->mc_list;

	
[bookmark: linuxdrive3-CHP-17-ITERM-7860]
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linked list of all the multicast addresses associated with the

device. The actual definition of the structure is introduced at the

end of this section.





	int dev->mc_count;

	
The number of items in the linked list. This information is somewhat

redundant, but checking mc_count against

0 is a useful shortcut for checking the list.





	IFF_MULTICAST

	
[bookmark: linuxdrive3-CHP-17-ITERM-7862]
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the driver sets this flag in dev->flags, the

interface won't be asked to handle multicast

packets. Nonetheless, the kernel calls the driver's

set_multicast_list method when

dev->flags changes, because the multicast list

may have changed while the interface was not active.





	IFF_ALLMULTI

	
Flag set in dev->flags by the networking

software to tell the driver to retrieve all multicast packets from

the network. This happens when multicast routing is enabled. If the

flag is set, dev->mc_list

shouldn't be used to filter multicast packets.





	IFF_PROMISC

	
Flag set in dev->flags when the interface is

put into promiscuous mode. Every packet should be received by the

interface, independent of dev->mc_list.





The last bit of information needed by the driver developer is the

definition of struct
dev_mc_list, which lives in

<linux/netdevice.h>:

struct dev_mc_list {    

    struct dev_mc_list   *next;          /* Next address in list */

    _ _u8                 dmi_addr[MAX_ADDR_LEN]; /* Hardware address */

    unsigned char        dmi_addrlen;    /* Address length */

    int                  dmi_users;      /* Number of users */

    int                  dmi_gusers;     /* Number of groups */

};
 

Because multicasting and hardware addresses are independent of the

actual transmission of packets, this structure is portable across

network implementations, and each address is identified by a string

of octets and a length, just like

dev->dev_addr.

[bookmark: linuxdrive3-CHP-17-SECT-14.2]
17.14.2. A Typical Implementation

The best way to describe the design of

set_multicast_list[bookmark: linuxdrive3-CHP-17-ITERM-7864]
[bookmark: linuxdrive3-CHP-17-ITERM-7865]
[bookmark: linuxdrive3-CHP-17-ITERM-7866]
[bookmark: linuxdrive3-CHP-17-ITERM-7867]

is to show you some pseudocode.

The following function is a typical implementation of the function in

a full-featured (ff) driver. The driver is full

featured in that the interface it controls has a complex hardware

packet filter, which can hold a table of multicast addresses to be

received by this host. The maximum size of the table is

FF_TABLE_SIZE.

All the functions prefixed with ff_ are

placeholders for hardware-specific operations:

void ff_set_multicast_list(struct net_device *dev)

{

    struct dev_mc_list *mcptr;



    if (dev->flags & IFF_PROMISC) {

        ff_get_all_packets(  );

        return;

    }

    /* If there's more addresses than we handle, get all multicast

    packets and sort them out in software. */

    if (dev->flags & IFF_ALLMULTI || dev->mc_count > FF_TABLE_SIZE) {

        ff_get_all_multicast_packets(  );

        return;

    }

    /* No multicast?  Just get our own stuff */

    if (dev->mc_count =  = 0) {

        ff_get_only_own_packets(  );

        return;

    }

    /* Store all of the multicast addresses in the hardware filter */

    ff_clear_mc_list(  );

    for (mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next)

        ff_store_mc_address(mc_ptr->dmi_addr);

    ff_get_packets_in_multicast_list(  );

}
 

This implementation can be simplified if the interface cannot store a

multicast table in the hardware filter for incoming packets. In that

case, FF_TABLE_SIZE reduces to

0, and the last four lines of code are not needed.

As was mentioned earlier, even interfaces that can't

deal with multicast packets need to implement the

set_multicast_list method to be notified about

changes in dev->flags. This approach could be

called a "nonfeatured"

(nf) implementation. The implementation is very

simple, as shown by the following code:

void nf_set_multicast_list(struct net_device *dev)

{

    if (dev->flags & IFF_PROMISC)

        nf_get_all_packets(  );

    else

        nf_get_only_own_packets(  );

}
 

Implementing IFF_PROMISC is important, because

otherwise the user won't be able to run

tcpdump or any other network analyzers. If the

interface runs a point-to-point link, on the other hand,

there's no need to implement

set_multicast_list at all, because users receive

every[bookmark: linuxdrive3-CHP-17-ITERM-7868]
[bookmark: linuxdrive3-CHP-17-ITERM-7869]
[bookmark: linuxdrive3-CHP-17-ITERM-7870] packet

anyway.







[bookmark: linuxdrive3-CHP-17-SECT-15]
17.15. A Few Other Details

This section covers a few other topics that may be of interest to

network driver authors. In each case, we simply try to point you in

the right direction. Obtaining a complete picture of the subject

probably requires spending some time digging through the kernel

source as well.

[bookmark: linuxdrive3-CHP-17-SECT-15.1]
17.15.1. Media Independent Interface Support

[bookmark: linuxdrive3-CHP-17-ITERM-7871] [bookmark: linuxdrive3-CHP-17-ITERM-7872]
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Independent Interface (or MII) is an IEEE 802.3 standard describing

how Ethernet transceivers can interface with network controllers;

many products on the market conform with this interface. If you are

writing a driver for an MII-compliant controller, the kernel exports

a generic MII support layer that may make your life easier.

To use the generic MII layer, you should include

<linux/mii.h>. You need to fill out an

mii_if_info structure with information on the

physical ID of the transceiver, whether full duplex is in effect,

etc. Also required are two methods for the

mii_if_info structure:

int (*mdio_read) (struct net_device *dev, int phy_id, int location);

void (*mdio_write) (struct net_device *dev, int phy_id, int location, int val);
 

As you might expect, these methods should implement communications

with your specific MII interface.

The generic MII code provides a set of functions for querying and

changing the operating mode of the transceiver; many of these are

designed to work with the ethtool utility

(described in the next section). Look in

<linux/mii.h> and

drivers/net/mii.c for the details.

[bookmark: linuxdrive3-CHP-17-SECT-15.2]
17.15.2. Ethtool Support

Ethtool[bookmark: linuxdrive3-CHP-17-ITERM-7875]
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is a utility designed to give system administrators a great deal of

control over the operation of network interfaces. With

ethtool, it is possible to control various

interface parameters including speed, media type, duplex operation,

DMA ring setup, hardware checksumming, wake-on-LAN operation, etc.,

but only if ethtool is supported by the driver.

Ethtool may be downloaded from http://sf.net/projects/gkernel/.

The relevant declarations for ethtool support

may be found in <linux/ethtool.h>. At the

core of it is a structure of type ethtool_ops,

which contains a full 24 different methods for

ethtool support. Most of these methods are

relatively straightforward; see

<linux/ethtool.h> for the details. If your

driver is using the MII layer, you can use

mii_ethtool_gset and

mii_ethtool_sset to implement the

get_settings and

set_settings methods, respectively.

For ethtool to work with your device, you must

place a pointer to your ethtool_ops structure in

the net_device structure. The macro

SET_ETHTOOL_OPS (defined in

<linux/netdevice.h>) should be used for

this purpose. Do note that your ethtool methods

can be called even when the interface is down.

[bookmark: linuxdrive3-CHP-17-SECT-15.3]
17.15.3. Netpoll

"[bookmark: linuxdrive3-CHP-17-ITERM-7878]Netpoll"

is a relatively late (2.6.5) addition to the network stack; its

purpose is to enable the kernel to send and receive packets in

situations where the full network and I/O subsystems may not be

available. It is used for features like remote network consoles and

remote kernel debugging. Supporting netpoll in your driver is not, by

any means, necessary, but it may make your device more useful in some

situations. Supporting netpoll is also relatively easy in most cases.

Drivers implementing netpoll should implement the

poll_controller method. Its job is to keep up

with anything that may be happening on the controller in the absence

of device interrupts. Almost all poll_controller

methods take the following form:

void my_poll_controller(struct net_device *dev)

{

    disable_device_interrupts(dev);

    call_interrupt_handler(dev->irq, dev, NULL);

    reenable_device_interrupts(dev);

}
 

The

poll_controller[bookmark: linuxdrive3-CHP-17-ITERM-7879]
[bookmark: linuxdrive3-CHP-17-ITERM-7880]

method, in essence, is simply simulating interrupts from the given

device.







[bookmark: linuxdrive3-CHP-17-SECT-16]
17.16. Quick Reference

This section provides a[bookmark: linuxdrive3-CHP-17-ITERM-7881]
[bookmark: linuxdrive3-CHP-17-ITERM-7882] [bookmark: linuxdrive3-CHP-17-ITERM-7883]

reference for the concepts introduced in this chapter. It also

explains the role of each header file that a driver needs to include.

The lists of fields in the net_device and

sk_buff structures, however, are not repeated

here.
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	#include <linux/netdevice.h>

	
Header that hosts the definitions of struct
net_device and struct
net_device_stats, and includes a few other headers

that are needed by network drivers.





	struct net_device *alloc_netdev(int sizeof_priv, char *name, void 



	 (*setup)(struct net_device *);



	struct net_device *alloc_etherdev(int sizeof_priv);



	void free_netdev(struct net_device *dev);

	
Functions for allocating and freeing net_device

structures.





	int register_netdev(struct net_device *dev);



	void unregister_netdev(struct net_device *dev);

	
Registers and unregisters a network device.





	void *netdev_priv(struct net_device *dev);

	
A function that retrieves the pointer to the driver-private area of a

network device structure.





	struct net_device_stats;

	
A structure that holds device statistics.





	netif_start_queue(struct net_device *dev);



	netif_stop_queue(struct net_device *dev);



	netif_wake_queue(struct net_device *dev);

	
Functions that control the passing of packets to the driver for

transmission. No packets are transmitted until

netif_start_queue has been called.

netif_stop_queue suspends transmission, and

netif_wake_queue restarts the queue and pokes

the network layer to restart transmitting packets.





	skb_shinfo(struct sk_buff *skb);

	
A macro that provides access to the "shared

info" portion of a packet buffer.





	void netif_rx(struct sk_buff *skb);

	
Function that can be called (including at interrupt time) to notify

the kernel that a packet has been received and encapsulated into a

socket buffer.





	void netif_rx_schedule(dev);

	
Function that informs the kernel that packets are available and that

polling should be started on the interface; it is used only by

NAPI-compliant drivers.





	int netif_receive_skb(struct sk_buff *skb);



	void netif_rx_complete(struct net_device *dev);

	
Functions that should be used only by NAPI-compliant drivers.

netif_receive_skb is the NAPI equivalent to

netif_rx; it feeds a packet into the kernel.

When a NAPI-compliant driver has exhausted the supply of received

packets, it should reenable interrupts, and call

netif_rx_complete to stop polling.





	#include <linux/if.h>

	
Included by netdevice.h, this file declares the

interface flags (IFF_ macros) and struct

ifmap, which has a major role in the

ioctl implementation for network drivers.





	void netif_carrier_off(struct net_device *dev);



	void netif_carrier_on(struct net_device *dev);



	int netif_carrier_ok(struct net_device *dev);

	
The first two functions may be used to tell the kernel whether a

carrier signal is currently present on the given interface.

netif_carrier_ok tests the carrier state as

reflected in the device structure.





	#include <linux/if_ether.h>



	ETH_ALEN



	ETH_P_IP



	struct ethhdr;

	
Included by netdevice.h,

if_ether.h defines all the

ETH_ macros used to represent octet lengths (such

as the address length) and network protocols (such as IP). It also

defines the ethhdr structure.





	#include <linux/skbuff.h>

	
The definition of struct sk_buff and related

structures, as well as several inline functions to act on the

buffers. This header is included by netdevice.h.





	struct sk_buff *alloc_skb(unsigned int len, int priority);



	struct sk_buff *dev_alloc_skb(unsigned int len);



	void kfree_skb(struct sk_buff *skb);



	void dev_kfree_skb(struct sk_buff *skb);



	void dev_kfree_skb_irq(struct sk_buff *skb);



	void dev_kfree_skb_any(struct sk_buff *skb);

	
Functions that handle the allocation and freeing of socket buffers.

Drivers should normally use the dev_ variants,

which are intended for that purpose.





	unsigned char *skb_put(struct sk_buff *skb, int len);



	unsigned char *_ _skb_put(struct sk_buff *skb, int len);



	unsigned char *skb_push(struct sk_buff *skb, int len);



	unsigned char *_ _skb_push(struct sk_buff *skb, int len);

	
Functions that add data to an skb;

skb_put puts the data at the end of the

skb, while skb_push puts it

at the beginning. The regular versions perform checking to ensure

that adequate space is available; double-underscore versions leave

those tests out.





	int skb_headroom(struct sk_buff *skb);



	int skb_tailroom(struct sk_buff *skb);



	void skb_reserve(struct sk_buff *skb, int len);

	
Functions that perform management of space within an

skb. skb_headroom and

skb_tailroom tell how much space is available at

the beginning and end, respectively, of an skb.

skb_reserve may be used to reserve space at the

beginning of an skb, which must be empty.





	unsigned char *skb_pull(struct sk_buff *skb, int len);

	
skb_pull

"removes" data from an

skb by adjusting the internal pointers.





	int skb_is_nonlinear(struct sk_buff *skb);

	
Function that returns a true value if this skb is separated into

multiple fragments for scatter/gather I/O.





	int skb_headlen(struct sk_buff *skb);

	
Returns the length of the first segment of the skb�that part

pointed to by skb->data.





	void *kmap_skb_frag(skb_frag_t *frag);



	void kunmap_skb_frag(void *vaddr);

	
Functions that provide direct access to fragments within a nonlinear

skb.





	#include <linux/etherdevice.h>



	void ether_setup(struct net_device *dev);

	
Function that sets most device methods to the general-purpose

implementation for Ethernet drivers. It also sets

dev->flags and assigns the next available

ethx name to dev->name if

the first character in the name is a blank space or the

NULL character.





	unsigned short eth_type_trans(struct sk_buff *skb, struct net_device *dev);

	
When an Ethernet interface receives a packet, this function can be

called to set skb->pkt_type. The return value

is a protocol number that is usually stored in

skb->protocol.





	#include <linux/sockios.h>



	SIOCDEVPRIVATE

	
The first of 16 ioctl commands that can be

implemented by each driver for its own private use. All the network

ioctl commands are defined in

sockios.h.





	#include <linux/mii.h>



	struct mii_if_info;

	
Declarations and a structure supporting drivers of devices that

implement the MII standard.





	#include <linux/ethtool.h>



	struct ethtool_ops;

	
Declarations and structures that let devices work with the[bookmark: linuxdrive3-CHP-17-ITERM-7884] [bookmark: linuxdrive3-CHP-17-ITERM-7885] [bookmark: linuxdrive3-CHP-17-ITERM-7886]
ethtool utility.
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Chapter 18. TTY Drivers

A tty device gets its[bookmark: linuxdrive3-CHP-18-ITERM-7887]
[bookmark: linuxdrive3-CHP-18-ITERM-7888]

name from the very old abbreviation of teletypewriter and was

originally associated only with the physical or virtual terminal

connection to a Unix machine. Over time, the name also came to mean

any serial port style device, as terminal connections could also be

created over such a connection. Some examples of physical tty devices

are serial ports, USB-to-serial-port converters, and some types of

modems that need special processing to work properly (such as the

traditional WinModem style devices). tty virtual devices support

virtual consoles that are used to log into a computer, from either

the keyboard, over a network connection, or through a xterm session.

The Linux tty driver core lives right below the standard character

driver level and provides a range of features focused on providing an

interface for terminal style devices to use. The core is responsible

for controlling both the flow of data across a tty device and the

format of the data. This allows tty drivers to focus on handling the

data to and from the hardware, instead of worrying about how to

control the interaction with user space in a consistent way. To

control the flow of data, there are a number of different line

disciplines that can be virtually

"plugged" into any tty device. This

is done by different tty line discipline drivers.

As Figure 18-1 shows, the tty

core takes data from a user that is to be sent to a tty device. It

then passes it to a tty line discipline driver, which then passes it

to the tty driver. The tty driver converts the data into a format

that can be sent to the hardware. Data being received from the tty

hardware flows back up through the tty driver, into the tty line

discipline driver, and into the tty core, where it can be retrieved

by a user. Sometimes the tty driver communicates directly to the tty

core, and the tty core sends data directly to the tty driver, but

usually the tty line discipline has a chance to modify the data that

is sent between the two.

[bookmark: linuxdrive3-CHP-18-FIG-1]
Figure 18-1. tty core overview
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The tty driver never sees the tty line discipline. The driver cannot

communicate directly with the line discipline, nor does it realize it

is even present. The driver's job is to format data

that is sent to it in a manner that the hardware can understand, and

receive data from the hardware. The tty line

discipline's job is to format the data received from

a user, or the hardware, in a specific manner. This formatting

usually takes the form of a protocol conversion, such as PPP or

Bluetooth.

There are three different types of tty drivers: console, serial port,

and pty. The console and pty drivers have already been written and

probably are the only ones needed of these types of tty drivers. This

leaves any new drivers using the tty core to interact with the user

and the system as serial port drivers.

To determine what kind of tty drivers are currently loaded in the

kernel and what tty devices are currently present, look at the

/proc/tty/drivers file. This file consists of a

list of the different tty drivers currently present, showing the name

of the driver, the default node name, the major number for the

driver, the range of minors used by the driver, and the type of the

tty driver. The following is an example of this file:

/dev/tty             /dev/tty        5       0 system:/dev/tty

/dev/console         /dev/console    5       1 system:console

/dev/ptmx            /dev/ptmx       5       2 system

/dev/vc/0            /dev/vc/0       4       0 system:vtmaster

usbserial            /dev/ttyUSB   188   0-254 serial

serial               /dev/ttyS       4   64-67 serial

pty_slave            /dev/pts      136   0-255 pty:slave

pty_master           /dev/ptm      128   0-255 pty:master

pty_slave            /dev/ttyp       3   0-255 pty:slave

pty_master           /dev/pty        2   0-255 pty:master

unknown              /dev/tty        4    1-63 console
 

The /proc/tty/driver/[bookmark: linuxdrive3-CHP-18-ITERM-7889]
[bookmark: linuxdrive3-CHP-18-ITERM-7890]

directory contains individual files for some of the tty drivers, if

they implement that functionality. The default serial driver creates

a file in this directory that shows a lot of serial-port-specific

information about the hardware. Information on how to create a file

in this directory is described later.

All of the tty devices currently registered and present in the kernel

have their own subdirectory under

/sys/class/tty. Within that subdirectory, there

is a "dev" file that contains the

major and minor number assigned to that tty device. If the driver

tells the kernel the locations of the physical device and driver

associated with the tty device, it creates symlinks back to them.

[bookmark: linuxdrive3-CHP-18-ITERM-7891]An example of this tree is:

/sys/class/tty/

|-- console

|   `-- dev

|-- ptmx

|   `-- dev

|-- tty

|   `-- dev

|-- tty0

|   `-- dev

   ... 

|-- ttyS1

|   `-- dev

|-- ttyS2

|   `-- dev

|-- ttyS3

|   `-- dev

   ...

|-- ttyUSB0

|   |-- dev

|   |-- device -> ../../../devices/pci0000:00/0000:00:09.0/usb3/3-1/3-1:1.0/ttyUSB0

|   `-- driver -> ../../../bus/usb-serial/drivers/keyspan_4

|-- ttyUSB1

|   |-- dev

|   |-- device -> ../../../devices/pci0000:00/0000:00:09.0/usb3/3-1/3-1:1.0/ttyUSB1

|   `-- driver -> ../../../bus/usb-serial/drivers/keyspan_4

|-- ttyUSB2

|   |-- dev

|   |-- device -> ../../../devices/pci0000:00/0000:00:09.0/usb3/3-1/3-1:1.0/ttyUSB2

|   `-- driver -> ../../../bus/usb-serial/drivers/keyspan_4

`-- ttyUSB3

    |-- dev

    |-- device -> ../../../devices/pci0000:00/0000:00:09.0/usb3/3-1/3-1:1.0/ttyUSB3

    `-- driver -> ../../../bus/usb-serial/drivers/keyspan_4
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18.1. A Small TTY Driver

To explain how the tty core works, we create a small tty driver that

can be loaded, written to and read from, and unloaded. The main data

structure of any tty driver is the struct
tty_driver. It it used to register and unregister

a tty driver with the tty core and is described in the kernel header

file <linux/tty_driver.h>.

To create a struct tty_driver,

the function [bookmark: linuxdrive3-CHP-18-ITERM-7892]
[bookmark: linuxdrive3-CHP-18-ITERM-7893]alloc_tty_driver

must be called with the number of tty devices this driver supports as

the paramater. This can be done with the following brief code:

/* allocate the tty driver */

tiny_tty_driver = alloc_tty_driver(TINY_TTY_MINORS);

if (!tiny_tty_driver)

    return -ENOMEM;
 

After the alloc_tty_driver function is

successfully called, the struct
tty_driver should be initialized with the proper

information based on the needs of the tty driver. This structure

contains a lot of different fields, but not all of them have to be

initialized in order to have a working tty driver. Here is an example

that shows how to initialize the structure and sets up enough of the

fields to create a working tty driver. It uses the

tty_set_operations function to help copy over

the set of function operations that is defined in the driver:

static struct tty_operations serial_ops = {

    .open = tiny_open,

    .close = tiny_close,

    .write = tiny_write,

    .write_room = tiny_write_room,

    .set_termios = tiny_set_termios,

};



...



    /* initialize the tty driver */

    tiny_tty_driver->owner = THIS_MODULE;

    tiny_tty_driver->driver_name = "tiny_tty";

    tiny_tty_driver->name = "ttty";

    tiny_tty_driver->devfs_name = "tts/ttty%d";

    tiny_tty_driver->major = TINY_TTY_MAJOR,

    tiny_tty_driver->type = TTY_DRIVER_TYPE_SERIAL,

    tiny_tty_driver->subtype = SERIAL_TYPE_NORMAL,

    tiny_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_NO_DEVFS,

    tiny_tty_driver->init_termios = tty_std_termios;

    tiny_tty_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;

    tty_set_operations(tiny_tty_driver, &serial_ops);
 

The variables and functions listed above, and how this structure is

used, are explained in the rest of the chapter.

To register this driver with the tty core, the

struct tty_driver must be

passed to the

[bookmark: linuxdrive3-CHP-18-ITERM-7894]
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function:

/* register the tty driver */

retval = tty_register_driver(tiny_tty_driver);

if (retval) {

    printk(KERN_ERR "failed to register tiny tty driver");

    put_tty_driver(tiny_tty_driver);

    return retval;

}
 

When tty_register_driver is called, the kernel

creates all of the different sysfs tty files for the whole range of

minor devices that this tty driver can have. If you use

devfs (not covered in this book) and unless the

TTY_DRIVER_NO_DEVFS flag is specified,

devfs files are created, too. The flag may be

specified if you want to call

tty_register_device only for the devices that

actually exist on the system, so the user always has an up-to-date

view of the devices present in the kernel, which is what

devfs users expect.

After registering itself, the driver registers the devices it

controls through the tty_register_device

function. This function has three arguments:

	A pointer to the struct
tty_driver that the device belongs to.

	The minor number of the device.

	A pointer to the struct device

that this tty device is bound to. If the tty device is not bound to

any struct device, this

argument can be set to NULL.



Our driver registers all of the tty devices at once, as they are

virtual and not bound to any physical devices:

for (i = 0; i < TINY_TTY_MINORS; ++i)

    tty_register_device(tiny_tty_driver, i, NULL);
 

To unregister the driver with the tty core, all tty devices that were

registered by calling tty_register_device need

to be cleaned up with a call to

tty_unregister_device. Then the

struct tty_driver must

be[bookmark: linuxdrive3-CHP-18-ITERM-7897]
[bookmark: linuxdrive3-CHP-18-ITERM-7898]

unregistered with a call to

tty_unregister_driver:

for (i = 0; i < TINY_TTY_MINORS; ++i)

    tty_unregister_device(tiny_tty_driver, i);

tty_unregister_driver(tiny_tty_driver);
 

[bookmark: linuxdrive3-CHP-18-SECT-1.1]
18.1.1. struct termios

The init_termios variable[bookmark: linuxdrive3-CHP-18-ITERM-7899]
[bookmark: linuxdrive3-CHP-18-ITERM-7900] [bookmark: linuxdrive3-CHP-18-ITERM-7901] [bookmark: linuxdrive3-CHP-18-ITERM-7902] in the

struct tty_driver is a

struct termios. This variable

is used to provide a sane set of line settings if the port is used

before it is initialized by a user. The driver initializes the

variable with a standard set of values, which is copied from the

tty_std_termios variable.

tty_std_termios is defined in the tty core as:

struct termios tty_std_termios = {

    .c_iflag = ICRNL | IXON,

    .c_oflag = OPOST | ONLCR,

    .c_cflag = B38400 | CS8 | CREAD | HUPCL,

    .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |

               ECHOCTL | ECHOKE | IEXTEN,

    .c_cc = INIT_C_CC

};
 

The struct termios structure is used to hold all

of the current line settings for a specific port on the tty device.

These line settings control the current baud rate, data size, data

flow settings, and many other values. The different fields of this

structure are:



	 tcflag_t c_iflag; 

	
The input mode flags





	 tcflag_t c_oflag; 

	
The output mode flags





	 tcflag_t c_cflag; 

	
The control mode flags





	 tcflag_t c_lflag; 

	
The local mode flags





	 cc_t c_line; 

	
The line discipline type





	 cc_t c_cc[NCCS]; 

	
An array of control characters





All of the mode flags are defined as a large bitfield. The different

values of the modes, and what they are used for, can be seen in the

termios manpages available in any Linux distribution. The kernel

provides a set of useful macros to get at the different bits. These

macros are defined in the header file

include/linux/tty.h.

All the fields that were defined in the

tiny_tty_driver[bookmark: linuxdrive3-CHP-18-ITERM-7903]
[bookmark: linuxdrive3-CHP-18-ITERM-7904]
[bookmark: linuxdrive3-CHP-18-ITERM-7905] variable are necessary to have a

working tty driver. The owner field is necessary

in order to prevent the tty driver from being unloaded while the tty

port is open. In previous kernel versions, it was up to the tty

driver itself to handle the module reference counting logic. But

kernel programmers determined that it would to be difficult to solve

all of the different possible race conditions, and so the tty core

now handles all of this control for the tty drivers.

The driver_name and name fields

look very similar, yet are used for different purposes. The

driver_name variable should be set to something

short, descriptive, and unique among all tty drivers in the kernel.

This is because it shows up in the

/proc/tty/drivers file to describe the driver to

the user and in the sysfs tty class directory of tty drivers

currently loaded. The name field is used to define

a name for the individual tty nodes assigned to this tty driver in

the /dev tree. This string is used to create a

tty device by appending the number of the tty device being used at

the end of the string. It is also used to create the device name in

the sysfs /sys/class/tty/ directory. If devfs is

enabled in the kernel, this name should include any subdirectory that

the tty driver wants to be placed into. As an example, the serial

driver in the kernel sets the name field to tts/

if devfs is enabled and ttyS if it is not. This

string is also displayed in the

/proc/tty/drivers file.

As we mentioned, the /proc/tty/drivers file

shows all of the currently registered tty drivers. With the

tiny_tty driver registered in the kernel and no

devfs, this file looks something like the

following:

$ cat /proc/tty/drivers

tiny_tty             /dev/ttty     240     0-3 serial

usbserial            /dev/ttyUSB   188   0-254 serial

serial               /dev/ttyS       4  64-107 serial

pty_slave            /dev/pts      136   0-255 pty:slave

pty_master           /dev/ptm      128   0-255 pty:master

pty_slave            /dev/ttyp       3   0-255 pty:slave

pty_master           /dev/pty        2   0-255 pty:master

unknown              /dev/vc/        4    1-63 console

/dev/vc/0            /dev/vc/0       4       0 system:vtmaster

/dev/ptmx            /dev/ptmx       5       2 system

/dev/console         /dev/console    5       1 system:console

/dev/tty             /dev/tty        5       0 system:/dev/tty
 

Also, the [bookmark: linuxdrive3-CHP-18-ITERM-7906]
[bookmark: linuxdrive3-CHP-18-ITERM-7907] [bookmark: linuxdrive3-CHP-18-ITERM-7908]sysfs directory

/sys/class/tty looks something like the

following when the tiny_tty driver is registered with the tty core:

$ tree /sys/class/tty/ttty*

/sys/class/tty/ttty0

`-- dev

/sys/class/tty/ttty1

`-- dev

/sys/class/tty/ttty2

`-- dev

/sys/class/tty/ttty3

`-- dev



$ cat /sys/class/tty/ttty0/dev 

240:0
 

The major variable describes what the major number for this driver

is. The type and subtype variables declare what type of tty driver

this driver is. For our example, we are a serial driver of a

"normal" type. The only other

subtype for a tty driver would be a

"callout" type. Callout devices

were traditionally used to control the line settings of a device. The

data would be sent and received through one device node, and any line

setting changes would be sent to a different device node, which was

the callout device. This required the use of two minor numbers for

every single tty device. Thankfully, almost all drivers handle both

the data and line settings on the same device node, and the callout

type is rarely used for new drivers.

The flags variable is used by both the tty driver

and the tty core to indicate the current state of the driver and what

kind of tty driver it is. Several bitmask macros are defined that you

must use when testing or manipulating the flags. Three bits in the

flags variable can be set by the driver:
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	TTY_DRIVER_RESET_TERMIOS[bookmark: linuxdrive3-CHP-18-ITERM-7909]
[bookmark: linuxdrive3-CHP-18-ITERM-7910] 

	
This flag states that the tty core resets the termios setting

whenever the last process has closed the device. This is useful for

the console and pty drivers. For instance, suppose the user leaves a

terminal in a weird state. With this flag set, the terminal is reset

to a normal value when the user logs out or the process that

controlled the session is "killed."





	TTY_DRIVER_REAL_RAW[bookmark: linuxdrive3-CHP-18-ITERM-7911]
[bookmark: linuxdrive3-CHP-18-ITERM-7912] 

	
This flag states that the tty driver guarantees to send notifications

of parity or break characters up-to-the-line discipline. This allows

the line discipline to process received characters in a much quicker

manner, as it does not have to inspect every character received from

the tty driver. Because of the speed benefits, this value is usually

set for all tty drivers.





	TTY_DRIVER_NO_DEVFS[bookmark: linuxdrive3-CHP-18-ITERM-7913]
[bookmark: linuxdrive3-CHP-18-ITERM-7914] 

	
This flag states that when the call to

tty_register_driver is made, the tty core does

not create any devfs entries for the tty devices. This is useful for

any driver that dynamically creates and destroys the minor devices.

Examples of drivers that set this are the USB-to-serial drivers, the

USB modem driver, the USB Bluetooth tty driver, and a number of the

standard serial port drivers.





When the tty driver later wants to register a specific tty device

with the tty core, it must call

tty_register_device, with a pointer to the tty

driver, and the minor number of the device that has been created. If

this is not done, the tty core still passes all calls to the tty

driver, but some of the internal tty-related functionality might not

be present. This includes /sbin/hotplug

notification of new tty devices and sysfs representation of the tty

device. When the registered tty device is removed from the machine,

the tty driver must call tty_unregister_device.

The one remaining bit in this variable is controlled by the tty core

and is called TTY_DRIVER_INSTALLED. This flag is

set by the tty core after the driver has been registered and should

never be set by a [bookmark: linuxdrive3-CHP-18-ITERM-7915] [bookmark: linuxdrive3-CHP-18-ITERM-7916] [bookmark: linuxdrive3-CHP-18-ITERM-7917] [bookmark: linuxdrive3-CHP-18-ITERM-7918]tty driver.
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18.2. tty_driver Function Pointers

Finally, the tiny_tty driver declares four

[bookmark: linuxdrive3-CHP-18-ITERM-7919]
[bookmark: linuxdrive3-CHP-18-ITERM-7920]
[bookmark: linuxdrive3-CHP-18-ITERM-7921] [bookmark: linuxdrive3-CHP-18-ITERM-7922]function pointers.

[bookmark: linuxdrive3-CHP-18-SECT-2.1]
18.2.1. open and close

The open function is called by the tty core when

a user calls open on the device node the tty

driver is assigned to. The tty core calls this with a pointer to the

tty_struct structure assigned to this device, and

a file pointer. The open field must be set by a

tty driver for it to work properly; otherwise,

-ENODEV is returned to the user when open is

called.

When this open[bookmark: linuxdrive3-CHP-18-ITERM-7923] [bookmark: linuxdrive3-CHP-18-ITERM-7924] [bookmark: linuxdrive3-CHP-18-ITERM-7925] [bookmark: linuxdrive3-CHP-18-ITERM-7926] function is called, the tty

driver is expected to either save some data within the

tty_struct variable that is passed to it, or save

the data within a static array that can be referenced based on the

minor number of the port. This is necessary so the tty driver knows

which device is being referenced when the later close, write, and

other functions are called.

The tiny_tty driver saves a pointer within the

tty structure, as can be seen with the following code:

static int tiny_open(struct tty_struct *tty, struct file *file)

{

    struct tiny_serial *tiny;

    struct timer_list *timer;

    int index;



    /* initialize the pointer in case something fails */

    tty->driver_data = NULL;



    /* get the serial object associated with this tty pointer */

    index = tty->index;

    tiny = tiny_table[index];

    if (tiny =  = NULL) {

        /* first time accessing this device, let's create it */

        tiny = kmalloc(sizeof(*tiny), GFP_KERNEL);

        if (!tiny)

            return -ENOMEM;



        init_MUTEX(&tiny->sem);

        tiny->open_count = 0;

        tiny->timer = NULL;



        tiny_table[index] = tiny;

    }



    down(&tiny->sem);



    /* save our structure within the tty structure */

    tty->driver_data = tiny;

    tiny->tty = tty;
 

In this code, the tiny_serial structure is saved

within the tty structure. This allows the

tiny_write,

tiny_write_room, and

tiny_close functions to retrieve the

tiny_serial structure and manipulate it properly.

The tiny_serial structure is defined as:

struct tiny_serial {

    struct tty_struct   *tty;       /* pointer to the tty for this device */

    int         open_count; /* number of times this port has been opened */

    struct semaphore    sem;        /* locks this structure */

    struct timer_list   *timer;



};
 

As we've seen, the open_count

variable is initialized to 0 in the open call the

first time the port is opened. This is a typical reference counter,

needed because the open and

close functions of a tty driver can be called

multiple times for the same device in order to allow multiple

processes to read and write data. To handle everything correctly, a

count of how many times the port has been opened or closed must be

kept; the driver increments and decrements the count as the port is

used. When the port is opened for the first time, any needed hardware

initialization and memory allocation can be done. When the port is

closed for the last time, any needed hardware shutdown and memory

cleanup can be done.

The rest of the tiny_open function shows how to

keep track of the number of times the device has been opened:

    ++tiny->open_count;

    if (tiny->open_count =  = 1) {

        /* this is the first time this port is opened */

        /* do any hardware initialization needed here */
 

The open function must return either a negative

error number if something has happened to prevent the open from being

successful, or a 0 to indicate success.

The close function pointer is called by the tty

core when close is called by a user on the file

handle that was previously created with a call to

open. This indicates that the device should be

closed at this time. However, since the open

function can be called more than once, the close

function also can be called more than once. So this function should

keep track of how many times it has been called to determine if the

hardware should really be shut down at this time. The

tiny_tty driver does this with the following

code:

static void do_close(struct tiny_serial *tiny)

{

    down(&tiny->sem);



    if (!tiny->open_count) {

        /* port was never opened */

        goto exit;

    }



    --tiny->open_count;

    if (tiny->open_count <= 0) {

        /* The port is being closed by the last user. */

        /* Do any hardware specific stuff here */



        /* shut down our timer */

        del_timer(tiny->timer);

    }

exit:

    up(&tiny->sem);

}



static void tiny_close(struct tty_struct *tty, struct file *file)

{

    struct tiny_serial *tiny = tty->driver_data;



    if (tiny)

        do_close(tiny);

}
 

The tiny_close[bookmark: linuxdrive3-CHP-18-ITERM-7927]
[bookmark: linuxdrive3-CHP-18-ITERM-7928]

function just calls the

do_close[bookmark: linuxdrive3-CHP-18-ITERM-7929]
[bookmark: linuxdrive3-CHP-18-ITERM-7930]

function to do the real work of closing the device. This is done so

that the shutdown logic does not have to be duplicated here and when

the driver is unloaded and a port is open. The

close function has no return value, as it is not

supposed to be able [bookmark: linuxdrive3-CHP-18-ITERM-7931] [bookmark: linuxdrive3-CHP-18-ITERM-7932] [bookmark: linuxdrive3-CHP-18-ITERM-7933] [bookmark: linuxdrive3-CHP-18-ITERM-7934]to fail.

[bookmark: linuxdrive3-CHP-18-SECT-2.2]
18.2.2. Flow of Data

The[bookmark: linuxdrive3-CHP-18-ITERM-7935]
[bookmark: linuxdrive3-CHP-18-ITERM-7936] [bookmark: linuxdrive3-CHP-18-ITERM-7937] write

function call is called by the user when there is data to be sent to

the hardware. First the tty core receives the call, and then it

passes the data on to the tty driver's

write function. The tty core also tells the tty

driver the size of the data being sent.

Sometimes, because of the speed and buffer capacity of the tty

hardware, not all characters requested by the writing program can be

sent at the moment the write function is called.

The write function should return the number of

characters that was able to be sent to the hardware (or queued to be

sent at a later time), so that the user program can check if all of

the data really was written. It is much easier for this check to be

done in user space than it is for a kernel driver to sit and sleep

until all of the requested data is able to be sent out. If any errors

happen during the write call, a negative error

value should be returned instead of the number of characters that

were written.

The write function can be called from both

interrupt context and user context. This is important to know, as the

tty driver should not call any functions that might sleep when it is

in interrupt context. These include any function that might possibly

call schedule, such as the common functions

copy_from_user, kmalloc,

and printk. If you really want to sleep, make

sure to check first whether the driver is

[bookmark: linuxdrive3-CHP-18-ITERM-7938]in interrupt context by

calling in_interrupt.

This sample tiny tty driver does not connect to any real hardware, so

its write function simply records in the kernel debug log what data

was supposed to be written. It does this with the following code:

static int tiny_write(struct tty_struct *tty, 

              const unsigned char *buffer, int count)

{

    struct tiny_serial *tiny = tty->driver_data;

    int i;

    int retval = -EINVAL;



    if (!tiny)

        return -ENODEV;



    down(&tiny->sem);



    if (!tiny->open_count)

        /* port was not opened */

        goto exit;



    /* fake sending the data out a hardware port by

     * writing it to the kernel debug log.

     */

    printk(KERN_DEBUG "%s - ", _ _FUNCTION_ _);

    for (i = 0; i < count; ++i)

        printk("%02x ", buffer[i]);

    printk("\n");

        

exit:

    up(&tiny->sem);

    return retval;

}
 

The write function can be called when the tty

subsystem itself needs to send some data out the tty device. This can

happen if the tty driver does not implement the

put_char function in the

tty_struct. In that case, the tty core uses the

write function callback with a data size of 1.

This commonly happens when the tty core wants to convert a newline

character to a line feed plus a newline character. The biggest

problem that can occur here is that the tty driver's

write function must not return

0 for this kind of call. This means that the

driver must write that byte of data to the device, as the caller (the

tty core) does not buffer the data and try again at a later time. As

the write function can not determine if it is

being called in the place of put_char, even if

only one byte of data is being sent, try to implement the

write function so it always writes at least one

byte before returning. A number of the current USB-to-serial tty

drivers do not follow this rule, and because of this, some terminals

types do not work properly when connected to them.

The write_room function is called when the tty

core wants to know how much room in the write buffer the tty driver

has available. This number changes over time as characters empty out

of the write buffers and as the write function

is called, adding characters to the buffer.

static int tiny_write_room(struct tty_struct *tty) 

{

    struct tiny_serial *tiny = tty->driver_data;

    int room = -EINVAL;



    if (!tiny)

        return -ENODEV;



    down(&tiny->sem);

    

    if (!tiny->open_count) {

        /* port was not opened */

        goto exit;

    }



    /* calculate how much room is left in the device */

    room = 255;



exit:

    up(&tiny->sem);

    return room;

}
 

[bookmark: linuxdrive3-CHP-18-SECT-2.3]
18.2.3. Other Buffering Functions

The

chars_in_buffer[bookmark: linuxdrive3-CHP-18-ITERM-7939]
[bookmark: linuxdrive3-CHP-18-ITERM-7940]
[bookmark: linuxdrive3-CHP-18-ITERM-7941] [bookmark: linuxdrive3-CHP-18-ITERM-7942]
[bookmark: linuxdrive3-CHP-18-ITERM-7943]

function in the tty_driver structure is not

required in order to have a working tty driver, but it is

recommended. This function is called when the tty core wants to know

how many characters are still remaining in the tty

driver's write buffer to be sent out. If the driver

can store characters before it sends them out to the hardware, it

should implement this function in order for the tty core to be able

to determine if all of the data in the driver has drained out.

Three functions callbacks in the tty_driver

structure can be used to flush any remaining data that the driver is

holding on to. These are not required to be implemented, but are

recommended if the tty driver can buffer data before it sends it to

the hardware. The first two function callbacks are called

flush_chars and

wait_until_sent. These functions are called when

the tty core has sent a number of characters to the tty driver using

the put_char function callback. The

flush_chars function callback is called when the

tty core wants the tty driver to start sending these characters out

to the hardware, if it hasn't already started. This

function is allowed to return before all of the data is sent out to

the hardware. The wait_until_sent function

callback works much the same way; but it must wait until all of the

characters are sent before returning to the tty core or until the

passed in timeout value has expired, whichever

occurrence happens first. The tty driver is allowed to sleep within

this function in order to complete it. If the timeout value passed to

the wait_until_sent function callback is set to

0, the function should wait until it is finished

with the operation.

The remaining data flushing function callback is

flush_buffer. It is called by the tty core when

the tty driver is to flush all of the data still in its write buffers

out of memory. Any data remaining in the buffer is lost and not sent

to the device.

[bookmark: linuxdrive3-CHP-18-SECT-2.4]
18.2.4. No read Function?

With only these functions, the tiny_tty driver

can be registered, a device node opened, data written to the device,

the device node closed, and the driver unregistered and unloaded from

the kernel. But the tty core and tty_driver

structure do not provide a read function; in other words; no function

callback exists to get data from the driver to the tty core.

Instead of a conventional [bookmark: linuxdrive3-CHP-18-ITERM-7944]
[bookmark: linuxdrive3-CHP-18-ITERM-7945]read function, the tty driver is

responsible for sending any data received from the hardware to the

tty core when it is received. The tty core buffers the data until it

is asked for by the user. Because of the buffering logic the tty core

provides, it is not necessary for every tty driver to implement its

own buffering logic. The tty core notifies the tty driver when a user

wants the driver to stop and start sending data, but if the internal

tty buffers are full, no such notification occurs.

The tty core buffers the data received by the tty drivers in a

structure called struct
tty_flip_buffer. A flip buffer is a structure that

contains two main data arrays. Data being received from the tty

device is stored in the first array. When that array is full, any

user waiting on the data is notified that data is available to be

read. While the user is reading the data from this array, any new

incoming data is being stored in the second array. When that array is

finished, the data is again flushed to the user, and the driver

starts to fill up the first array. Essentially, the data being

received "flips" from one buffer to

the other, hopefully not overflowing both of them. To try to prevent

data from being lost, a tty driver can monitor how big the incoming

array is, and, if it fills up, tell the tty driver to flush the

buffer at this moment in time, instead of waiting for the next

available chance.

The details of the

struct[bookmark: linuxdrive3-CHP-18-ITERM-7946]
[bookmark: linuxdrive3-CHP-18-ITERM-7947] [bookmark: linuxdrive3-CHP-18-ITERM-7948]
tty_flip_buffer structure do not really matter to

the tty driver, with one exception, the variable

count. This variable contains how many bytes are

currently left in the buffer that are being used for receiving data.

If this value is equal to the value

TTY_FLIPBUF_SIZE, the flip buffer needs to be

flushed out to the user with a call to

tty_flip_buffer_push. This is shown in the

following bit of code:

for (i = 0; i < data_size; ++i) {

    if (tty->flip.count >= TTY_FLIPBUF_SIZE)

        tty_flip_buffer_push(tty);

    tty_insert_flip_char(tty, data[i], TTY_NORMAL);

}

tty_flip_buffer_push(tty);
 

Characters that are received from the tty driver to be sent to the

user are added to the flip buffer with a call to

tty_insert_flip_char. The first parameter of

this function is the struct
tty_struct the data should be saved in, the second

parameter is the character to be saved, and the third parameter is

any flags that should be set for this character. The flags value

should be set to TTY_NORMAL if this is a normal

character being received. If this is a special type of character

indicating an error receiving data, it should be set to

TTY_BREAK, TTY_FRAME,

TTY_PARITY, or TTY_OVERRUN,

depending on the error.

In order to "push" the data to the

user, a call to tty_flip_buffer_push is made.

This function should also be called if the flip buffer is about to

overflow, as is shown in this example. So whenever data is added to

the flip buffer, or when the flip buffer is full, the tty driver must

call tty_flip_buffer_push. If the tty driver can

accept data at very high rates, the

tty->low_latency flag should be set, which

causes the call to tty_flip_buffer_push to be

immediately executed when called. Otherwise, the

tty_flip_buffer_push call schedules itself to

push the data out[bookmark: linuxdrive3-CHP-18-ITERM-7949] [bookmark: linuxdrive3-CHP-18-ITERM-7950] [bookmark: linuxdrive3-CHP-18-ITERM-7951] [bookmark: linuxdrive3-CHP-18-ITERM-7952] of the buffer at some later point in

the near future.







[bookmark: linuxdrive3-CHP-18-SECT-3]
18.3. TTY Line Settings

When a user wants to [bookmark: linuxdrive3-CHP-18-ITERM-7953] [bookmark: linuxdrive3-CHP-18-ITERM-7954] [bookmark: linuxdrive3-CHP-18-ITERM-7955] [bookmark: linuxdrive3-CHP-18-ITERM-7956] [bookmark: linuxdrive3-CHP-18-ITERM-7957]change

the line settings of a tty device or retrieve the current line

settings, he makes one of the many different termios user-space

library function calls or directly makes an

ioctl call on the tty device node. The tty core

converts both of these interfaces into a number of different tty

driver function callbacks and ioctl calls.

[bookmark: linuxdrive3-CHP-18-SECT-3.1]
18.3.1. set_termios

The majority of the [bookmark: linuxdrive3-CHP-18-ITERM-7958] [bookmark: linuxdrive3-CHP-18-ITERM-7959]
[bookmark: linuxdrive3-CHP-18-ITERM-7960]termios

user-space functions are translated by the library into an

ioctl call to the driver node. A large number of

the different tty ioctl calls are then

translated by the tty core into a single

set_termios function call to the tty driver. The

set_termios callback needs to determine which

line settings it is being asked to change, and then make those

changes in the tty device. The tty driver must be able to decode all

of the different settings in the termios structure and react to any

needed changes. This is a complicated task, as all of the line

settings are packed into the termios structure in a wide variety of

ways.

The first thing that a set_termios function

should do is determine whether anything actually has to be changed.

This can be done with the following code:

unsigned int cflag;



cflag = tty->termios->c_cflag;



/* check that they really want us to change something */

if (old_termios) {

    if ((cflag =  = old_termios->c_cflag) &&

        (RELEVANT_IFLAG(tty->termios->c_iflag) =  = 

         RELEVANT_IFLAG(old_termios->c_iflag))) {

        printk(KERN_DEBUG " - nothing to change...\n");

        return;

    }

}
 

The

RELEVANT_IFLAG[bookmark: linuxdrive3-CHP-18-ITERM-7961]
[bookmark: linuxdrive3-CHP-18-ITERM-7962]

macro is defined as:

#define RELEVANT_IFLAG(iflag) ((iflag) & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK))
 

and is used to mask off the important bits of the

cflags variable. This is then compared to the old

value, and see if they differ. If not, nothing needs to be changed,

so we return. Note that the old_termios variable

is first checked to see if it points to a valid structure first,

before it is accessed. This is required, as sometimes this variable

is set to NULL. trying to access a field off of a

NULL pointer causes the kernel to panic.

To look at the requested byte size, the

CSIZE[bookmark: linuxdrive3-CHP-18-ITERM-7963]
[bookmark: linuxdrive3-CHP-18-ITERM-7964] bitmask can be used to separate out

the proper bits from the cflag variable. If the

size can not be determined, it is customary to default to eight data

bits. This can be implemented as follows:

/* get the byte size */

switch (cflag & CSIZE) {

    case CS5:

        printk(KERN_DEBUG " - data bits = 5\n");

        break;

    case CS6:

        printk(KERN_DEBUG " - data bits = 6\n");

        break;

    case CS7:

        printk(KERN_DEBUG " - data bits = 7\n");

        break;

    default:

    case CS8:

        printk(KERN_DEBUG " - data bits = 8\n");

        break;

}
 

To determine the requested parity value, the

PARENB[bookmark: linuxdrive3-CHP-18-ITERM-7965] bitmask can be checked against the

cflag variable to tell if any parity is to be set

at all. If so, the

PARODD[bookmark: linuxdrive3-CHP-18-ITERM-7966] bitmask can be used to determine if the

parity should be odd or even. An implementation of this is:

/* determine the parity */

if (cflag & PARENB)

    if (cflag & PARODD)

        printk(KERN_DEBUG " - parity = odd\n");

    else

        printk(KERN_DEBUG " - parity = even\n");

else

    printk(KERN_DEBUG " - parity = none\n");
 

The stop bits that are requested can also be determined from the

cflag variable using the

CSTOPB[bookmark: linuxdrive3-CHP-18-ITERM-7967] bitmask. An implemention of this is:

/* figure out the stop bits requested */

if (cflag & CSTOPB)

    printk(KERN_DEBUG " - stop bits = 2\n");

else

    printk(KERN_DEBUG " - stop bits = 1\n");
 

There are a two basic types of flow control: hardware and software.

To determine if the user is asking for hardware flow control, the

CRTSCTS[bookmark: linuxdrive3-CHP-18-ITERM-7968] bitmask can be checked against the

cflag variable. An exmple of this is:

/* figure out the hardware flow control settings */

if (cflag & CRTSCTS)

    printk(KERN_DEBUG " - RTS/CTS is enabled\n");

else

    printk(KERN_DEBUG " - RTS/CTS is disabled\n");
 

Determining the different modes of software flow control and the

different stop and start characters is a bit more involved:

/* determine software flow control */

/* if we are implementing XON/XOFF, set the start and 

 * stop character in the device */

if (I_IXOFF(tty) || I_IXON(tty)) {

    unsigned char stop_char  = STOP_CHAR(tty);

    unsigned char start_char = START_CHAR(tty);



    /* if we are implementing INBOUND XON/XOFF */

    if (I_IXOFF(tty))

        printk(KERN_DEBUG " - INBOUND XON/XOFF is enabled, "

            "XON = %2x, XOFF = %2x", start_char, stop_char);

    else

        printk(KERN_DEBUG" - INBOUND XON/XOFF is disabled");



    /* if we are implementing OUTBOUND XON/XOFF */

    if (I_IXON(tty))

        printk(KERN_DEBUG" - OUTBOUND XON/XOFF is enabled, "

            "XON = %2x, XOFF = %2x", start_char, stop_char);

    else

        printk(KERN_DEBUG" - OUTBOUND XON/XOFF is disabled");

}
 

Finally, the baud rate needs to be determined. The tty core provides

a function,

tty_get_baud_rate[bookmark: linuxdrive3-CHP-18-ITERM-7969]
[bookmark: linuxdrive3-CHP-18-ITERM-7970]
[bookmark: linuxdrive3-CHP-18-ITERM-7971],

to help do this. The function returns an integer indicating the

requested baud rate for the specific tty device:

/* get the baud rate wanted */

printk(KERN_DEBUG " - baud rate = %d", tty_get_baud_rate(tty));
 

Now that the tty driver has determined all of the different line

settings, it can set the hardware up properly based on these values.

[bookmark: linuxdrive3-CHP-18-SECT-3.2]
18.3.2. tiocmget and tiocmset

In the 2.4 and older kernels, there used to be a number of tty

ioctl calls to get and set the different control

line settings. These were denoted by the constants

TIOCMGET, TIOCMBIS,

TIOCMBIC, and TIOCMSET.

TIOCMGET was used to get the line setting values

of the kernel, and as of the 2.6 kernel, this

ioctl call has been turned into a tty driver

callback function called tiocmget. The other

three ioctls have been simplified and are now

represented with a single tty driver callback function called

tiocmset[bookmark: linuxdrive3-CHP-18-ITERM-7972]
[bookmark: linuxdrive3-CHP-18-ITERM-7973].

The tiocmget[bookmark: linuxdrive3-CHP-18-ITERM-7974]
[bookmark: linuxdrive3-CHP-18-ITERM-7975]

function in the tty driver is called by the tty core when the core

wants to know the current physical values of the control lines of a

specific tty device. This is usually done to retrieve the values of

the DTR and RTS lines of a serial port. If the tty driver cannot

directly read the MSR or MCR registers of the serial port, because

the hardware does not allow this, a copy of them should be kept

locally. A number of the USB-to-serial drivers must implement this

kind of "shadow" variable. Here is

how this function could be implemented if a local copy of these

values are kept:

static int tiny_tiocmget(struct tty_struct *tty, struct file *file)

{

    struct tiny_serial *tiny = tty->driver_data;



    unsigned int result = 0;

    unsigned int msr = tiny->msr;

    unsigned int mcr = tiny->mcr;



    result = ((mcr & MCR_DTR)  ? TIOCM_DTR  : 0) |  /* DTR is set */

             ((mcr & MCR_RTS)  ? TIOCM_RTS  : 0) |  /* RTS is set */

             ((mcr & MCR_LOOP) ? TIOCM_LOOP : 0) |  /* LOOP is set */

             ((msr & MSR_CTS)  ? TIOCM_CTS  : 0) |  /* CTS is set */

             ((msr & MSR_CD)   ? TIOCM_CAR  : 0) |  /* Carrier detect is set*/

             ((msr & MSR_RI)   ? TIOCM_RI   : 0) |  /* Ring Indicator is set */

             ((msr & MSR_DSR)  ? TIOCM_DSR  : 0);   /* DSR is set */



    return result;

}
 

The tiocmset function in the tty driver is

called by the tty core when the core wants to set the values of the

control lines of a specific tty device. The tty core tells the tty

driver what values to set and what to clear, by passing them in two

variables: set and clear. These

variables contain a bitmask of the lines settings that should be

changed. An ioctl call never asks the driver to

both set and clear a particular bit at the same time, so it does not

matter which operation occurs first. Here is an example of how this

function could be implemented by a tty driver:

static int tiny_tiocmset(struct tty_struct *tty, struct file *file,

                         unsigned int set, unsigned int clear)

{

    struct tiny_serial *tiny = tty->driver_data;

    unsigned int mcr = tiny->mcr;



    if (set & TIOCM_RTS)

        mcr |= MCR_RTS;

    if (set & TIOCM_DTR)

        mcr |= MCR_RTS;



    if (clear & TIOCM_RTS)

        mcr &= ~MCR_RTS;

    if (clear & TIOCM_DTR)

        mcr &= ~MCR_RTS;



    /* set the new MCR value in the device */

    tiny->mcr = mcr;

    return 0;

}
 







[bookmark: linuxdrive3-CHP-18-SECT-4]
18.4. ioctls

The ioctl[bookmark: linuxdrive3-CHP-18-ITERM-7976]
[bookmark: linuxdrive3-CHP-18-ITERM-7977] function callback in the

struct tty_driver is called by the tty core when

ioctl(2) is called on the device node. If the

tty driver does not know how to handle the ioctl

value passed to it, it should return -ENOIOCTLCMD

to try to let the tty core implement a generic version of the call.

The 2.6 kernel defines about 70 different tty

ioctls that can be be sent to a tty driver. Most

tty drivers do not handle all of these, but only a small subset of

the more common ones. Here is a list of the more popular tty

ioctls, what they mean, and how to implement

them:
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	 TIOCSERGETLSR 

	
Gets the value of this tty device's

[bookmark: linuxdrive3-CHP-18-ITERM-7978]
[bookmark: linuxdrive3-CHP-18-ITERM-7979]
[bookmark: linuxdrive3-CHP-18-ITERM-7980]line

status register (LSR).





	 TIOCGSERIAL 

	
Gets the serial line information. A caller can potentially get a lot

of serial line information from the tty device all at once in this

call. Some programs (such as setserial and

dip) call this function to make sure that the baud

rate was properly set and to get general information on what type of

device the tty driver controls. The caller passes in a pointer to a

large struct of type serial_struct, which the tty

driver should fill up with the proper values. Here is an example of

how this can be implemented:





static int tiny_ioctl(struct tty_struct *tty, struct file *file,

                      unsigned int cmd, unsigned long arg)

{

    struct tiny_serial *tiny = tty->driver_data;

    if (cmd =  = TIOCGSERIAL) {

        struct serial_struct tmp;

        if (!arg)

            return -EFAULT;

        memset(&tmp, 0, sizeof(tmp));

        tmp.type        = tiny->serial.type;

        tmp.line        = tiny->serial.line;

        tmp.port        = tiny->serial.port;

        tmp.irq         = tiny->serial.irq;

        tmp.flags       = ASYNC_SKIP_TEST | ASYNC_AUTO_IRQ;

        tmp.xmit_fifo_size  = tiny->serial.xmit_fifo_size;

        tmp.baud_base       = tiny->serial.baud_base;

        tmp.close_delay     = 5*HZ;

        tmp.closing_wait    = 30*HZ;

        tmp.custom_divisor  = tiny->serial.custom_divisor;

        tmp.hub6        = tiny->serial.hub6;

        tmp.io_type     = tiny->serial.io_type;

        if (copy_to_user((void _ _user *)arg, &tmp, sizeof(tmp)))

            return -EFAULT;

        return 0;

    }

    return -ENOIOCTLCMD;

}
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	 TIOCSSERIAL 

	
Sets the [bookmark: linuxdrive3-CHP-18-ITERM-7981]
[bookmark: linuxdrive3-CHP-18-ITERM-7982]serial line information. This is the

opposite of TIOCGSERIAL and allows the user to set

the serial line status of the tty device all at once. A pointer to a

struct serial_struct is passed

to this call, full of data that the tty device should now be set to.

If the tty driver does not implement this call, most programs still

works properly.





	 TIOCMIWAIT 

	
Waits for MSR change. The user asks for this

ioctl in the unusual circumstances that it wants

to sleep within the kernel until something happens to the

[bookmark: linuxdrive3-CHP-18-ITERM-7983]
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register of the tty device. The arg parameter

contains the type of event that the user is waiting for. This is

commonly used to wait until a status line changes, signaling that

more data is ready to be sent to the device.





Be careful when implementing this ioctl, and do

not use the interruptible_sleep_on call, as it

is unsafe (there are lots of nasty race conditions involved with it).

Instead, a wait_queue should be used to avoid

these problems. Here's an example of how to

implement this ioctl:

static int tiny_ioctl(struct tty_struct *tty, struct file *file,

                      unsigned int cmd, unsigned long arg)

{

    struct tiny_serial *tiny = tty->driver_data;

    if (cmd =  = TIOCMIWAIT) {

        DECLARE_WAITQUEUE(wait, current);

        struct async_icount cnow;

        struct async_icount cprev;

        cprev = tiny->icount;

        while (1) {

            add_wait_queue(&tiny->wait, &wait);

            set_current_state(TASK_INTERRUPTIBLE);

            schedule(  );

            remove_wait_queue(&tiny->wait, &wait);

            /* see if a signal woke us up */

            if (signal_pending(current))

                return -ERESTARTSYS;

            cnow = tiny->icount;

            if (cnow.rng =  = cprev.rng && cnow.dsr =  = cprev.dsr &&

                cnow.dcd =  = cprev.dcd && cnow.cts =  = cprev.cts)

                return -EIO; /* no change => error */

            if (((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) ||

                ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) ||

                ((arg & TIOCM_CD)  && (cnow.dcd != cprev.dcd)) ||

                ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) {

                return 0;

            }

            cprev = cnow;

        }

    }

    return -ENOIOCTLCMD;

}
 

Somewhere in the tty driver's code that recognizes

that the MSR register changes, the following line must be called for

this code to work properly:

wake_up_interruptible(&tp->wait);
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	 TIOCGICOUNT 

	
Gets[bookmark: linuxdrive3-CHP-18-ITERM-7985]
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interrupt counts. This is called when the user wants to know how many

serial line interrupts have happened. If the driver has an interrupt

handler, it should define an internal structure of counters to keep

track of these statistics and increment the proper counter every time

the function is run by the kernel.





This ioctl call passes the kernel a pointer to a

structure

serial_icounter_struct[bookmark: linuxdrive3-CHP-18-ITERM-7987]
[bookmark: linuxdrive3-CHP-18-ITERM-7988],

which should be filled by the tty driver. This call is often made in

conjunction with the previous TIOCMIWAIT
ioctl call. If the tty driver keeps track of all

of these interrupts while the driver is operating, the code to

implement this call can be very simple:
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                      unsigned int cmd, unsigned long arg)

{

    struct tiny_serial *tiny = tty->driver_data;

    if (cmd =  = TIOCGICOUNT) {

        struct async_icount cnow = tiny->icount;

        struct serial_icounter_struct icount;

        icount.cts  = cnow.cts;

        icount.dsr  = cnow.dsr;

        icount.rng  = cnow.rng;

        icount.dcd  = cnow.dcd;

        icount.rx   = cnow.rx;

        icount.tx   = cnow.tx;

        icount.frame    = cnow.frame;

        icount.overrun  = cnow.overrun;

        icount.parity   = cnow.parity;

        icount.brk  = cnow.brk;

        icount.buf_overrun = cnow.buf_overrun;

        if (copy_to_user((void _ _user *)arg, &icount, sizeof(icount)))

            return -EFAULT;

        return 0;

    }

    return -ENOIOCTLCMD;









}
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18.5. proc and sysfs Handling of TTY Devices

The tty core provides a very easy[bookmark: linuxdrive3-CHP-18-ITERM-7994]
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file in the /proc/tty/driver directory. If the

driver defines the read_proc or

write_proc functions, this file is created. Then, any read

or write call on this file is sent to the driver. The formats of

these functions are just like the standard /proc

file-handling functions.

As an example, here is a simple implementation of the

read_proc tty callback that merely prints out

the number of the currently registered ports:

static int tiny_read_proc(char *page, char **start, off_t off, int count,

                          int *eof, void *data)

{

    struct tiny_serial *tiny;

    off_t begin = 0;

    int length = 0;

    int i;



    length += sprintf(page, "tinyserinfo:1.0 driver:%s\n", DRIVER_VERSION);

    for (i = 0; i < TINY_TTY_MINORS && length < PAGE_SIZE; ++i) {

        tiny = tiny_table[i];

        if (tiny =  = NULL)

            continue;



        length += sprintf(page+length, "%d\n", i);

        if ((length + begin) > (off + count))

            goto done;

        if ((length + begin) < off) {

            begin += length;

            length = 0;

        }

    }

    *eof = 1;

done:

    if (off >= (length + begin))

        return 0;

    *start = page + (off-begin);

    return (count < begin+length-off) ? count : begin + length-off;

}
 

The tty core handles all of the sysfs directory and device creation

when the tty driver is registered, or when the individual tty devices

are created, depending on the TTY_DRIVER_NO_DEVFS

flag in the struct tty_driver.

The individual directory always contains the dev

file, which allows user-space tools to determine the major and minor

number assigned to the device. It also contains a

device and driver symlink,

if a pointer to a valid struct
device is passed in the call to

tty_register_device. Other than these three

files, it is not possible for individual tty drivers to create new

sysfs files in this location. This will probably change in future

kernel releases.
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18.6. The tty_driver Structure in Detail

The tty_driver structure is[bookmark: linuxdrive3-CHP-18-ITERM-7997]
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used to register a tty driver with the tty core. Here is a list of

all of the different fields in the structure and how they are used by

the tty core:



	struct module *owner; 

	
The module owner for this driver.





	int magic; 

	
The "magic" value for this

structure. Should always be set to

TTY_DRIVER_MAGIC. Is initialized in the

alloc_tty_driver function.





	const char *driver_name; 

	
Name of the driver, used in /proc/tty and sysfs.





	const char *name; 

	
Node name of the driver.





	int name_base; 

	
Starting number to use when creating names for devices. This is used

when the kernel creates a string representation of a specific tty

device assigned to the tty driver.





	short major; 

	
Major number for the driver.





	short minor_start; 

	
Starting minor number for the driver. This is usually set to the same

value as name_base. Typically, this value is set

to 0.





	short num; 

	
Number of minor numbers assigned to the driver. If an entire major

number range is used by the driver, this value should be set to 255.

This variable is initialized in the

alloc_tty_driver function.





	short type; 



	short subtype; 

	
Describe what kind of tty driver is being registered with the tty

core. The value of subtype depends on the

type. The type field can be:





	TTY_DRIVER_TYPE_SYSTEM 

	
Used internally by the tty subsystem to remember that it is dealing

with an internal tty driver. subtype should be set

to SYSTEM_TYPE_TTY,

SYSTEM_TYPE_CONSOLE,

SYSTEM_TYPE_SYSCONS, or

SYSTEM_TYPE_SYSPTMX. This type should not be used

by any "normal" tty driver.





	TTY_DRIVER_TYPE_CONSOLE 

	
Used only by the console driver.





	TTY_DRIVER_TYPE_SERIAL 

	
Used by any serial type driver. subtype should be

set to SERIAL_TYPE_NORMAL or

SERIAL_TYPE_CALLOUT, depending on which type your

driver is. This is one of the most common settings for the

type field.





	TTY_DRIVER_TYPE_PTY 

	
Used by the pseudo terminal interface (pty).

subtype needs to be set to either

PTY_TYPE_MASTER or

PTY_TYPE_SLAVE.





	struct termios init_termios; 

	
Initial struct termios values for the device when it is created.





	int flags; 

	
Driver flags, as described earlier in this chapter.





	struct proc_dir_entry *proc_entry; 

	
This driver's /proc entry

structure. It is created by the tty core if the driver implements the

write_proc or read_proc

functions. This field should not be set by the tty driver itself.





	struct tty_driver *other; 

	
Pointer to a tty slave driver. This is used only by the pty driver

and should not be used by any other tty driver.





	void *driver_state; 

	
Internal state of the tty driver. Should be used only by the pty

driver.





	struct tty_driver *next; 



	struct tty_driver *prev; 

	
Linking variables. These variables are used by the tty core to chain

all of the different tty drivers together, and should not be touched

by any tty driver.
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18.7. The tty_operations Structure in Detail

The tty_operations

structure[bookmark: linuxdrive3-CHP-18-ITERM-8001]
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callbacks that can be set by a tty driver and called by the tty core.

Currently, all of the function pointers contained in this structure

are also in the tty_driver structure, but that

will be replaced soon with only an instance of this structure.



	int (*open)(struct tty_struct * tty, struct file * filp); 

	
The open function.





	void (*close)(struct tty_struct * tty, struct file * filp); 

	
The close function.





	int (*write)(struct tty_struct * tty, const unsigned char *buf, int count); 

	
The write function.





	void (*put_char)(struct tty_struct *tty, unsigned char ch); 

	
The single-character write function. This

function is called by the tty core when a single character is to be

written to the device. If a tty driver does not define this function,

the write function is called instead when the

tty core wants to send a single character.





	void (*flush_chars)(struct tty_struct *tty); 



	void (*wait_until_sent)(struct tty_struct *tty, int timeout); 

	
The function that flushes data to the hardware.





	int (*write_room)(struct tty_struct *tty); 

	
The function that indicates how much of the buffer is free.





	int (*chars_in_buffer)(struct tty_struct *tty); 

	
The function that indicates how much of the buffer is full of data.





	int (*ioctl)(struct tty_struct *tty, struct file * file, unsigned int cmd, 



	 unsigned long arg); 

	
The ioctl function. This function is called by

the tty core when ioctl(2) is called on the

device node.





	void (*set_termios)(struct tty_struct *tty, struct termios * old); 

	
The set_termios function. This function is

called by the tty core when the device's termios

settings have been changed.





	void (*throttle)(struct tty_struct * tty); 



	void (*unthrottle)(struct tty_struct * tty); 



	void (*stop)(struct tty_struct *tty); 



	void (*start)(struct tty_struct *tty); 

	
Data-throttling functions. These functions are used to help control

overruns of the tty core's input buffers. The

throttle function is called when the tty

core's input buffers are getting full. The tty

driver should try to signal to the device that no more characters

should be sent to it. The unthrottle function is

called when the tty core's input buffers have been

emptied out, and it can now accept more data. The tty driver should

then signal to the device that data can be received. The

stop and start functions

are much like the throttle and

unthrottle functions, but they signify that the

tty driver should stop sending data to the device and then later

resume sending data.





	void (*hangup)(struct tty_struct *tty); 

	
The hangup function. This function is called

when the tty driver should hang up the tty device. Any special

hardware manipulation needed to do this should occur at this time.





	void (*break_ctl)(struct tty_struct *tty, int state); 

	
The line break control function. This function

is called when the tty driver is to turn on or off the line BREAK

status on the RS-232 port. If state is set to -1,

the BREAK status should be turned on. If state is set to

0, the BREAK status should be turned off. If this

function is implemented by the tty driver, the tty core will handle

the TCSBRK, TCSBRKP,

TIOCSBRK, and TIOCCBRK
ioctls. Otherwise, these

ioctls are sent to the driver to the

ioctl function.





	void (*flush_buffer)(struct tty_struct *tty); 

	
Flush buffer and lose any remaining data.





	void (*set_ldisc)(struct tty_struct *tty); 

	
The set line discipline function. This function

is called when the tty core has changed the line discipline of the

tty driver. This function is generally not used and should not be

defined by a driver.





	void (*send_xchar)(struct tty_struct *tty, char ch); 

	
Send X-type char function. This function is used

to send a high-priority XON or XOFF character to the tty device. The

character to be sent is specified in the ch

variable.





	int (*read_proc)(char *page, char **start, off_t off, int count, int *eof, 



	 void *data); 



	int (*write_proc)(struct file *file, const char *buffer, unsigned long count, 



	 void *data); 

	
/proc read and

write functions.





	int (*tiocmget)(struct tty_struct *tty, struct file *file); 

	
Gets the current line settings of the specific tty device. If

retrieved successfully from the tty device, the value should be

returned to the caller.





	int (*tiocmset)(struct tty_struct *tty, struct file *file, unsigned int set, 



	 unsigned int clear); 

	
Sets the current line settings of the specific tty device.

set and clear contain the

different line settings that should either be set or cleared.
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18.8. The tty_struct Structure in Detail
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used by the tty core to keep the current state of a specific tty

port. Almost all of its fields are to be used only by the tty core,

with a few exceptions. The fields that a tty driver can use are

described here:



	unsigned long flags; 

	
The current state of the tty device. This is a bitfield variable and

is accessed through the following macros:





	TTY_THROTTLED 

	
Set when the driver has had the throttle

function called. Should not be set by a tty driver, only the tty

core.





	TTY_IO_ERROR 

	
Set by the driver when it does not want any data to be read from or

written to the driver. If a user program attempts to do this, it

receives an -EIO error from the kernel. This is usually set as the

device is shutting down.





	TTY_OTHER_CLOSED 

	
Used only by the pty driver to notify when the port has been closed.





	TTY_EXCLUSIVE 

	
Set by the tty core to indicate that a port is in exclusive mode and

can only be accessed by one user at a time.





	TTY_DEBUG 

	
Not used anywhere in the kernel.





	TTY_DO_WRITE_WAKEUP 

	
If this is set, the line discipline's

write_wakeup function is allowed to be called.

This is usually called at the same time the

wake_up_interruptible function is called by the

tty driver.





	TTY_PUSH 

	
Used only internally by the default tty line discipline.





	TTY_CLOSING 

	
Used by the tty core to keep track if a port is in the process of

closing at that moment in time or not.





	TTY_DONT_FLIP 

	
Used by the default tty line discipline to notify the tty core that

it should not change the flip buffer when it is set.





	TTY_HW_COOK_OUT 

	
If set by a tty driver, it notifies the line discipline that it will

"cook" the output sent to it. If it

is not set, the line discipline copies output of the driver in

chunks; otherwise, it has to evaluate every byte sent individually

for line changes. This flag should generally not be set by a tty

driver.





	TTY_HW_COOK_IN 

	
Almost identical to setting the

TTY_DRIVER_REAL_RAW flag in the driver flags

variable. This flag should generally not be set by a tty driver.





	TTY_PTY_LOCK 

	
Used by the pty driver to lock and unlock a port.





	TTY_NO_WRITE_SPLIT 

	
If set, the tty core does not split up writes to the tty driver into

normal-sized chunks. This value should not be used to prevent

denial-of-service attacks on tty ports by sending large amounts of

data to a port.





	struct tty_flip_buffer flip; 

	
The flip buffer for the tty device.





	struct tty_ldisc ldisc; 

	
The line discipline for the tty device.





	wait_queue_head_t write_wait; 

	
The wait_queue for the tty writing function. A

tty driver should wake this up to signal when it can receive more

data.





	struct termios *termios; 

	
Pointer to the current termios settings for the tty device.





	unsigned char stopped:1; 

	
Indicates whether the tty device is stopped. The tty driver can set

this value.





	unsigned char hw_stopped:1; 

	
Indicates whether or not the tty device's hardware

is stopped. The tty driver can set this value.





	unsigned char low_latency:1; 

	
Indicates whether the tty device is a low-latency device, capable of

receiving data at a very high rate of speed. The tty driver can set

this value.





	unsigned char closing:1; 

	
Indicates whether the tty device is in the middle of closing the

port. The tty driver can set this value.





	struct tty_driver driver; 

	
The current tty_driver structure that controls

this tty device.





	void *driver_data; 

	
A pointer that the tty_driver can use to store

data local to the tty driver. This variable is not modified by the

tty core.
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18.9. Quick Reference

This section [bookmark: linuxdrive3-CHP-18-ITERM-8010]
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introduced in this chapter. It also explains the role of each header

file that a tty driver needs to include. The lists of fields in the

tty_driver and tty_device

structures, however, are not repeated here.



	#include <linux/tty_driver.h> 

	
Header file that contains the definition of struct
tty_driver and declares some of the different

flags used in this structure.





	#include <linux/tty.h> 

	
Header file that contains the definition of struct
tty_struct and a number of different macros to

access the individual values of the struct
termios fields easily. It also contains the

function declarations of the tty driver core.





	#include <linux/tty_flip.h> 

	
Header file that contains some tty flip buffer inline functions that

make it easier to manipulate the flip buffer structures.





	#include <asm/termios.h> 

	
Header file that contains the definition of struct
termio for the specific hardware platform the

kernel is built for.





	struct tty_driver *alloc_tty_driver(int lines); 

	
Function that creates a struct
tty_driver that can be later passed to the

tty_register_driver and

tty_unregister_driver functions.





	void put_tty_driver(struct tty_driver *driver); 

	
Function that cleans up a struct
tty_driver structure that has not been

successfully registered with the tty core.





	void tty_set_operations(struct tty_driver *driver, struct tty_operations *op); 

	
Function that initializes the function callbacks of a

struct tty_driver. This is

necessary to call before tty_register_driver can

be called.





	int tty_register_driver(struct tty_driver *driver); 



	int tty_unregister_driver(struct tty_driver *driver); 

	
Functions that register and unregister a tty driver from the tty core.





	void tty_register_device(struct tty_driver *driver, unsigned minor, struct 



	                         device *device);  



	void tty_unregister_device(struct tty_driver *driver, unsigned minor);  

	
Functions that register and unregister a single tty device with the

tty core.





	void tty_insert_flip_char(struct tty_struct *tty, unsigned char ch, 



	 char flag); 

	
Function that inserts characters into the tty

device's flip buffer to be read by a user.





	TTY_NORMAL 



	TTY_BREAK 



	TTY_FRAME 



	TTY_PARITY 



	TTY_OVERRUN 

	
Different values for the flag paramater used in the

tty_insert_flip_char function.





	int tty_get_baud_rate(struct tty_struct *tty); 

	
Function that gets the baud rate currently set for the specific tty

device.





	void tty_flip_buffer_push(struct tty_struct *tty); 

	
Function that pushes the data in the current flip buffer to the user.





	tty_std_termios 

	
Variable that initializes a termios structure with a common set of

default line settings.
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Chapter 19. Bibliography



Most of the

information in this book has been extracted from the kernel sources,

which are the best documentation about the Linux kernel.



Kernel sources can be retrieved from hundreds of FTP sites around the

world, so we won't list them here.





Version

dependencies are best checked by looking at the patches, which are

available from the same places where you get the whole source. The

program called repatch might help you in

checking how a single file has been modified throughout the different

kernel patches; it is available in the source files provided on the

O'Reilly FTP site.
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19.1. Books

While the bookstores are full of technical books, there are

surprisingly few that are directly relevant to Linux kernel

programming. Here is a selection of books found on our shelves.
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Upper Saddle River, NJ: Prentice Hall PTR, 2004.

	Developers wanting to know more about the Linux virtual memory subsystem may wish to have a look at this book. It is centered around the 2.4 kernel but contains 2.6 information as well.



	Love, Robert. 

Linux Kernel Development.

Indianapolis: Sams Publishing, 2004.

	This book covers Linux kernel programming with a broad scope. It is a reference that should be on every Linux hacker's bookshelf.



	Yaghmour, Karim.

Building Embedded Systems.

Sebastopol, CA: O'Reilly & Associates, Inc. 2003.

	This book will be useful to those writing Linux code for embedded systems.
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19.1.2. Unix Design and Internals



	Bach, Maurice.

The Design of the Unix Operating System.

Upper Saddle River, NJ: Prentice Hall, 1987.

	Though quite old, this book covers all the issues related to Unix implementations. It was the main source of inspiration for Linus in the first Linux version.



	Stevens, Richard.

Advanced Programming in the UNIX Environment.

Boston: Addison-Wesley, 1992.

	Every detail of Unix system calls is described herein, which is a good companion when implementing advanced features in the device methods.



	Stevens, Richard.

Unix Network Programming.

Upper Saddle River, NJ: Prentice Hall PTR, 1990.

	Perhaps the definitive book on the Unix network programming API.
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19.2. Web Sites

In the fast-moving world of Linux kernel development, the most

current information is often found online. The following is our

selection of the best web sites as of this writing:





	http://www.kernel.org



	ftp://ftp.kernel.org

	
This site is the home of Linux kernel development.

You'll find the latest kernel release and related

information. Note that the FTP site is mirrored throughout the world,

so you'll most likely find a mirror near you.









	http://www.bkbits.net

	
This site hosts the source repositories used by a number of prominent

kernel developers. In particular, the project called

"linus" contains the mainline

kernel as maintained by Linus Torvalds. If you are curious about the

very latest patches which have been applied to the kernel, this is

the place to look.









	http://www.tldp.org

	


The Linux Documentation Project carries a

lot of interesting documents called

"HOWTOs"; some of them are pretty

technical and cover kernel-related topics.









	http://www.linux.it/kerneldocs

	
This page contains many kernel-oriented magazine articles written by

Alessandro Rubini. Some of them date back a few years, but they

usually still apply; some of them are in Italian, but usually an

English translation is available as well.









	http://lwn.net

	
At the risk of seeming self-serving, we point out this news site

that, among other things, offers regular kernel development coverage

and API change information.









	http://www.kerneltraffic.org

	
Kernel Traffic is a popular site that provides weekly summaries of

discussions on the Linux kernel development mailing list.









	http://www.kerneltrap.org/

	
This site picks up occasional interesting developments in the Linux

and BSD kernel communities.









	http://www.kernelnewbies.org

	
This site is oriented toward new kernel developers. There is

beginning information, a FAQ, and an associated IRC channel for those

looking for immediate assistance.









	http://janitor.kernelnewbies.org/

	
The Linux Kernel Janitor project is the place where new kernel

programmers can learn how to join in the development effort. A wide

range of small, generally simple tasks that need to be done all over

the kernel are described here. There is a mailing list that helps new

developers get these changes into the main kernel tree. This is a

great place for anyone wanting to start doing Linux kernel

development but not knowing where to begin.
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 16-bit ports 2nd 
 32-bit ports 
     accessing 
     string functions for 
 8-bit ports 
     reading/writing 
     string functions for 
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 abstractions (hardware) 
access 
     blocking open requests 
     character (char) drivers 2nd 
     to device files 
    DMA

 [See DMA] 
     to drivers 
     I/O memory 2nd 3rd 
     interfaces 
     ISA memory 
     kobjects 
     locking 
     management 
     NUMA systems 2nd 
     PCI 
         configuration space 
         I/O and memory spaces 
     policies 
     ports 
         different sizes 
         from user space 
     restriction of 2nd 
     seqlocks 
     unaligned data 
 access_ok function 
 ACTION variable 
adding 
     devices 
     drivers 
     locking 
     VMAs 
addresses 
     bounce buffers 
     buses 
     hardware 2nd 
     MAC 2nd 
     PCI 2nd 
     remapping 
     resolution (network management) 
     resolving 
     spaces generic I/O 
     types 
     virtual (conversion) 
 aio_fsync operation 
 algorithms (lock-free) 
alignment 
     of data 2nd 
     unaligned data access 
 alloc_netdev function 
 alloc_pages interface 
 alloc_skb function 
 alloc_tty_driver function 
allocating 
    memory 
         by page 
 allocation 2nd 
     of block drivers 
     of buffers 
     of device numbers 
     of DMA buffers 
     dynamic allocation of major numbers 
     of gendisk structures 
     of I/O ports 
     of memory 
         boot time 2nd 
         flags 2nd 3rd 
         I/O 2nd 
         kmalloc allocation engine 
         lookaside caches 2nd 
         per-CPU variables 
         vmalloc allocation function 
     page-oriented functions 2nd 
     of snull drivers 
     of socket buffers 2nd 3rd 
     structures (registration) 
     of urbs 
 Alpha architecture, porting and 
 alternatives to locking 
API (application programming interface) 
     spinlocks 
     timers 
application programming interface

 [See API] 
 applications, comparisons to kernels 
architecture 
     EISA 
     M68k (porting and) 
     MCA 
     NuBus 
     PCI 
     PowerPC (porting and) 
     S/390 
     SBus 
     SPARC 
     Super-H 
     VLB 
     x86 (interrupt handlers on) 
     zSeries 
arguments 
     cache 
     flags 
     interrupt handlers 
     ioctl method 
     kmalloc size 
     sfile 
 ARM architecture, porting and 
 ARP (Address Resolution Protocol) 
     Ethernet and 
     IFF_NOARP flag and 2nd 
     overriding 
arrays 
     bi_io_vec 
     block drivers 
     memory maps 
     parameters (declaration of) 
     quantum sets (memory) 
 asm directory 
assignment 
     dynamic allocation of major numbers 
     of hardware addresses 
     of IP numbers 
     of parameter values 
 asynchronous DMA 
 asynchronous I/O 
 asynchronous notification 
 asynchronous running of timers 
 asynctest program 
 atomic context (spinlocks) 
 atomic variables 
 atomic_add operation 
 atomic_dec operation 
 atomic_dec_and_test operation 
 atomic_inc operation 
 atomic_inc_and_test operation 
 atomic_read operation 
 atomic_set operation 
 atomic_sub operation 
 atomic_sub_and_test operation 
 atomic_t count field (memory) 
attributes 
     binary (kobjects) 
     buses 
     data (firmware) 
     default (kobjects) 
     deleting 2nd 
     devices 2nd 
     drivers 
     loading (firmware) 
     nondefault (kobjects) 
 authorization 
 autodetection 
 automatic IRQ number detection 
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 back-casting kobject pointers 
barriers 
     memory 2nd 3rd 
     requests 
 base module parameter 
 baud rates (tty drivers) 
 BCD (binary-coded decimal) forms 
 bEndpointAddress field (USB) 
 bi_io_vec array 
 big-endian byte order 
 bin_attribute structure 
 binary Attributes (kobjects) 
 binary-coded decimal (BCD) forms 
 bInterval field (USB) 
 bio structure 2nd 
 bitfields (ioctl commands) 2nd 
bits 
     clearing 
     operations 
     specifications 
 BLK_BOUNCE_HIGH symbol 
 blk_cleanup_queue function 
 blk_queue_hardsect_size function 
 blk_queue_segment_boundary function 
 blkdev_dequeue_request function 
 block devices 
block drivers 
     command pre-preparation 
     functions 
     operations 
     registration 
     request processing 
     TCQ 
 block_fsync method 
blocking 
     I/O 2nd 
     open method 
     operations 
     release method 
 bmAttributes field (USB) 
 BogoMips value 
 boot time (memory allocation) 2nd 
 booting (PCI) 
bottom halves 
     interrupt handlers 
     tasklets and 
 bounce buffers 
     block drivers 
     streaming DMA mappings and 
 bridges 
 BSS segments 
buffers 
     allocation of 
     bounce 
         block drivers 
         streaming DMA mappings and 
     circular 2nd 
     DMA (unmapping) 
     freeing 
     I/O 
     large (obtaining) 2nd 
     output 
     overrun errors 2nd 
     for printk function 
     ring (DMA) 
     sockets 2nd 
     synchronization 
     transfers 
     tty drivers 
     USB 
     user space (direct I/O) 
     write-buffering example 
 BULK endpoints (USB) 
 bulk urbs (USB) 
 bus_add_driver function 
 BUS_ATTR macro 
 bus_attribute type 
 bus_for_each_dev function 
 bus_register function 
 bus_type structure 
buses 
     addresses 2nd 
     attributes 
     functions 
     IEEE1394 (Firewire) 
     iteration 
     Linux device model 
     match function 
     methods 
    PCI

 [See PCI] 
     registers 
     registration 
    USB

 [See USB] 
 busy loops 
 busy-waiting implementation 
bytes 
     CSIZE bitmask 
     order 
     orders 
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caches 
     argument 
     coherency issues 
     lookaside 2nd 
     troubleshooting 2nd 3rd 
calling 
     current process 
     firmware 
     ioctl method 
     ioremap function 
     memory barriers 2nd 
     perror calls 
     preparation functions 
     release 
 cancellation of urbs 
 CAP_DAC_OVERRIDE capability 
     single-user access to devices 
 CAP_NET_ADMIN capability 
 CAP_SYS_ADMIN capability 
 CAP_SYS_MODULE capability 
 CAP_SYS_RAWIO capability 
 CAP_SYS_TTY_CONFIG capability 
 capabilities, restricted operations and 
 capability.h header file 2nd 
 capable function 2nd 
 card select number (CSN) 
 cardctl utility 
 carrier signals 
 cdev structure 
 change_bit operation 
 change_mtu method 
     improving performance using socket buffers 
 char (character) drivers 
     access 
     asynchronous notification 
     defining mechanism of 
    files 
         access to 
         operations 
         structures 
     I/O 
     inode structure 
     ioctl method 
     llseek method 
     memory usage (scull) 
     open method 
     poll method 
     read method 
     readv calls 
     registration 
     release method 
     scull (design of) 
     select method 
     testing 
     version numbers 
     write method 
     writev calls 
 char *buffer field (request structure) 
 char *name variable (USB) 
 char bus_id field 
 char disk_name field (gendisk) 
 char name field (net_device structure) 
character drivers

 [See char drivers] 
 chars_in_buffer function 
 check_flags method 
 CHECKSUM_ symbols 
 circular buffers 
     DMA ring buffers 
     implementing interrupt handlers 
     for printk function 
 claim_dma_lock function 
 class register (PCI) 
 class_id field 
 class_simple interface 
 class_simple_create function 
 class_simple_device_add function 
 class_simple_device_remove function 
classes 
     devices 2nd 3rd 
     functions 
     interfaces 
     Linux device model 
     management 
     modules 
 cleanup function 
 clear_bit operation 
 clear_dma_ff function 
 clearing bits on interface boards 
 clocks 2nd [See also time] 
     cycles (counting) 
 cloning devices 
 close function (tty drivers) 
 close method 
     vm_operations_struct structure 
 cmd field (request structure) 
 coarse-grained locking 
code 
     concurrency in 
     delaying execution of 
     execution 2nd 
     hello world module 
     inline assembly (example) 
     ISA 
    kernels

 [See kernels] 
     memory (scull) 
     module requirements 
     runtime 
     scilluid 
     sleeps 
     test system setup 
     user space programming 2nd 
coherency 
     caches 
     DMA 
 command pre-preparation (block drivers) 
 command-oriented drivers 
 commands [See also functions] 
     dmesg 
     F_SETFL fcntl 
     F_SETOWN 
     FIOASYNC 
     FIOCLEX 
     FIONBIO 
     FIONCLEX 
     FIOQSIZE 
     gdb 
    ifconfig 
         net_device structure and 
         opening network drivers 
         snull interfaces 
     ioctl 2nd 
         creating 
         customizing for networking 
         implementation 
    printk

 [See printk function] 
     SIOCDEVPRIVATE 
     strace 
     wc 
 communication with user space 
compilers 
     gcc 
     optimizations 
compiling 
     char drivers 
     modules 
 complete function (urbs) 
 complete module 
completion 
     of DMA 
     request functions 
     semaphores 
     urbs 
concurrency 
     alternatives to locking 
     controlling transmission 
     debugging 
     in kernel programming 
    locking 
         adding 
         traps 
     management 
     scull (troubleshooting memory) 
    semaphores 
         completion 
         implementation 
     spinlocks 
     transmission 
 CONFIG_ACPI_DEBUG option 
 CONFIG_DEBUG_DRIVER option 
 CONFIG_DEBUG_INFO option 
 CONFIG_DEBUG_KERNEL option 
 CONFIG_DEBUG_PAGEALLOC option 
 CONFIG_DEBUG_SLAB option 
 CONFIG_DEBUG_SPINLOCK option 
 CONFIG_DEBUG_SPINLOCK_SLEEP option 
 CONFIG_DEBUG_STACK_USAGE option 
 CONFIG_DEBUG_STACKOVERFLOW option 
 CONFIG_IKCONFIG option 
 CONFIG_IKCONFIG_PROC option 
 CONFIG_INIT_DEBUG option 
 CONFIG_INPUT_EVBUG option 
 CONFIG_KALLSYMS option 
 CONFIG_MAGIC_SYSRQ option 
 CONFIG_PROFILING option 
 CONFIG_SCSI_CONSTANTS option 
 CONFIG_USB_DYNAMIC_MINORS configuration option 
configuration 
     cdev structure 
     char drivers 
     character (char) drivers [See also char drivers] 
         dynamic allocation of major numbers 
         internal representation of device numbers 
         major/minor numbers 
     coherent DMA mappings 
     critical sections 
     ether_setup function 
     interrupt handlers 
     kernels 
     line settings (tty drivers) 
     multicasting 
     net_device structure 
     network devices 
     parameter assignment 
     PCI 
         accessing configuration space 
         registers 
     serial lines 
     single-page streaming mappings 
     snull drivers 
     streaming DMA mappings 
     test system setup 
     timeouts 
     USB interfaces 
     version dependency 
 connections [See also hotplugs] 
     Firewire 
     IP numbers 
     network drivers to kernels 
    PCI

 [See PCI] 
     /proc file hierarchies 
    USB

 [See USB] 
 connectors (ISA) 
 console_loglevel variable 
     debugging system hangs 
consoles 
     messages (redirecting) 
     wrong font on 
 const char *dev_name functions 
 const char *name field (PCI registration) 
 const char *name function 
 const struct pci_device_id *id_table field (PCI registration) 
 const struct usb_device_id *id_table function 
 constructor function (kmem_cache_create) 
 CONTROL endpoints (USB) 
 control functions (queues) 
 control urbs (USB) 
 controllers (PCI) 
controlling 
     transmission concurrency 
     urbs (USB) 
     by writing control sequences 
 conventional memory I/O registers 2nd [See also memory] 
 conversion (virtual addresses) 
 copying (cross-space) 
 core files 
counters 
     jiffies 
     reference (kobjects) 
     registers 
     TSC 
 counts (interrupts) 
 CPU modalities (levels) 
 create_module system call 
 create_proc_read_entry function 
creating 
     queues 
     urbs (USB) 
 critical sections 
 cross-space copying 
 CRTSCTS bitmask 
 CSIZE bitmask 
 CSN (card select number) 
 CSTOPB bitmask 
 current process 2nd 3rd 
 current time, retrieving 
 current.h header file 
 currentime file (jit module) 
custom 
     data types 
     ioctl methods for networking 
 cycles_t type 
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daemons 
     klogd 2nd 
     syslogd 
data 
     explicitly sizing 
     physical packet transport 
     transferring with DMA 
     unaligned, portability and 
 data attribute (firmware) 
 data functions (USB) 
 data structures 
     file operations 
     portability of 
data types 
     for explicitly sizing data 
     inptr_t (C99 standard) 
     int 
     interface-specific 
     loose typing for I/O functions 
     mixing different 
     standard C types 
     u8, u16, u32, u64 
     uint8_t/unit32_t 
 dataalign program 
 datasize program 
 dd utility and scull driver example 
 deadline schedulers (I/O) 
 deadlocks avoiding 2nd [See also locking] 
 debugging [See also troubleshooting] 
     concurrency 
     using a debugger 
     using Dynamic Probes 
     interrupt handlers 
     with ioctl method 
    kernels 
         monitoring 
         by printing 
         by querying 
         support 
     using kgdb 
     levels (implementation of) 
     using LTT 
     locked keyboard 
     by printing 
     by querying 
     system faults 
     system hangs 
     using User-Mode Linux 
 declaration of array parameters 
 DECLARE_TASKLET macro 
 default attributes (kobjects) 
 default_attrs field (kobjects) 
 DEFAULT_CONSOLE_LOGLEVEL 
 DEFAULT_MESSAGE_LOGLEVEL 
 del_timer_sync function 
 delaying execution of code 2nd 
deleting 
     attributes 2nd 
     devices 
     drivers 
     mappings (DMA) 
     /proc files 
     queues 
     symbolic links 
 dentry field (file structure) 
dependency 
     platform 
     version 
 dereferencing memory addresses 
 descriptors (USB) 
 design [See also configuration] 
     concurrency 
     policy-free drivers 
     of scull 
desktops 
    PCI

 [See PCI] 
    USB

 [See USB] 
 destroying urbs (USB) 
 destructor function (kmem_cache_create) 
 /dev directory 
 /dev nodes 
     char devices and 
     /dev/random device 
     /dev/urandom device 
     dynamic major number allocation 
 /dev tree 
 dev_alloc_skb function 
 dev_id pointer (installing shared handlers) 
 dev_kfree_skb function 2nd 
 dev_mc_list structure 
 dev_t i_rdev (inode structure field) 
 development community (kernel), joining 
 development kernels 
 device attribute (firmware) 
 DEVICE variable 
 deviceID register (PCI) 
 devices [See also drivers] 
     access to files 
     adding 
     allocation of numbers 
     attributes 
     caching problems 
    char drivers

 [See char drivers] 
     classes of 2nd 
     cloning 
     concurrency 
     control operations 
     deleting 
     drivers 
     dynamic 
     dynamic allocation of major numbers 
     FIFO 
     file operations on 
     files 
     functions 
     hotpluggable 
     identifying type with ls command 
     initialization 
     input (hotplugging) 
     internal representation of numbers 
     ioctl method 
     ISA 
     iteration 
     Linux device model 2nd 
         buses 
         classes 
         firmware 
         hotplug events 
         hotplugging 
         kobjects 
         lifecycles 
         low-level sysfs operations 
     methods 
     names of 
     network 
     network drivers 
     numbers (printing) 
     operations 
     reading and writing 
     reading data from 
     registration 2nd 
     SCSI 
     scullpipe (example) 
     scullsingle 
     seeking 
     single-open 2nd 
     structures (embedding) 
     truncating on open 
    USB

 [See USB] 
    writing 
         control sequences to 
         data to 
 DEVPATH variable 
 *dir_notify method 
 direct I/O 2nd [See also I/O] 
     implementation 
direct memory access

 [See DMA] 
directories 
     /dev 
     entries (file structure) 
     of kernel headers 
     misc-progs source 2nd 
     /proc file hierarchy connections 
     /proc/tty/driver 
    sysfs 
         low-level operations 
         tty driver 
         USB 
     tty drivers 
 disable_dma function 
 disable_irq function 
disabling 
     interrupt handlers 
     packet transmissions 
     print statements 
 disclosure of data 
 disconnect function (USB) 2nd 
disks 
     files versus open files 
     freeing 
     registration 
 distribution, writing drivers for 
 DMA (direct memory access) 2nd 3rd 
     block requests and 
     mappings (scatter-gather) 
     PCI devices and 
     registering usage 
     ring buffers 
 DMA-capable memory zone 
     SLAB_CACHE_DMA flag and 
 dma.h header file 
 dma_addr_t setup_dma field (USB) 
 dma_addr_t transfer_dma field (USB) 
 DMA_BIDIRECTIONAL symbol 2nd 
 dma_free_coherent function 
 DMA_FROM_DEVICE symbol 2nd 3rd 
 DMA_NONE symbol 2nd 
 dma_spin_lock 
 DMA_TO_DEVICE symbol 2nd 
 DMAC (DMA controller) 
 dmesg command 
 do-it-yourself probing 
 do_close function 
 do_gettimeofday function 
 do_ioctl method 2nd 
 do_IRQ function 
 double underscore (__) functions 
 double-address cycle mappings (PCI) 
 doubly linked lists (portability) 2nd 
 down function 
 DRIVER_ATTR macro 
 driver_unregister function 
drivers 
     adding 
     asynchronous notification and 
     attributes 
    block

 [See block drivers] 
     command-oriented 
     deleting 
     devices 
     file operations 
     FireWire 
     functions 
     I2O 
     ioctl numbers for 
     iteration 
     lddbus 
     mechanism 
         policy versus 
         separation from policies 
     modules 
     network 
         connecting to kernels 
         functions 
         interrupt handlers for 
         ioctl commands 
         link state (changes in) 
         MAC addresses (resolution of) 
         multicasting 
         opening 
         snull 
         statistics 
    sbull 
         initialization 
         request method 
     SCSI 
    scull

 [See scull] 
     scullc (example) 
     scullp (example) 
     scullv (example) 2nd 
     security issues 
     short (example) 
         accessing I/O memory 
         implementing interrupt handlers 
         installing interrupt handlers 
         probing 
     shortprint 
     structures (embedding) 
     tty 
         buffers 
         directories 
         functions 
         line settings 
         pointers 
         struct termios 
         tty_driver structure 
         tty_operations structure 
         tty_struct structure 
     user-space 
 dynamic devices 
 Dynamic Probes debugging tool 
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 EBUSY error 
 EISA (Extended ISA) 
 elevators (I/O) 
 elv_next_request function 2nd 3rd 
embedding 
     device structures 
     driver structures 
     kobjects 
 enable_dma function 
 enable_irq function 
enabling 
     configuration for kernels 
     interrupt handlers 
     PCI drivers 
end-of-file 
     poll method and 
     seeking relative to 
 endless loops, preventing 
endpoints 
     interfaces 
     USB 
 entropy pool and SA_SAMPLE_RANDOM flag 
 errno.h header file 
 error handling during initialization 
 errors [See also troubleshooting] 
     buffer overrun 
     codes 
     read/write 
     values (pointers) 
 /etc/networks file 
 /etc/syslog.conf file 
 ETH_ALEN macro 
 eth_header method 
 ether_setup function 2nd 
Ethernet 
     address resolution 
     ARP and 2nd 
     non-Ethernet headers 
     non-Ethernet interfaces 
     snull interfaces 
 Ethtool 
events 
     hotplug 
     race conditions 
 exclusive waits 
execution 
     asynchronous (interrupt mode) 
     of code (delaying) 2nd 
     modes 2nd 
     shared interrupt handlers 
     threads 
 experimental kernels 
 EXPORT_SYMBOL macro 2nd 
 EXPORT_SYMBOL_GPL macro 
 exporting symbols 
 extended buses 
 Extended ISA (EISA) 
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 f_dentry pointer 
 f_flags field (file structure) 
     O_NONBLOCK flag 2nd 
 f_mode field (file structure) 
 f_op pointer 
 f_pos field (file structure) 
     read_proc function and 
 F_SETFL command 
     fcntl system call and 
 F_SETFL fcntl command 
 F_SETOWN command 
     fcntl system call and 
 fast interrupt handlers 
 FASYNC flag 2nd 
 fasync method 
 fasync_helper function 2nd 
 fasync_struct structure 
 faults 2nd 
 faulty module (oops messages) 
 faulty_read function 
 faulty_write function 
 fc_setup function 
 fcntl system call 2nd 
 fcntl.h header file 
 fdatasync system call 
 FDDI networks, configuring interfaces 
 fddi_setup function 
 fiber channel devices, initializing 
 FIFO (first-in-first-out) devices 2nd 
     poll method and 
 File System header (fs.h) 
 file_operations structure 2nd 
     declaring using tagged initialization 
     mmap method and 
files 
    /etc/networks[files 
         etc/networks 
     access to 
     capability.h header file 2nd 
     devices 
     flags 
     inode structure 
     interrupts 
     ioctl. header file 
     kmsg 
     ksyms 
     modes 
     net_int c 
     open 
     operations 
     poll.h header file 2nd 
     /proc 
     stat 
     structure 
     structures 
     uaccess.h header file 
 filesystems 
     char drivers 
     modules 2nd 
     nodes 2nd 
     /proc 
         installing interrupt handlers 
         shared interrupts and 
     sysfs 
 filp pointer 
     in ioctl method 
     in read/write methods 
 filp-\\>f_op 
 filter hotplug operation 
 fine-grained locking 
 FIOASYNC command 
 FIOCLEX command 
 FIONBIO command 
 FIONCLEX command 
 FIOQSIZE command 
 FireWire 
     drivers 
firmware 
     calling 
     functions 
     interfaces 
     Linux device model 
     PCI boot-time configuration 
flags 
     argument 
     FASYNC 
     file 
     GFP_ATOMIC 2nd 
     GFP_COLD 
     GFP_DMA 
     GFP_HIGH 
     GFP_HIGHMEM 
     GFP_HIGHUSER 
     GFP_KERNEL 
     GFP_NOFAIL 
     GFP_NOFS 
     GFP_NOIO 
     GFP_NORETRY 
     GFP_NOWARN 
     GFP_REPEAT 
     GFP_USER 
     GTP_KERNEL 
     IFF_ALLMULTI 
     IFF_AUTOMEDIA 
     IFF_BROADCAST 
     IFF_DEBUG 
     IFF_DYNAMIC 
     IFF_LOOPBACK 
     IFF_MASTER 
     IFF_MULTICAST 
     IFF_NOARP 2nd 
     IFF_NOTRAILERS 
     IFF_POINTTOPOINT 
     IFF_PORTSEL 
     IFF_PROMISC 
     IFF_RUNNING 
     IFF_SLAVE 
     IFF_UP 
     media_change 
     memory allocation 2nd 3rd 
     for net_device structure 
     O_NONBLOCK (f_flags field) 
     PACKET_HOST 
     PG_locked 
     POLLERR 
     POLLHUP 
     POLLIN 
     POLLOUT 
     POLLPRI 
     POLLRDBAND 
     POLLRDNORM 
     POLLWRBAND 
     POLLWRNORM 
     resource (PCI) 
     SA_INTERRUPT 2nd 
     SA_SAMPLE_RANDOM 
     SA_SHIRQ 2nd 
     SLAB_CACHE_DMA 
     SLAB_CTOR_CONSTRUCTOR 
     SLAB_HWCACHE_ALIGN 
     SLAB_NO_REAP 
     TTY_DRIVER_NO_DEVFS 
     TTY_DRIVER_REAL_RAW 
     TTY_DRIVER_RESET_TERMIOS 
     VM_IO 
     Wall 
 flips (tty drivers) 
 flow of data (tty drivers) 
 flush method 
     close system call and 
 flush operation 
 flushing pending output 2nd 
 fonts (incorrect on console) 
 fops pointers 
 forms (BCD) 
 fragmentation 2nd 
 free command 
 free_dma function 
 free_irq function 
 free_netdev functions 
 free_pages function 
freeing 
     buffers 
     device numbers 
     disks 
     DMA pools 
     semaphores 
 fs.h header file 2nd 
     asynchronous notification and 
     blocking/nonblocking operations 
 fsync method 2nd 
 full class interfaces 
functions 
     access_ok 
     alloc_netdev 
     alloc_skb 
     alloc_tty_driver 
     blk_cleanup_queue 
     blk_queue_hardsect_size 
     blk_queue_segment_boundary 
     blkdev_dequeue_request 
     block drivers 
     bus_add_driver 
     bus_for_each_dev 
     bus_register 
     buses 
     calling from modules/applications 
     capable 2nd 
     chars_in_buffer 
     claim_dma_lock 
     class_simple_create 
     class_simple_device_add 
     class_simple_device_remove 
     classes 
     cleanup 
     clear_dma_ff 
     close (tty drivers) 
     complete (urbs) 
     const char *dev_name 
     const char *name 
     const struct usb_device_id*id_table 
     constructor (kmem_cache_create) 
     create_proc_read_entry 
     del_timer_sync 
     dev_alloc_skb 
     dev_kfree_skb 2nd 
     devices 
     disable_dma 
     disable_irq 
     disconnect (USB) 2nd 
     dma_free_coherent 
     do_close 
     do_gettimeofday 
     do_IRQ 
     double underscore (__) 
     down 
     driver_unregister 
     drivers 
     elv_next_request 2nd 3rd 
     enable_dma 
     enable_irq 
     ether_setup 2nd 
     fasync_helper 2nd 
     faulty_read 
     faulty_write 
     fc_setup 
     fddi_setup 
     firmware 
     free_dma 
     free_irq 
     free_netdev 
     free_pages 
     get_cycles 
     get_dma_residue 
     get_fast_time 
     get_free_page 
     get_free_pages 2nd 3rd 
     get_page 
     get_unaligned 
     get_user 2nd 
     get_user_pages 
     get_zeroed_page 
     handle_IRQ_event 
     hello world module 
     hippi_setup 
     in_atomic 
     in_interrupt 
     inb 
     inb_p 
     initialization 
     inl 
     insb 
     inserting schedules 
     insl 
     insw 
     int (USB) 
     int pci_enable_device 
     int printk_ratelimit(void) 
     int seq_escape 
     int seq_path 
     int seq_printf 
     int seq_putc 
     int seq_puts 
     inw 
     ioctl (tty drivers) 
     ioremap 2nd 3rd 
     ioremap_nocache 
     iounmap 2nd 
     irqreturn_t 
     isa_readb 
     kfree_skb 
     kill_fasync 2nd 
     kmalloc 
         allocation engine 
         performance degradation issues 
     kmap 
     kmap_skb_frag 
     kmem_cache_alloc 
     kmem_cache_create 
     kmem_cache_t type 
     list_add 
     list_add_tail 
     list_del 
     list_empty 
     list_move 
     list_splice 
     locking 
     match (buses) 
     mod_timer 2nd 
     module_init 
     netif_carrier_off 
     netif_carrier_ok 
     netif_carrier_on 
     netif_start_queue 
     netif_stop_queue 2nd 
     netif_wake_queue 
     network drivers 
     open (tty drivers) 
     outb 
     outb_p 
     outl 
     outsb 
     outsl 
     outsw 
     outw 
     page-oriented allocation 2nd 
     pci_map-sg 
     pci_remove_bus_device 
     pci_resource_ 
     pfn_to_page 
     poll_wait 2nd 
     printk 2nd 
         circular buffers for 
         logging messages from 
         seq_file interface (avoiding in) 
         turning debug messages on/off 
     probe (USB) 
     probe_irq_off 
     probe_irq_on 
     put_unaligned 
     put_user 2nd 
     queues 
     rdtscl 
     read (tty drivers) 
     read_proc 
     register_blkdev 
     register_chrdev 
     register_netdev 
     relaease_dma_lock 
     release (kobjects) 
     remap_pfn_range 
     remove_proc_entry 
     request (block drivers) 
     request_dma 
     request_firmware 
     SAK 
     sbull_request 
     schedule 
         execution of code (delaying) 
         preventing endless loops with 
     schedule_timeout 
    scull 
         open method 
         release method 
     scull_cleanup 
     scull_getwritespace 
    semaphores

 [See semaphores] 
     set_dma_addr 
     set_dma_count 
     set_dma_mode 
     set_mb 
     set_multicast_list 
     set_rmb 
     set_termios 
     set_wmb 
     sg_dma_address 
     sg_dma_len 
     show 
     skb_headlen 
     skb_headroom 
     skb_is_nonlinear 
     skb_pull 
     skb_push 
     skb_put 
     skb_reserve 
     skb_tailroom 
     sleep_on 
     acting on socket buffers 
     spinlocks 
     struct module *owner 
     sys_syslog 
     sysfs filesystem 
     tasklet_schedule 
     tiny_close 
     tiocmget 
     tiomset 
     tr_configure 
     tty drivers 
     tty_driver (pointers) 
     tty_get_baud_rate 
     tty_register_driver 
     unregister_netdev 
     unsigned int irq 
     unsigned long flags 
     unsigned long pci_resource_end 
     unsigned long pci_resource_start 
     unsigned pci_resource_flags 
     up 
     urbs_completion 
     usb_alloc_urb 
     usb_bulk_msg 
     usb_control_msg 
     usb_fill_bulk_urb 
     usb_fill_control_urb 
     usb_fill_int_urb 
     usb_get_descriptor 
     usb_kill_urb 
     usb_register_dev 
     usb_set_intfdata 
     usb_string 
     usb_submit_urb 
     usb_unlink_urb 
     vfree 
     virt_to_page 
     vmalloc allocation 
     void 
     void barrier 
     void blk_queue_bounce_limit 
     void blk_queue_dma_alignment 
     void blk_queue_hardsect_size 
     void blk_queue_max_hw_segments 
     void blk_queue_max_phys_segments 
     void blk_queue_max_sectors 
     void blk_queue_max_segment_size 
     void blk_start_queue 
     void blk_stop_queue 
     void mb 
     void read_barrier_depends 
     void rmb 
     void smp_mb 
     void smp_rmb 
     void smp_wmb 
     void tasklet_disable 
     void tasklet_disable_nosync 
     void tasklet_enable 
     void tasklet_hi_schedule 
     void tasklet_kill 
     void tasklet_schedule 
     void wmb 
     void*dev_id 
     wait_event_interruptible_timeout 
     wake-up 2nd 
     wake_up 2nd 
     wake_up_interruptible 
     wake_up_interruptible_sync 
     wake_up_sync 
     workqueues 
     write (tty drivers) 
     xmit_lock 
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 gcc compiler 
 gdb commands 2nd 
 gendisk structure 
 general distribution, writing drivers for 
 General Public License (GPL) 
 generic DMA layers 
 generic I/O address spaces 
 geographical addressing 
 get_cycles function 
 get_dma_residue function 
 get_fast_time function 
 get_free_page function 
 get_free_pages function 2nd 3rd 
 get_kernel_syms system call 
 get_page function 
 get_stats method 2nd 
 get_unaligned function 
 get_user function 2nd 
 get_user_pages function 
 get_zeroed_page function 
 gfp.h header file 
 GFP_ATOMIC flag 
     page-oriented allocation functions 
     preparing for allocation failure 
 GFP_COLD flag 
 GFP_DMA flag 
 GFP_HIGH flag 
 GFP_HIGHMEM flag 
 GFP_HIGHUSER flag 
 GFP_KERNEL flag 2nd 
 GFP_NOFAIL flag 
 GFP_NOFS flag 
 GFP_NOIO flag 
 GFP_NORETRY flag 
 GFP_NOWARN flag 
 GFP_REPEAT flag 
 GFP_USER flag 
 global information (net_device structure) 
 global memory areas 
 global messages (enabling/disabling) 
 GNU General Public License (GPL) 
 goto statement 2nd 
 GPL (GNU General Public License) 
 group, device 
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 hacking kernels options 
 handle_IRQ_event function 
 hangs (system) 
 hard_header method 2nd 
 hard_start_transmit method 
 hard_start_xmit method 2nd 
hardware 
     addresses 
         assignment of 
         modification of 
     DMA 2nd 
     headers 
         adding before transmitting packets 
         building 
         encapsulating information 
     ioctl method 
     ISA 
     management 2nd 
     net_device structure 
     PCI (abstractions) 
     removable media (supporting) 
 header_cache method 
 header_cache_update method 
headers 
     files 2nd 
     hardware 
     non-Ethernet 2nd 
 hello world module 
 hierarchies [See also filesystems] 
     kobjects 
     ksets 
     /proc file connections 
 high memory 2nd 3rd 
 HIPPI drivers, preparing fields for 
 hippi_setup function 
 hostnames (snull interfaces) 
hotplugs 
     devices 
     events 
     Linux device model 
     scripts 
 hubs (USB) 
 hung system 
 hyperthreaded processors, avoiding deadlocks 
 HZ (time frequency) symbol 2nd 
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 I/O 
     asynchronous 
     blocking 
     direct 2nd 
     flushing pending 
     generic address spaces 
     hardware management 
     interrupt handlers 
     mapping 2nd 
     memory (access) 
     pausing 2nd 
     PCI 2nd 
     regions 
     registers 
     scatter/gather 
     schedulers 
     string operations 
 I/O registers versus RAM 
 I2O drivers 
IA-64 architecture 
     porting and 
     /proc/interrupts file, snapshot of 
 IEEE1394 bus (Firewire) 
 if.h header file 2nd 
ifconfig command 
     net_device structure and 
     opening network drivers 
     snull interfaces 
 IFF_ symbols 2nd 
 IFF_ALLMULTI flag 
 IFF_AUTOMEDIA flag 
 IFF_BROADCAST flag 
 IFF_DEBUG flag 
 IFF_DYNAMIC flag 
 IFF_LOOPBACK flag 
 IFF_MASTER flag 
 IFF_MULTICAST flag 
 IFF_NOARP flag 2nd 
 IFF_NOTRAILERS flag 
 IFF_POINTOPOINT flag 
 IFF_PORTSEL flag 
 IFF_PROMISC flag 
 IFF_RUNNING flag 
 IFF_SLAVE flag 
 IFF_UP flag 
 ifreq structure 
implementation 
     asynchronous I/O 
     busy-waiting 
     of classes 
     of debugging levels 
     direct I/O 
     of files in /proc filesystems 
     interrupt handlers 
     ioctl commands 
     ISA (PCI) 
     llseek method 
     mmap 2nd 
     multicasting 
     of policies 
     removable media (supporting) 
     semaphores 
     timers 
 in_atomic function 
 in_interrupt function 
 inb function 
 inb_p function 
 infinite loops, preventing 
 information leakage 
 init scripts and loading/unloading modules 
 init.h header file 
 INIT_LIST_HEAD macro 
initialization 
     completions (semaphores) 
     devices 
     gendisk structure 
     interrupt handlers 
     kobjects 
     modules 
     mutexes 
     net_device structure 
     PCI 
     reader/writer semaphores 
     registers (PCI) 
     sbull drivers 
     seqlocks 
     struct usb_driver structure 
     structures (registration) 
 inl function 
 inline assembly code (example) 
 inode pointer in ioctl method 
 inode structure 
 input devices (hotplugging) 
 input files, enabling asynchronous notification from 
 input module 
 input pins 2nd 
     reading values from parallel port 
 insb function 
 insl function 
 insmod program 2nd 3rd 4th 
     assigning parameter values 
     dynamically allocating major numbers 
     modprobe program versus 
     testing modules using 
installation 
     interrupt handlers 2nd 
     mainline kernels 
 insw function 
 int actual_length field (USB) 
 int data type 
 int error_count field (USB) 
int field 
     net_device structure 
     PCI registration 
 int flags field (gendisk) 
 int function (USB) 
 int interval field (USB) 
 int major field (gendisk) 
 int minor field (USB) 
 int minor_base variable (USB) 
 int minors field (gendisk) 
 int number_of_packets field (USB) 
 int pci_enable_device function 
 int printk_ratelimit(void) function 
 int seq_escape function 
 int seq_path function 
 int seq_printf function 
 int seq_putc function 
 int seq_puts function 
 int start_frame field (USB) 
 int status field (USB) 
 int transfer_buffer_length field (USB) 
 INTERFACE variable 
 interface-specific data types 
interfaces 
     alloc_pages 
    block drivers 
         command pre-preparation 
         functions 
         operations 
         registration 
         request processing 
         TCQ 
     class_simple 
     classes 
     cleanup function 
     configuration (USB) 
     firmware 
     flags for net_device structure 
     full class 
     interface-specific data types 
     ksets 
     loopback 
     MII 
     networks 
     non-Ethernet 
    older 
         char device registration 
         /proc file implementation 
    parallel ports

 [See parallel ports] 
     PCI 
     reader/writer semaphores 
     seq_file 
     snull 
     spinlocks 
     timers 
     USB 
     version dependency 
     VLB 
 internal functions (locking) 
 internal representation of device numbers 
 Internet protocol (IP) 
interrupt handlers 
     autodetecting IRQ numbers 
     sharing interrupts 
interrupt mode 
     and asynchronous execution 
     tasklets 
 interruptible sleeps 
interrupts 
     counts 
     file 
    handlers 
         I/O 
         implementation of 
         installation of 
         management 
         for network drivers 
         preparing parallel ports 
         /proc files for 
         registration 
         sharing 
         tasklets 
         top and bottom halves 
     installation at 
     mitigation of 
     for network drivers 
     PCI 
     reports 
     shared interrupts and 
     timers 
     tty drivers 
     urbs 
 intervals of time (data type portability) 
 intptr_t type (C99 standard) 
 inw function 
 _IOC_DIRBITS macro 
 _IOC_TYPEBITS macro 
 _IOC_SIZEBITS macro 
 _IOC_NRBITS macro 
 ioctl commands (creating) 
 ioctl function (tty drivers) 
 ioctl method 2nd 
     using bitfields to define commands 
     block drivers 
     controlling devices without 
     customizing for networking 
     debugging with 
     network devices and 
     TIOCLINUX command 
 ioctl-number.txt file 
 ioctl.h header file 2nd 
     setting up command numbers 
 IOMMU (I/O memory management unit) 2nd 
 ioremap 
 ioremap function 2nd 3rd 
 ioremap_nocache function 
 iounmap function 2nd 
 IP (Internet protocol) 
 IP numbers resolving to physical addresses 
 ip_summed field (sk_buff) 2nd 
 irq argument (interrupt number) 
 irq.h header file 
 irqreturn_t function 
IRQs (interrupt request lines) 
     autodetecting 
     statistics on 
ISA 
     bus master DMA 
     devices, DMA for 
     I/O (pausing devices) 
     memory (access) 
         below 1 MB 
         DMA for 
     PCI 
 isa_readb function 
 ISOCHRONOUS endpoints (USB) 
 isochronous urbs (USB) 
 iteration of buses 
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jiffies 
     in busy-waiting implementation 
     counters 
     no solution for short delays 
     values 2nd 
jit (just in time) module 
     current time (retrieving) 
     delaying code execution 
 jitbusy program 
 joysticks (hotplugging) 
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 kcore file 
 kdataalign program 
 kdatasize module 
 KERN_ALERT macro 
 KERN_CRIT macro 
 KERN_DEBUG macro 
 KERN_EMERG macro 
 KERN_ERR macro 
 KERN_INFO macro 
 KERN_NOTICE macro 
 KERN_WARNING macro 
 kernel-assisted probing 
 kernel_ulong_t driver_info field (USB) 
 KERNEL_VERSION macro 
 kernels [See also modules] 
     applications (comparisons to) 
     capabilities and restricted operations 
     code requirements 
     concurrency 
         adding locking 
         alternatives to locking 
         locking traps 
         management of 
         semaphore completion 
         semaphore implementation 
     current process and 
     data structures 
    data types in 
         assigning explicit sizes to 
         interface-specific 
         linked lists 
         portability 
         standard C types 
     debuggers 
     development community, joining 
     developmental (experimental) 
     exclusive waits 
     filesystem modules 
     headers 
     inode structure 
    interrupts 
         implementing handlers 
         installing handlers 
     introduction to 
     kgdb patch and 
     Linux device model 
         buses 
         classes 
         devices 
         firmware 
         hotplugging 2nd 
         kobjects 
         lifecycles 
         low-level sysfs operations 
     logical addresses 
     mainline (installation of) 
     messages 
    modules 
         loading 
         unloading 
     monitoring 
     multicasting support 
     network driver connections 
     platform dependency 
     printing 
     querying 
     security 
     space 2nd 3rd 
     support 
     symbols 
     system hangs 
     tasklets 2nd 
     test system setup 
     time 
         measurement of lapses 
         retrieving current time 
     timers 2nd 
    USB 
         sysfs directory trees 
         transfers without urbs 
         urbs 
         writing 
    versions 
         dependency 
         numbering 
     viewing 
     virtual addresses 2nd 
     VMAs 
     workqueues 2nd 
keyboards 
     debugging when locked 
     hotplugging 
 keys (magic SysRq) 
 kfree 
 kfree_skb function 
 kgdb patch 
 kill_fasync function 2nd 
 killing urbs 
 klogd daemon 2nd 
     logging messages 2nd 
kmalloc 
     flags argument 
     returning virtual addresses 
     versus vmalloc 
 kmalloc function 
     allocation engine 
     performance degradation issues 
 kmap function 
 kmap_skb_frag function 
 kmem_cache_alloc function 
 kmem_cache_create function 
 kmem_cache_t type function 
 kmsg file 
 kobjects 
     hotplug event generation 
     low-level sysfs operations 
     nondefault attributes 
     release functions 
     store method 
     symbolic links 
 kset_hotplug_ops structure 
 ksets 
     operations on 
     subsystems 
 ksyms file 
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 lapses of time, measurement of 
 laptop docking stations 
 large buffers, obtaining 2nd 
 large file implementations (/proc files) 
layers 
     generic DMA 
     modularization 
 ldd_driver structure 
 lddbus driver 
 LEDs, soldering to output pins 
levels 
     CPU (modalities) 
     debugging 2nd 
 libraries 
 license terms 
lifecycles 
     Linux device model 
     objects 
     urbs 
 limitations of debug messages (prink function) 
 line settings (tty drivers) 
 line status register (LSR) 
 link state (changes in) 
linked lists 
     traversal of 
 linking libraries 
 links (symbolic) 
Linux 
     license terms 
     version numbering 
 Linux device model 
     buses 
     classes 
     devices 
     firmware 
     hotplugging 
     kobjects 
         hotplug events 
         low-level sysfs operations 
     lifecycles 
 Linux Trace Toolkit (LTT) 
 linux-kernel mailing list 2nd 
 LINUX_VERSION_CODE macro 2nd 3rd 
 list.h header file 
 list_add function 
 list_add_tail function 
 list_del function 
 list_empty function 
 list_entry macro 
 list_for_each macro 
 list_head data structure 
 list_move function 
 list_splice function 
 lists (PCI) 
 little-endian byte order 
 llseek method 2nd 3rd 
 loadable modules 
loading 
     attribute (firmware) 
     drivers 
     modules 
         dynamically assigned device numbers 
         parameters 
         races 
 local0 (IP number) 
 LocalTalk devices, setting up fields for 
 lock method 2nd 
 lock-free algorithms 
 locked keyboard (debugging) 
 locking 
     adding 
     alternatives to 
     atomic variables 
     rules for 
     seqlocks 
     traps 
 lockmeter tool 
 loff_t (long offset) 2nd 
 loff_t f_pos (struct file field) 
 LOG_BUF_LEN circular buffer 
 logging messages (printk function) 
 logical addresses 
 logical units (USB) 
 login process 
 loglevels 
     message priorities 
 long data type 
 long delays (of code execution) 
 lookaside caches 2nd 
 loopback interfaces 
loops 
     busy 
     endless 
     software 
 loops_per_jiffy value 
 low memory 
 low-level sysfs operations 
 ls command, identifying device type 
 LSR (line status register) 
 ltalk_setup 
 ltalk_setup function 
 LTT (Linux Trace Toolkit) 
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 M68k architecture (porting and) 
 MAC (medium access control) addresses 2nd 
     resolution of 
     set_mac_address method and 
macros 
     BUS_ATTR 
     completion 
     DECLARE_TASKLET 
     DIVER_ATTR 
     hello world module 
     INIT_LIST_HEAD 
     internal representation of device numbers 
     ioctl commands (creating) 
     KERN_ALERT 
     KERN_CRIT 
     KERN_DEBUG 
     KERN_EMERG 
     KERN_ERR 
     KERN_INFO 
     KERN_NOTICE 
     KERN_WARNING 
     list_entry 
     list_for_each 
     MINOR 
     MODULE_DEVICE_TABLE 
     page_address 
     PAGE_SHIFT 
     PCI_DEVICE 
     PCI_DEVICE_CLASS 
     RELEVANT_IFLAG 
     sg_dma_address 
     sg_dma_len 
     symbols 
     UBS_DEVICE_VER 
     USB_DEVICE 
     USB_DEVICE_INFO 
     USB_INTERFACE_INFO 
     version dependency 
     wait queues 
     wait-event 
 magic SysRq key 
 mailing list, linux-kernel 
 mainline kernels, installation of 
 major device numbers 
 MAJOR macro 
major numbers 
     char drivers 
     dynamic allocation of 
 make command 
 makefiles 
     printk function 
 management 
     classes 
     concurrency 
         alternatives to locking 
         locking traps 
     fragmentation 
     hardware (I/O ports and I/O memory) 
     interrupt handlers 
     memory 2nd 
         direct I/O 
         DMA 2nd 
         mapping 
         mmap device operations 
         page tables 
         process memory maps 
         scull 2nd 
         VMAs 
     networks 
     physical memory 
     power 
     process 2nd 
     security 
     tasklets 
 manual sleeps 
 mapper program 
mapping 
     deleting 
     DMA 
     I/O 2nd 
     memory 
         mmap device operations 
         process memory maps 
     PCI double-address cycle 
     registers 2nd 
     scatter-gather DMA 
     scatterlists and 
     single-page streaming 
     software-mapped memory 
     streaming DMA configuration 
     video memory 
 match function (buses) 
 MCA (Micro Channel Architecture) 
 mdelay 
 measurement of time lapses 
 Media Independent Interface (MII) 
 media_changed method 
memory 
    allocation 
         boot time 2nd 
         flags 2nd 3rd 
         I/O 2nd 
         kmalloc allocation engine 
         lookaside caches 2nd 
         by page 
         per-CPU variables 
         performance degradation issues 
         vmalloc allocation function 
     barriers 2nd 3rd 
     block drivers 
    DMA

 [See DMA] 
     global areas 
     hardware 
     high 
     I/O 2nd 
    ISA 
         access 
     limitations on 
     locking 
     low 
     management 2nd 
         direct I/O 
         DMA 2nd 
         fragmentation 
         mapping 
         mmap device operations 
         page tables 
         process memory maps 
         VMAs 
     modules (loading) 
     page size and portability 
     PCI 2nd 
     persistence 
     pools 2nd 
     remapping RAM 
    scull 
         design of 
         troubleshooting 
         usage 
     software-mapped (and ioremap function) 
     user space 
     verifying user-space addresses 
     versus I/O registers 
     zones 
memory management 
     theory of 
     VMAs 
messages 
     consoles 
    debug 
         disabling 
         limitation of (printk function) 
     globally enabling/disabling 
     kernels 
     logging 
     oops 
     priorities (loglevels) of 2nd 
 methods 
     block_fsync 
     buses 
     change_mtu 
     check_flags 
     close 2nd 
     devices 
     *dir_notify 
     do_ioctl 2nd 
     fasync 
     flush 2nd 
     fsync 2nd 
     get_stats 2nd 
     hard_header 2nd 
     hard_start_transmit 
     hard_start_xmit 2nd 
     header_cache 
     header_cache_update 
     ioctl 2nd 
         block drivers 
         customizing for networking 
         debugging with 
         inode pointer in 
     llseek 2nd 
     lock 
     media_changed 
     mmap 
     next 
     nopage 2nd 3rd 
     open 2nd 
         block drivers 
         blocking 
         for network devices 
         private_data and 
         requesting DMA channels 
         restricting simultaneous users and 
         for single-open devices 
         vm_operations_struct structure 
    operations 
         aio_fsync 
         atomic_add 
         atomic_dec 
         atomic_dec_and_test 
         atomic_inc 
         atomic_inc_and_test 
         atomic_read 
         atomic_set 
         atomic_sub 
         atomic_sub_and_test 
         bit 
         block drivers 
         blocking/nonblocking 
         change_bit 
         clear_bit 
         devices 
         files 
         filter hotplug 
         flush 
         hotplugs 
         mmap devices 
         set_bit 
         spinlocks 
         string 2nd 
         sysrq 
         test_and_change_bit 
         test_and_clear_bit 
         test_and_set_bit 
         test_bit 
         vector 
     poll 2nd 3rd 
     poll_controller 
     populate 
     pread 
     proc_read 
     pwrite 
     read 2nd 
         arguments to 
         code for 
         configuring DMA controllers 
         f_pso field (file structure) and 
         oops messages 
         poll method and 
         rules for interpreting return values 
         strace command and 
     readdir 
     readv 
     rebuild_header 
     release 2nd 3rd 
         block drivers 
         blocking 
         cloning devices 
         kobjects 
     revalidate 
     sbull ioctl 
     select 
     select, poll method and 
     set_config 
     set_mac_address 
     set_multicast_list 2nd 3rd 
    show 
         kobjects 
         seq_file interface 
     start 
     stop 
     store (kobjects) 
     strace command and 
     struct module *owner 
     tx_timeout 
     unsigned long 
     write 2nd 
         code for 
         f_pos field (file structure) and 
         interpreting rules for return values 
         oops messages 
         poll method and 
     writev 2nd 
mice 
     asynchronous notification 
     hotplugging 
 Micro Channel Architecture (MCA) 
 microsecond resolution 
 MII (Media Independent Interface) 
 minor device numbers 
 MINOR macro 2nd 
 minor numbers, char drivers 
MIPS processor 
     inline assembly code and 
     porting and 
 misc-progs directory 2nd 
 mitigation of interrupts 
 MKDEV macro 
 mlock system call 
 mmap [See also memory management] 
     device operations 
     implementation 2nd 
 mmap method 
     usage count and 
     vm_area_struct structure and 
 mod_timer function 2nd 
 modalities (levels), CPU 
 mode_t f_mode (struct file field) 
 mode_t mode variable (USB) 
 models (Linux device) 
     buses 
     classes 
     devices 
     firmware 
     hotplugging 2nd 
     kobjects 
     lifecycles 
     low-level sysfs operations 
modes 
     device modes 
     file modes 
    interrupt 
         asynchronous execution 
         tasklets 
 modprobe utility 2nd 
     assigning parameter values 
     insmod program versus 
 modularization, layered 
 module.h header file 
 MODULE_ALIAS macro 
 MODULE_AUTHOR macro 
 MODULE_DESCRIPTION macro 
 MODULE_DEVICE_TABLE macro 2nd 
 module_init function 
 module_param macro 2nd 
 modules 2nd 
     applications 
     authorization 
     base module parameter 
     code requirements 
     compiling 
     complete 
     current process and 
     dynamic module assignment 
     dynamic number assignment 
     faulty (oops messages) 
     files 
     filesystem 
     header files of 
     hello world 
     initialization 
     kdatasize 
     license terms 
     loading 2nd 
         insmod program and 
         races 
         using init scripts 
     parameters 
     platform dependency 2nd 
     SCSI 
     short 
     stacking 2nd 
     symbols 
     test system setup 
     unloading 2nd 3rd 
     user-space programming 
     version dependency 
monitoring 
     kernels (debugging by) 
 mremap system calls 2nd 
 MSR register 
 MTU, network devices and 
multicasting 
     IFF_MULTICAST flag and 
     network drivers 
 mutexes 
     initialization 
 mutual exclusion 
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 name field (buses) 
 NAME variable 
naming 
     IP numbers 
     sysfs directory tree (USB) 
 natural alignment of data items 
 nbtest program 
 net_device structure 2nd 
     device methods of 
     interface flags for 
 net_device_stats structure 2nd 
 net_init.c file 
 netif_carrier_off function 
 netif_carrier_ok function 
 netif_carrier_on function 
 netif_start_queue function 
 netif_stop_queue function 2nd 
 netif_wake_queue function 
 netpoll 
 network devices 
 network drivers 
     functions 
     interrupt handlers for 
     ioctl commands 
     kernel connections 
     link state (changes in) 
     MAC addresses (resolution of) 
     methods of 
     multicasting 
     opening 
     snull 
     statistics 
 networks 
     interfaces 
     management 
 next method 
 non-Ethernet headers 
 non-Ethernet interfaces 
 nonblocking operations 2nd 
 nondefault attributes (kobjects) 
 nonpreemption and concurrency 
 nonretryable requests 
 nopage method 2nd 
     mremap system call with 
     preventing extension of mapping 
     remapping RAM 
 normal memory zone 
 notification (asynchronous) 
 nr_frags field 
 NR_IRQS symbol 
 NuBus 
 NUMA (nonuniform memory access) systems 2nd 
numbers 
     devices (printing) 
     interrupt 
     IP (assignment of) 
     major and minor 
     PFN 
     root hubs (USB) 
     versions 
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 O_NDELAY flag (f_flags field) 
 O_NONBLOCK flag (f_flags field) 2nd 3rd 
     read/write methods and 
 O_RDONLY flag (f_flags field) 
 O_SYNC flag (f_flags field) 
objects 
     kobjects 2nd [See also kobjects] 
         hotplug event generation 
         low-level sysfs operations 
     lifecycles 
     sharing 
 octets 
older interfaces 
     char device registration 
     /proc file implementation 
 oops messages 
 open files 
 open function (tty drivers) 
 open method 2nd 
     block drivers 
     blocking 
     for network devices 
     private_data and 
     requesting DMA channels 
     restricting simultaneous users and 
     for single-open devices 
     vm_operations_struct structure 
 opening network drivers 
operations 
     aio_fsync 
     atomic_add 
     atomic_dec 
     atomic_dec_and_test 
     atomic_inc 
     atomic_inc_and_test 
     atomic_read 
     atomic_set 
     atomic_sub 
     atomic_sub_and_test 
     bit 
     block drivers 2nd 
     blocking 
     change_bit 
     clear_bit 
     devices 
     files 
     filter operation 
     flush 
     hotplugs 
     on ksets 
     low-level sysfs 
     methods [See also methods] 
         buses 
         close 
         nopage 
         open 
         populate 
     mmap devices 
     nonblocking 
     set_bit 
     snull interfaces 
     spinlocks 
     string 2nd 
     sysrq 
     test_and_change_bit 
     test_and_clear_bit 
     test_and_set_bit 
     test_bit 
     tty_operations structure 
     vector 
     VMAs (adding) 
 optimizations, compiler 
 options (configuration) 
 ordering locking (rules for) 
 outb function 
 outb_p function 
 outl function 
output 
     buffers 
     flushing pending 
     pins 2nd 3rd 
 outsb function 
 outsl function 
 outsw function 
 outw function 
 overriding ARP 
 overruns (buffers) 
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 packages, upgrading 
 PACKET_BROADCAST flag 
 PACKET_HOST flag 
 PACKET_MULTICAST flag 
 PACKET_OTHERHOST flag 
packets 
     management 
     multicasting 
     reception 
     reception of 
     transmission 2nd 
 page frame number (PFN) 
 page-oriented allocation functions 2nd 
 page.h header file 
 page_address macro 
 PAGE_SHIFT macro 
 PAGE_SHIFT symbol 
 PAGE_SIZE symbol 2nd 
pages 
     allocators 
     faults caused by invalid pointers 
     physical addresses 
     size and portability 
     tables 
         I/O memory and 
         nopage VMA method 
 parallel ports 
    interrupt handlers 
         disabling 
         preparing for 
     stacking driver modules 
 param.h header file 
parameters 
     assigning values 
     base module 
     modules 
 PARENB bitmask 
 PARODD bitmask 
partial data transfers 
     read method 
     write method 
 passwords 
 pausing I/O 
 PC parallel interface 
 PCI (Peripheral Component Interconnect) 
    devices 
         adding 
         deleting 
     DMA 
     double-address cycle mappings 
    drivers 
         adding 
         deleting 
     EISA 
     extended buses 
     interfaces 
     ISA 
     lists 
     MCA 
     NuBus 
     PC/104 and PC/104+ 
     SBus 
     searching 
     VLB 
 pci_bus_type variable 
 PCI_CLASS variable 
 PCI_DEVICE macro 
 PCI_DEVICE_CLASS macro 
 PCI_DMA_FROMDEVICE symbol 
 PCI_DMA_TODEVICE symbol 
 PCI_ID variable 
 pci_map_sg function 
 pci_remove_bus_device function 
 pci_resource_ functions 
 PCI_SLOT_NAME variable 
 PCI_SUBSYS_ID variable 
 PDEBUG/PDEBUGG symbols 
 pending output, flushing 2nd 
 per-CPU variables 
performance 
     allocating socket buffers 
     degrading by allocating too much memory 
     memory barriers and 
     mmap method 
     output buffers and 
     string operations and 
Peripheral Component Interconnect

 [See PCI] 
 peripherals (DMA) 
 perror calls 
 persistence of memory 
 PFN (page frame number) 
 pfn_to_page function 
 PG_locked flag 
 PG_reserved flag 
 PHYS variable 
 physical addresses 2nd [See also addresses] 
     pages 
 physical memory management of 2nd [See also memory] 
pins 
     9/10 of parallel connector 
     interrupts (generating) 
     output 2nd 3rd 
 pipes (scull) 
 platform dependency 2nd 
     for modules 
     porting and 
     /proc/stat file 
PLIP (Parallel Line Internet Protocol) 
     using Ethernet headers 
     interrupt handling differences 
 Plug and Play (PnP) 
 PnP (plug and play) 
 Point-to-Point Protocol (PPP) and interrupt handling differences 
pointers 
     data type portability 
     inode in ioctl method 
     kobject 
     scull 
     tty_driver function 
policies 
     controlling devices by printing and 
     memory 
         allocation (scull) 
     security 
     separation from mechanism 
 poll method 2nd 3rd 4th 
 poll.h header file 2nd 
 poll_controller method 
 poll_table structure 2nd 
 poll_table_entry structure 
 poll_wait function 2nd 
 POLLERR flag 
 POLLHUP flag 
 POLLIN flag 
 POLLOUT flag 
 POLLPRI flag 
 POLLRDBAND flag 
 POLLRDNORM flag 
 POLLWRBAND flag 
 POLLWRNORM flag 
pools 
     DMA 
     memory 2nd 
 populate method 
portability 
     porting and 
 ports [See also connections; parallel ports] 
     access 
     accessing different sizes 
     I/O 2nd 
     parallel 
         disabling interrupt handlers 
         preparing for interrupt handlers 
     platform dependency and 
 POS (Programmable Option Select) 
 power management 
 PowerPC architecture (porting and) 
 PPP (Point-to-Point Protocol) and interrupt handling differences 
 pread method 
 precision, temporal 
 predefined commands ioctl method 2nd [See also commands] 
 preemption and concurrency 
printing 
     controlling devices by 
     to debug code 
     device numbers 
     from gdb debugger 
     interface-specific data 
     kernels 
     _t data items 
 printk function 2nd 
     circular buffers for 
     debugging with 
     logging messages from 
     seq_file interface (avoiding in) 
     turning debug messages on/off 
 priorities 
     allocation 
         memory 
 private_data field (file structure) 
 privileged operations 
 probe function (USB) 
 probe_irq_off function 
 probe_irq_on function 
 Probes, Dynamic 
 probing 
     do-it-yourself 
     for IRQ numbers 
     kernel-assisted 
     PCI 
 /proc filesystem 
     installing interrupt handlers 
     removing /proc entries 
     shared interrupts and 
 /proc/*/maps 
 /proc/devices file 
 /proc/interrupts file 2nd 
 /proc/kcore file 
 /proc/kmsg file 
 /proc/modules file 
 /proc/slabinfo file 
 /proc/stat file 
 /proc/sys/kernel/printk file, reading console loglevel with 
 /proc/tty/driver/ directory 
 proc_read method 
processes 
     current 
     kernel timers for 
     kernels (splitting) 
     login 
     managing 
     memory maps 
     opening devices for each process 
     sleeps 
 processor-specific registers 
 PRODUCT variable 2nd 
 Programmable Option Select (POS) 
programming 
     concurrency in 
     hello world module 
     ISA 
     module requirements 
     test system setup 
     user space 2nd 
 programs 2nd [See also applications versus kernel modules] 
     asynctest 
     dataalign 
     datasize 
     insmod 
     jitbusy 
     mapper 
     nbtest 
     obtaining 
     rmmod 
     /sbin/hotplug utility 
     setconsole 
     setterm 
     tcpdump 
     tracing 
     tunelp 
 public kernel symbols 
 put_unaligned function 
 put_user function 2nd 
 pwrite method 
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 quantums/quantum sets (memory) 
 querying kernels 
 querying to debug 
queues 
     control functions 
     creating/deleting 
     functions 
     network drivers 
     request function 
     request method 
     TCQ 
     transmissions 
     wait 2nd 3rd 
     workqueues 2nd 3rd 
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 race conditions 
     kernel timers and 
     module loading 
     sequences 
RAM (random access memory) 
     remapping 
     versus I/O registers 
random access memory

 [See RAM] 
 random numbers 
 rates, limitations of 
 RCU (read-copy-update) 
 rdtscl function 
 read function (tty drivers) 
 read method 
     arguments to 
     code for 
     configuring DMA controllers 
     f_pos field (file structure) and 
     oops messages 
     poll method and 
     return values, rules for interpreting 
     strace command and 
 read-copy-update (RCU) 
 read-only /proc files, creating 
 read/write instructions, reordering 
 read/write position, changing 
 read_proc function 
 readdir method 
 reader/writer semaphores 
 reader/writer spinlocks 
reading 
     blocking/nonblocking operations 
 readv calls 
 readv method 
 rebuild_header method 
 reception of packets 2nd 
 recovery, error 
 redirecting console messages 
reentrant 
     calls 
     code 
 reference counters (kobjects) 
regions 
     generic I/O address spaces 
     I/O memory management 
 register_blkdev function 
 register_chrdev function 
 register_netdev function 
registers 
     counters 
     I/O 
     LSR 
     mapping 2nd 
     MSR 
     PCI 2nd 
         class 
         deviceID 
         subsystem deviceID 
         subsystem vendorID 
         vendorID 
     processor-specific 
     scatterlists (and mapping) 
registration 
     block drivers 
     buses 
     char drivers 
     cleanup function 
     devices 2nd 
     disks 
     DMA usage 
     interrupt handlers 
     module-loading races 
     PCI drivers 
     struct usb_driver structure 
     tiny_tty_driver variable 
     tracking 
     tty drivers 
     USB drivers 
 release calls 
 release functions (kobjects) 
 release method 2nd 3rd 4th 
     block drivers 
     blocking 
     cloning devices 
     kobjects 
 release_dma_lock function 
 releasing spinlocks 
 RELEVANT_IFLAG macro 
 remap_pfn_range function 
 remapping [See also mapping] 
     kernel virtual addresses 
     RAM 
 remote0 (IP number) 
 removable media (supporting) 
 remove_proc_entry function 
 reordering read/write instructions 
 reports (interrupts) 
 request_dma function 
 request_firmware function 
requests 
     blocking 
     processing 
     state of (processing) 
 requeuing/rescheduling tasks 
 requirements, code 
 resolution of time 
 resolving Ethernet addresses 
 resource flags (PCI) 
 restriction of access 
 retrieval of current time 
return values 
     interrupt handlers 
     switch statements 
 revalidate method 
 ring buffers (DMA) 
 RISC processor and inline assembly code 
 rmmod program 2nd 3rd 
     dynamically allocating major numbers 
     testing modules using 
roles 
     of device drivers 
     kernels 
 root hubs (USB) 
 routing, network management 
 rq_data_dir field (request structure) 
rules 
     locking 
     ordering 
running

 [See execution] 
 runtime, code 
 rwsems (reader/writer semaphores) 
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 S/390 architecture 
     porting and 
 SA_INTERRUPT flag 2nd 
 SA_SAMPLE_RANDOM flag 2nd 
 SA_SHIRQ flag 2nd 3rd 
 SAK (secure attention key) function 
 sample programs, obtaining 
 /sbin/hotplug utility 
sbull drivers 
     initialization 
     request method 
 sbull ioctl method 
 sbull_request function 
 SBus 
scatter/gather 
     DMA mappings 
     I/O 
scatterlists 
     mapping 2nd 
     structure 
 sched.h header file 2nd 
 schedule function 
     execution of code (delaying) 
     preventing endless loops with 
 schedule_timeout function 
 schedulers (I/O) 
 scheduling kernel timers 
 scripts (hotplug) 
SCSI 
     devices 
     modules 
 scull 2nd 
     char drivers 
    concurrency

 [See concurrency] 
     design of 
     device registration 
     drivers (example) 2nd 
     file operations 
     inode structure 
     locking (adding) 
    memory 
         troubleshooting 
         usage 
     next method 
     open method 
     pointers 
     race conditions 
     read method 
     read_proc method 
     readv calls 
     release method 
     semaphores 
     show method 
     stop method 
     write method 
     writev calls 
 scull driver (example) 
 scull_cleanup function 
 scull_getwritespace function 
 scullc driver (example) 
scullp 
     example 
     mmap implementations 
 scullpipe devices (example) 
 scullsingle device 
 sculluid code 
 scullv driver (example) 2nd 
 searching PCI drivers 
 sector_t bi_sector field (bio structure) 
 sector_t capacity field (gendisk) 
 sector_t sector field (request structure) 
 sectors (size of) 
 secure attention key (SAK) function 
 security 2nd 
 seeking devices 
 select method 
     poll method and 
 semaphores 
     completion 
     implementation 
     reader/writer 
     unlocking 
 sendfile system 
 sendpage system 
 seq_file interface 
 seqlocks 
 SEQNUM variable 
 sequences (race conditions) 
 serial line configuration 
 serial_icounter_struct structure 
 set_bit operation 
 set_config method 
 set_dma_addr function 
 set_dma_count function 
 set_dma_mode function 
 set_mac_address method 
 set_mb function 
 set_multicast_list function 
 set_multicast_list method 2nd 
 set_rmb function 
 set_termios function 
 set_wmb function 
 setconsole program 
 setterm program 
 sfile argument 
 sg_dma_address function 
 sg_dma_address macro 
 sg_dma_len function 
 sg_dma_len macro 
sharing 
     code 
     interrupt handlers 
     queues 
short delays 
     sleeps 
 short driver (example) 
     accessing I/O memory 
     implementing interrupt handlers 
     installing interrupt handlers 
     probing 
 short module 
 shortprint drivers 
 show function 
show method 
     kobjects 
     seq_file interface 
 shutdown 2nd 
 SIGIO signal 
 signal handling 
Simple Character Utility for Loading Localitie

 [See scull] 
Simple Hardware Operations and Raw Tests

 [See short driver] 
 simple sleeping 
 single-open devices 
 single-page streaming mappings 
 SIOCDEVPRIVATE commands 
 SIOCSIFADDR command 
 SIOCSIFMAP command 
size 
     data explicitly 
     explicit 
     kmalloc argument 
     pages 
     ports 
     of sectors 
sk_buff structure 
     fields for 
     transmitting packets 
 skb_headlen function 
 skb_headroom function 
 skb_is_nonlinear functions 
 skb_pull function 
 skb_push function 
 skb_put function 
 skb_reserve function 
 skb_tailroom function 
 skbuff.h header file 
 SLAB_CACHE_DMA flag 
 SLAB_CTOR_ATOMIC flag 
 SLAB_CTOR_CONSTRUCTOR flag 
 SLAB_HWCACHE_ALIGN flag 
 SLAB_NO_REAP flag 
 sleep_on function 
sleeps 
     locking 
     manual 
     processes 
     short delays 
     spinlocks 
 slow downs (avoiding) 
 slow interrupt handlers 
 SMP (symmetric multiprocessor) systems 
 snullnet0 (IP number) 
 socket buffers 2nd 
     allocation 
 software [See also applications versus kernel modules] 
     loops 
    versions

 [See versions, numbering] 
 software-mapped I/O memory (ioremap function) 
 SPARC architecture 
 SPARC64 platform (data alignment) 
 special files 
spinlocks 
     dma_spin_lock 
     hard_start_xmit function 
     releasing 
     xmit_lock function 
 splitting kernels 
 stacking modules 2nd 
 standard C data types 
 start method 
 stat file 
 state of request processing 
statements 
     goto 
    printk

 [See printk function] 
    switch 
         with ioctl method 
         return values 
 static functions (locking) 
 static numbers, assignment of 
statistics 
     on caches 
     on interrupts 
     on network drivers 
     on network interfaces 2nd 3rd 
 status information 
 stop method 2nd 
 store method (kobjects) 
 strace command 
 strace tool 
streaming 
     DMA mappings 2nd 
     single-page mappings 
 string operations 2nd 
 struct block_device_operations *fops field (gendisk) 
 struct bus_type *bus field 
 struct cdev *i_cdev (inode structure field) 
 struct dentry *f_dentry (struct file field) 
 struct device *parent field 
 struct device fields 
 struct device_driver *driver field 
 struct device_driver structure 
 struct file 
 struct file_operations *f_op (struct file field) 
 struct file_operations *fops variable (USB) 
 struct kobject kobj field 
 struct module *owner function 
 struct module *owner method 
 struct net_device *next field (net_device structure) 
 struct pci_device_id structure (PCI) 
 struct request structure 
 struct request_queue *queue field (gendisk) 
 struct scull_qset structure 
 struct termios structure (tty drivers) 
 struct timeval pointer 
 struct tty_flip_buffer structure 
 struct urb structure 
 struct usb_device *dev field (USB) 
 struct usb_device_id structure (USB) 
 struct usb_driver structure 
 struct usb_host_interface *altsetting field (USB) 
 struct usb_host_interface *cur_altsetting field (USB) 
 struct usb_interface structure 
 struct usb_iso_packet_descriptor iso_frame_desc field (USB) 
structures 
     bin_attribute 
     bio 2nd 
     bus_type 
     cdev configuration 
     data 2nd 
     dev_mc_list 
     devices 
     drivers 
     file_operations (mmap method and) 
     gendisk 
     ifreq 
     kobjects 
     kset_hotplug_ops 
     ldd_driver 
     net_device 2nd 
     net_device_stats 2nd 
     registration 
     scatterlist 
     serial_icounter_struct 
     sk_buff 
     struct device_driver 
     struct request 
     struct scull_qset 
     struct termios (tty drivers) 
     struct tty_flip_buffer 
     struct urb 
     struct usb_driver 
     struct usb_interface 
     tty_driver 
     tty_operations 
     tty_struct 
     vm_area_struct 
     vm_operations_struct 
 submission of urbs 2nd 
 SUBSYSTEM variable 
 subsystems 
     classes 
     deviceID register (PCI) 
     firmware 
     ksets 
     memory management 
     module stacking 
    USB

 [See USB] 
     vendorID register (PCI) 
 Super-H architecture 
 supervisor mode 2nd 
support 
     Ethtool 
     kernels (debugging) 
     MII 
     multicasting 
 swappers 
switch statements 
     return values 
     with ioctl method 
 symbolic links (kobjects) 
 symbols 
     BLK_BOUNCE_HIGH 
     bytes 
     CHECKSUM 
     DMA_BIDIRECTIONAL 
     DMA_FROM_DEVICE 
     DMA_NONE 
     DMA_TO_DEVICE 2nd 
     IFF_ 
     NR_IRQS 
     PAGE_SIZE 
     PCI_DMA_FROMDEVICE 
     PCI_DMA_TODEVICE 
     PDEBUG/PDEBUGG 
 symmetric multiprocessor (SMP) systems 
synchronization 
     DMA buffers 
     semaphores 
 sys_syslog function 
sysfs directory 
     trees (USB) 
     tty driver 
 sysfs filesystem 
     low-level operations 
 syslogd daemon 
 sysrq operations 
 sysrq.txt file 
 system calls 
system faults 
     debugging 
     handling 
 system hangs 
 system shutdown 
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 _t data types 
 table pages 
     I/O memory and 
     nopage VMA method 
 tables, symbols 
 tagged command queuing (TCQ) 
 tagged initialization formats 
 tasklet_schedule function 
 tasklets 2nd 
     interrupt handlers 
 tcpdump program 
 TCQ (tagged command queueing) 
 tearing down single-page streaming mappings 
 templates, scull (design of) 
 terminals, selecting for messages 
 termios userspace functions 
 test system setup 
 test_and_change_bit operation 
 test_and_clear_bit operations 
 test_and_set_bit operation 
 test_bit operation 
testing 
     block drivers 
     char drivers 
     hello world modules 
     scullpipe drivers 
 thread execution 
 throughput (DMA) 
 time 
     boot (PCI) 
     current time (retrieving) 
     execution of code (delaying) 2nd 
     HZ (time frequency) 2nd 
     intervals of (data type portability) 
     kernel timers 
     lapses (measurement of) 
     tasklets 
     time intervals in the kernel 
     workqueues 
timeouts 
     configuration 
     scheduling 
    transmission

 [See transmission timeouts] 
 timer.h header file 
 timer_list structure 
 timers 
     interrupts 
     kernels 2nd 
 timestamp counter (TSC) 
 tiny_close function 
 tiny_tty_driver variable 
 TIOCLINUX command 
 tiocmget function 
 tiocmset functions 
 token ring networks, setting up interfaces for 
 tools [See also debugging; utilities] 
     debuggers 
     Ethtool 
     kernels (enabling configuration options) 
     lockmeter 
     /sbin/hotplug utility 
     strace 
     timers 
 top halves (interrupt handlers) 
 tr_configure function 
 tracing programs 
tracking 
     registration 
     struct scull_qset (structure) 
transfers 
     buffers 
     DMA 2nd 
     USB without urbs 
 transistor-transistor logic (TTL) levels 
 transmission concurrency, controlling 
 transmission of packets 2nd 
 transmission timeouts 2nd 
     tx_timeout method and 
     watchdog_timeo field and 
 traps (locking) 
 traversal of linked lists 
trees 
     /dev 
     sysfs (USB and) 
     tty drivers 
 troubleshooting 
     caches 2nd 3rd 4th 
     DMA hardware 
     fragmentation 
     locking 
     memory (scull) 
     porting problems 
     system hangs 
     values 
     wrong font on console 
 truncating devices on open 
 TSC 
 TTL (transistor-transistor logic) levels 2nd 
 tty drivers 
     buffers 
     directories 
     functions 
     line settings 
     pointers 
     struct termios 
     sysfs directories 
     tty_driver structure 
     tty_operations structure 
     tty_struct structure 
 tty_driver structure 2nd 3rd 
 TTY_DRIVER_NO_DEVFS flag 
 TTY_DRIVER_REAL_RAW flag 
 TTY_DRIVER_RESET_TERMIOS flag 
 tty_get_baud_rate function 
 tty_register_driver function 
 tunelp program 2nd 
 turning messages on/off 
 tx_timeout method 2nd 
 TYPE variable 
types 
     addresses 
     bus_attribute 
     module parameter support 
     PCI driver support 
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 u16 bcdDevice_hi field (USB) 
 u16 bcdDevice_lo field (USB) 
 u16 idProduct field (USB) 
 u16 idVendor field (USB) 
 u16 match_flags field (USB) 
 u8 bDeviceClass field (USB) 
 u8 bDeviceProtocol field (USB) 
 u8 bDeviceSubClass field (USB) 
 u8 bInterfaceClass field (USB) 
 u8 bInterfaceProtocol field (USB) 
 u8 bInterfaceSubClass field (USB) 
 u8, u16, u32, u64 data types 
 uaccess.h header file 2nd 3rd 4th 
 udelay 
 uint8_t/uint32_t types 
 uintptr_t type (C99 standard) 
unaligned data 
     access 
 unaligned.h header file 
 unidirectional pipes (USB endpoints) 
 uniprocessor systems, concurrency in 
universal serial bus

 [See USB] 
Unix 
     filesystems 
     interfaces (access to) 
 unlinking urbs 
unloading 
     modules 2nd 3rd 
     USB drivers 
 unlocking semaphores 
 unmapping DMA buffers 2nd [See also mapping] 
 unregister_netdev function 
 unregistering facilities 
 unshielded twisted pair (UTP) 
 unsigned char *setup_packet field (USB) 
 unsigned int bi_size field (bio structure) 
 unsigned int f_flags (struct file field) 
 unsigned int irq function 
 unsigned int pipe field (USB) 
 unsigned int transfer_flags field (USB) 
 unsigned long bi_flags field (bio structure) 
 unsigned long flags field (memory) 
 unsigned long flags function 
 unsigned long method 
 unsigned long nr_sectors field (request structure) 
 unsigned long pci_resource_end function 
 unsigned long pci_resource_flags function 
 unsigned long pci_resource_start function 
 unsigned long state field (net_device structure) 
 unsigned num_altsetting field (USB) 
 unsigned short bio_hw_segments field (bio structure) 
 unsigned short bio_phys_segments field (bio structure) 
 unsigned type 
 up function 
 updates, RCU 
 urandom device 
urbs 
     cancellation of 
     interrupts 
     killing 
     submitting 
     unlinking 
     USB 
         creating/destroying 
         struct urb structure 
         submitting 
         transfers without 
 urbs_completion function 
 usage count 
     decremented by release method 
     incremented by open method 
     nopage method and 
 USB (universal serial bus) 2nd 
     configurations 
     hotplugging 
     stacking 
     sysfs directory tree 
     transfers without urbs 
     urbs 
     writing 
USB request blocks

 [See urbs] 
 usb_alloc_urb function 
 usb_bulk_msg function 
 usb_control_msg function 
 USB_DEVICE macro 
 USB_DEVICE_INFO macros 
 USB_DEVICE_VER macro 
 usb_fill_bulk_urb function 
 usb_fill_control_urb function 
 usb_fill_int_urb function 
 usb_get_descriptor function 
 USB_INTERFACE_INFO macro 
 usb_kill_urb function 
 usb_register_dev function 
 usb_set_intfdata function 
 usb_string function 
 usb_submit_urb function 
 usb_unlink_urb function 
 usbcore module 
 user mode 2nd 
 user programs 
 user space 
     capabilities/restrictions in 
     communication with 
     direct I/O 
     explicitly sizing data in 
     I/O port access from 
     programming 2nd 
     retrieving datum from 
     transferring to/from kernel space 
     tty drivers 
     writing drivers in 
 user virtual addresses 
 User-Mode Linux 
 utilities 2nd [See also programs] 
     insmod 
     modprobe 2nd 
     rmmod 
 utility fields (net_device structure) 
 UTP (unshielded twisted pair) 
 UTS_RELEASE macro 2nd 
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values 
     BogoMips 
     errors 
     jiffies 2nd 
     loops_per_jiffy 
    return 
         interrupt handlers 
         switch statements 
variables 
     ACTION 
     atomic 
     char*name (USB) 
     console_loglevel 
     DEVICE 
     DEVPATH 
     int minor_base (USB) 
     INTERFACE 
     mode_t mode (USB) 
     NAME 
     pci_bus_type 
     PCI_CLASS 
     PCI_ID 
     PCI_SLOT_NAME 
     PCI_SUBSYS_ID 
     per-CPU 
     PHYS 
     PRODUCT 2nd 
     SEQNUM 
     struct file_operations *fops (USB) 
     SUBSYSTEM 
     tiny_tty_driver 
     TYPE 
 vector operations, char drivers 
 vendorID register (PCI) 
 VERIFY_ symbols 2nd 
 version dependency 
 version.h header file 2nd 
versions 
     dependency 
     numbering 
         char drivers 
         major device numbers 
         minor device numbers 
         older char device registration 
 VESA Local Bus (VLB) 
 vfree function 
 video memory (mapping) 
 viewing kernels 
 virt_to_page function 
 virtual addresses 2nd [See also addresses] 
     conversion 
     remapping 
 virtual memory 2nd [See also memory] 
virtual memory area

 [See VMA] 
 VLB (VESA Local Bus) 
 vm_area_struct structure 
 VM_IO flag 
 vm_operations_struct structure 
 VM_RESERVED flag 
 VMA (virtual memory area) 2nd 
 vmalloc allocation function 
 vmalloc.h header file 
 void *context field (USB) 
 void *dev_id function 
 void *driver_data field 
 void *private_data (struct file field) 
 void *private_data field (gendisk) 
 void *release field 
 void *transfer_buffer field (USB) 
 void *virtual field (memory) 
 void barrier function 
 void blk_queue_bounce_limit function 
 void blk_queue_dma_alignment function 
 void blk_queue_hardsect_size function 
 void blk_queue_max_hw_segments function 
 void blk_queue_max_phys_segments function 
 void blk_queue_max_sectors function 
 void blk_queue_max_segment_size function 
 void blk_start_queue function 
 void blk_stop_queue function 
 void field (PCI registration) 
 void function 
 void mb function 
 void read_barrier_depends function 
 void rmb function 
 void smp_mb functions 
 void smp_read_barrier_depends function 
 void smp_rmb function 
 void smp_wmb function 
 void tasklet_disable function 
 void tasklet_disable_nosync function 
 void tasklet_enable function 
 void tasklet_hi_schedule function 
 void tasklet_kill function 
 void tasklet_schedule function 
 void wmb function 
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 wait queues 2nd 3rd 
     delaying code execution 
     poll table entries and 
     putting processes into 
 wait_event macro 
 wait_event_interruptible_timeout function 
 wake_up function 2nd 3rd 4th 
 wake_up_interruptible function 
 wake_up_interruptible_sync function 
 wake_up_sync function 
 Wall flag 
 watchdog_timeo field (net_device structure) 2nd 
 wc command 
 wMaxPacketSize field (USB) 
 workqueues 2nd 
     interrupt handlers 
 WQ_FLAG_EXCLUSIVE flag set 
 write function (tty drivers) 
 write method 
     code for 
     configuring DMA controller 
     f_pos field (file structure) and 
     oops messages 
     poll method and 
     return values, rules for interpreting 
     select method and 
     strace command and 
 write system 
 write-buffering example 
 writev calls 
 writev method 
 writing 
     blocking/nonblocking operations 
     control sequences to devices 
     to a device 
    drivers 
         in user space 
         version numbering 
     UBS drivers 
 





 
Index
 


              [SYMBOL]

            

              [A]

            

              [B]

            

              [C]

            

              [D]

            

              [E]

            

              [F]

            

              [G]

            

              [H]

            

              [I]

            

              [J]

            

              [K]

            

              [L]

            

              [M]

            

              [N]

            

              [O]

            

              [P]

            

              [Q]

            

              [R]

            

              [S]

            

              [T]

            

              [U]

            

              [V]

            

              [W]

            

              [X]

            

              [Z]

             
 
x86 architecture 
     interrupt handling on 
     porting and 
 xmit_lock function 
 xtime variable 
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 zero-order limitations 
 zones (memory) 
 zSeries architecture 
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