

 C# 7 and .NET Core: Modern Cross-Platform Development - Second Edition

Table of Contents

C# 7 and .NET Core: Modern Cross-Platform Development - Second Edition

Credits

About the Author

About the Reviewer

www.PacktPub.com

Why subscribe?

Customer Feedback

Preface

What this book covers

What you need for this book

Who this book is for

Conventions

Reader feedback

Customer support

Downloading the example code

Downloading the color images of this book

Errata

Piracy

Questions

1. Hello, C#! Welcome, .NET Core!

Choosing your development environment

Using alternative C# IDEs

Deploying cross-platform

Installing Microsoft Visual Studio 2017 for Windows

Choosing workloads

Choosing additional components

Signing in to Visual Studio 2017

Choosing your settings

Reviewing Visual Studio's user interface

Installing Microsoft Visual Studio Code for Windows, macOS, or Linux

Installing Microsoft Visual Studio Code for macOS

Installing .NET Core for macOS

Installing Homebrew

Installing OpenSSL

Installing .NET Core SDK

Installing the Visual Studio Code extension for C#

Understanding .NET

Understanding .NET Framework

Understanding the Mono and Xamarin projects

Understanding .NET Core

Streamlining .NET

Understanding .NET Standard

.NET used in this book

Understanding .NET Native

Comparing .NET technologies

Writing and compiling code using the .NET Core CLI tool

Writing code using a simple text editor

If you are using Windows Notepad

If you are using macOS TextEdit

Compiling code using the .NET Core CLI tool

Restoring packages and running the application

Fixing compiler errors

Understanding Intermediate Language

Writing and compiling code using Microsoft Visual Studio 2017

Writing code using Microsoft Visual Studio 2017

Coding with Visual Studio's editor

Compiling code using Visual Studio 2017

Fixing mistakes with the error list

Adding existing projects to Visual Studio 2017

Autoformatting code

Experimenting with C# Interactive

Other useful windows

Writing and compiling code using Microsoft Visual Studio Code

Writing code using Visual Studio Code

Compiling code using Visual Studio Code

Managing source code with GitHub

Using Git with Visual Studio 2017

Using the Team Explorer window

Cloning a GitHub repository

Managing a GitHub repository

Using Git with Visual Studio Code

Configuring Git at the command line

Managing Git with Visual Studio Code

Practicing and exploring

Exercise 1.1 - test your knowledge

Exercise 1.2 - practice coding anywhere

Exercise 1.3 - explore topics

Summary

2. Speaking C#

Understanding C# basics

Using Visual Studio 2017

Using Visual Studio Code on macOS, Linux, or Windows

C# grammar

Statements

Comments

Blocks

C# vocabulary

C# keywords

Writing the code

Verbs are methods

Nouns are types, fields, and variables

Counting types and methods

Building and running with Visual Studio 2017

Building and running with Visual Studio Code

Declaring variables

Naming variables

Literal values

Storing text

Storing numbers

Storing whole numbers

C# 7 improvements

Storing real numbers

Using Visual Studio 2017

Using Visual Studio Code

Writing code to explore numbers

Comparing double and decimal

Storing Booleans

The object type

The dynamic type

Local variables

Inferring the type of a local variable

Making a value type nullable

Checking for null

Storing multiple values in an array

Building console applications

Displaying output to the user

Getting input from the user

Importing a namespace

Simplifying the usage of the console

Reading arguments and working with arrays

Passing arguments with Visual Studio 2017

Passing arguments with Visual Studio Code

Viewing the output

Enumerating arguments

Running on Windows

Running on macOS

Handling platforms that do not support an API

Operating on variables

Experimenting with unary operators

Experimenting with arithmetic operators

Comparison and Boolean operators

Practicing and exploring

Exercise 2.1 - test your knowledge

Exercise 2.2 - practice number sizes and ranges

Exercise 2.3 - explore topics

Summary

3. Controlling the Flow, Converting Types, and Handling Exceptions

Selection statements

Using Visual Studio 2017

Using Visual Studio Code on macOS, Linux, or Windows

The if statement

Pattern matching with the if statement

The switch statement

Pattern matching with the switch statement

Iteration statements

The while statement

The do statement

The for statement

The foreach statement

How does the foreach statement work?

Casting and converting between types

Casting from numbers to numbers

Casting explicitly

Using the convert type

Rounding numbers

Converting from any type to a string

Parsing from strings to numbers or dates and times

Handling exceptions

The try statement

Catching all exceptions

Catching specific exceptions

The finally statement

Simplifying disposal with the using statement

Checking for overflow

The checked statement

The unchecked statement

Looking for help

Microsoft Docs and MSDN

Go to definition

StackOverflow

Google

Subscribing to blogs

Design patterns

Singleton pattern

Practice and explore

Exercise 3.1 - test your knowledge

Exercise 3.2 - explore loops and overflow

Exercise 3.3 - practice loops and operators

Exercise 3.4 - practice exception handling

Exercise 3.5 - explore topics

Summary

4. Using .NET Standard Types

Using assemblies and namespaces

Comparing .NET Framework with .NET Core

Base Class Libraries and CoreFX

Assemblies, NuGet packages, and platforms

Namespaces

Referencing a dependent assembly

Browsing assemblies with Visual Studio 2017

Understanding .NET Core project files

Relating assemblies and namespaces

Importing a namespace

Relating C# keywords to .NET types

Storing and manipulating text

Getting the length of a string

Getting the characters of a string

Splitting a string

Getting part of a string

Checking a string for content

Other string members

Building strings efficiently

Pattern matching with regular expressions

The syntax of a regular expression

Examples of regular expressions

Storing data with collections

Understanding collections

Lists

Dictionaries

Stacks

Queues

Sets

Working with lists

Working with dictionaries

Sorting collections

Using specialized collections

Internationalizing an application

Globalizing an application

Practicing and exploring

Exercise 4.1 - test your knowledge

Exercise 4.2 - practice regular expressions

Exercise 4.3 - explore topics

Summary

5. Debugging, Monitoring, and Testing

Debugging tools

Debugging an application

Setting a breakpoint

The debugging toolbar

Debugging windows

Stepping through code

Customizing breakpoints

Monitoring performance and resource usage

Evaluating the efficiency of types

Monitoring performance and memory use

Measuring the efficiency of processing strings

Unit testing an application

Creating a class library that needs testing with Visual Studio 2017

Creating a unit test project with Visual Studio 2017

Creating a class library that needs testing with Visual Studio Code

Writing unit tests

Running unit tests with Visual Studio 2017

Running unit tests with Visual Studio Code

Practicing and exploring

Exercise 5.1 - test your knowledge

Exercise 5.2 - practice debugging and unit testing

Exercise 5.3 - explore topics

Summary

6. Building Your Own Types with Object-Oriented Programming

Talking about OOP

Building class libraries

Creating a class library with Visual Studio 2017

Creating a class library with Visual Studio Code

Defining a class

Instantiating a class

Referencing an assembly using Visual Studio 2017

Referencing an assembly using Visual Studio Code

Importing a namespace

Managing multiple projects with Visual Studio Code

Inheriting from System.Object

Storing data with fields

Defining fields

Understanding access modifiers

Storing a value using the enum keyword

Storing multiple values using collections

Making a field static

Making a field constant

Making a field read-only

Initializing fields with constructors

Writing and calling methods

Combining multiple values with tuples

Referencing the System.ValueTuple package with Visual Studio 2017

Referencing the System.ValueTuple package with Visual Studio Code

Defining methods with tuples

Naming the fields of a tuple

Deconstructing tuples

Defining and passing parameters to methods

Overloading methods

Optional parameters and named arguments

Controlling how parameters are passed

Splitting classes using partial

Controlling access with properties and indexers

Defining read-only properties

Defining settable properties

Defining indexers

Practicing and exploring

Exercise 6.1 - test your knowledge

Exercise 6.2 - practice writing mathematical methods

Exercise 6.3 - explore topics

Summary

7. Implementing Interfaces and Inheriting Classes

Setting up a class library and console application

Using Visual Studio 2017

Using Visual Studio Code

Defining the classes

Simplifying methods with operators

Implementing some functionality with a method

Implementing some functionality with an operator

Defining local functions

Raising and handling events

Calling methods using delegates

Defining events

Implementing interfaces

Common interfaces

Comparing objects when sorting

Defining a separate comparer

Managing memory with reference and value types

Defining a struct type

Releasing unmanaged resources

Ensuring that dispose is called

Inheriting from classes

Extending classes

Hiding members

Overriding members

Preventing inheritance and overriding

Polymorphism

Casting within inheritance hierarchies

Implicit casting

Explicit casting

Handling casting exceptions

Inheriting and extending .NET types

Inheriting from an exception

Extending types when you can't inherit

Using static methods to reuse functionality

Using extension methods to reuse functionality

Practice and explore

Exercise 7.1 - test your knowledge

Exercise 7.2 - practice creating an inheritance hierarchy

Exercise 7.3 - explore topics

Summary

8. Working with Databases Using the Entity Framework Core

Relational Database Management Systems

Using a sample database

Using Microsoft SQL Server on Windows

Connecting to Microsoft SQL Server LocalDb

Creating the Northwind sample database

Managing the Northwind sample database

Using SQLite on macOS and mobile platforms

Running a script for SQLite

Choosing a .NET data provider

Connecting to the database

Setting up Entity Framework Core

Using Visual Studio 2017

Using Visual Studio Code

Entity Framework Core models

EF Core conventions

EF Core annotation attributes

EF Core Fluent API

Building an EF Core Model

Querying an EF Core model

Logging EF Core

Loading patterns with EF Core

Eager and lazy loading entities

Explicit loading entities

Manipulating data with EF Core

Inserting entities

Updating entities

Deleting entities

Transactions

Defining an explicit transaction

Practicing and exploring

Exercise 8.1 - test your knowledge

Exercise 8.2 - explore the EF Core documentation

Summary

9. Querying and Manipulating Data with LINQ

Writing LINQ queries

Extending sequences with the enumerable class

Filtering entities with Where

Targeting a named method

Simplifying the code by removing the explicit delegate instantiation

Targeting a lambda expression

Sorting entities with OrderBy

Sorting by multiple properties with the ThenBy method

Working with sets

Projecting entities with Select

Building an EF Core model

Joining and grouping

Sweetening the syntax with syntactic sugar

Using multiple threads with parallel LINQ

Creating your own LINQ extension methods

Working with LINQ to XML

Generating XML using LINQ to XML

Reading XML by using LINQ to XML

Practicing and exploring

Exercise 9.1 - test your knowledge

Exercise 9.2 - practice querying with LINQ

Exercise 9.3 - explore topics

Summary

10. Working with Files, Streams, and Serialization

Managing the filesystem

Managing directories

Managing files

Managing paths

Getting file information

Reading and writing with streams

Writing to text and XML streams

Compressing streams

Encoding text

Encoding strings as byte arrays

Encoding and decoding text in files

Serializing object graphs

Serializing with XML

Deserializing with XML

Customizing the XML

Serializing with JSON

Serializing with other formats

Practice and explore

Exercise 10.1 - test your knowledge

Exercise 10.2 - practice serializing as XML

Exercise 10.3 - explore serialization formats

Exercise 10.4 - explore topics

Summary

11. Protecting Your Data

Understanding the vocabulary of protection

Keys and key sizes

IVs and block sizes

Salts

Generating keys and IVs

Encrypting and decrypting data

Encrypting symmetrically with AES

Using Visual Studio 2017

Using Visual Studio Code

Creating the Protector class

Hashing data

Hashing with SHA256

Signing data

Signing with SHA256 and RSA

Practicing and exploring

Exercise 11.1 - test your knowledge

Exercise 11.2 - practice protecting data with encryption and hashing

Exercise 11.3 - practice protecting data with decryption

Exercise 11.4 - explore topics

Summary

12. Improving Performance and Scalability with Multitasking

Understanding processes, threads, and tasks

Running tasks asynchronously

Running multiple actions synchronously

Running multiple actions asynchronously using tasks

Waiting for tasks

Continuing with another task

Nested and child tasks

Synchronizing access to shared resources

Accessing a resource from multiple threads

Applying a mutually exclusive lock to a resource

Understanding the lock statement

Making operations atomic

Applying other types of synchronization

Implementing multitasking for a GUI

Creating a GUI that blocks

Creating a GUI that doesn't block

Other types with Async methods

await in catch blocks

Improving scalability for client-server applications

Practicing and exploring

Exercise 12.1 - test your knowledge

Exercise 12.2 - explore topics

Summary

13. Building Universal Windows Platform Apps Using XAML

Understanding Universal Windows Platform

Adapting your app's layout

Taking advantage of unique device capabilities

Understanding XAML

Simplifying code using XAML

Choosing common controls

Creating an app for Universal Windows Platform

Using resources and templates

Sharing resources

Replacing a control template

Data binding

Binding to elements

Binding to data

Animating with storyboards

Testing in emulators

Practicing and exploring

Exercise 13.1 - test your knowledge

Exercise 13.2 - practice building a universal tip calculator

Exercise 13.3 - explore topics

Summary

14. Building Web Applications Using ASP.NET Core MVC

Understanding ASP.NET Core

Classic ASP.NET versus modern ASP.NET Core

Client-side web development

Understanding HTTP

Creating an ASP.NET Core project with Visual Studio 2017

Performing database migrations

Reviewing authentication with ASP.NET Identity

Creating an ASP.NET Core project with Visual Studio Code

Managing client-side packages with Bower

Exploring an ASP.NET Core MVC web application

ASP.NET Core startup

Understanding the default route

ASP.NET Core MVC controllers

ASP.NET Core MVC models

Create Entity models for Northwind

Configure Entity Framework Core as a service

Create view models for requests

Fetch the model in the controller

ASP.NET Core MVC views

Rendering the Home controller's views

Sharing layouts between views

Defining custom styles

Defining a typed view

Taking ASP.NET Core MVC further

Passing parameters using a route value

Passing parameters using a query string

Annotating models

Practicing and exploring

Exercise 14.1 - test your knowledge

Exercise 14.2 - practice building a data-driven web application

Exercise 14.3 - explore topics

Summary

15. Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

Understanding Xamarin.Forms

How Xamarin.Forms extends Xamarin

Mobile first, cloud first

Installing Xcode

Installing Visual Studio for Mac

Building services using ASP.NET Core Web API and Visual Studio Code

Creating an ASP.NET Core Web API project

Creating a web service for the Northwind database

Creating the Northwind database

Referencing the EF Core NuGet packages

Creating the entity model and database context

Creating the data repository

Configuring and registering the data repository

Set the database connection string

Creating the Web API controller

Testing the web service

Testing GET requests with any browser

Testing POST, PUT, DELETE, and other requests with Postman

Building mobile apps using Xamarin.Forms and Visual Studio for Mac

Creating a Xamarin.Forms project

Creating a model

Creating an interface for dialing phone numbers and implement for iOS and Android

Creating views for the customers list and customer details

Test the mobile app with iOS

Adding NuGet packages for calling a REST service

Getting customers from the service

Practicing and exploring

Exercise 15.1 - test your knowledge

Exercise 15.2 - explore topics

Summary

16. Packaging and Deploying Your Code Cross-Platform

Porting to .NET Core

Could you port?

Should you port?

Differences between .NET Framework and .NET Core

Understanding the .NET Portability Analyzer

Sharing code cross-platform with .NET Standard class libraries

Creating a .NET Standard class library

Using Visual Studio 2017

Using Visual Studio Code on macOS

Understanding NuGet packages

Referencing packages

Understanding metapackages

Understanding Frameworks

Fixing dependencies

Switching to a different .NET Standard

Publishing your applications

Creating a console application to publish

Publishing with Visual Studio 2017

Publishing with Visual Studio Code

Deploying to the cloud

Creating an ASP.NET Core MVC web application to publish

Register an Azure account

Create an Azure web app

Publishing an ASP.NET web application to the web app

Developing on and for Linux

Practicing and exploring

Exercise 16.1 - test your knowledge

Exercise 16.2 - explore topics

Summary

A. Answers to the Test Your Knowledge Questions

Chapter 1 - Hello, C#! Welcome, .NET Core!

Chapter 2 - Speaking C#

Chapter 3 - Controlling the Flow, Converting Types, and Handling Exceptions

Chapter 4 - Using .NET Standard Types

Chapter 5 - Debugging, Monitoring, and Testing

Chapter 6 - Building Your Own Types with Object-Oriented Programming

Chapter 7 - Implementing Interfaces and Inheriting Classes

Chapter 8 - Working with Databases Using Entity Framework Core

Chapter 9 - Querying and Manipulating Data with LINQ

Chapter 10 - Working with Files, Streams, and Serialization

Chapter 11 - Protecting Your Data

Chapter 12 - Improving Performance and Scalability with Multitasking

Chapter 13 - Building Universal Windows Platform Apps Using XAML

Chapter 14 - Building Web Applications Using ASP.NET Core MVC

Chapter 15 - Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

Chapter 16 - Packaging and Deploying Your Code Cross-Platform

 C# 7 and .NET Core: Modern Cross-Platform Development - Second Edition

 C# 7 and .NET Core: Modern Cross-Platform Development - Second Edition

Copyright 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Second edition: March 2017

Production reference: 1210317

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-955-9

www.packtpub.com

 Credits

	

Author

Mark J. Price

	

Copy Editor

Zainab Bootwala

	

Reviewer

Fabio Claudio Ferracchiati

	

Project Coordinator

Izzat Contractor

	

Commissioning Editor

Aaron Lazar

	

Proofreader

Safis Editing

	

Acquisition Editor

Nitin Dasan

	

Indexer

Francy Puthiry

	

Content Development Editor

Siddhi Chavan

	

Graphics

Abhinash Sahu

	

Technical Editors

Sunith Shetty

Abhishek Sharma

	

Production Coordinator

Nilesh Mohite

 About the Author

[image: About the Author]

Mark J. Price

 is a Microsoft Certified Trainer (MCT) and Microsoft Specialist: Programming in C# and Architecting Microsoft Azure Solutions, with more than 20 years of educational and programming experience.

[image: About the Author]

Since 1993, Mark has passed more than 80 Microsoft programming exams and specializes in preparing others to pass them too. His students range from professionals with decades of experience to 16 year old apprentices with none. Hesuccessfully guides all of them by combining educational skills with real-world experience in consulting and developing systems for enterprises worldwide.

Between 2001 and 2003, Mark was employed full-time to write official courseware for Microsoft in Redmond, USA. Histeam wrote the first training courses for C# while it was still an early alpha version. While with Microsoft, he taught "train-the-trainer" classes to get other MCTs up-to-speed on C# and .NET.

Currently, Mark creates and delivers training courses for Episerver's Digital Experience Cloud, the best .NET CMS for Digital Marketing and E-commerce.

In 2010, Mark studied for a Postgraduate Certificate in Education (PGCE). He taught GCSE and A-Level mathematics in two London secondary schools. He holds a Computer Science BSc. Hons. Degree from the University of Bristol, UK.

Thank you to my parents, Pamela and Ian, for raising me to be polite, hardworking, and curious about the world. Thank you to my sisters, Emily and Juliet, for loving me despite being their awkward older brother. Thank you to my friends and colleagues who inspire me technically and creatively. Lastly, thanks to all the students I have taught over the years for motivating me to be the best teacher that I can be.

 About the Reviewer

Fabio Claudio Ferracchiati

 is a senior consultant and a senior analyst/developer using Microsoft technologies. He works for React Consulting (www.reactconsulting.it
). He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past ten years, he's written articles for Italian and international magazines and co-authored more than ten books on a variety of computer topics.

 www.PacktPub.com

For support files and downloads related to your book, please visitwww.PacktPub.com
 .

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version atwww.PacktPub.com
 and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us atservice@packtpub.com for more details.

Atwww.PacktPub.com
 , you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[image: www.PacktPub.com]

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

 Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser

 Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page athttps://www.amazon.com/dp/1787129551
 .

If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!

 Preface

There are C# books that are thousands of pages long that aim to be comprehensive references to the C# programming language and the .NET Framework.

This book is different. It is concise and aims to be a fast-paced read that is packed with hands-on walkthroughs. I wrote this book to be the best step-by-step guide to modern cross-platform C# proven practices using .NET Core.

I will point out the cool corners and gotchas of C# so you can impress colleagues and employers and get productive fast. Rather than slowing down and boring some readers by explaining every little thing, I will assume that if a term I use is new to you, then you will know how to Google it.

At the end of each chapter is a section titled
Practice and explore

 , in which you will complete hands-on practical exercises and explore topics deeper on your own with a little nudge in the right direction from me.

You can download solutions for the exercises from the following GitHub repository. I will provide instructions on how to do this using Visual Studio 2017 and Visual Studio Code at the end of Chapter 1
 , Hello, C#! Welcome, .NET Core!

https://github.com/markjprice/cs7dotnetcore
 .

 What this book covers

Chapter 1
 ,
Hello, C#! Welcome, .NET Core!

 , is about setting up your development environment and using various tools to create the simplest application possible with C#. You will learn how to write and compile code using Visual Studio 2017 on Windows, or Visual Studio Code on macOS, Linux, or Windows. You will learn about the different .NET technologies: .NET Framework, .NET Core, .NET Standard, and .NET Native.

Chapter 2
 ,
Speaking C#

 , is about the C# language---the grammar and vocabulary that you will use every day to write the source code for your applications. In particular, you will learn how to declare and work with variables of different types.

Chapter 3
 ,
Controlling Flow, Converting Types, and Handling Exceptions

 , is about writing code that makes decisions, repeats a block of statements, converts between types, and handles errors. You will also learn the best places to look for help.

Chapter 4
 ,
Using .NET Standard Types

 , is about commonly used .NET Core types that are part of .NET Standard and how they are related to C#. You will learn about the .NET Standard class library assemblies and the NuGet packages of types that allow your applications to connect existing components to perform common practical tasks, such as manipulating text, storing items in collections, and implementing internationalization.

Chapter 5
 ,
Debugging, Monitoring, and Testing

 , is about debugging tools, monitoring, diagnosing problems, and testing your code to remove bugs and ensuring high performance, stability, and reliability.

Chapter 6
 ,
Building Your Own Types with Object-Oriented Programming

 , is about all the different categories of members that a type can have, including fields to store data and methods to perform actions. You will use OOP concepts, such as aggregation and encapsulation. You will learn about the C# 7 language features such as tuple syntax support and out variables.

Chapter 7
 ,
Implementing Interfaces and Inheriting Classes

 , is about deriving new types from existing ones using object-oriented programming (OOP). You will learn how to define operators and C# 7 local functions, delegates and events, how to implement interfaces about base and derived classes, how to override a type member, how to use polymorphism, how to create extension methods, and how to cast between classes in an inheritance hierarchy.

Chapter 8
 ,
Working with Databases Using Entity Framework Core

 , is about reading and writing to databases, such as Microsoft SQL Server and SQLite, using the object-relational mapping technology known as the Entity Framework Core.

Chapter 9
 ,
Querying and Manipulating Data with LINQ

 , is about Language INtegrated Query (LINQ)---language extensions that add the ability to work with sequences of items and filter, sort, and project them into different outputs.

Chapter 10
 ,
Working with Files, Streams, and Serialization

 , is about managing the filesystem, reading and writing to files and streams, text encoding, and serialization.

Chapter 11
 ,
Protecting Your Data

 , is about protecting your data from being viewed by malicious users using encryption and from being manipulated or corrupted using hashing and signing.

Chapter 12
 ,
Improving Performance and Scalability with Multitasking

 , is about allowing multiple actions to occur at the same time to improve performance, scalability, and user productivity.

Chapter 13
 ,
Building Universal Windows Platform Apps Using XAML

 , is about learning the basics of XAML that can be used to define the user interface for a graphical app for the Universal Windows Platform (UWP). This app can then run on Windows 10, Windows 10 Mobile, Xbox One, and even HoloLens.

Chapter 14
 ,
Building Web Applications Using ASP.NET Core MVC

 , is about learning the basics of building web applications with a modern HTTP architecture on the server side using ASP.NET Core MVC. You will learn about the startup configuration, authentication, routes, models, views, and controllers that make up ASP.NET Core MVC.

Chapter 15
 ,
Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

 , is about learning the basics of how to take C# mobile by building a cross-platform mobile app for iOS and Android that calls a service built on ASP.NET Core Web API. The client-side mobile app will be created with Visual Studio for Mac and the server-side Web API service will be created with Visual Studio Code, both running on macOS.

Chapter 16
 ,
Packaging and Deploying Your Code Cross-Platform

 , is about publishing your apps and libraries, creating and distributing NuGet packages, and deploying your code cross-platform and to the cloud.

Appendix A

 , Answers to the Test Your Knowledge Questions, has the answers to the test questions at the end of each chapter.

 What you need for this book

You can develop and deploy C# on many platforms, including Windows, macOS, and many varieties of Linux. For the best programming experience, and to reach the most platforms, I recommend that you learn the basics of all members of the Visual Studio family: Visual Studio 2017, Visual Studio Code, and Visual Studio for Mac.

My recommendation for the operating system and development tool combinations is as follows:

	Windows 10 for Visual Studio 2017

	macOS for Visual Studio for Mac

	macOS for Visual Studio Code

The best version of Windows to use is Microsoft Windows 10 because you will need this version to create Universal Windows Platform apps in Chapter 13
 ,
Building Universal Windows Platform Apps Using XAML

 . Earlier versions of Windows, such as 7 or 8.1 will work for all other chapters.

 Who this book is for

If you have heard that C# is a popular general-purpose cross-platform programming language used to create everything, ranging from business applications, web sites, and services, to games for mobile devices, Xbox One, and the Windows 10 desktop to tablet and phone platforms, then this book is for you.

If you have heard that .NET Core is Microsoft's bet on a cross-platform .NET future, optimized for server-side web development in the cloud, and client-side mobile development with Xamarin, combined with a cross-platform development tool in Visual Studio Code, then this book is for you.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Controllers
 , Models
 , and Views
 folders contain ASP.NET Core classes and .cshtml
 files for execution on the server."

A block of code is set as follows:

 // storing items at index positions
 names[0] = "Kate";
 names[1] = "Jack";
 names[2] = "Rebecca";
 names[3] = "Tom";

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 // storing items at index positions
 names[0] = "Kate";
 names[1] = "Jack";

names[2] = "Rebecca";

 names[3] = "Tom";

Any command-line input or output is written as follows:

dotnet new console

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking the
Next

 button moves you to the next screen."

 Note

Warnings or important notes appear in a box like this.

 Tip

Good Practice

Recommendations for how to program like an expert appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this bookwhat you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors
 .

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com
 . If you purchased this book elsewhere, you can visit

http://www.packtpub.com/support
 and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/CSharp-7-And-NET-Core-Modern-CrossPlatform-Development-Second-Edition
 . We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/
 . Check them out!

 Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file fromhttps://www.packtpub.com/sites/default/files/downloads/CSharp7andDotNETCoreModernCrossPlatformDevelopmentSecondEdition_ColorImages.pdf

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our booksmaybe a mistake in the text or the codewe would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-
 errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
 and enter the name of the book in the search field. The required information will appear under the Errata section.

 Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.

 Chapter1. Hello, C#! Welcome, .NET Core!

This chapter is about setting up your development environment; understanding the similarities and differences between .NET Core, .NET Framework, .NET Standard, and .NET Native; and using various tools to create the simplest application possible with C# 7 and .NET Core.

Most people learn complex topics by imitation and repetition rather than reading a detailed explanation of theory. So, I will not explain every keyword and step. The idea is to get you to write some code, build an application, and see it run. You don't need to know the details of how it all works yet.

In the words of Samuel Johnson, author of the English dictionary of 1755, I have likely committed "a few wild blunders, and risible absurdities, from which no work of such multiplicity is free. "I take sole responsibility for these and hope you appreciate the challenge of my attempt to "lash the wind" by writing this book about .NET Core and its command-line tooling during its rocky birth during 2016 and 2017.

This chapter covers the following topics:

	Choosing your development environment

	Installing Microsoft Visual Studio 2017 for Windows

	Installing Microsoft Visual Studio Code for Windows, macOS, or Linux

	Understanding .NET

	Writing and compiling code using the .NET Core CLI tool

	Writing and compiling code using Microsoft Visual Studio 2017

	Writing and compiling code using Microsoft Visual Studio Code

	Managing source code with GitHub

 Choosing your development environment

Before you start programming, you will need to choose an
Interactive Development Environment

 (
IDE

) that includes a code editor for C#.

The most mature and full-featured IDE to choose is
Microsoft Visual Studio 2017

 , but it only runs on the Windows operating system.

The most modern and lightweight IDE to choose, and the only one from Microsoft that is cross-platform, is
Microsoft Visual Studio Code

 , and it will run on all common operating systems, including Windows, macOS, and many varieties of Linux, such as Red Hat Enterprise Linux (RHEL) and Ubuntu.

 Note

To help you decide if Visual Studio Code is right for you, I recommend that you watch the following video, Beginner's Guide to VS Code: Up and Running in Ten Minutes: https://channel9.msdn.com/Blogs/raw-tech/Beginners-Guide-to-VS-Code

To create apps for iOS (iPhone and iPad), tvOS, macOS, and watchOS, you must have OS X or macOS, and Xcode. Although you can use Visual Studio 2017 with its Xamarin extensions to
write

 a cross-platform mobile app, you still need OS X or macOS, and Xcode to
compile

 it. So, in Chapter 15
 ,
Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

 , I will show you how to use
Visual Studio for Mac

 running on macOS to create a Xamarin cross-platform mobile app for iOS and Android that calls a web service hosted on ASP.NET Core.

The following table shows which IDE and operating systems can or must be used for each of the chapters in this book:

[image: Choosing your development environment]

 Tip

Good Practice

If you have the option, then I recommend you try all the coding exercises with both Visual Studio 2017 on Windows, and Visual Studio Code on macOS, Linux, or Windows. It will be good for you to get experience with C# 7 and .NET Core on a variety of operating systems and development tools.

To write the second edition of this book, I used the following listed software, as you can see in the following screenshot:

	Visual Studio Code version 1.10.2 and Visual Studio for Mac Preview 4, on macOS Sierra version 10.12.3

	Visual Studio 2017 on Windows 10 (in a virtual machine)

	Visual Studio Code on Red Hat Enterprise Linux (in a virtual machine)[image: Choosing your development environment]

 Using alternative C# IDEs

There are alternative IDEs for C#, for example,
MonoDevelop

 and
JetBrains Rider

 . You can install either of these two IDEs with the help of the following URLs:

	For MonoDevelop IDE, visit http://www.monodevelop.com/

	For JetBrains Rider, visit https://www.jetbrains.com/rider/

Cloud9

 is a web browser-based IDE, so it's even more cross-platform than the others. It is growing in popularity. Here is the link:https://c9.io/web/sign-up/free
 .

 Deploying cross-platform

Your choice of IDE and operating system for development does not limit where your code gets deployed. .NET Core currently supports the following platforms for deployment:

	Windows 7 SP1, or later

	Windows Server 2008 R2 SP1, or later

	OS X El Capitan (version 10.11) and macOS Sierra (version 10.12)

	Red Hat Enterprise Linux 7.2

	Ubuntu 14.04 LTS, 16.04 LTS

	Linux Mint 17

	Debian 8.2

	CentOS 7.1

	Oracle Linux 7.1

	Docker

 Note

Docker and Linux OSes are popular server host platforms because they are relatively lightweight and more cost-effectively scalable when compared to operating system platforms that are more for end users, such as Windows and macOS.

In the next section, you will install Microsoft Visual Studio 2017 for Windows. If you prefer to use Microsoft Visual Studio Code, jump ahead to the section titled,
Installing Microsoft Visual Studio Code for Windows, macOS, or Linux

 .

 Installing Microsoft Visual Studio 2017 for Windows

You can use Windows 7 SP1 or later to complete most of the chapters in this book, but you will have a better experience if you use Windows 10.

Since October 2014, Microsoft has made a professional-quality edition of Visual Studio available to everyone for free. It is called the
Community Edition

 .

 Note

Microsoft has combined all its free developer offerings in a program called
Visual Studio Dev Essentials

 . This includes the Community Edition, the free level of Visual Studio Team Services, Azure credits for test and development, and free training from Pluralsight, Wintellect, and Xamarin.

Download and install
Microsoft Visual Studio 2017

 from the following link:https://www.visualstudio.com/downloads/

 Choosing workloads

On the
Workloads

 tab, choose the following, as partially shown in the following screenshot:

	

Universal Windows Platform development

	

.NET desktop development

	

ASP.NET and web development

	

Azure development

	

Mobile development with .NET

	

.NET Core cross-platform development

[image: Choosing workloads]

 Choosing additional components

On the
Individual components

 tab, choose the following additional components, as shown in the following screenshot:

	

Class Designer

	

PowerShell tools

	

Git for Windows

	

GitHub extension for Visual Studio

[image: Choosing additional components]

Click
Install

 , and wait for the installer to acquire the selected software, and install it, as shown in the following screenshot:

[image: Choosing additional components]

When the installation is complete, click
Launch

 .

 Note

While you wait for Visual Studio 2017 to install, you can jump ahead to the
Understanding .NET

 section in this chapter.

 Signing in to Visual Studio 2017

The first time that you run Visual Studio 2017, you will be prompted to sign in. If you have a Microsoft account, for example, a Hotmail, MSN, Live, or Outlook e-mail address, you can use that account. If you don't, then register for a new one at the following link: https://signup.live.com/
 .

 Choosing your settings

When starting Visual Studio 2017 for the first time, you will be prompted to configure your environment. For
Development Settings

 , choose
Visual C#

 . For color theme, I chose
Blue

 , but you can choose whatever suits you, as shown in the following screenshot:

[image: Choosing your settings]

 Reviewing Visual Studio's user interface

You will see the Microsoft Visual Studio user interface with the
Start Page

 open in the central area. Like most Windows desktop applications, Visual Studio has a menu bar, a toolbar for common commands, and a status bar at the bottom. On the right is the
Solution Explorer

 that will list your open projects:

[image: Reviewing Visual Studio's user interface]

 Note

To have quick access to Visual Studio in the future, right-click on its entry in the Windows taskbar and select
Pin to taskbar

 .

 Installing Microsoft Visual Studio Code for Windows, macOS, or Linux

Between June 2015 and March 2017, Microsoft released a new version of
Visual Studio Code

 every month (except for December 2016 because even Microsoft employees deserve a break for Christmas). Visual Studio Code has rapidly improved, and has surprised Microsoft with its popularity. Even if you plan to use Visual Studio 2017 as your primary development tool, I recommend that you learn how to use Visual Studio Code and the .NET Core command-line tool as well.

Youcan download Visual Studio Code from https://code.visualstudio.com/
 .

 Installing Microsoft Visual Studio Code for macOS

In this book, I will show examples and screenshots of Visual Studio Code by using the version for macOS. The steps for doing the same with Visual Studio Code for Windows and variants of Linux is very similar, so I will not repeat the instructions for every platform.

After downloading Visual Studio Code for macOS, drag and drop it to your Applications
 folder, as shown in the following screenshot:

[image: Installing Microsoft Visual Studio Code for macOS]

 Installing .NET Core for macOS

You will now need to install the .NET Core SDK for macOS. The full instructions, including a video to watch, are described at the following link, and I have included the basic steps in this book for your convenience:https://www.microsoft.com/net/core#macos
 .

 Installing Homebrew

The first step is to install Homebrew (if you don't already have it).

Start macOS's
Terminal

 app and enter the following command at the prompt:

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Terminal will prompt you to press RETURN to continue, and then prompt for your password, as shown in the following screenshot:

[image: Installing Homebrew]

 Installing OpenSSL

The second step is to use Homebrew to install OpenSSL, which is required by .NET Core.

At the prompt, enter the following commands:

brew update

brew install openssl

mkdir -p /usr/local/lib

ln -s /usr/local/opt/openssl/lib/libcrypto.1.0.0.dylib /usr/local/lib/

ln -s /usr/local/opt/openssl/lib/libssl.1.0.0.dylib /usr/local/lib/

Terminal will output messages as shown in the following screenshot:

[image: Installing OpenSSL]

 Installing .NET Core SDK

The third step is to download the
.NET Core SDK

 installer for macOS (x64) from the following link:https://www.microsoft.com/net/download/core
 .

 Note

The .NET Core SDK installer package installs .NET Core version 1.1.1 and the .NET Core Command Line Interface (CLI) tool version 1.0.1. Yes, the version numbers are confusing! A single CLI tool with its own version number is used for multiple versions of .NET Core runtime. .NET Core 1.1.1 is the
Current

 branch and gets new features and bug fixes. .NET Core 1.0.4 is the
Long Term Support (LTS)

 branch and only gets bug fixes. Both were released on March 7, 2017 with Visual Studio 2017.

Run the dotnet-1.1.1-sdk-osx-x64.pkg
 installer package, as shown in the following screenshot:

[image: Installing .NET Core SDK]

Click
Continue

 , accept the license agreement, click
Install

 , and then, as shown in the next screenshot, click
Close

 :

[image: Installing .NET Core SDK]

 Installing the Visual Studio Code extension for C#

This extension is not necessary but it provides IntelliSense as you type, so it's very handy to install.

Launch
Visual Studio Code

 and click the
Extensions

 icon, or choose
View

 |
Extensions

 , or press
Cmd

 +
Shift

 +
X

 .

C# is the most popular extension so you should see it at the top of the list, as shown in the following screenshot:

[image: Installing the Visual Studio Code extension for C#]

Click
Install

 , and then click
Reload

 , to reload the window and activate the extension.

Now that you have installed and set up your development environment, you will learn some background about .NET before diving in to writing code.

 Understanding .NET

.NET Framework, .NET Core, .NET Standard, and .NET Native are related and overlapping platforms for developers to build applications and services upon.

 Understanding .NET Framework

Microsoft's .NET Framework is a development platform that includes a
Common Language Runtime

 (
CLR

) that manages the execution of code, and provides a rich library of classes to build applications.

Microsoft designed .NET Framework to have the possibility of being cross-platform, but Microsoft put their implementation effort into making it work best with Windows.

Practically speaking, .NET Framework is Windows-only, and a legacy platform.

 Understanding the Mono and Xamarin projects

Third parties developed a .NET implementation named the Mono project that you can read more about here: http://www.mono-project.com/
 .

Mono

 is cross-platform, but it fell well behind the official implementation of .NET Framework. It has found a niche as the foundation of the
Xamarin

 mobile platform.

Microsoft purchased Xamarin in 2016 and now gives away what used to be an expensive Xamarin extension for free with Visual Studio 2017. Microsoft renamed the
Xamarin Studio

 development tool to
Visual Studio for Mac

 and has given it the ability to create ASP.NET Core Web API services. Xamarin is targeted at mobile development and building cloud services to support mobile apps.

 Note

You will use Visual Studio for Mac in Chapter 15

, Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

 to create a mobile app for iOS and Android that calls an ASP.NET Core Web API service.

 Understanding .NET Core

Today, we live in a truly cross-platform world. Modern mobile and cloud development has made Windows a much less important operating system. So, Microsoft has been working on an effort to decouple .NET from its close ties with Windows.

While rewriting .NET to be truly cross-platform, Microsoft has taken the opportunity to refactor .NET to remove major parts that are no longer considered
core

 .

This new product is branded as
.NET Core

 , which includes a cross-platform implementation of the CLR known as
CoreCLR

 , and a streamlined library of classes known as
CoreFX

 .

Scott Hunter, Microsoft Partner Director Program Manager for .NET, says, "Forty percent of our .NET Core customers are brand-new developers to the platform, which is what we want with .NET Core. We want to bring new people in."

The following table shows when important versions of .NET Core were released, and Microsoft's schedule for the next major release:

	

Version

	

Released

	
.NET Core RC1

	
November 2015

	
.NET Core 1.0

	
June 2016

	
.NET Core 1.1

	
November 2016

	
.NET Core 1.0.4 (LTS) and .NET Core (Current) 1.1.1

	
March 2017

	
.NET Core 2.0

	
Scheduled for release in Q3 2017

 Tip

Good Practice

If you need to work with .NET Core 1.0 and 1.1, then I recommend that you read the announcement for .NET Core 1.1, although the information at the following URL is useful for all .NET Core developers: https://blogs.msdn.microsoft.com/dotnet/2016/11/16/announcing-net-core-1-1/

 Streamlining .NET

.NET Core is much smaller than the current version of .NET Framework because a lot has been removed.

For example,
Windows Forms

 and
Windows Presentation Foundation

 (
WPF

) can be used to build
graphical user interface

 (
GUI

) applications, but they are tightly bound to Windows, so they have been removed from .NET Core. The latest technology used to build Windows apps is the
Universal Windows Platform

 (
UWP

), and UWP is built on a custom version of .NET Core. You will learn about it in Chapter 13
 ,
Building Universal Windows Platform Apps Using XAML

 .

ASP.NET Web Forms

 and
Windows Communication Foundation

 (
WCF

) are old web application and service technologies that fewer developers choose to use for new development projects today, so they have also been removed from .NET Core. Instead, developers prefer to use ASP.NET MVC and ASP.NET Web API. These two technologies have been refactored and combined into a new product that runs on .NET Core named
ASP.NET Core

 . You will learn about
ASP.NET Core MVC

 in Chapter 14
 ,
Building Web Applications Using ASP.NET Core MVC

 , and
ASP.NET Core Web API

 in Chapter 15
 ,
Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

 .

The
Entity Framework

 (
EF

) 6.x is an object-relational mapping technology to work with data stored in relational databases such as Oracle and Microsoft SQL Server. It has gained baggage over the years, so the cross-platform version has been slimmed down and named
Entity Framework Core

 . You will learn about it in Chapter 8
 ,
Working with Databases Using Entity Framework Core

 .

Some common but old data types in .NET Framework have been removed from .NET Core, such as HashTable
 and ArrayList
 in System.Collections
 , but can be added back using a separate class library or NuGet package. Some data types in .NET that are included with both .NET Framework and .NET Core have been simplified by removing some members. For example, in .NET Framework, the File
 class has both a Close
 and Dispose
 method, and either can be used to release the file resources. In .NET Core, there is only the Dispose
 method. This reduces the memory footprint of the assembly and simplifies the API you must learn.

As well as removing large pieces from .NET Framework to make .NET Core, Microsoft has componentized .NET Core into NuGet packages: small chunks of functionality that can be deployed independently.

 Note

.NET Framework 4.6 is about 200 MB and must be deployed as a single unit. .NET Core 1.0 is about 11 MB. Eventually, .NET Core and all its NuGet packages may grow to hundreds of megabytes. Microsoft's primary goal is not to make .NET Core smaller than .NET Framework. The goal is to componentize .NET Core to support modern technologies and to have fewer dependencies so that deployment requires only those packages that your application needs.

 Understanding .NET Standard

The situation with .NET today is that there are three forked .NET platforms, all controlled by Microsoft:

	.NET Framework

	Xamarin

	.NET Core

Each have different strengths and weaknesses because they are designed for different scenarios. This has led to the problem that a developer must learn three platforms, each with annoying quirks and limitations.

So, Microsoft is working on defining .NET Standard 2.0: a set of APIs that all .NET platforms must implement. At the time that I write this, in March 2017, there is .NET Standard 1.6, but only .NET Core supports it; .NET Framework and Xamarin do not.

.NET Standard 2.0 will be implemented by .NET Framework, .NET Core, and Xamarin. For .NET Core, this will add many of the missing APIs that developers need to port old code written for .NET Framework to the cross-platform .NET Core. However, Microsoft warns that some APIs will be "implemented", but throw an exception to indicate to a developer that they should not actually be used! You will learn how to handle this in Chapter 2
 ,
Speaking C#

 .

.NET Standard 2.0 is the near future of .NET, and it will make it much easier for developers to share code between any flavor of .NET, but we are not there yet. Microsoft says .NET Standard 2.0, and .NET Core 2.0, are scheduled for release in Q3 2017. That could mean July 1, 2017, but based on previous experience, I think late September 2017 is more realistic.

The following diagram summarizes how the three variants of .NET (sometimes known as app models) will share the common .NET Standard 2.0 and infrastructure:

[image: Understanding .NET Standard]

 .NET used in this book

The first edition of this book focused on .NET Core, but used .NET Framework when important or useful features had not been implemented in .NET Core. Visual Studio 2015 was used for most examples, with Visual Studio Code shown only briefly.

The second edition has been purged of all .NET Framework code examples. It has been rewritten so that all code is pure .NET Core and can be written with either Visual Studio 2017 or Visual Studio Code on any supported operating system.

The only exceptions are in Chapter 13
 ,
Building Universal Windows Platform Apps Using XAML

 , that uses .NET Core for UWP and requires Visual Studio 2017 running on Windows 10, and in Chapter 15
 ,
Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

 , when we will write a Xamarin mobile app with Visual Studio for Mac.

 Understanding .NET Native

Another .NET initiative is .NET Native. This compiles C# code to native CPU instructions
ahead-of-time

 (
AoT

) rather than using the CLR to compile intermediate language (IL) code
just-in-time

 (
JIT

) to native code later.

.NET Native improves execution speed and reduces the memory footprint for applications. It supports the following:

	UWP apps for Windows 10, Windows 10 Mobile, Xbox One, HoloLens, and
Internet of Things

 (
IoT

) devices such as Raspberry Pi

	Server-side web development with ASP.NET Core

	Console applications for use on the command line

 Comparing .NET technologies

The following table summarizes and compares .NET technologies:

[image: Comparing .NET technologies]

 Writing and compiling code using the .NET Core CLI tool

When you install Visual Studio 2017, or the .NET Core SDK, a
Command Line Interface (CLI)

 tool named dotnet
 is installed as well as the .NET Core runtime.

dotnet

 has the following commands that all work on the project in the current folder:

	
dotnet new console
 : creates a new console application project

	
dotnet new classlib
 : creates a new assembly library project

	
dotnet new web
 : creates a new empty ASP.NET Core project

	
dotnet new mvc
 : creates a new ASP.NET Core MVC project

	
dotnet new webapi
 : creates a new ASP.NET Core Web API project

	
dotnet restore
 : downloads dependencies for the project

	
dotnet build
 : compiles the project

	
dotnet test
 : runs unit tests on the project

	
dotnet run
 : runs the project

	
dotnet migrate
 : migrates a .NET Core project created with the preview CLI tools to the current CLI tool MS Build format

	
dotnet pack
 : creates a NuGet package for the project

	
dotnet publish
 : compiles and publishes the project, either with dependencies or as a self-contained application

 Note

You will learn how to build, package, publish, and deploy your .NET Core applications and assemblies in Chapter 16
 ,
Packaging and Deploying Your Code Cross-Platform

 .

Before we use CLI tools such asdotnet
 , we need to write some code!

 Writing code using a simple text editor

If you are using Windows, start
Notepad

 .

If you are using macOS, launch
TextEdit

 . From the
TextEdit

 menu, choose
Preferences

 , clear the
Smart quotes

 check box, and then close the dialog. From the
Format

 menu, choose
Make Plain Text

 .

Or run your favorite plain text editor.

Enter the following code:

 class MyApp { static void Main() {
 System.Console.WriteLine("Hello, C#!"); } }

 Note

C# is case sensitive, meaning that you must type uppercase and lowercase characters exactly as shown in the preceding code. C# is not whitespace sensitive, meaning that it does not care if you use tabs, spaces, and carriage-returns to layout your code however you like.

You can type the code all in one line or spread it out over multiple lines and indent your lines. For example, the following code would also compile and have the same output:

 class
 MyApp {
 static void
 Main (){System. Console.
 WriteLine("Hello, C#!"); } }

Of course, it's best to write your code in a way that other programmers, and yourself months or years later, can clearly read!

 If you are using Windows Notepad

In Notepad, from the
File

 menu, choose
Save As...

 .

In the dialog box, change to drive C:
 (or any drive which you want to use to save your projects), click on the
New folder

 button, and name the folder Code
 . Open the Code
 folder, and click the
New folder

 button, and name the folder Chapter01
 . Open the Chapter01
 folder, and click the
New folder

 button, and name the folder Ch01_HelloCS
 . Open the Ch01_HelloCS
 folder.

In the
Save as type

 field, select
All Files

 from the drop-down list to avoid appending the .txt
 file extension, and enter the file name as MyApp.cs
 , as shown in the following screenshot:

[image: If you are using Windows Notepad]

Your code in Notepad should look something like the following screenshot:

[image: If you are using Windows Notepad]

 If you are using macOS TextEdit

In
TextEdit

 , from the
File

 menu, choose
Save...

 , or press
C
md

 +

S

 .

In the dialog box, change to your
user

 folder (mine is named
markjprice

) or any directory in which you want to use to save your projects, click on the
New Folder

 button, and name the folder Code
 . Open the Code
 folder, and click the
New Folder

 button, and name the folder Chapter01
 . Open the Chapter01
 folder, and click the
New Folder

 button, and name the folder Ch01_HelloCS
 . Open the Ch01_HelloCS
 folder.

In the
Plain Text Encoding

 field, select
Unicode (UTF-8)

 from the drop-down list, uncheck the box for
If no extension is provided, use ".txt"

 to avoid appending the .txt
 file extension, enter the filename as MyApp.cs
 , and click on
Save

 , as shown in the following screenshot:

[image: If you are using macOS TextEdit]

 Compiling code using the .NET Core CLI tool

If you are using Windows, start
Command Prompt

 .

If you are using macOS, launch
Terminal

 .

At the prompt, enter the following command:

dotnet

You should see the following output describing the dotnet
 CLI tool:

[image: Compiling code using the .NET Core CLI tool]

 Note

The output from the dotnet
 command-line tool will be identical on Windows, macOS, and Linux.

Enter the following commands at the prompt to:

	Change to the folder for the project

	Create a new console application in the directory

	List the files that the dotnet
 command-line tool created

If you are using Windows, in
Command Prompt

 , enter:

cd C:\Code\Chapter01\Ch01_HelloCS

dotnet new console

dir

If you are using macOS, in
Terminal

 , enter:

cd Code/Chapter01/Ch01_HelloCS

dotnet new console

ls

 Note

The first time that you execute a dotnet new
 command, your
local package cache

 must be populated. This should only take a few moments.

You should see that the dotnet
 tool has created two new files for you:

	
Program.cs
 : source code for a simple console application

	
Ch01_HelloCS.csproj
 : a project file that lists dependencies and project-related configuration

For this example, we must delete the file named Program.cs
 since we have already created our own class called Program
 in the file named MyApp.cs
 .

If you are using Windows, in
Command Prompt

 :

del Program.cs

If you are using macOS, in
Terminal

 :

rm Program.cs

 Note

In all future examples, we will use the Program.cs
 file generated by the tool rather than manually create our own.

 Restoring packages and running the application

At the prompt, enter the following commands:

dotnet restore

dotnet run

After a few seconds, all the packages needed by our code will be downloaded, the source code will be compiled, and your application will run, as shown in the following output on macOS:

[image: Restoring packages and running the application]

Your source code, the file MyApp.cs
 , has been compiled into an assembly named Ch01_HelloCS.dll
 in the subfolder bin/Debug/netcoreapp1.1
 . For now, this assembly can only be executed by the dotnet run
 command. In Chapter 16
 ,
Packaging and Deploying Your Code Cross-Platform

 , you will learn how to package and publish assemblies for use on any operating system that supports .NET Core.

 Fixing compiler errors

If the compiler displays errors, read them carefully, and fix them in your text editor. Save your changes and try again.

 Note

At the prompt, you can press the up and down arrows on your keyboard to cycle through previous commands you have entered.

A typical error might be using the wrong case, a missing semicolon at the end of a line, or a mismatched pair of curly braces. For example, if you mistyped a lowercase m
 for the Main
 method, you would see the following error message:

error CS5001: Program does not contain a static 'Main' method
suitable for an entry point

 Understanding Intermediate Language

The C# compiler (named
Roslyn

) used by the dotnet
 CLI tool converts your C# source code into
intermediate language (IL)

 code and stores the IL in an
assembly

 (a DLL or EXE file).

IL code statements are like assembly language instructions, but they are executed by .NET Core's virtual machine, known as the
CoreCLR

 .

At runtime, the CoreCLR loads the IL code from the assembly, JIT (just-in-time) compiles it into native CPU instructions, and then it is executed by the CPU on your machine.

The benefit of this two-step compilation process is that Microsoft can create CLRs for Linux and macOS as well as for Windows. The same IL code runs everywhere because of the second compilation process that generates code for the native operating system and CPU instruction set.

Regardless of which language the source is written in, for example, C# or F#, all .NET applications use IL code for their instructions stored in an assembly. Microsoft and others provide disassembler tools that can open an assembly and reveal this IL code.

 Note

Actually, not all .NET applications use IL code! Some use .NET Native's compiler to generate native code instead of IL code, improving performance and reducing memory footprint, but at the cost of portability.

 Writing and compiling code using Microsoft Visual Studio 2017

We will now recreate a similar application using Visual Studio 2017. If you have chosen to use Visual Studio Code, I still recommend that you review these instructions and screenshots because Visual Studio Code has similar, although not as extensive, features.

I have been training students to use Visual Studio for over a decade, and I am always surprised at how many programmers fail to use the tool to their advantage.

Over the next few pages, I will walk you through typing a line of code. It may seem redundant, but you will benefit from seeing what help and information Visual Studio provides as you enter your code. If you want to become a fast and accurate coder, letting Visual Studio write most of your code for you is a huge benefit!

 Writing code using Microsoft Visual Studio 2017

Start Visual Studio 2017.

Navigate to
File

 |
New

 |
Project...

 or press
Ctrl

 +
Shift

 +
N

 .

From the
Installed

 |
Templates

 list on the left, expand
Visual C#

 , and choose
.NET Core

 . In the list at the center, choose
Console App (.NET Core)

 . Enter the name Ch01_WelcomeDotNetCore
 , set the location to C:\Code
 , enter Chapter01
 as the solution name, and click on
OK

 or press
Enter

 , as shown in the following screenshot:

[image: Writing code using Microsoft Visual Studio 2017]

 Note

Ignore the target set to .NET Framework 4.6.2. That drop-down list box does not affect .NET Core projects!

 Coding with Visual Studio's editor

In the code editor, delete the statement on line
9

 that says, Console.WriteLine("Hello World!");

Inside the Main
 method, type the letters sy
 , as shown in the following screenshot, and note the IntelliSense menu that appears:

[image: Coding with Visual Studio's editor]

IntelliSense shows a filtered list of
keywords

 ,
namespaces

 , and
types

 that contain the letters sy
 and highlights the one that starts with sy
 , which happens to be the namespace that we want---System
 .

Type a dot (also known as decimal point or full stop).

IntelliSense automatically completes the word System
 for you, enters the dot, and displays a list of types, such as AggregateException
 and Action
 , in the System
 namespace, as shown in the following screenshot:

[image: Coding with Visual Studio's editor]

Type the letters con
 , IntelliSense shows a list of matching types and namespaces, as shown in the following screenshot:

[image: Coding with Visual Studio's editor]

If the one you want is not selected, you can press the up and down arrows on your keyboard to highlight it. For now,
Console

 is already selected, so just type a dot.

IntelliSense shows a list of the
members

 of the Console
 class, as shown in the following screenshot:

[image: Coding with Visual Studio's editor]

 Note

Members

 include
properties

 (attributes of an object, such as BackgroundColor
),
methods

 (actions the object can perform, such as Beep
),
events

 , and other related things.

Typethe letters wr
 . IntelliSense showstwo matching members containingthese letters, as shown in the following screenshot:

[image: Coding with Visual Studio's editor]

Use the down arrow to highlight WriteLine
 and then type an open parenthesis (
 .

IntelliSense autocompletes WriteLine
 and enters a pair of parentheses.

You will also see a tooltip telling you that the WriteLine
 method has 18 variations, as shown in the following screenshot:

[image: Coding with Visual Studio's editor]

Type a double quote ("
). IntelliSense enters a pair of double quotes for you and leaves the keyboard cursor in between them.

Type the text Welcome, .NET Core!
 , as shown in the following screenshot:

[image: Coding with Visual Studio's editor]

The red squiggle at the end of the line indicates an error because every C# statement must end in a semicolon. Move the cursor to the end of the line and type a semicolon to fix the error.

 Compiling code using Visual Studio 2017

From the
Debug

 menu, choose
Start Without Debugging

 or press
Ctrl

 +
F5

 .

Visual Studio's status bar tells us that
Build started...

 , then
Build succeeded

 , and then your console application runs in a command prompt window, as shown in the following screenshot:

[image: Compiling code using Visual Studio 2017]

To save space in this book and to make the output clearer, I will usually not include screenshots of output from console applications as I did in the previous screenshot. Instead, I will show the output like this:

Welcome, .NET Core!

 Fixing mistakes with the error list

Let's make two deliberate errors:

	Change the M
 of the Main
 method to the lowercase letter m
 .

	Delete the e
 at the end of the method name, WriteLine
 .

From the
Debug

 menu, choose
Start Without Debugging

 or press
Ctrl

 +
F5

 .

After a few seconds, the status bar tells us that
Build failed

 and an error message appears, as shown in the following screenshot:

[image: Fixing mistakes with the error list]

Click
No

 .

The
Error List

 becomes active, as shown in the following screenshot. You can also view the
Error List

 by pressing
Ctrl

 +
W

 ,
E

 :

[image: Fixing mistakes with the error list]

The list can be filtered to show
Errors

 ,
Warnings

 , and
Messages

 by clicking on the toggle buttons in the toolbar at the top of the
Error List

 .

If an error shows a file and a line number, for example
File

 :
Program.cs

 and
Line

 :
9

 , then you can double-click on the error to jump to that line causing the problem.

If it's a more general error, such as the missing Main
 method, the compiler can't tell you a useful line number. You might want a method named main
 as well as a method named Main
 (remember that C# is case sensitive, so you're allowed to do that). However, Visual Studio can also analyze your code and provide messages with suggestions for improvements, such as telling you that method names should begin with an uppercase character.

As shown in the preceding screenshot, fix the two errors, and rerun the application to ensure that it works before you continue. Note that the
Error List

 updates to show no errors.

 Adding existing projects to Visual Studio 2017

Earlier, you created a project using the dotnet
 CLI tool. Now that you have a solution in Visual Studio 2017, you might want to add the earlier project to the solution.

Navigate to
File

 |
Add

 |
Existing Project...

 , browse to the folder C:\Code\Chapter01\Ch01_HelloCS
 , and select the file Ch01_HelloCS.csproj
 .

To be able to run this project, in the
Solution Explorer

 , right-click
Solution 'Chapter01' (2 projects)

 , and choose
Properties

 or press
Alt

 +
Enter

 .

For the
Startup Project

 , click
Current selection

 , and click
OK

 .

In
Solution Explorer

 , click on any file inside the Ch01_HelloCS
 project, and then press
Ctrl

 +
F5

 , or navigate to
Debug

 |
Start Without Debugging

 .

 Autoformatting code

Code is easier to read and understand if it is consistently indented and spaced out.

If your code can compile, then Visual Studio 2017 can automatically format it, nicely spaced and indented for you.

In
Solution Explorer

 , double-click the file named MyApp.cs
 , as shown in the following screenshot:

[image: Autoformatting code]

Navigate to
Build

 |
Build Ch01_HelloCS

 , or press
Shift

 +
F6

 and wait for your code to build, and then navigate to
Edit

 |
Advanced

 |
Format Document

 , or press
Ctrl

 +
E

 ,
D

 . Your code will be autoformatted, as shown in the following screenshot:

[image: Autoformatting code]

 Note

In Visual Studio Code, either right-click and choose
Format Document

 , or press
Alt

 +
Shift

 +
F

 .

 Experimenting with C# Interactive

Although Visual Studio has always had an
Immediate

 window with limited
read-eval-print loop

 (
REPL

) support, Visual Studio 2017 includes an enhanced window with full IntelliSense and color syntax code named
C# Interactive

 .

In Visual Studio 2017, from the
View

 menu, choose
Other Windows

 , and then
C# Interactive

 .

We will write some interactive code to download the
About

 page from Microsoft's public website.

 Note

This is just an example. You don't need to understand the code yet!

At the
C# Interactive

 prompt, we will enter commands to do the following:

	Reference the System.Net.Http
 assembly

	Import the System.Net.Http
 namespace

	Declare and instantiate an HTTP client variable

	Set the client's base address to Microsoft's website

	Asynchronously wait for a response to a GET request for the
About

 page

	Read the status code returned by the web server

	Read the content type header

	Read the contents of the HTML page as a string

Type each of the following commands after the >
 prompt and then press
Enter

 :

> #r "System.Net.Http"
> using System.Net.Http;
> var client = new HttpClient();
> client.BaseAddress = new Uri("http://www.microsoft.com/");
> var response = await client.GetAsync("about");
> response.StatusCode
OK
> response.Content.Headers.GetValues("Content-Type")
string[1] { "text/html" }
> await response.Content.ReadAsStringAsync()
"<!DOCTYPE html ><html
xmlns:mscom="http://schemas.microsoft.com/CMSvNext"
xmlns:md="http://schemas.microsoft.com/mscom-data" lang="en"
xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="X-UA-
Compatible" content="IE=edge" /><meta charset="utf-8" /><meta
name="viewport" content="width=device-width, initial-scale=1.0"
/><link rel="shortcut icon"
href="//www.microsoft.com/favicon.ico?v2" /><script
type="text/javascript"
src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-
1.7.2.min.js">\r\n // Third party scripts and code linked to
or referenced from this website are licensed to you by the parties
that own such code, not by Microsoft. See ASP.NET Ajax CDN Terms of
Use - http://www.asp.net/ajaxlibrary/CDN.ashx.\r\n
</script><script type="text/javascript"
language="javascript">/*<![CDATA[*/if($(document).bind("mobileinit
",function(){$.mobile.autoInitializePage=!1}),navigator.userAgent.ma
tch(/IEMobile\\/10\\.0/)){var
msViewportStyle=document.createElement("style ...

The following screenshot shows what Visual Studio 2017 should look like after you've entered the above commands into the
C# Interactive

 window:

[image: Experimenting with C# Interactive]

 Note

Roslyn is the name of the C# compiler. Roslyn version 1.0 was for C# 6. Roslyn version 2.0 is for C# 7.

 Other useful windows

Visual Studio 2017 has lots of other useful windows, including the following:

	The
Solution Explorer

 window for managing projects and files

	The
Team Explorer

 window for source code management tools

	The
Server Explorer

 window for managing database connections and resources to manage in Microsoft Azure

If you can't see a window you need, go to the
View

 menu to make it reappear or learn its keyboard shortcut, some of which are shown in the following screenshot:

[image: Other useful windows]

 Note

If your keyboard shortcuts are different from the ones in the preceding screenshot, it is because you picked a different set when you installed Visual Studio. You can reset your keyboard shortcuts to match the ones used in this book by clicking on the
Tools

 menu, then clicking on
Import and Export Settings...

 , choosing
Reset all settings

 , and then choosing to reset to the
Visual C#

 settings collection.

 Writing and compiling code using Microsoft Visual Studio Code

The instructions and screenshots in this section are for macOS, but the same actions will work with Visual Studio Code on either Windows or Linux. The main differences will be native command-line actions such as deleting a file: both the command and the path are likely to be different. The dotnet
 CLI tool will be identical on all platforms.

 Writing code using Visual Studio Code

Start Visual Studio Code.

Navigate to
File

 |
Open...

 , or press
Cmd

 +
O

 .

In the dialog box, open theCode
 folder, select the Chapter01
 folder, click the
New Folder

 button, enter the name Ch01_WelcomeDotNetCore
 , and click
Create

 , as shown in the following screenshot:

[image: Writing code using Visual Studio Code]

Select the
Ch01_WelcomeDotNetCore

 folder, and click
Open

 or press
Enter

 .

In Visual Studio Code, navigate to
View

 |
Integrated Terminal

 , or press
Ctrl + `

 .

At the
Terminal

 prompt, enter the following command:

dotnet new console

You will see that the dotnet
 command-line tool creates a new console application project for you in the current folder, and the
Explorer

 window shows the two files created, as shown in the following screenshot:

[image: Writing code using Visual Studio Code]

In the
Explorer

 window, click on the file named Program.cs
 to open it in the editor window.

 Note

The first time that you do this, C# dependencies will be updated for your platform. This will take a few moments.

When you see the warnings about required assets and unresolved dependencies, click
Restore

 and
Yes

 , as shown in the following screenshot:

[image: Writing code using Visual Studio Code]

Modify the text that is being written to the console to say, Welcome, .NET Core!

On the
File

 menu, choose
Auto Save

 . This toggle will save the annoyance of remembering to save before rebuilding your application each time!

 Compiling code using Visual Studio Code

Navigate to
View

 |
Integrated Terminal

 or press
Ctrl + `

 and enter the following command:

dotnet run

The output inthe
Terminal

 will show the resultof running your application, as shown in the following screenshot:

[image: Compiling code using Visual Studio Code]

You now know how to create and build simple .NET Core applications for Windows and macOS (and Linux is just as easy).

You will be able to complete almost all the chapters in this book using either Visual Studio 2017 on Windows or using Visual Studio Code on macOS, Windows, or Linux.

 Managing source code with GitHub

Git is a commonly used source code management system. GitHub is a company, website, and desktop application that makes it easier to manage Git.

I used GitHub to store solutions to all the practical exercises at the end of each chapter at the following URL:

https://github.com/markjprice/cs7dotnetcore
 .

 Using Git with Visual Studio 2017

Visual Studio 2017 has built-in support for using Git with GitHub as well as Microsoft's own source code management system named
Visual Studio Team Services

 .

 Using the Team Explorer window

In Visual Studio 2017, navigate to
View

 |
Team Explorer

 to see the
Team Explorer

 window:

[image: Using the Team Explorer window]

Although it is a good idea to sign up with an online source code management system provider, you can clone a GitHub repository without signing up for an account.

 Cloning a GitHub repository

In the
Team Explorer

 window, expand
Local Git Repositories

 , click on the
Clone

 menu, and then enter the following URL of a Git repository to clone it:https://github.com/markjprice/cs7dotnetcore.git
 .

Enter a path for the cloned Git repository:

C:\Code\Repos\cs7dotnetcore

Click on the
Clone

 button.

Wait for the Git repository to clone locally.

You will now have a local copy of the complete solutions to all the hands-on practice exercises for this book.

 Managing a GitHub repository

Double-click on the cs7dotnetcore
 repo to open a detail view.

You can click on the options in the
Project

 section to view
Pull Requests

 and
Issues

 and other aspects of a repository.

You can double-click on an entry in the
Solutions

 section to open it in the
Solution Explorer

 .

 Using Git with Visual Studio Code

Visual Studio Code has support for Git, but it will use your OS's Git installation, so you must install Git 2.0 or later first before you get these features. You can install Git from here: https://git-scm.com/download
 .

 Note

If you like to use a graphical user interface, you can download GitHub Desktop here: https://desktop.github.com
 .

 Configuring Git at the command line

Launch
Terminal

 , and enter the following command to check your configuration:

git config --list

The output should include your username and e-mail address, because these will be used with every commit that you make:

...other congfiguration...

user.name=Mark J. Price

user.email=markjprice@gmail.com

If your user name and e-mail has not been set, to set your user name and email, enter the following commands, using your own name and e-mail, not mine:

git config --global user.name "Mark J. Price"

git config --global user.email markjprice@gmail.com

You can check an individual configuration setting like this:

git config user.name

 Managing Git with Visual Studio Code

Launch
Visual Studio Code

 .

Navigate to
View

 |
Integrated Terminal

 or press
Ctrl

 +

`

 and enter the following commands:

cd Code

mkdir Repos

cd Repos

git clone https://github.com/markjprice/cs7dotnetcore.git

It will take a minute to clone all the solutions for allthe chapters to your local drive, as shown in the following screenshot:

[image: Managing Git with Visual Studio Code]

It is best to open one project folder at a time because the cs7dotnetcore
 repository does not include any dependencies, so you will need to restore them using the dotnet restore
 command, or wait for Visual Studio Code to prompt you after opening a folder.

For more information about source code version control with Visual Studio Code, visit: https://code.visualstudio.com/Docs/editor/versioncontrol.

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore with deeper research into the topics covered in this chapter.

 Exercise 1.1 - test your knowledge

Answer the following questions:

	Why can a programmer use different languages, for example C# and F#, to write applications that run on .NET Core?

	What do you type at the prompt to build and execute C# source code?

	What is the Visual C# developer settings keyboard shortcut to save, compile, and run an application without attaching the debugger?

	What is the Visual Studio Code keyboard shortcut to view the Integrated Terminal?

	Is Visual Studio 2017 better than Visual Studio Code?

	Is .NET Core better than .NET Framework?

	How is .NET Native different from .NET Core?

	What is .NET Standard and why is it important?

	What is the difference between Git and GitHub?

	What is the name of the entry-point method of a .NET console application and how should it be declared?

 Exercise 1.2 - practice coding anywhere

You do not need Visual Studio 2017 or Visual Studio Code to practice writing C#.

Go to one of the following websites and start coding:

	.NET Fiddle: https://dotnetfiddle.net/

	Cloud9: https://c9.io/web/sign-up/free

 Exercise 1.3 - explore topics

Use the following links to read more details about the topics covered in this chapter:

	

Welcome to .NET Core

 : http://dotnet.github.io

	

.NET Core Command Line Interface (CLI) tool

 : https://github.com/dotnet/cli

	

.NET Core runtime, CoreCLR

 : https://github.com/dotnet/coreclr/

	

.NET Core Roadmap

 : https://blogs.msdn.microsoft.com/dotnet/2016/07/15/net-core-roadmap/

	

.NET Standard FAQ

 : https://github.com/dotnet/standard/blob/master/docs/faq.md

	

Visual Studio Documentation

 : https://docs.microsoft.com/en-us/visualstudio/

	

Visual Studio Blog

 : https://blogs.msdn.microsoft.com/visualstudio/

	

Git and Team Services

 : https://www.visualstudio.com/en-us/docs/git/overview

	

The easiest way to connect to your GitHub repositories in Visual Studio

 : https://visualstudio.github.com/

 Summary

In this chapter, we set up the development environment, used Windows' Command Prompt and macOS's Terminal to compile and run a console application, used Visual Studio 2017 and Visual Studio Code to create the same application, and discussed the differences between .NET Framework, .NET Core, .NET Standard, and .NET Native.

In the next chapter, you will learn to speak C#.

 Chapter2.Speaking C#

This chapter is about the C# language---the grammar and vocabulary that you will use every day to write the source code for your applications.

Programming languages have many similarities to human languages, except that in programming languages, we can make up our own words, just like Dr. Seuss!

In a book written by Dr. Seuss in 1950,
If I Ran the Zoo

 states that:

"And then, just to show them, I'll sail to Ka-Troo And Bring Back an It-Kutch a Preep and a Proo A Nerkle, a Nerd and a Seersucker, too!"

To learn to speak C#, you will need to create some simple applications. To avoid overloading you with too much information too soon, the first few chapters of this book will use the simplest type of application: a console application.

This chapter covers the following topics:

	Understanding C# basics

	Declaring variables

	Building console applications

	Operating on variables

 Understanding C# basics

Let's start with looking at the basics of the grammar and vocabulary of C#. In this chapter, you will create multiple console applications, each showing a feature of the C# language.

To manage these projects with Visual Studio 2017, we will put them all in a single solution. Visual Studio 2017 can only have one solution open at any one time, but each solution can group together multiple projects. A project can build a console application, a Windows desktop application, a web application, and dozens of others.

To manage these projects with Visual Studio Code, which does not support solutions, we will manually create a container folder named Chapter02
 . If you would like to use Visual Studio Code, skip to the section titled
Using Visual Studio Code on macOS, Linux, or Windows

 .

 Using Visual Studio 2017

Start Microsoft Visual Studio 2017. In Visual Studio, press
Ctrl

 +
Shift

 +
N

 or choose the
File

 |
New

 |
Project...

 menu.

In the
New Project

 dialog, in the
Installed

 |
Templates

 list, expand
Other Project Types

 and select
Visual Studio Solutions

 . In the list at the center, select
Blank Solution

 , type the name Chapter02
 , change the location to C:\Code
 , and then click on
OK

 , as shown in the following screenshot:

[image: Using Visual Studio 2017]

If you were to run
File Explorer

 , you would see that Visual Studio has created a folder named Chapter02
 with a Visual Studio solution named Chapter02
 inside it, as shown in the following screenshot:

[image: Using Visual Studio 2017]

In Visual Studio, navigate to
File

 |
Add

 |
New Project...

 , as shown in the following screenshot. This will add a new project to the blank solution:

[image: Using Visual Studio 2017]

In the
Add New Project

 dialog, in the
Installed

 |
Templates

 list, expandVisual C#, and select .NET Core. In the list at the center, select
Console App (.NET Core)

 , type the name Ch02_Basics
 , ensure that
.NET Framework 4.6.2

 (or later) is selected at the top, and then click on
OK

 , as shown in the following screenshot:

[image: Using Visual Studio 2017]

If you were to run
File Explorer

 , you would see that Visual Studio has created a new folder with some files and subfolders inside it. You don't need to know what all these do yet. The code you will write will be stored in the file named Program.cs
 , as shown in the following screenshot:

[image: Using Visual Studio 2017]

In Visual Studio, the
Solution Explorer

 window shows the same files as the ones in the preceding screenshot of the file system.

Some folders and files, for example, the
bin

 folder, are hidden by default in
Solution Explorer

 . At the top of the window is a toolbar button named
Show All Files

 . Toggle this button to show and hide folders and files, as shown in the following screenshot:

[image: Using Visual Studio 2017]

 Using Visual Studio Code on macOS, Linux, or Windows

If you completed Chapter 1
 ,
Hello, C#! Welcome, .NET Core!

 , then you will already have a Code
 folder in your user folder. If not, create it, and then create a subfolder named Chapter02
 , and then a sub-subfolder named Ch02_Basics
 , as shown in the following screenshot:

[image: Using Visual Studio Code on macOS, Linux, or Windows]

Start Visual Studio Code and open the /Chapter02/Ch02_Basics/
 folder.

In Visual Studio Code, navigate to
View

 |
Integrated Terminal

 , and enter the following command:

dotnet new console

In the
Explorer

 , click the Program.cs
 file, and then click
Yes

 and
Restore

 to restore dependencies, as shown in the following screenshot:

[image: Using Visual Studio Code on macOS, Linux, or Windows]

 C# grammar

The grammar of C# includes
statements

 and
blocks

 .

 Statements

In English, we indicate the end of a sentence with a full stop. A sentence can be composed of multiple words and phrases. The order of words is part of grammar. For example, in English, we say: the black cat. The adjective, black, comes before the noun, cat. French grammar has a different order; the adjective comes after the noun, "le chat noir". The order matters.

C# indicates the end of a
statement

 with a semicolon. A statement can be composed of multiple
variables

 and
expressions

 .

In the following statement, FullName
 is a variable and FirstName + LastName
 is an expression:

 var FullName = FirstName + LastName;

The expression is made up of an
operand

 (FirstName), an
operator

 (+), and another operand (LastName). The order matters.

 Comments

You can add comments to explain your code using a double slash //
 .

The compiler ignores everything after the //
 until the end of the line; for example:

 var TotalPrice = Cost + Tax; // Tax is 20% of the Cost

 Note

Visual Studio 2017 and Visual Studio Code will add or remove the comment (double slashes) at the start of the currently selected line(s) if you press
Ctrl

 +
K

 +
C

 or
Ctrl

 +
K

 +
U

 . In macOS, press
Cmd

 instead of
Ctrl

 .

To write a multiline comment, use /*
 at the beginning and */
 at the end of the comment, as shown in the following code:

 /*
 This is a multi-line
 comment.
 */

 Blocks

In English, we indicate a paragraph by starting a new line. C# indicates a
block

 of code with curly brackets { }
 . Blocks start with a declaration to indicate what it is defining. For example, a block can define a
namespace

 , a
class

 , a
method

 , or a
statement

 . You will learn what these are later.

In your current project, note the grammar of C# written for you by the Visual Studio template or by the dotnet
 CLI tool.

In the following example, I have added some comments to describe the code:

 using System; // a semicolon indicates the end of a statement

 class Program
 {
 static void Main(string[] args)
 { // the start of a block
 Console.WriteLine("Hello World!"); // a statement
 } // the end of a block
 }

 C# vocabulary

Some of the 79 predefined, reserved keywords that you will see in this chapter include using
 , namespace
 , class
 , static
 , int
 , string
 , double
 , bool
 , var
 , if
 , switch
 , break
 , while
 , do
 , for
 , and foreach
 .

Visual Studio 2017 shows C# keywords in blue to make them easier to spot. In the following screenshot, using
 , namespace
 , class
 , static
 , void
 , and string
 are part of the vocabulary of C#:

[image: C# vocabulary]

The equivalent for Visual Studio Code is shown in the following screenshot:

[image: C# vocabulary]

 Note

Both Visual Studio 2017 and Visual Studio Code allow you to customize the color scheme. In Visual Studio 2017, navigate to
Tools

 |
Options

 |
Environment

 |
Fonts and Colors

 . In Visual Studio Code, navigate to
Code

 |
Preferences

 |
Color Theme

 .

 C# keywords

There are another 25 contextual keywords that only have a special meaning in a specific context. However, that still means there are only 104 actual C# keywords in the language.

English has more than 250,000 distinct words. How does C# get away with only having 104 keywords? Why is C# so difficult to learn if it has so few words?

One of the key differences between a human language and a programming language is that developers need to be able to define new "words" with new meanings.

Apart from the 104 keywords in the C# language, this book will teach you about some of the hundreds of thousands of "words" that other developers have defined. You will also learn how to define your own "words".

 Note

Programmers all over the world must learn English because most programming languages use English words like namespace
 and class
 . There are programming languages that use other human languages, such as Arabic, but they are rare. This YouTube video shows a demonstration of an Arabic programming language: https://www.youtube.com/watch?v=77KAHPZUR8g

 Writing the code

Plain text editors such as Notepad don't help you write correct English, as shown in the following screenshot:

[image: Writing the code]

Notepad won't help you write correct C# either:

[image: Writing the code]

Microsoft Word helps you write English by highlighting spelling mistakes with red squiggles (it should be
ice-cream

) and grammatical errors with blue squiggles (sentences should have an uppercase first letter).

[image: Writing the code]

Similarly, Visual Studio 2017 and Visual Studio Code help you write C# code by highlighting spelling mistakes (the method name should be WriteLine
 with an uppercase L
) and grammatical errors (statements must end with a semicolon).

Visual Studio 2017 constantly watches what you type and gives you feedback by highlighting problems with colored squiggly lines under your code and showing the
Error List

 window (known as the Problems window in Visual Studio Code), as you can see in the following screenshot:

[image: Writing the code]

 Note

You can ask Visual Studio 2017 to do a complete check of your code by choosing
Build

 |
Build

Solution

 or pressing
F6

 .

Visual Studio Code has a similar
Problems

 window, as shown in the following screenshot:

[image: Writing the code]

 Verbs are methods

In English, verbs are doing or action words. In C#, doing or action words are called
methods

 . There are literally hundreds of thousands of methods available to C#.

In English, verbs change how they are written based on when in time the action happens. For example, Amir
was jumping

 in the past, Beth
jumps

 in the present, they
jumped

 in the past, and Charlie
will jump

 in the future.

In C#, methods such as WriteLine
 change how they are called or executed based on the specifics of the action. This is called overloading, which we will cover in more detail in Chapter 6
 ,
Building Your Own Types with Object-Oriented Programming

 . Consider the following example:

 // outputs a carriage-return
 Console.WriteLine();
 // outputs the greeting and a carriage-return
 Console.WriteLine("Hello Ahmed");
 // outputs a formatted number and date
 Console.WriteLine("Temperature on {0:D} is {1}C.",
 DateTime.Today, 23.4);

A different analogy is that some words are spelled the same but have different meanings depending on the context.

 Nouns are types, fields, and variables

In English, nouns are names that refer to things. For example, Fido is the name of a dog. The word "dog" tells us the type of thing that Fido is. To order Fido to fetch a ball, we would use his name.

In C#, their equivalents are
types

 ,
fields

 , and
variables

 . There are tens of thousands of types available
to

 C#. Note that I don't say, "There are tens of thousands of types
in

 C#."

The difference is subtle but important. C# (the language) only has a few keywords for types, such as string
 and int
 . Strictly speaking, C# doesn't define any types. Keywords such as string
 that look like types are
aliases

 . Those aliases represent types provided by the platform on which C# runs.

C# cannot exist alone. It is a language that runs on variants of .NET. In theory, someone could write a compiler for C# that uses a different platform, with different underlying types. In practice, the platform for C# is one of the .NET platforms. It is .NET that provides the tens of thousands of types to C#. Those types include System.Int32
 , which the C# keyword alias int
 maps to, as well as much more complex types, such as System.Xml.Linq.XDocument
 .

Note that the term type
 is often confused with class
 . Have you ever played the parlor game, Twenty Questions, also known as Animal, Vegetable, or Mineral? In the game, every thing can be categorized as an animal, vegetable, or mineral. In C#, every type can be categorized as a class
 , struct
 , enum
 , interface
 , or delegate
 . The C# keyword string
 is a class
 , but int
 is a struct
 . So, it is best to use the term type to include both.

 Counting types and methods

Let's write some code to find out how many types and methods are available to C# in our simple console application.

Don't worry about how this code works. It uses a technique called
reflection

 , which is beyond the scope of this book.

Start by adding the following statements at the top of the Program.cs
 file:

 using System.Linq;
 using System.Reflection;

Inside the Main
 method, delete the statement that writes Hello World!, and replace it with the following code:

 // loop through the assemblies that this application references
 foreach (var r in Assembly.GetEntryAssembly()
 .GetReferencedAssemblies())
 {
 // load the assembly so we can read its details
 var a = Assembly.Load(new AssemblyName(r.FullName));
 // declare a variable to count the total number of methods
 int methodCount = 0;
 // loop through all the types in the assembly
 foreach (var t in a.DefinedTypes)
 {
 // add up the counts of methods
 methodCount += t.GetMethods().Count();
 }
 // output the count of types and their methods
 Console.WriteLine($"{a.DefinedTypes.Count():N0} types " +
 $"with {methodCount:N0} methods in {r.Name} assembly.");
 }

 Building and running with Visual Studio 2017

Press
Ctrl

 +
F5

 to save, compile, and run your application without the debugger attached, or click on the
Debug

 menu and then
Start Without Debugging

 .

You will see the following output that shows the actual number of types and methods that are available to you in the simplest application when running on Windows:

23 types with 258 methods in System.Runtime assembly.

0 types with 0 methods in System.Reflection assembly.

87 types with 917 methods in System.Linq assembly.

38 types with 545 methods in System.Console assembly.

 Building and running with Visual Studio Code

At
Integrated Terminal

 , enter the following command:

dotnet run

You will see the following output that shows the actual number of types and methods that are available to you in the simplest application when running on macOS:

23 types with 258 methods in System.Runtime assembly.

0 types with 0 methods in System.Reflection assembly.

87 types with 917 methods in System.Linq assembly.

59 types with 721 methods in System.Console assembly.

 Note

The numbers of types and methods displayed may be different depending on the platform that you are using.

Add the following statements at the top of the Main
 method. By declaring variables that use types in other assemblies, those assemblies are loaded with our application. This allows our code to see all the types and methods in them:

 static void Main(string[] args)
 {

 System.Xml.XmlReader reader;

 System.Xml.Linq.XElement element;

 System.Net.Http.HttpClient client;

 Note

Visual Studio 2017 Error List and Visual Studio Code Problems will show three warnings about variables that are declared but never used. You can safely ignore this warning.

In Visual Studio 2017, press
Ctrl

 +
F5

 .

In Visual Studio Code, enter dotnet run
 in
Integrated Terminal

 .

View your output, which should look similar to the following output:

23 types with 258 methods in System.Runtime assembly.

366 types with 3,966 methods in System.Xml.ReaderWriter assembly.

64 types with 1,121 methods in System.Xml.XDocument assembly.

223 types with 2,346 methods in System.Net.Http assembly.

0 types with 0 methods in System.Reflection assembly.

87 types with 917 methods in System.Linq assembly.

59 types with 721 methods in System.Console assembly.

Now, you have a better sense of why learning C# is a challenge. There are many types, with many methods to learn about, and methods are only one category of member that a type can have, and other programmers are constantly defining new members!

 Declaring variables

All applications process data. Data comes in, data is processed, and data goes out.

Data usually comes into our program from files, databases, or user input. Data can be put temporarily in variables that will be stored in the memory of the running program. When the program ends, the data in memory is lost. Data is usually output to files and databases, or to the screen or a printer.

When using variables, you should think about, first, how much space it takes in memory, and, second, how fast it can be processed.

We control this by picking an appropriate type. You can think of simple common types such as int
 and double
 as being different size storage boxes. A smaller box would take less memory but may not be as fast at being processed. Some of these boxes may be stacked close by, and some may be thrown into a big heap further away.

 Naming variables

There are naming conventions for variables, and it is good practice to follow them, as shown in the following table:

	

Naming convention

	

Examples

	

Use when naming

	
Camel case

	

cost
 , orderDetail
 , dateOfBirth

	
Local variables and private members.

	
Pascal/title case

	

Cost
 , OrderDetail
 , DateOfBirth

	
Type names and non-private members.

 Tip

Good Practice

Following a consistent set of naming conventions will enable your code to be easily understood by other developers (and yourself in the future!)
Naming Guidelines

 : https://msdn.microsoft.com/en-us/library/ms229002(v=vs.110).aspx

The following code block shows an example of declaring and initializing a local variable by assigning a value to it. Note that you can output the name of a variable using a keyword introduced in C# 6, that is, nameof
 :

 // let the height variable become equal to the value 1.88
 double heightInMetres = 1.88;
 Console.WriteLine($"The variable {nameof(heightInMetres)} has the
 value {heightInMetres}.");

 Note

The message in double quotes in the preceding code wraps onto a second line because the width of a printed page is too narrow. When entering a statement like this in your code editor, type it all in a single line.

 Literal values

When you assign to a variable, you often assign a
literal

 value. A literal is notation that represents a fixed value. Data types have different notations for their literal values.

 Storing text

For text, a single letter, such as A
 , is stored as a char
 type and is assigned using single quotes around the literal value:

 char letter = 'A';

For text, multiple letters, such as Bob
 , are stored as a string
 type and are assigned using double quotes around the literal value:

 string name = "Bob";

 Storing numbers

Numbers are data that we want to perform an arithmetic calculation on, for example, multiplying.

 Note

A telephone number is not a number. To decide whether a variable should be stored as a number or not, ask yourself whether you need to multiply two telephone numbers together or whether the number includes special characters such as (414)-555-1234. In these cases, the number is a sequence of characters, so it should be stored as a string.

Numbers can be natural numbers, such as 42, used for counting (also called whole numbers); they can also be negative numbers, such as -42 (called
integers

); or, they can be
real

 numbers, such as 3.9 (with a fractional part), which are called
single

 or
double-precision floating point

 numbers in computing.

 int myIntegerNumber = 23;
 double myRealNumber = 2.3;

You might know that computers store everything as bits. A
bit

 is either 0 or 1. This is called a
binary

 number system. Humans use a
decimal

 number system.

 Note

The decimal number system has ten as its base. Although it is the number base most commonly used by human civilizations, other number-base systems are popular in science, engineering, and computing.

 Storing whole numbers

The following table shows how computers store the number 10. Note the 1 bits in the 8 and the 2 columns;
8 + 2 = 10

 :

	

128

	

64

	

32

	

16

	

8

	

4

	

2

	

1

	
0

	
0

	
0

	
0

	
1

	
0

	
1

	
0

So, 10 in decimal is 00001010 in binary.

 C# 7 improvements

Two of the improvements in C# 7 are the use of the underscore character (_
) as a
digit separator

 and support for
binary literals

 .

You can insert underscores anywhere into a number literal, including decimal, binary, or hexadecimal notation to improve legibility. For example, you could write the value for one million in decimal notation (Base 10) as: 1_000_000.

To use binary notation (Base 2), using only 1s and 0s, start the number literal with 0b. To use hexadecimal notation (Base 16), using 0 to 9 and A to F, start the number literal with 0x, as shown in the following code:

 int decimalNotation = 2_000_000; // 2 million
 int binaryNotation = 0b_0001_1110_1000_0100_1000_0000; // 2 million
 int hexadecimalNotation = 0x_001E_8480; // 2 million

Computers can always exactly represent integers (positive and negative whole numbers) using the int
 type or one of its sibling types such as short
 .

 Storing real numbers

Computers cannot always exactly represent floating point numbers. The float
 and double
 types store real numbers using single and double precision floating points.

The following table shows how a computer stores the number 12.75. Note the 1 bits in the 8, 4, ½, and ¼ columns.

8 + 4 + ½ + ¼ = 12¾ = 12.75

 .

	

128

	

64

	

32

	

16

	

8

	

4

	

2

	

1

	

.

	

½

	

¼

	

1/8

	

1/16

	
0

	
0

	
0

	
0

	
1

	
1

	
0

	
0

	
.

	
1

	
1

	
0

	
0

So, 12.75 in decimal is 00001100.1100 in binary.

As you can see, the number 12.75 can be exactly represented using bits. However, some numbers can't, as you will see shortly.

 Using Visual Studio 2017

In Visual Studio 2017, click on
File

 |
Add

 |
New Project...

 . In the
Add New Project

 dialog, in the
Installed

 |
Templates

 list, select
Visual C#

 . In the list at the center, select
Console App (.NET Core)

 , type the name Ch02_Numbers
 , and then click on
OK

 .

In the
Solution Explorer

 window, right-click on the solution and select
Properties

 or press
Alt

 +
Enter

 . For
Startup Project

 , select
Current selection

 . From now on, you can simply click on a project in the
Solution Explorer

 and then press
Ctrl

 +
F5

 to save, compile, and run that project, as shown in the following screenshot:

[image: Using Visual Studio 2017]

 Using Visual Studio Code

Create a new folder inside the Chapter02
 folder named Ch02_Numbers
 .

In Visual Studio Code, open the Ch02_Numbers
 folder and use the
Integrated Terminal

 to create a new console application using the command dotnet new console
 . When you open the Program.cs
 file, you will be prompted to restore packages.

 Writing code to explore numbers

Type the following code inside the Main
 method:

 Console.WriteLine($"int uses {sizeof(int)} bytes and can store
 numbers in the range {int.MinValue:N0} to {int.MaxValue:N0}.");
 Console.WriteLine($"double uses {sizeof(double)} bytes and can
 store numbers in the range {double.MinValue:N0} to
 {double.MaxValue:N0}.");
 Console.WriteLine($"decimal uses {sizeof(decimal)} bytes and can
 store numbers in the range {decimal.MinValue:N0} to
 {decimal.MaxValue:N0}.");

 Note

Remember to enter the statements that use double-quotes in a single line.

Run the console application by pressing
Ctrl

 +
F5

 , or entering dotnet run
 , and view the output:

int uses 4 bytes and can store numbers in the range -2,147,483,648 to
2,147,483,647.

double uses 8 bytes and can store numbers in the range -
179,769,313,486,232,000,000,000,000,000,000,000,000,000,000,000,000,0 00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,00 0,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 ,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0 00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 to 179,769,313,486,232,000,000,000,000,000,000,000,000,000,000,000,000,0 00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,00 0,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 ,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0 00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000.

decimal uses 16 bytes and can store numbers in the range -
79,228,162,514,264,337,593,543,950,335 to
79,228,162,514,264,337,593,543,950,335.

 Note

An int
 variable uses four bytes of memory and can store positive or negative numbers up to about 2 billion. A double
 variable uses eight bytes of memory and can store much bigger values! A decimal
 variable uses 16 bytes of memory and can store big numbers, but not as big as a double
 .

Why might a double
 variable be able to store bigger numbers than a decimal
 variable yet use half the space in memory? Let's find out!

 Comparing double and decimal

Under the previous statements, enter the following code. Do not worry about understanding the syntax right now, although it isn't too hard to follow:

 double a = 0.1;
 double b = 0.2;
 if (a + b == 0.3)
 {
 Console.WriteLine($"{a} + {b} equals 0.3");
 }
 else
 {
 Console.WriteLine($"{a} + {b} does NOT equal 0.3");
 }

Run the console application and view the output:

0.1 + 0.2 does NOT equal 0.3

The double
 type is not guaranteed to be accurate. Only use double
 when accuracy, especially when comparing two numbers, is not important; for example, when measuring a person's height.

The problem with the preceding code is how the computer stores the number 0.1 or multiples of 0.1. To represent 0.1 in binary, the computer stores 1 in the 1/16 column, 1 in the 1/128 column, 1 in the 1/1024 column, and so on. The number 0.1 in decimal is 0.0001001001001 repeating forever:

	

4

	

2

	

1

	

.

	

½

	

¼

	

1/8

	

1/16

	

1/32

	

1/64

	

1/128

	

1/256

	

1/512

	

1/1024

	

1/2048

	
0

	
0

	
0

	
.

	
0

	
0

	
0

	
1

	
0

	
0

	
1

	
0

	
0

	
1

	
0

 Tip

Good Practice

Never compare double values using ==
 . During the First Gulf War, an American Patriot missile battery used double values in its calculations. The inaccuracy caused it to fail to track and intercept an incoming Iraqi Scud missile, and 28 soldiers were killed; you can read about this at: https://www.ima.umn.edu/~arnold/disasters/patriot.html

Copy and paste the code you wrote before that used double
 variables and then modify it to look like the following code:

 decimal c = 0.1M; // M indicates a decimal literal value
 decimal d = 0.2M;
 if (c + d == 0.3M)
 {
 Console.WriteLine($"{c} + {d} equals 0.3");
 }
 else
 {
 Console.WriteLine($"{c} + {d} does NOT equal 0.3");
 }

Run the console application and view the output:

0.1 + 0.2 equals 0.3

The decimal
 type is accurate because it stores the number as a large integer and shifts the decimal point. For example, 0.1 is stored as 1, with a note to shift the decimal point one place to the left. 12.75 is stored as 1275, with a note to shift the decimal point two places to the left.

 Tip

Good Practice

Use int
 for whole numbers and double
 for real numbers. Use decimal
 for money, CAD drawings, general engineering, and wherever accuracy of a real number is important.

The double
 type has some useful special values; double.NaN
 means not-a-number, double.Epsilon
 is the smallest positive number that can be stored in a double, and double.Infinity
 means an infinitely large value. You can use these special values when comparing double
 values.

 Storing Booleans

Booleans can only contain one of the two values: true
 or false
 , as shown in the following code. They are most commonly used to branch and loop, as you will see in Chapter 3
 ,
Controlling the Flow, Converting Types, and Handling Exceptions

 :

 bool happy = true;
 bool sad = false;

 The object type

There is a special type named object
 that can store any type of data, but its flexibility comes at the cost of messier code and poor performance due to boxing and unboxing operations when storing a value type. You should avoid it whenever possible.

 Note

From now on, I will assume that you know how to create a new console application using either Visual Studio 2017 or Visual Studio Code so I will only give general instructions.

Add a new console application project named Ch02_Variables
 and add the following code to the Main
 method:

 object height = 1.88; // storing a double in an object
 object name = "Amir"; // storing a string in an object
 int length1 = name.Length; // gives compile error!
 int length2 = ((string)name).Length; // cast to access members

The object
 type has been available since the first version of C#, but C# 2 and higher versions have a better alternative called
generics

 , which we will cover later, that provide the flexibility we want without the performance overhead.

 The dynamic type

There is another special type named dynamic
 that can also store any type of data, and like object
 , its flexibility comes at the cost of performance. Unlike object, the value stored in the variable can have its members invoked without an explicit cast, as shown in the following code:

 // storing a string in a dynamic object
 dynamic anotherName = "Ahmed";
 // this compiles but might throw an exception at run-time!
 int length = anotherName.Length;

The limitation of dynamic
 is that Visual Studio cannot show IntelliSense to help you write the code because the compiler doesn't check at build time. Instead, the CLR checks for the member at runtime. The dynamic
 keyword was introduced in C# 4.

 Local variables

Local variables are declared inside methods and they only exist during the call to that method. Once the method returns, the memory allocated to any local variables is released.

 Note

Strictly speaking, value types are released while reference types must wait for a garbage collection. You will learn about the difference between value types and reference types later.

Enter the following code to declare and assign values to some local variables inside the Main
 method. Note that we specify the type before the name of each variable:

 int population = 66_000_000; // 66 million in UK
 double weight = 1.88; // in kilograms
 decimal price = 4.99M; // in pounds sterling
 string fruit = "Apples"; // strings use double-quotes
 char letter = 'Z'; // chars use single-quotes
 bool happy = true; // Booleans have value of true or false

 Note

Visual Studio 2017 and Visual Studio Code will show green squiggles under each of the variable names to warn you that the variable is assigned but its value is never used.

 Inferring the type of a local variable

You can use the var
 keyword to declare local variables. The compiler will infer the type from the literal value you assign after the assignment =
 operator.

A literal number without a decimal point is inferred as an int
 variable unless you add the L
 suffix, in which case, it infers a long
 variable. A literal number with a decimal point is inferred as double
 unless you add the M
 suffix, in which case, it infers a decimal
 variable, or the F
 suffix, in which case, it infers a float
 variable. Double quotes indicate a string
 variable, single quotes indicate a char
 variable, and the true
 and false
 values infer a bool
 .

Modify your code to use var
 :

 var population = 66_000_000; // 66 million in UK
 var weight = 1.88; // in kilograms
 var price = 4.99M; // in pounds sterling
 var fruit = "Apples"; // strings use double-quotes
 var letter = 'Z'; // chars use single-quotes
 var happy = true; // Booleans have value of true or false

 Tip

Good Practice

Although using var
 is convenient, smart developers avoid using it, to make it easier for a code reader to understand the types in use. Personally, I use it only when the type is obvious. For example, in the following code statements, the first statement is just as clear as the second in stating what the type of the xml
 variable is, but it is shorter. However, the third statement isn't clear, so the fourth is better. If in doubt, spell it out!

 // good use of var
 var xml1 = new XmlDocument();
 // unnecessarily verbose repeating XmlDocument
 XmlDocument xml2 = new XmlDocument();

 // bad use of var; what data type is file1?
 var file1 =
 File.CreateText(@"C:\something.txt");
 // good use of a specific type declaration
 StreamWriter file2 =
 File.CreateText(@"C:\something.txt");

 Making a value type nullable

Most of the primitive types except string
 are
value types

 . This means they must have a value. You can determine the default value of a type using the default()
 operator. The default value of an int
 variable is 0 (zero):

 Console.WriteLine($"{default(int)}"); // 0
 Console.WriteLine($"{default(bool)}"); // False
 Console.WriteLine($"{default(DateTime)}"); // 1/01/0001 00:00:00

Strings are
reference types

 . This means that they contain the memory address of a variable, not the value of the variable itself. A reference type variable can have a null
 value. The null
 value is a special literal value that indicates that the variable does not reference anything (yet).

 Note

You will learn more about value types and reference types in Chapter 7
 ,
Implementing Interfaces and Inheriting Classes

 .

Sometimes, it is convenient to allow a value type to be null
 . You can do this by adding a question mark as a suffix to the type when declaring a variable, as shown in the following code:

 int ICannotBeNull = 4;
 int? ICouldBeNull = null;
 Console.WriteLine(ICouldBeNull.GetValueOrDefault()); // 0
 ICouldBeNull = 4;
 Console.WriteLine(ICouldBeNull.GetValueOrDefault()); // 4

 Checking for null

It is important to check if a reference type or nullable value type variable currently contains null
 because if you do not, a NullReferenceException
 can be thrown causing an error in your code.

 // check is myVariable is not null before using it
 if (ICouldBeNull != null)
 {
 // do something with ICouldBeNull
 }

If you are trying to get a field or property from a variable that might be null
 , use the null check operator (?.
), as shown in the following code:

 string authorName = null;
 // if authorName is null, instead of throwing an exception,
 // null is returned
 int? howManyLetters = authorName?.Length;

Sometimes you want to either assign a variable to a result, or use an alternative value, such as zero, if the variable is null. You do this using the null-coalescing operator (??
), as shown in the following code:

 // result will be three if howManyLetters is null
 var result = howManyLetters ?? 3;
 Console.WriteLine(result);

 Storing multiple values in an array

When you need to store multiple values of the same type, you can declare an
array

 . For example, you might need to store four names in a string
 array.

The following code declares an array for storing four string
 values. Then, it stores string
 values at index positions 0 to 3 (arrays count from zero, so the last item is one less than the length of the array). Finally, it loops through each item in the array using a for
 statement that we will cover in more detail in Chapter 3
 ,
Controlling the Flow, Converting Types, and Handling Exceptions

 .

Add the following lines of code to the end of the Main
 method:

 // declaring the size of the array
 string[] names = new string[4];
 // storing items at index positions
 names[0] = "Kate";
 names[1] = "Jack";
 names[2] = "Rebecca";
 names[3] = "Tom";
 for (int i = 0; i < names.Length; i++)
 {
 Console.WriteLine(names[i]); // read the item at this index
 }

 Note

Arrays are always of a fixed size, so you need to decide how many items you want to store before instantiating them. Arrays are useful for temporarily storing multiple items, but collections are more flexible when adding and removing items dynamically. We will cover collections in Chapter 4
 ,
Using .NET Standard Types

 .

 Building console applications

Console applications are text-based and are run at the command prompt. They typically perform simple tasks that need to be scripted, such as compiling a file or encrypting a section of a configuration file. They can have arguments passed to them to control their behavior for example, to encrypt the database connection strings section in a Web.config
 file, use the following command line:

aspnet_regiis -pdf "connectionStrings" "c:\mywebsite"

 Displaying output to the user

The two most common tasks that a console application performs are writing and reading data. We have already been using the WriteLine
 method to output. If we didn't want a carriage return at the end of lines, we could have used the Write
 method.

C# 6 and later has a handy feature named string interpolation. This allows us to easily output one or more variables in a nicely formatted manner. A string prefixed with $
 can use curly braces around the name of a variable to output the current value of that variable at that position in the string.

In the Ch02_Variables
 project, enter the following statements at the bottom of the Main
 method:

 Console.WriteLine($"The UK population is {population}.");
 Console.Write($"The UK population is {population:N0}. ");
 Console.WriteLine($"{weight}kg of {fruit} costs {price:C}.");

Run the console application and view the output:

The population of the UK is 66000000.

The population of the UK is 66,000,000. 1.88kg of Apples costs 4.99.

A variable can be formatted using special pieces of code. N0
 means a number with commas for thousands and no decimal places. C
 means currency. The currency format will be determined by the current thread. If you run this code on a PC in the UK, you get pounds sterling. If you run this code on a PC in Germany, you would get Euros.

 Getting input from the user

We can get input from the user using the ReadLine
 method. This method waits for the user to type some text. As soon as the user presses
Enter

 , whatever the user has typed is returned as a string
 .

Let's ask the user for their name and age. Later, we will convert the age into a number, but we will leave it as a string
 for now:

 Console.Write("Type your first name and press ENTER: ");
 string firstName = Console.ReadLine();
 Console.Write("Type your age and press ENTER: ");
 string age = Console.ReadLine();
 Console.WriteLine($"Hello {firstName}, you look good for {age}.");

Run the console application and view the output.

Enter a name
 and an age
 , as shown in the following output:

Type your name and press ENTER: Gary

Type your age and press ENTER: 34

Hello Gary, you look good for 34.

 Importing a namespace

You might have noticed that unlike our very first application, we have not been typing System
 before Console
 .

System
 is a namespace. Namespaces are like an address for a type. To refer to someone exactly, you might use
Oxford.HighStreet.BobSmith

 , which tells us to look for a person named Bob Smith on the High Street in the city of Oxford.

The line System.Console.WriteLine
 tells the compiler to look for a method named WriteLine
 in a type named Console
 in a namespace named System
 .

To simplify our code, Visual Studio 2017, or the dotnet new console
 command when using Visual Studio Code, added a statement at the top of the code file to tell the compiler to always look in the System
 namespace for types that haven't been prefixed with their namespace, as shown in the following code:

 using System;

We call this
importing the namespace

 .

 Simplifying the usage of the console

In C# 6 and later, the using
 statement can be used to further simplify our code.

Add the following line to the top of the file:

 using static System.Console;

Now, we don't need to enter the Console
 type throughout our code. We can use
Find and Replace

 to remove it.

Select the first Console.
 line in your code (ensure that you select the dot after the word Console
).

In Visual Studio 2017, press
Ctrl

 +
H

 to do a Quick Replace (ensure that the
Replace...

 box is empty), as shown in the following screenshot:

[image: Simplifying the usage of the console]

In Visual Studio Code, choose
Edit

 , and then
Replace

 , as shown in the following screenshot:

[image: Simplifying the usage of the console]

In both Visual Studio 2017 and Visual Studio Code, click the
Replace All

 button or press
Alt

 +
A

 or
Alt

 +
Cmd

 +
Enter

 to replace all, click on
OK

 , and then close the replace box by clicking on the cross in its top-right corner.

 Reading arguments and working with arrays

You have probably been wondering what the string[] args
 argument is in the Main
 method. It is an array used to pass arguments into a console application.

Add a new console application project named Ch02_Arguments
 .

Imagine that we want to be able to enter the following command at the command prompt:

Ch02_Arguments apples bananas cherries

We would be able to read the fruit names by reading them from the args
 array that is always passed into the Main
 method of a console application.

Remember that arrays use the square bracket syntax to indicate multiple values. Arrays have a property named Length
 that tells us how many items are currently in the array. If there is at least one item, then we can access it by knowing its index. Indexes start counting from zero, so the first item in an array is item 0.

Add a statement to statically import the System.Console
 type. Write a statement to output the number of arguments passed to the application. Remove the unnecessary using
 statements. Your code should now look like this:

 using static System.Console;

 namespace Ch02_Arguments
 {
 class Program
 {
 static void Main(string[] args)
 {

 WriteLine($"There are {args.Length} arguments.");

 }
 }
 }

 Note

Remember to statically import the System.Console
 type in future projects to simplify your code, as these instructions will not be repeated.

Run the console application and view the output:

There are 0 arguments.

 Passing arguments with Visual Studio 2017

In
Solution Explorer

 , right-click the Ch02_Arguments
 project, and choose
Properties

 .

In the
Properties

 window, select the
Debug

 tab, and in the
Application arguments

 box, enter a space-separated list of four arguments, as shown in the following code and screenshot:

 firstarg second-arg third:arg "fourth arg"

[image: Passing arguments with Visual Studio 2017]

 Note

You can use almost any character in an argument, including hyphens and colons. If you need to use a space inside an argument, you must wrap it in double quotes.

 Passing arguments with Visual Studio Code

Type arguments after the dotnet run
 command, as shown in the following example:

dotnet run firstarg second-arg third:arg "fourth arg"

 Viewing the output

Run the console application with passed arguments, and view the output:

There are 4 arguments.

 Enumerating arguments

To enumerate or iterate (that is, loop through) the values of those four arguments, add the following lines of highlighted code after outputting the length of the array:

 WriteLine($"There are {args.Length} arguments.");

 foreach (string arg in args)

 {

 WriteLine(arg);

}

We will now use these arguments to allow the user to pick a color for the background, foreground, width, and height of the console window.

Change the argument values to the following:

red yellow 50 10

Import the System
 namespace by adding the following line to the top of the code file if it is not already there:

 using System;

 Note

We need to import the System
 namespace so that the compiler knows about the ConsoleColor
 and Enum
 types. If you cannot see either of these types in the IntelliSense list, it is because you are missing the using System;
 statement.

Add the highlighted code on top of the existing code like this:

 ForegroundColor = (ConsoleColor)Enum.Parse(typeof(ConsoleColor),
 args[0], true);

 BackgroundColor = (ConsoleColor)Enum.Parse(typeof(ConsoleColor),
 args[1], true);

 WindowWidth = int.Parse(args[2]);

 WindowHeight = int.Parse(args[3]);

 WriteLine($"There are {args.Length} arguments.");
 foreach (var arg in args)
 {
 WriteLine(arg);
 }

 Running on Windows

In Visual Studio 2017, press
Ctrl

 +
F5

 . The console window is now a different size and uses different colors for the foreground and background text, as shown in the following screenshot:

[image: Running on Windows]

 Running on macOS

In Visual Studio Code, enter the following command at the terminal:

dotnet run red yellow 50 10

You will see an error dialog, as shown in the following screenshot:

[image: Running on macOS]

Click
OK

 .

In the
Terminal

 , you will see the details of the error, as shown in the following screenshot:

[image: Running on macOS]

 Note

Although the compiler did not give an error or warning, at runtime some API calls may fail on some platforms. Although a console application running on Windows can change its size, on macOS it cannot.

 Handling platforms that do not support an API

We can solve this problem by using an exception handler. Modify the code to wrap the lines that change the height and width in a try
 statement like this:

 try
 {
 WindowWidth = int.Parse(args[2]);
 WindowHeight = int.Parse(args[3]);
 }
 catch(PlatformNotSupportedException)
 {
 WriteLine("The current platform does not support changing the
 size of a console window.");
 }

If you rerun the console application, you will see the exception is caught and a friendly message is shown to the user.

 Operating on variables

Operators

 apply simple operations such as addition and multiplication to operands such as numbers. They usually return a new value that is the result of the operation.

Most operators are
binary

 , meaning that they work on two operands, as shown in the following pseudocode:

 var resultOfOperation = FirstOperand operator SecondOperand;

Some operators are
unary

 , meaning they work on a single operand.

A
ternary

 operator works on three operands.

 Experimenting with unary operators

Two common unary operators are used to increment ++
 and decrement --
 a number.

In Visual Studio 2017, from the
View

 menu, choose
Other Windows

 , and then
C# Interactive

 .

 Note

In Visual Studio Code, create a new console application and write your own statements to output the results using Console.WriteLine()
 .

Enter the following code:

> int i = 3;

> i

3

Note that when you enter a full statement ending in a semicolon, it is executed when you press
Enter

 .

The first statement uses the assignment operator =
 to assign the value 3
 to the variable i
 . When you enter a variable name at the prompt, it returns the variable's current value.

Enter the following statements, and before pressing
Enter

 , try to guess what the value of x
 and y
 will be:

> int x = 3;

> int y = x++;

Now check the values of x
 and y
 . You might be surprised to see that y
 has the value 3
 :

> x

4

> y

3

The variable y
 has the value 3
 because the ++
 operator executes after the assignment. This is known as
postfix

 . If you need to increment before assignment, use
prefix

 , as shown in the following code:

> int x = 3;

> int y = ++x;

> x

4

> y

4

You can decrement the value using the --
 operator.

 Tip

Good Practice

Due to the confusion between prefix and postfix for the increment and decrement operators when combined with assignment, the Swift programming language designers plan to drop support for this operator in version 3. My recommendation for usage in C# is to never combine the use of ++
 and --
 operators with an assignment =
 . Perform the operations as separate statements.

 Experimenting with arithmetic operators

Arithmetic operators allow you to perform arithmetic operations on numbers.

Enter the following in the
C# Interactive

 window:

> 11 + 3

14

> 11 - 3

8

> 11 * 3

33

> 11 / 3

3

> 11 % 3

2

> 11.0 / 3

3.6666666666666665

To understand the divide (/
) and modulus (%
) operators when applied to integers (whole numbers), you need to think back to primary school.

Imagine you have eleven sweets and three friends. How can you divide the sweets between your friends? You can give three sweets to each of your friends and there will be two left over. Those two are the modulus, also known as remainder. If you have twelve sweets, then each friend gets four of them and there are none left over. So, the remainder is 0.

If you start with a real number, such as 11.0
 , then the divide operator returns a floating point value, such as 3.6666666666665
 , rather than a whole number.

 Comparison and Boolean operators

Comparison and Boolean operators either return true
 or false
 . In the next chapter, we will use comparison operators in the if
 and while
 statements to check for conditions.

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore the topics covered in this chapter with deeper research.

 Exercise 2.1 - test your knowledge

What type would you choose for the following "numbers"?

	A person's telephone number.

	A person's height.

	A person's age.

	A person's salary.

	A book's ISBN.

	A book's price.

	A book's shipping weight.

	A country's population.

	The number of stars in the Universe.

	The number of employees in each of the small or medium businesses in the UK (up to about 50,000 employees per business).

 Exercise 2.2 - practice number sizes and ranges

Create a console application project named Ch02_Exercise02
 that outputs the number of bytes in memory that each of the following number types use and the minimum and maximum possible values they can have: sbyte
 , byte
 , short
 , ushort
 , int
 , uint
 , long
 , ulong
 , float
 , double
 , and decimal
 .

 Note

Read the online MSDN documentation, available at https://msdn.microsoft.com/en-us/library/txafckwd(v=vs.110).aspx
 for
Composite Formatting

 to learn how to align text in a console application.

The output of your application should look something like the following screenshot:

[image: Exercise 2.2 - practice number sizes and ranges]

 Exercise 2.3 - explore topics

Use the following links to read more about the topics covered in this chapter:

	

C# Keywords

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/index

	

Main() and Command-Line Arguments (C# Programming Guide)

:

 https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/main-and-command-args/

	

Types (C# Programming Guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/types/

	

Statements, Expressions, and Operators (C# Programming Guide)

:

 https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/statements-expressions-operators/

	

Strings (C# Programming Guide)

:

 https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/strings/

	

Nullable Types (C# Programming Guide)

:

 https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/nullable-types/

	

Console Class

 : https://msdn.microsoft.com/en-us/library/system.console(v=vs.110).aspx

	

C# Operators

 : https://msdn.microsoft.com/en-us/library/6a71f45d.aspx

 Summary

In this chapter, you learned how to declare variables with a type
 or var
 variable; we discussed some of the built-in types for numbers, text, and Booleans; we covered how to choose between number types; and we experimented with some operators.

In the next chapter, you will learn about branching, looping, converting between types, and handling exceptions.

 Chapter3.Controlling the Flow, Converting Types, and Handling Exceptions

This chapter is about writing code that makes decisions, repeats blocks of statements, converts between types, and handles errors (known as exceptions). You will also learn about some good places to look for help.

This chapter covers the following topics:

	Selection statements

	Iteration statements

	Casting and converting between types

	Handling exceptions

	Checking for overflow

	Looking for help

 Selection statements

Every application needs to be able to select from choices and branch along different code paths. The two selection statements in C# are if
 and switch
 . You can use if
 for all your code but switch
 can simplify your code in some common scenarios.

 Using Visual Studio 2017

Start Microsoft Visual Studio 2017. In Visual Studio, press
Ctrl

 +
Shift

 +
N

 or choose
File

 |
New

 |
Project...

 .

In the
New Project

 dialog, in the
Installed

 |
Templates

 list, select
Visual C#

 . In the list at the center, select
Console App (.NET Core)

 , type the name Ch03_SelectionStatements
 , change the location to C:\Code
 , type the solution name Chapter03
 , and then click on
OK

 .

 Using Visual Studio Code on macOS, Linux, or Windows

If you completed previous chapters, then you will already have a Code
 folder in your user
 folder. If not, create it, and then create a subfolder named Chapter03
 , and then a sub-subfolder named Ch03_SelectionStatements
 .

Start Visual Studio Code and open the /Chapter03/Ch03_SelectionStatements/
 folder.

In Visual Studio Code, navigate to
View

 |
Integrated Terminal

 , and then enter the following command:

dotnet new console

Click the Program.cs
 file and then click
Restore

 to restore dependencies.

 The if statement

The if
 statement determines which branch to follow by evaluating a Boolean expression. The else
 block is optional. The if
 statement can be nested and combined. Each Boolean expression can be independent of the others.

Add the following statements inside the Main
 method to check whether this console application has any arguments passed to it:

 if (args.Length == 0)
 {
 WriteLine("There are no arguments.");
 }
 else
 {
 WriteLine("There is at least one argument.");
 }

As there is only a single statement inside each block, this code
can

 be written without the curly braces, as shown in the following code:

 if (args.Length == 0)
 WriteLine("There are no arguments.");
 else
 WriteLine("There is at least one argument.");

This style of the if
 statement is not recommended because it can introduce serious bugs, for example, the infamous
#gotofail

 bug in Apple's iPhone operating system. For 18 months after Apple's iOS 6 was released, it had a bug in its
Secure Sockets Layer

 (
SSL

) encryption code, which meant that any user running Safari to connect to secure websites, such as their bank, were not properly secure because an important check was being accidently skipped: https://gotofail.com/

Just because you can leave out the curly braces, doesn't mean you should. Your code is not "more efficient" without them, instead, it is less maintainable and potentially more dangerous, as this tweet points out:

[image: The if statement]

 Pattern matching with the if statement

A new feature of C# 7 is pattern matching. The if
 statement can use the is
 keyword in combination with declaring a local variable to make your code safer.

Add the following statements to the end of the Main
 method. If the value stored in the variable named o
 is an int
 , then the value is assigned to the local variable named i
 , which can then be used inside the if
 statement. This is safer than using the variable named o
 because we know for sure that i
 is an int
 and not something else:

 object o = "3";
 int j = 4;

 if(o is int i)
 {
 WriteLine($"{i} x {j} = {i * j}");
 }
 else
 {
 WriteLine("o is not an int so it cannot multiply!");
 }

Run the console application and view the output:

o is not an int so it cannot multiply!

Delete the double-quote characters around the "3"
 so that the value stored in the variable named o
 is an int
 instead of a string
 and then rerun the console application and view the output:

3 x 4 = 12

 The switch statement

The switch
 statement is different from the if
 statement because it compares a single expression against a list of multiple possible cases. Every case is related to the single expression. Every case must end with the break
 keyword (like case 1
 in the following code) or the goto case
 keywords, (like case 2
 in the following code) or they should have no statements (like case 3
 in the following code).

Enter the following code after the if
 statements that you wrote previously. Note that the first line is a label that can be jumped to and the second line generates a random number. The switch
 statement branches based on the value of this random number:

 A_label:
 var number = (new Random()).Next(1, 7);
 WriteLine($"My random number is {number}");
 switch (number)
 {
 case 1:
 WriteLine("One");
 break; // jumps to end of switch statement
 case 2:
 WriteLine("Two");
 goto case 1;
 case 3:
 case 4:
 WriteLine("Three or four");
 goto case 1;
 case 5:
 // go to sleep for half a second
 System.Threading.Thread.Sleep(500);
 goto A_label;
 default:
 WriteLine("Default");
 break;
 } // end of switch statement

 Tip

Good Practice

You can use the goto
 keyword to jump to another case or a label. The goto
 keyword is frowned upon by most programmers but can be a good solution to code logic in some scenarios. Use it sparingly.

In Visual Studio 2017, run the program by pressing
Ctrl

 +
F5

 .

In Visual Studio Code, run the program by entering the following command into the
Integrated Terminal

 :

dotnet run

Run the program multiple times to see what happens in various cases of random numbers, as shown in the following output from Visual Studio Code:

bash-3.2$ dotnet run

My random number is 4

Three or four

One

bash-3.2$ dotnet run

My random number is 2

Two

One

bash-3.2$ dotnet run

My random number is 1

One

 Pattern matching with the switch statement

Like the if
 statement, the switch
 statement supports pattern matching in C# 7. The case values no longer need to be literal values. They can be patterns.

Add the following statement to the top of the file:

 using System.IO;

Add the following statements to the end of the Main
 method:

 Note

If you are using macOS, then swap the commented statement that sets the path variable and replace my username with your user folder name:

 // string path = "/Users/markjprice/Code/Chapter03"; // macOS
 string path = @"C:\Code\Chapter03"; // Windows

 Stream s = File.Open(
 Path.Combine(path, "file.txt"),
 FileMode.OpenOrCreate);

 switch(s)
 {
 case FileStream writeableFile when s.CanWrite:
 WriteLine("The stream is to a file that I can write to.");
 break;
 case FileStream readOnlyFile:
 WriteLine("The stream is to a read-only file.");
 break;
 case MemoryStream ms:
 WriteLine("The stream is to a memory address.");
 break;
 default: // always evaluated last despite its current position
 WriteLine("The stream is some other type.");
 break;
 case null:
 WriteLine("The stream is null.");
 break;
 }

Note that the variable named s
 is declared as a Stream
 type.

 Note

You will learn more about the System.IO
 namespace and the Stream
 type in Chapter 10
 ,
Working with Files, Streams, and Serialization

 .

In .NET, there are multiple subtypes of Stream
 , including FileStream
 and MemoryStream
 . In C# 7, your code can more concisely both, branch based on the subtype of stream, and declare and assign a local variable to safely use it.

Also, note that case statements can include a when
 keyword to perform more specific pattern matching. In the first case statement in the preceding code, s
 would only be a match if the stream was both a FileStream
 and its CanWrite
 property was true.

 Iteration statements

Iteration statements repeat a block either while a condition is true or for each item in a group. The choice of which statement to use is based on a combination of ease of understanding to solve the logic problem and personal preference.

Use either Visual Studio 2017 or Visual Studio Code to add a new console application project named Ch03_IterationStatements
 .

In Visual Studio 2017, you can set the solution's start up project to be the current selection so that the current project runs when you press
Ctrl

 +
F5

 .

 The while statement

The while
 statement evaluates a Boolean expression and continues to loop while it is true.

Type the following code inside the Main
 method:

 int x = 0;
 while (x < 10)
 {
 WriteLine(x);
 x++;
 }

Run the console application and view the output:

0

1

2

3

4

5

6

7

8

9

 The do statement

The do
 statement is like while
 , except the Boolean expression is checked at the bottom of the block instead of the top, which means that it always executes at least once.

Type the following code at the end of the Main method and run it:

 string password = string.Empty;
 do
 {
 Write("Enter your password: ");
 password = ReadLine();
 } while (password != "secret");
 WriteLine("Correct!");

You will be prompted to enter your password repeatedly until you enter it correctly, as shown in the following output:

Enter your password: password

Enter your password: 12345678

Enter your password: ninja

Enter your password: asdfghjkl

Enter your password: secret

Correct!

As an optional exercise, add statements so that the user can only make ten attempts before an error message is displayed.

 The for statement

The for
 statement is like while
 , except that it is more succinct. It combines an initializer statement that executes once at the start of the loop, a Boolean expression to check whether the loop should continue, and an incrementer that executes at the bottom of the loop. The for
 statement is commonly used with an integer counter, as shown in the following code:

 for (int y = 1; y <= 10; y++)
 {
 WriteLine(y);
 }

Run the console application and view the output, which should be the numbers 1 to 10.

 The foreach statement

The foreach
 statement is a bit different from the other three iteration statements. It is used to perform a block of statements on each item in a sequence, for example, an array or collection. Each item is read-only and if the sequence is modified during iteration, for example, by adding or removing an item, then an exception will be thrown.

Type the following code inside the Main
 method, which creates an array of string variables and then outputs the length each of them:

 string[] names = { "Adam", "Barry", "Charlie" };
 foreach (string name in names)
 {
 WriteLine($"{name} has {name.Length} characters.");
 }

Run the console application and view the output:

Adam has 4 characters.

Barry has 5 characters.

Charlie has 7 characters.

 How does the foreach statement work?

Technically, the foreach
 statement will work on any type that implements an interface called IEnumerable
 , but you don't need to worry about what an interface is for now.

 Note

You will learn about interfaces in Chapter 7
 ,
Implementing Interfaces and Inheriting Classes

 .

The compiler turns the foreach
 statement in the preceding code into something like this:

 IEnumerator e = names.GetEnumerator();
 while (e.MoveNext())
 {
 string name = (string)e.Current; // Current is read-only!
 WriteLine($"{name} has {name.Length} characters.");
 }

 Note

Due to the use of an iterator, the variable declared in a foreach
 statement cannot be used to modify the value of the current item.

 Casting and converting between types

You will often need to convert between different types.

Add a new console application project named Ch03_CastingConverting
 .

 Casting from numbers to numbers

It is safe to implicitly cast an int
 variable into a double
 variable.

In the Main
 method, enter the following statements:

 int a = 10;
 double b = a; // an int can be stored in a double
 WriteLine(b);

You cannot implicitly cast a double
 variable into an int
 variable because it is potentially unsafe and would lose data.

In the Main
 method, enter the following statements:

 double c = 9.8;
 int d = c; // compiler gives an error for this line
 WriteLine(d);

In Visual Studio 2017, press
Ctrl

 +
W

 ,
E

 to view the
Error List

 , as shown in the following screenshot:

[image: Casting from numbers to numbers]

In Visual Studio Code, either view the Problems window, or when you enter the command dotnet run
 , you will see the following output:

Compiling Ch03_CastingConverting for .NETCoreApp,Version=v1.1

/usr/local/share/dotnet/dotnet compile-csc
@/Users/markjprice/Code/Chapter03/Ch03_CastingConverting/obj/

Debug/netcoreapp1.1/dotnet-compile.rsp returned Exit Code 1

/Users/markjprice/Code/Chapter03/Ch03_CastingConverting/Program.cs(14
,21): error CS0266: Cannot implicitly convert type 'double' to 'int'.
An explicit conversion exists (are you missing a cast?)

Compilation failed.

 0 Warning(s)

 1 Error(s)

Time elapsed 00:00:01.0461813

 Casting explicitly

You must explicitly cast a double
 into an int
 variable using a pair of round brackets around the type you want to case the double
 into. The pair of round brackets is the
cast operator

 . Even then, you must beware that the part after the decimal point will be trimmed off without warning.

Modify the assignment statement for the variable d
 , as shown in the following code:

 double c = 9.8;

int d = (int)c;

 WriteLine(d); // d is 9 losing the .8 part

Run the console application and view the output:

10

9

We must perform a similar operation when moving values between larger integers and smaller integers. Again, beware that you might lose information because any value too big will get set to -1
 !

Enter the following code:

 long e = 10;
 int f = (int)e;
 WriteLine($"e is {e} and f is {f}");
 e = long.MaxValue;
 f = (int)e;
 WriteLine($"e is {e} and f is {f}");

Run the console application and view the output:

e is 10 and f is 10

e is 9223372036854775807 and f is -1

 Using the convert type

An alternative to using the casting operator is to use the System.Convert
 type.

At the top of the Program.cs
 file, type the following code:

 using static System.Convert;

Add the following statements to the bottom of the Main
 method:

 double g = 9.8;
 int h = ToInt32(g);
 WriteLine($"g is {g} and h is {h}");

Run the console application and view the output:

g is 9.8 and h is 10

 Note

One difference between casting and converting is that converting rounds the double value up to 10 instead of trimming the part after the decimal point.

The System.Convert
 type can convert to and from all the C# number types as well as Booleans, strings, and date and time values.

 Rounding numbers

You have now seen that the cast operator trims the decimal part of a real number and that the convert methods round up or down. However, what is the rule for rounding?

In British primary schools, children are taught to round
up

 if the decimal part is .5
 or higher and round
down

 if the decimal part is less.

Enter the following code:

 double i = 9.49;
 double j = 9.5;
 double k = 10.49;
 double l = 10.5;
 WriteLine($"i is {i}, ToInt(i) is {ToInt32(i)}");
 WriteLine($"j is {j}, ToInt(j) is {ToInt32(j)}");
 WriteLine($"k is {k}, ToInt(k) is {ToInt32(k)}");
 WriteLine($"l is {l}, ToInt(l) is {ToInt32(l)}");

Run the console application and view the output:

i is 9.49, ToInt(i) is 9

j is 9.5, ToInt(j) is 10

k is 10.49, ToInt(k) is 10

l is 10.5, ToInt(l) is 10

Note that the rule for rounding in C# is subtly different. It will round
up

 if the decimal part is .5
 or higher and the non-decimal part is odd, but it will round
down

 if the non-decimal part is even. It always rounds
down

 if the decimal part is less than .5
 .

This rule is known as
Banker's Rounding

 , and it is preferred because it reduces bias. Sadly, other languages such as JavaScript use the primary school rule.

 Tip

Good Practice

For every programming language that you use, check its rounding rules. They may not work the way you expect!

 Converting from any type to a string

The most common conversion is from any type into a string
 variable, so all types have a method named ToString
 that they inherit from the System.Object
 class.

The ToString
 method converts the current value of any variable into a textual representation. Some types can't be sensibly represented as text so they return their namespace and type name.

Add the following statements to the bottom of the Main
 method:

 int number = 12;
 WriteLine(number.ToString());
 bool boolean = true;
 WriteLine(boolean.ToString());
 DateTime now = DateTime.Now;
 WriteLine(now.ToString());
 object me = new object();
 WriteLine(me.ToString());

Run the console application and view the output:

12

True

27/01/2017 13:48:54

System.Object

 Parsing from strings to numbers or dates and times

The second most common conversion is from strings to numbers or date and time values. The opposite of ToString
 is Parse
 . Only a few types have a Parse
 method.

Add the following statements to the Main
 method:

 int age = int.Parse("27");
 DateTime birthday = DateTime.Parse("4 July 1980");
 WriteLine($"I was born {age} years ago.");
 WriteLine($"My birthday is {birthday}.");
 WriteLine($"My birthday is {birthday:D}.");

Run the console application and view the output:

I was born 27 years ago.

My birthday is 04/07/1980 00:00:00.

My birthday is 04 July 1980.

 Note

By default, a date and time value outputs with the short date and time format. You can use format codes like D
 to output only the date part using long date format. There are many other format codes for common scenarios.

One problem with the Parse
 method is that it gives errors if the string cannot be converted.

Add the following statements to the bottom of the Main
 method:

 int count = int.Parse("abc");

Run the console application and view the output:

Unhandled Exception: System.FormatException: Input string was not in
a correct format.

To avoid errors, you can use the TryParse
 method instead. TryParse
 attempts to convert the input string and returns true
 if it can convert it and false
 if it cannot. The out
 keyword is required to allow the TryParse
 method to set the count variable when the conversion works.

Replace the int count
 declaration with the following statements:

 Write("How many eggs are there? ");
 int count;
 string input = Console.ReadLine();
 if (int.TryParse(input, out count))
 {
 WriteLine($"There are {count} eggs.");
 }
 else
 {
 WriteLine("I could not parse the input.");
 }

Run the application twice. The first time, enter 12
 . You will see the following output:

How many eggs are there? 12

There are 12 eggs.

The second time, enter twelve
 . You will see the following output:

How many eggs are there? twelve

I could not parse the count.

 Note

You can also use the Convert
 type; however, like the Parse
 method, it gives an error if it cannot convert.

 Handling exceptions

You've seen several scenarios when errors have occurred. C# calls where an exception has been thrown. A good practice is to avoid writing code that will throw an exception whenever possible, but sometimes you can't. In those scenarios, you must catch the exception and handle it.

As you have seen, the default behavior of a console application is to display details about the exception in the output and then stop running the application.

The default behavior of a Windows desktop application is to display details about the exception in a dialog box and allow the user to choose to either continue or stop running the application. You can take control over how to handle exceptions using the try
 statement.

 The try statement

Add a new console application project named Ch03_HandlingExceptions
 .

When you know that a statement can cause an error, you should wrap that statement in a try
 block. For example, parsing from a string to a number can cause an error. We do not have to do anything inside the catch
 block. When the following code executes, the error will get caught and will not be displayed, and the console application will continue running.

In the Main
 method, add the following statements:

 WriteLine("Before parsing");
 Write("What is your age? ");
 string input = Console.ReadLine();
 try
 {
 int age = int.Parse(input);
 WriteLine($"You are {age} years old.");
 }
 catch
 {

 }
 WriteLine("After parsing");

Run the console application and enter a valid age, for example, 43
 :

Before parsing

What is your age? 43

You are 43 years old.

After parsing

Run the console application again and enter an invalid age, for example, kermit
 ;

Before parsing

What is your age? kermit

After parsing

The exception was caught, but it might be useful to see the type of error that occurred.

 Catching all exceptions

Modify the catch
 statement to look like this:

 catch(Exception ex)

{

 WriteLine($"{ex.GetType()} says {ex.Message}");

 }

Run the console application and again enter an invalid age, for example, kermit
 :

Before parsing

What is your age? kermit

System.FormatException says Input string was not in a correct format.

After parsing

 Catching specific exceptions

Now that we know which specific type of exception occurred, we can improve our code by catching just that type of exception and customizing the message that we display to the user.

Leave the existing catch
 block, but add the following code above it:

 catch (FormatException)

 {

 WriteLine("The age you entered is not a valid number format.");

 }

 catch (Exception ex)
 {
 WriteLine($"{ex.GetType()} says {ex.Message}");
 }

Run the program and again enter an invalid age, for example, kermit
 :

Before parsing

What is your age? kermit

The age you entered is not a valid number format.

After parsing

The reason we want to leave the more general catch
 below is because there might be other types of exceptions that can occur. For example, run the program and enter a number that is too big for an integer, for example, 9876543210
 :

Before parsing

What is your age? 9876543210

System.OverflowException says Value was either too large or too small for an
Int32.

After parsing

Let's add another catch for this new type of exception:

 catch(OverflowException)

 {

 WriteLine("Your age is a valid number format but it is either
 too big or small.");

 }

 catch (FormatException)
 {
 WriteLine("The age you entered is not a valid number format.");
 }

Rerun the program one more time and enter a number that is too big:

Before parsing

What is your age? 9876543210

Your age is a valid number format but it is either too big or small.

After parsing

 Note

The order in which you catch exceptions is important. The correct order is related to the inheritance hierarchy of the exception types. You will learn about inheritance in Chapter 6
 ,
Building Your Own Types with Object-Oriented Programming

 . However, don't worry too much about this---the compiler will give you build errors if you get exceptions in the wrong order anyway.

 The finally statement

Sometimes, we might want to ensure that some code executes regardless of whether an exception occurs or not. To do this, we use a finally
 statement.

A common scenario where you would want to use finally
 is when working with files and databases. When you open a file or a database, you are using resources outside of .NET. These are called unmanaged resources and must be disposed of when you are done working with them. To guarantee that they are disposed of, we can call the Dispose
 method inside of a finally
 block.

 Note

You will learn about files and databases in more detail in later chapters. For now, focus on the code that we write in the finally
 block.

Import the System.IO
 namespace at the top of the code file as follows:

 using System.IO;

Type the following code to the end of the Main
 method:

 Note

If you are using macOS then swap the commented statement that sets the path variable and replace my username with your user folder name.

 // string path = "/Users/markjprice/Code/Chapter03"; // macOS
 string path = @"C:\Code\Chapter03"; // Windows

 FileStream file = null;
 StreamWriter writer = null;
 try
 {

 if (Directory.Exists(path))
 {
 file = File.OpenWrite(Path.Combine(path, "file.txt"));
 writer = new StreamWriter(file);
 writer.WriteLine("Hello, C#!");
 }
 else
 {
 WriteLine($"{path} does not exist!");
 }
 }
 catch (Exception ex)
 {
 // if the path doesn't exist the exception will be caught
 WriteLine($"{ex.GetType()} says {ex.Message}");
 }
 finally
 {
 if (writer != null)
 {
 writer.Dispose();
 WriteLine("The writer's unmanaged resources have been
 disposed.");
 }
 if (file != null)
 {
 file.Dispose();
 WriteLine("The file's unmanaged resources have been
 disposed.");
 }
 }

Run the console application and view the output:

The writer's unmanaged resources have been disposed.

The file's unmanaged resources have been disposed.

If you browse to the folder specified in the path, then you will see a file has been created named file.txt
 that contains the text: Hello, C#!

 Simplifying disposal with the using statement

If you don't need to catch any exceptions, then you can simplify the code that needs to check for a non-null object and then call its Dispose
 method by using the using
 statement.

 Note

Confusingly, there are two uses for the using
 statement: importing a namespace, and generating a finally
 statement that disposes of an object.

The compiler changes your code into a full try
 and finally
 statement, but without a catch
 . You can use nested try
 statements; so, if you do want to catch any exceptions, you can.

Add this code after the existing code. It will create a file named file2.txt
 :

 using (FileStream file2 = File.OpenWrite(
 Path.Combine(path, "file2.txt")))
 {
 using (StreamWriter writer2 = new StreamWriter(file2))
 {
 try
 {
 writer2.WriteLine("Welcome, .NET Core!");
 }
 catch (Exception ex)
 {
 WriteLine($"{ex.GetType()} says {ex.Message}");
 }
 } // automatically calls Dispose if the object is not null
 } // automatically calls Dispose if the object is not null

 Note

Many types, including FileStream
 and StreamWriter
 mentioned earlier, provide a Close
 method as well as a Dispose
 method. In the .NET Framework, you can use either because they do the same thing. In the .NET Core, Microsoft has simplified the API, so you must use Dispose
 .

 Checking for overflow

Earlier, we saw that when casting between number types, it was possible to lose information, for example, when casting from a long
 variable to an int
 variable. If the value stored in a type is too big, it will overflow.

Add a new console application project named Ch03_CheckingForOverflow
 .

 The checked statement

The checked
 statement tells .NET to throw an exception when an overflow happens instead of allowing it to happen silently.

We set the initial value of an int
 variable to its maximum value minus one. Then, we increment it several times, outputting its value each time. Note that once it gets above its maximum value, it overflows to its minimum value and continues incrementing from there.

Type the following code in the Main
 method and run the program:

 int x = int.MaxValue - 1;
 WriteLine(x);
 x++;
 WriteLine(x);
 x++;
 WriteLine(x);
 x++;
 WriteLine(x);

Run the console application and view the output:

2147483646

2147483647

-2147483648

-2147483647

Now, let's get the compiler to warn us about the overflow using the checked
 statement:

 checked

{

 int x = int.MaxValue - 1;
 WriteLine(x);
 x++;
 WriteLine(x);
 x++;
 WriteLine(x);
 x++;
 WriteLine(x);

}

Run the console application and view the output:

2147483646

2147483647

Unhandled Exception: System.OverflowException: Arithmetic operation
resulted in an overflow.

Just like any other exception, we should wrap these statements in a try
 block and display a nicer error message for the user:

 try
 {
 // previous code goes here
 }
 catch(OverflowException)
 {
 WriteLine("The code overflowed but I caught the exception.");
 }

Run the console application and view the output:

2147483646

2147483647

The code overflowed but I caught the exception.

 The unchecked statement

A related keyword is unchecked
 .

Type the following statement at the end of the previous statements. The compiler will not compile this statement because it knows it would overflow:

 int y = int.MaxValue + 1;

Press
F6

 or enter the command dotnet run
 to build and notice the error, as shown in the following screenshot from Visual Studio 2017:

[image: The unchecked statement]

Note that this is a
compile-time

 check. To disable compile-time checks, we can wrap the statement in an unchecked
 block, as shown in the following code:

 unchecked

{

 int y = int.MaxValue + 1;

 WriteLine(y); // this will output -2147483648

 y--;

 WriteLine(y); // this will output 2147483647

 y--;

 WriteLine(y); // this will output 2147483646

 }

Run the console application and view the output:

2147483646

2147483647

The code overflowed but I caught the exception.

-2147483648

2147483647

2147483646

Of course, it would be rare that you would want to explicitly switch off a check like this because it allows an overflow to occur. But, perhaps, you can think of a scenario where you might want that behavior.

 Looking for help

This section is about how to find quality information about programming on the Web.

 Microsoft Docs and MSDN

The definitive resource for getting help with Microsoft developer tools and platforms used to be
Microsoft Developer Network

 (
MSDN

). Now, it is
Microsoft Docs

 : https://docs.microsoft.com/

Visual Studio 2017 is integrated with MSDN and Docs, so if you press
F1

 inside a C# keyword or type, then it will open your browser and take you to the official documentation.

 Note

In Visual Studio Code,
F1

 shows the Command Palette. It does not support context sensitive help.

 Go to definition

Another useful keystroke in both Visual Studio 2017 and Visual Studio Code is
F2

 . This will show what the public definition of the type looks like by reading the metadata in the compiled assembly. Some tools will even reverse-engineer from the metadata and IL code back into C# for you.

Enter the following code, click inside int
 , and then press
F2

 (or right-click and choose
Go To Definition

):

 int z;

In the new code window that appears, you can see that int
 is in the mscorlib.dll
 assembly; it is named Int32
 ; it is in the System
 namespace; and int
 is therefore an alias for System.Int32
 , as shown in the following screenshot:

[image: Go to definition]

Microsoft defined int
 using a struct
 keyword, meaning that int
 is a value type stored on the stack. You can also see that int
 implements interfaces such as IComparable
 and has constants for its maximum and minimum values.

In the code editor window, scroll down to find the Parse
 methods and in Visual Studio 2017, you will need to click on the small box with a plus symbol in them to expand the code like I have done in the following screenshot:

[image: Go to definition]

In the comment, you will see that Microsoft has documented what exceptions might occur if you call this method (ArgumentNullException
 , FormatException
 , and OverflowException
).

Now, we know that we need to wrap a call to this method in a try
 statement and which exceptions to catch.

 StackOverflow

StackOverflow

 is the most popular third-party website for getting answers to difficult programming questions. It is so popular that search engines such as
DuckDuckGo

 have a special way to write a query to search the site.

Go to DuckDuckGo.com and enter the following query:

!so securestring

You will get the following results:

[image: StackOverflow]

 Google

You can search
Google

 with advanced search options to increase the likelihood of finding what you need.

For example, if you are searching for information about
garbage collection

 using a simple Google query, you will see a Wikipedia definition of garbage collection in computer science, and then a list of garbage collection services in your local area, as shown in the following screenshot:

[image: Google]

We can improve the search by restricting it to a useful site such as StackOverflow, as shown in the following screenshot:

[image: Google]

We can improve the search even more by removing languages that we might not care about like C++, as shown in the following screenshot:

[image: Google]

 Subscribing to blogs

An excellent blog to subscribe to, to keep up-to-date with .NET is the official
.NET Blog

 written by the .NET engineering teams. The .NET Blog has a tag,
Week in .NET

 , which is a summary of interesting news that has happened in the world of .NET in the previous week:

https://blogs.msdn.microsoft.com/dotnet/

 Design patterns

A design pattern is a general solution to a common problem. Programmers have been solving the same problems over and over. When the community discovers a good reusable solution, we call it a design pattern. Many design patterns have been documented over the years.

Navigate to the following link to read about common design patterns: https://en.wikipedia.org/wiki/Software_design_pattern#Classification_and_list

Microsoft has a group called
patterns & practices

 that specializes in documenting and promoting design patterns for Microsoft products.

 Tip

Good Practice

Before writing new code, search to see if someone else has already solved the problem in a general way.

 Singleton pattern

One of the most common patterns is the
Singleton

 . Examples of Singleton in .NET are the Console
 and Math
 types.

 Note

Read more about the Singleton pattern: https://en.wikipedia.org/wiki/Singleton_pattern

 Practice and explore

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore with deeper research into this chapter's topics.

 Exercise 3.1 - test your knowledge

Answer the following questions:

	Where would you look for help about a C# keyword?

	Where would you look for solutions to common programming problems?

	What happens when you divide an int
 variable by 0
 ?

	What happens when you divide a double
 variable by 0
 ?

	What happens when you overflow an int
 variable, that is, set it to a value beyond its range?

	What is the difference between x = y++;
 and x = ++y;
 ?

	What is the difference between break
 , continue
 , and return
 when used inside a loop statement?

	What are the three parts of a for
 statement and which of them are required?

	What is the difference between the =
 and ==
 operators?

	Does the following statement compile? for (; true;) ;

 Exercise 3.2 - explore loops and overflow

What will happen if this code executes?

 int max = 500;
 for (byte i = 0; i < max; i++)
 {
 WriteLine(i);
 }

Add a new console application named Ch03_Exercise02
 and enter the preceding code. Run the console application and view the output. What happens?

What code could you add (don't change any of the preceding code) to warn us about the problem?

 Exercise 3.3 - practice loops and operators

FizzBuzz is a group word game for children to teach them about division. Players take turns to count incrementally, replacing any number divisible by three with the word "fizz", any number divisible by five with the word "buzz", and any number divisible by both with "fizzbuzz".

Some interviewers give applicants simple FizzBuzz-style problems to solve during interviews. Most good programmers should be able to write out on paper or whiteboard a program to output a simulated FizzBuzz game in under a couple of minutes.

Want to know something worrisome? Many computer science graduates can't. You can even find senior programmers who take more than 10-15 minutes to write a solution.

Reginald Braithwaite

"199 out of 200 applicants for every programming job can't write code at all. I repeat: they can't write any code whatsoever."

This quote is taken from http://blog.codinghorror.com/why-cant-programmers-program/
 .

Refer to the following link for more information:

http://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/

Create a console application named Ch03_Exercise03
 that outputs a simulated FizzBuzz game counting up to 100. The output should look something like this:

1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz, 16, 17,
 Fizz, 19, Buzz, Fizz, 22, 23, Fizz, Buzz, 26, Fizz, 28, 29, FizzBuzz, 31, 32,
 Fizz, 34, Buzz, Fizz, 37, 38, Fizz, Buzz, 41, Fizz, 43, 44, FizzBuzz, 46, 47,
 Fizz, 49, Buzz, Fizz, 52, 53, Fizz, Buzz, 56, Fizz, 58, 59, FizzBuzz, 61, 62,
 Fizz, 64, Buzz, Fizz, 67, 68, Fizz, Buzz, 71, Fizz, 73, 74, FizzBuzz, 76, 77,
 Fizz, 79, Buzz, Fizz, 82, 83, Fizz, Buzz, 86, Fizz, 88, 89, FizzBuzz, 91, 92,
 Fizz, 94, Buzz, Fizz, 97, 98, Fizz, Buzz

 Exercise 3.4 - practice exception handling

Create a console application named Ch03_Exercise04
 that asks the user for two numbers in the range 0-255 and then divides the first number by the second:

Enter a number between 0 and 255: 100

Enter another number between 0 and 255: 8

100 divided by 8 is 12

Write exception handlers to catch any thrown errors:

Enter a number between 0 and 255: apples

Enter another number between 0 and 255: bananas

FormatException: Input string was not in a correct format.

 Exercise 3.5 - explore topics

Use the following links to read in more detail about the topics covered in this chapter:

	

Selection Statements (C# Reference)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/selection-statements

	

Iteration Statements (C# Reference)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/iteration-statements

	

Jump Statements (C# Reference)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/jump-statements

	

Casting and Type Conversions (C# Programming Guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/types/casting-and-type-conversions

	

Exception Handling Statements (C# Reference)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/exception-handling-statements

	

StackOverflow

 : http://stackoverflow.com/

	

Google Advanced Search

 : http://www.google.com/advanced_search

	

.NET Blog

:

 https://blogs.msdn.microsoft.com/dotnet/

	

What .NET Developers ought to know to start in 2017

:

 https://www.hanselman.com/blog/WhatNETDevelopersOughtToKnowToStartIn2017.aspx

	

CoreFX README.md

:

 https://github.com/dotnet/corefx/blob/master/Documentation/README.md

	

Design Patterns

 : https://msdn.microsoft.com/en-us/library/ff649977.aspx

	

patterns & practices

 : https://msdn.microsoft.com/en-us/library/ff921345.aspx

 Summary

In this chapter, you learned how to branch and loop, how to convert between types, how to handle exceptions, and most importantly, how to find help!

You are now ready to learn more about what is underneath C#---the .NET Core types that are included with .NET Standard.

 Chapter4.Using .NET Standard Types

This chapter is about .NET Standard 1.6 types that are included with .NET Core 1.0 and 1.1. This includes common types for manipulating text, collections, and implementing internationalization. You will learn how the .NET types are related to C#.

You will learn about .NET Core and its class library assemblies and packages of types that are defined in .NET Standard that allow your applications to connect existing components together to perform common practical tasks.

This chapter covers the following topics:

	Using assemblies and namespaces

	Storing and manipulating text

	Storing data with collections

	Internationalizing an application

 Using assemblies and namespaces

.NET Core is made up of several pieces, which are as follows:

	

Language compilers

 : These turn your source code (written with languages such as C#, F#, Visual Basic, and others) into
intermediate language

 (
IL

) code stored in assemblies (applications and class libraries). C# 6 introduced a completely rewritten compiler known as Roslyn.

	

Common Language Runtime (CoreCLR)

 : The runtime loads assemblies, compiles the IL code stored in them into native code instructions for your computer's CPU, and executes the code within an environment that manages resources such as threads and memory.

	

Base Class Libraries and NuGet packages (CoreFX)

 : These are prebuilt assemblies of types for performing common tasks when building applications. You can use them to quickly build anything you want, rather like combining LEGOpieces. .NET Core 1.0 and 1.1 are based on .NET Standard 1.6, which is a superset of all previous versions of .NET Standard.

 Comparing .NET Framework with .NET Core

The .NET Framework is a superset of .NET Core.

Although .NET Core has less functionality today, once .NET Core 2.0 is released in late summer 2017, with support for .NET Standard 2.0, .NET Core will have comparable functionality to .NET Framework. Going forward, Microsoft has said that new features will be added to .NET Core first, and then ported back to .NET Framework.

 Base Class Libraries and CoreFX

The .NET Framework's BCL and the .NET Core's CoreFX are libraries of prebuilt code that are divided into assemblies and namespaces that make it easier to manage the tens of thousands of types available. It is important to understand the difference between an assembly and a namespace.

 Assemblies, NuGet packages, and platforms

An
assembly

 is where a type is stored in the filesystem. Assemblies are a mechanism for deploying code. For example, the System.Data.dll
 assembly contains types for managing data. To use types in other assemblies, they must be referenced.

Assemblies are often distributed as
NuGet packages

 , which can contain multiple assemblies and other resources. You will also hear talk about
platforms

 , which are combinations of NuGet packages.

To search for useful NuGet packages, follow:

https://www.nuget.org/packages

When using .NET Core, you reference the dependency assemblies, NuGet packages, and platforms that your application needs in a project file.

The original project file for .NET Core was a JSON format file named project.json
 . The "newer" format is an XML file with the extension .csproj
 . I say "newer" because it is actually the old format that has been used since the beginning of .NET. Microsoft changed their mind after the release of .NET Core 1.0!

 Namespaces

A
namespace

 is the address of a type. Namespaces are a mechanism to uniquely identify a type by requiring a full address rather than just a short name.

In the real world,
Bob

 of
34 Sycamore Street

 is different from
Bob

 of
12 Willow Drive

 .

In .NET Core, the IActionFilter
 interface of the System.Web.Mvc
 namespace is different from the IActionFilter
 interface of the System.Web.Http.Filters
 namespace.

 Referencing a dependent assembly

If an assembly is compiled as a
class library

 (it provides types for other assemblies to use), then it has the file extension .dll
 (
dynamic link library

) and it cannot be executed standalone, except by the dotnet run
 command.

If an assembly is compiled as an
application

 , then it has the file extension .exe
 (executable) and can be executed standalone.

Any assembly (both applications and class libraries) can reference one or more class library assemblies as dependencies, but you cannot have circular references, so assembly
B

 cannot reference assembly
A

 if assembly
A

 already references assembly
B

 . Visual Studio will warn you if you attempt to add a dependency reference that would cause a circular reference.

Every application created for .NET Core has a dependency reference to the
Microsoft .NET Core App platform

 . This special platform contains thousands of types in NuGet packages that almost all applications would need, such as the int
 and string
 variables.

 Browsing assemblies with Visual Studio 2017

Using Visual Studio 2017, if you open one of your previous projects, and navigate to
View

 |
Object Browser

 , or press
Ctrl

 +
W

 ,
J

 , then you will see that your solution has dependencies on assemblies such as System.Collections
 that you will use later in this chapter, and on System.Console
 , used in all the coding exercises so far, as shown in the following screenshot:

[image: Browsing assemblies with Visual Studio 2017]

Object Browser

 can be used to learn about the assemblies and namespaces that .NET Core uses to logically and physically group types together.

 Note

Unfortunately, Visual Studio Code does not yet have an equivalent feature.

When you click on an assembly in
Object Browser

 , you can see the version of .NET Standard that the assembly was first released with. For example, System.Console.dll
 was introduced in .NET Standard 1.3, as shown in the following screenshot:

[image: Browsing assemblies with Visual Studio 2017]

In the following screenshot, you can see that System.IO.dll
 was released as part of .NET Standard 1.5:

[image: Browsing assemblies with Visual Studio 2017]

Later in this chapter, you will learn about generic collections, like List<T>
 , that are part of the System.Collections.dll
 assembly, as shown in the following screenshot:

[image: Browsing assemblies with Visual Studio 2017]

 Understanding .NET Core project files

To understand how Visual Studio 2017 and Visual Studio Code store their dependencies, right-click any project in
Solution Explorer

 and choose
Unload Project

 .

The project will now be marked as
(unavailable)

 . Right-click the project and choose
Edit <projectname>.csproj

 :

[image: Understanding .NET Core project files]

 Note

If you are using Visual Studio Code, simply open the .csproj
 file.

This action will open the project file and reveal the XML inside, as shown in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 </Project>

 Note

Note the <TargetFramework>
 of netcoreapp1.1

Close the file.

In Visual Studio 2017, right-click the project, and choose
Reload Project

 .

 Note

Visual Studio 2017
should

 allow you to view and modify the .csproj
 file without unloading the project first, but I have found that it works more reliably if you explicitly unload and reload.

 Relating assemblies and namespaces

In Visual Studio 2017, press
Ctrl

 +
Shift

 +
N

 or navigate to
File

 |
New

 |
Project...

 .

In the
New Project

 dialog, in the
Installed

 |
Templates

 list, select
Visual C#

 . In the list at the center, select
Console App (.NET Core)

 , type the name Ch04_Assemblies
 , change the location to C:\Code
 , type the solution name Chapter04
 , and then click on
OK

 .

In Visual Studio Code, use the Integrated Terminal to create a folder named Chapter04
 with a subfolder named Ch04_Assemblies
 . Use dotnet new console
 to create a console application and restore packages.

Inside the Main
 method, type the following code:

 var doc = new XDocument();

The XDocument
 type is not recognized because we have not told the compiler what the namespace of the type is. Although this project already has a reference to the assembly that contains the type, we also need to either prefix the type name with its namespace or to import the namespace. We can get Visual Studio to fix this problem for us.

 Importing a namespace

Click inside the XDocument
 class name. Visual Studio 2017 and Visual Studio Code both display a light bulb showing that it recognizes the type and can automatically fix the problem for you.

Click on the light bulb, or in Visual Studio 2017 press
Ctrl

 +

.

 (dot), or in Visual Studio Code press
Cmd

 +

.

 (dot).

Visual Studio 2017 shows a nicer explanation of your choices, and a preview of its suggested changes, as shown in the following screenshot:

[image: Importing a namespace]

Visual Studio Code has no explanations, but it does have the same choices, as shown in the following screenshot:

[image: Importing a namespace]

Choose using System.Xml.Linq;
 from the menu. This will
import the namespace

 by adding a using
 statement to the top of the file.

Once a namespace is imported at the top of a code file, then all the types within the namespace are available for use in that code file by just typing their name.

 Relating C# keywords to .NET types

One of the common questions I get from new C# programmers is, "What is the difference between string
 with a lowercase and String
 with an uppercase?"

The short answer is easy: none.

The long answer is that all C# type keywords are aliases for a .NET type in a class library assembly.

When you use the keyword string
 , the compiler turns it into a System.String
 type. When you use the type int
 , the compiler turns it into a System.Int32
 type. You can even see this if you hover your mouse over an int
 type, as follows:

[image: Relating C# keywords to .NET types]

 Tip

Good Practice

Use the C# keyword instead of the actual type because the keywords do not need the namespace imported.

The following table shows the 16 C# type keywords and their actual .NET types:

	

Keyword

	

.NET type

	

Keyword

	

.NET type

	

string

	

System.String

	

char

	

System.Char

	

sbyte

	

System.SByte

	

byte

	

System.Byte

	

short

	

System.Int16

	

ushort

	

System.UInt16

	

int

	

System.Int32

	

uint

	

System.UInt32

	

long

	

System.Int64

	

ulong

	

System.UInt64

	

float

	

System.Single

	

double

	

System.Double

	

decimal

	

System.Decimal

	

bool

	

System.Boolean

	

object

	

System.Object

	

dynamic

	

System.Dynamic.DynamicObject

 Note

Other .NET programming language compilers can do the same thing. For example, the Visual Basic .NET language has a type named Integer
 that is its alias for System.Int32
 .

 Storing and manipulating text

The most common type of data for variables is text. The most common types in .NET for working with text are show in the following table:

	

Namespace

	

Type

	

System

	

Char

	

System

	

String

	

System.Text

	

StringBuilder

	

System.Text.RegularExpressions

	

Regex

 Getting the length of a string

Add a new console application project named Ch04_ManipulatingText
 .

In Visual Studio 2017, set the solution's startup project to be the current selection.

Sometimes, you need to find out the length of a piece of text stored in a string
 class. Modify the code to look like this:

 using static System.Console;

 namespace Ch04_ManipulatingText
 {
 class Program
 {
 static void Main(string[] args)
 {

string city = "London";
 WriteLine($"{city} is {city.Length} characters long.");

 }
 }
 }

 Note

At any point during these exercises, you can see the output of your code by running the console application. In Visual Studio 2017, press
Ctrl

 +
F5

 . In Visual Studio Code, open the Integrated Terminal and enter the command dotnet run
 .

 Getting the characters of a string

A string
 class uses an array of char
 internally to store the text. It also has an indexer, which means that we can use the array syntax to read its characters.

Add the following statement, and then run the console application:

 WriteLine($"First char is {city[0]} and third is {city[2]}.");

 Splitting a string

Sometimes, you need to split some text wherever there is a character, such as a comma.

Add more lines of code to define a single string with comma-separated city names. You can use the Split
 method and specify a character that you want to treat as the separator. An array of strings is then created that you can enumerate using a foreach
 statement:

 string cities = "Paris,Berlin,Madrid,New York";
 string[] citiesArray = cities.Split(',');
 foreach (string item in citiesArray)
 {
 WriteLine(item);
 }

 Getting part of a string

Sometimes, you need to get part of some text. For example, if you had a person's full name stored in a string with a space character between the first and last name, then you could find the position of the space and extract the first name and last name as two parts, like this:

 string fullname = "Alan Jones";
 int indexOfTheSpace = fullname.IndexOf(' ');
 string firstname = fullname.Substring(0, indexOfTheSpace);
 string lastname = fullname.Substring(indexOfTheSpace + 1);
 WriteLine($"{lastname}, {firstname}");

 Note

If the format of the initial full name was different, for example, Lastname, Firstname
 , then the code would be slightly different. As an optional exercise, try writing some statements that would change the input Jones, Alan
 into Alan Jones
 .

 Checking a string for content

Sometimes, you need to check whether a piece of text starts or ends with some characters or contains some characters:

 string company = "Microsoft";
 bool startsWithM = company.StartsWith("M");
 bool containsN = company.Contains("N");
 WriteLine($"Starts with M: {startsWithM}, contains an N:
 {containsN}");

 Other string members

Here are some other string
 members:

	

Member

	

Description

	

Trim
 , TrimStart
 , and TrimEnd

	
These trim whitespaces from the beginning and/or end of the string
 .

	

ToUpper
 and ToLower

	
These convert the string
 into uppercase or lowercase.

	

Insert
 and Remove

	
These insert or remove some text in the string
 .

	

Replace

	
This replaces some text.

	

String.Concat

	
This concatenates two string
 variables. The +
 operator calls this method when used between string
 variables.

	

String.Join

	
This concatenates one or more string
 variables with a character in between each one.

	

String.IsEmptyOrNull

	
This checks whether a string
 is empty (""
) or null.

	

String.Empty

	
This can be used instead of allocating memory each time you use a literal string
 value using an empty pair of double quotes (""
).

Note that some of the preceding methods are
static

 methods. That meansthe method can only be called from the type, not from a variable instance.

For example, if I want to take an array of strings and combine them back together into a single string
 with a separator, I can use the Join
 method like this:

 string recombined = string.Join(" => ", citiesArray);
 WriteLine(recombined);

If you run the console application and view the output, it should look like this:

London is 6 characters long.

First char is L and third is n.

Paris

Berlin

Madrid

New York

Jones, Alan

Starts with M: True, contains an N: False

Paris => Berlin => Madrid => New York

 Building strings efficiently

You can concatenate two strings to make a new string
 using the String.Concat
 method or simply using the +
 operator. But, this is a bad practice because .NET must create a completely new string
 in memory. This might not be noticeable if you are only adding two string
 variables, but if you concatenate inside a loop, it can have a significant negative impact on performance and memory use.

 Note

In Chapter 5
 ,
Debugging, Monitoring, and Testing

 , you will learn how to concatenate string
 variables efficiently using the StringBuilder
 type.

 Pattern matching with regular expressions

Regular expressions are useful for validating input from the user. They are very powerful and can get very complicated. Almost all programming languages have support for regular expressions and use a common set of special characters to define them.

Add a new console application project named Ch04_RegularExpressions
 .

At the top of the file, import the following namespaces:

 using System.Text.RegularExpressions;
 using static System.Console;

In the Main
 method, add the following statements:

 Write("Enter your age: ");
 string input = ReadLine();
 Regex ageChecker = new Regex(@"\d");
 if(ageChecker.IsMatch(input))
 {
 WriteLine("Thank you!");
 }
 else
 {
 WriteLine($"This is not a valid age: {input}");
 }

 Tip

Good Practice

The @
 character in front of a string
 switches off the ability to use escape characters in a string
 . Escape characters are prefixed with a backslash (\
). For example, \t
 means a tab and \n
 means a new line. When writing regular expressions, we need to disable this feature. To paraphrase the television show,
The West Wing

 , "Let backslash be backslash."

Run the console application and view the output.

If you enter a whole number for the age, you will see Thank you!

Enter your age: 34

Thank you!

If you enter carrots
 , you will see the error message:

Enter your age: carrots

This is not a valid age: carrots

However, if you enter bob30smith
 , you will see Thank you!

Enter your age: bob30smith

Thank you!

The regular expression we used is \d
 , which means one digit. However, it does not limit what is entered
before

 and
after

 the digit. This regular expression could be described in English as, "Enter at least one digit character."

Change the regular expression to ^\d$
 , like this:

 Regex ageChecker = new Regex(@"^\d$");

Rerun the application. Now, it rejects anything except a single digit.

We want to allow one or more digits. To do this, we add a +
 (plus) after the digit expression. Change the regular expression to look like this:

 Regex ageChecker = new Regex(@"^\d+$");

Run the application and see how the regular expression now only allows positive whole numbers of any length.

 The syntax of a regular expression

Here are some common symbol combinations that you can use in regular expressions:

	

Symbol

	

Meaning

	

Symbol

	

Meaning

	

^

	
Start of input

	

$

	
End of input

	

\d

	
A single digit

	

\D

	
A single NON-digit

	

\w

	
Whitespace

	

\W

	
NON-whitespace

	

[A-Za-z0-9]

	
Range(s) of characters

	

[AEIOU]

	
Set of characters

	

+

	
One or more

	

?

	
One or none

	

.

	
A single character

	
	

	

{3}

	
Exactly three

	

{3,5}

	
Three to five

	

{3,}

	
Three or more

	

{,3}

	
Up to three

 Examples of regular expressions

Here are some example regular expressions:

	

Expression

	

Meaning

	

\d

	
A single digit somewhere in the input.

	

a

	
The a
 character somewhere in the input.

	

Bob

	
The word Bob
 somewhere in the input.

	

^Bob

	
The word Bob
 at the start of the input.

	

Bob$

	
The word Bob
 at the end of the input.

	

^\d{2}$

	
Exactly two digits.

	

^[0-9]{2}$

	
Exactly two digits.

	

^[A-Z]{4,}$

	
At least four uppercase letters only.

	

^[A-Za-z]{4,}$

	
At least four upper or lowercase letters only.

	

^[A-Z]{2}\d{3}$

	
Two uppercase letters and three digits only.

	

^d.g$

	
The letter d
 , then any character, and then the letter g
 , so it would match both dig
 and dog
 or any characters between the d
 and g
 .

	

^d\.g$

	
The letter d
 , then a dot (.
), and then the letter g
 , so it would match d.g
 only.

 Tip

Good Practice

Use regular expressions to validate input from the user. The same regular expressions can be reused in other languages such as JavaScript.

 Storing data with collections

If you need to store multiple values in a variable, then you can use a
collection

 .

A
collection

 is a data structure in memory that can manage multiple items in different ways, although all collections have some shared functionality.

There are three main assemblies and namespaces for collections:

	
System.Collections.dll
 assembly and System.Collections.Generic
 namespace: The types in this assembly and namespace were introduced in C# 2 with .NET 2.0 and are better because they allow you to specify the type you want to store (which is safer, faster, and more efficient).

	
System.Collections.Concurrent
 assembly and namespace: the types in this assembly and namespace are safe to use in multi-threaded scenarios (see Chapter 12
 ,
Improving Performance and Scalability with Multitasking

).

	
System.Collections.Immutable
 assembly and namespace: the types in this assembly and namespace are designed for scenarios where the contents of the collection should never change.

All collections have a Count
 property to tell you how many items are in it. For example, if we had a collection named passengers
 , we could do this:

 int howMany = passengers.Count;

All collections can be iterated using the foreach
 statement. To perform some action on all the items in the passengers' collection, we can do this:

 foreach (var passenger in passengers)
 {
 // do something with each passenger
 }

 Understanding collections

There are several different collection categories: lists, dictionaries, stacks, queues, sets, and many other more specialized collections.

 Lists

Lists

 are a good choice when you want to manually control the order of items in a collection. Each item in a list has a unique index (or position) that is automatically assigned. Items can be any type (although they should all be the same type) and items can be duplicated. Indexes are int
 types and start from
0

 , so the first item in a list is at index
0

 , as shown in the following table:

	

Index

	

Item

	
0

	
London

	
1

	
Paris

	
2

	
London

	
3

	
Sydney

If a new item (for example,
Santiago

) is inserted between
London

 and
Sydney

 , then index of
Sydney

 is automatically incremented. Therefore, you must be aware that an item's index can change after inserting or removing items, as shown in the following table:

	

Index

	

Item

	
0

	
London

	
1

	
Paris

	
2

	
London

	
3

	
Santiago

	
4

	
Sydney

 Dictionaries

Dictionaries

 are a good choice when each value (or item) has a unique subvalue (or a made-up value) that can be used as a key to quickly find the value in the collection later. The key must be unique. If you are storing a list of people, you can use a government-issued identity number as the key.

Think of the key as being like an index entry in a real-world dictionary. It allows you to quickly find the definition of a word because the words (for example, keys) are kept sorted, and if we know we're looking for the definition of
Manatee

 , we would jump to the middle of the dictionary to start looking because the letter M is in the middle of the alphabet. Dictionaries in programming are similarly smart when looking something up.

Both the key and the value can be any type. This example uses strings for both:

	

Key

	

Value

	
BSA

	
Bob Smith

	
MW

	
Max Williams

	
BSB

	
Bob Smith

	
AM

	
Amir Mohammed

 Stacks

Stacks

 are a good choice when you want to implement the
last-in, first-out

 (
LIFO

) behavior. With a stack, you can only directly access the one item at the top of the stack, although you can enumerate to read through the whole stack of items. You cannot, for example, access the second item in a stack.

For example, word processors use a stack to remember the sequence of actions you have recently performed, and then when you press
Ctrl

 +

Z

 , it will undo the last action in the stack, and then the next last action, and so on.

 Queues

Queues

 are a good choice when you want to implement the
first-in, first out

 (
FIFO

) behavior. With a queue, you can only directly access the one item at the front of the queue, although you can enumerate to read through the whole queue of items. You cannot, for example, access the second item in a queue.

For example, background processes use a queue to process work items in the order that they arrive, just like people standing in line at the post office.

 Sets

Sets

 are a good choice when you want to perform set operations between two collections. For example, you may have two collections of city names, and you want to know which names appear in both sets (known as the
intersect

 between the sets).

 Working with lists

Add a new console application project named Ch04_Lists
 .

At the top of the file, import the following namespaces:

 using System;
 using System.Collections.Generic;
 using static System.Console;

In the Main
 method, type the following code that illustrates some of the common ways of working with lists:

 Note

The angle brackets after the List<T>
 type is a feature of C# called
generics

 . It's just a fancy term for making a collection
strongly typed

 , that is, the compiler knows more specifically what type of object can be stored in the collection. Generics improve the performance and correctness of your code. Strong typed is different from
statically typed

 . The old System.Collection
 types are statically typed to contain weakly typed System.Object
 items. The newer System.Collection.Generic
 types are statically typed to contain strongly typed <T>
 instances. Ironically, the term "generics" means a more specific static type!

 var cities = new List<string>();
 cities.Add("London");
 cities.Add("Paris");
 cities.Add("Milan");
 WriteLine("Initial list");
 foreach (string city in cities)
 {
 WriteLine($" {city}");
 }
 WriteLine($"The first city is {cities[0]}.");
 WriteLine($"The last city is {cities[cities.Count - 1]}.");
 cities.Insert(0, "Sydney");
 WriteLine("After inserting Sydney at index 0");
 foreach (string city in cities)
 {
 WriteLine($" {city}");
 }
 cities.RemoveAt(1);
 cities.Remove("Milan");
 WriteLine("After removing two cities");
 foreach (string city in cities)
 {
 WriteLine($" {city}");
 }

Run the console application to see the output:

Initial list

London

Paris

Milan

The first city is London.

The last city is Milan.

After inserting Sydney at index 0

Sydney

London

Paris

 Milan

After removing two cities

Sydney

 Paris

 Working with dictionaries

Add a new console application project named Ch04_Dictionaries
 .

Import the same namespaces as before.

In the Main
 method, type the following code that illustrates some of the common ways of working with dictionaries:

 var keywords = new Dictionary<string, string>();
 keywords.Add("int", "32-bit integer data type");
 keywords.Add("long", "64-bit integer data type");
 keywords.Add("float", "Single precision floating point number");
 WriteLine("Keywords and their definitions");
 foreach (KeyValuePair<string, string> item in keywords)
 {
 WriteLine($" {item.Key}: {item.Value}");
 }
 WriteLine($"The definition of long is {keywords["long"]}");

Run the application to view the output:

Keywords and their definitions

int: 32-bit integer data type

long: 64-bit integer data type

float: Single precision floating point number

The definition of long is 64-bit integer data type

 Sorting collections

A List<T>
 class can be sorted by calling its Sort
 method (but remember that the indexes of each item will change).

 Note

Sorting a list of strings or other built-in types works automatically, but if you create a collection of your own type, then that type must implement an interface named IComparable
 . You will learn how to do this in Chapter 7
 ,
Implementing Interfaces and Inheriting Classes

 .

A Dictionary<T>
 , Stack<T>
 , or Queue<T>
 class cannot be sorted because you wouldn't usually want that functionality, for example, you would never sort a queue of guests checking into a hotel. But sometimes, you might want to sort a dictionary or a set.

The differences between these sorted collections are often subtle, but can have an impact on the memory requirements and performance of your application, so it is worth putting effort into picking the most appropriate for your requirements.

	

Collection

	

Description

	

SortedDictionary<TKey, TValue>

	
This represents a collection of key/value pairs that are sorted on the key

	

SortedList<TKey, TValue>

	
This represents a collection of key/value pairs that are sorted by key, based on the associated IComparer<T>
 implementation

	

SortedSet<T>

	
This represents a collection of objects that is maintained in a sorted order

 Using specialized collections

There are a few other collections for special situations.

	

Collection

	

Description

	

System.Collections.BitArray

	
This manages a compact array of bit values, which are represented as Booleans, where true
 indicates that the bit is on (1
) and false
 indicates the bit is off (0
)

	

System.Collections .Generics.LinkedList<T>

	
This represents a doubly-linked list where every item has a reference to its previous and next item

 Internationalizing an application

Internationalization

 is the process of enabling your application to run correctly all over the world. It has two parts:
globalization

 and
localization

 .

Globalization is about writing your code to accommodate multiple languages and regions. The combination of a language and a region is known as a culture. It is important for your code to know both the language and region because the date and currency formats are different in Quebec and Paris, despite them both using French.

There are
International Standards Organization

 (
ISO

) codes for all culture combinations. For example, in the code da-DK, da indicates the Danish language and DK indicates the country of Denmark.

Localization is about customizing the user interface to support a language. Since localization is just about the language, it doesn't need to know about the region.

Internationalization is a huge topic on which entire books have been written. In this section, you will get a brief introduction to the basics using the CultureInfo
 type in the System.Globalization
 namespace.

 Note

.NET Core does not currently allow threads to get or set their CurrentCulture
 or CurrentUICulture
 properties. An alternative for getting these two properties (but not setting) is to use the CultureInfo
 class' static properties, but you cannot set them.

 Globalizing an application

Add a new console application project named Ch04_Internationalization
 . At the top of the file, import the following types and namespaces:

 using static System.Console;
 using System;
 using System.Globalization;

In the Main
 method, enter the following statements:

 CultureInfo globalization = CultureInfo.CurrentCulture;
 CultureInfo localization = CultureInfo.CurrentUICulture;
 WriteLine($"The current globalization culture is
 {globalization.Name}: {globalization.DisplayName}");
 WriteLine($"The current localization culture is
 {localization.Name}: {localization.DisplayName}");
 WriteLine();
 WriteLine("en-US: English (United States)");
 WriteLine("da-DK: Danish (Denmark)");
 WriteLine("fr-CA: French (Canada)");
 Write("Enter an ISO culture code: ");
 string newculture = ReadLine();
 if (!string.IsNullOrEmpty(newculture))
 {
 var ci = new CultureInfo(newculture);
 CultureInfo.CurrentCulture = ci;
 CultureInfo.CurrentUICulture = ci;
 }
 Write("Enter your name: ");
 string name = ReadLine();
 Write("Enter your date of birth: ");
 string dob = ReadLine();
 Write("Enter your salary: ");
 string salary = ReadLine();
 DateTime date = DateTime.Parse(dob);
 int minutes = (int)DateTime.Today.Subtract(date).TotalMinutes;
 decimal earns = decimal.Parse(salary);
 WriteLine($"{name} was born on a {date:dddd} and is {minutes:N0}
 minutes old and earns {earns:C}.");

When you run an application, it automatically sets its thread to use the culture of the operating system. I am running my code in London, UK, so the thread is already set to English (United Kingdom).

The code prompts the user to enter an alternative ISO code. This allows your applications to replace the default culture at runtime.

The application then uses standard format codes to output the day of the week, dddd
 ; the number of minutes with thousand separators, N0
 ; and the salary with the currency symbol, C
 . These adapt automatically, based on the thread's culture.

Run the console application and view the output. Enter en-GB
 for the ISO code and then enter some sample data. You will need to enter a date in a format valid for British English:

Enter an ISO culture code: en-GB

Enter your name: Alice

Enter your date of birth: 30/3/1967

Enter your salary: 23500

Alice was born on a Thursday, is 25,469,280 minutes old and earns
23,500.00.

Rerun the application and try a different culture, such as Danish in Denmark (da-DK
):

Enter an ISO culture code: da-DK

Enter your name: Mikkel

Enter your date of birth: 12/3/1980

Enter your salary: 34000

Mikkel was born on a onsdag, is 18.656.640 minutes old and earns kr.
34.000,00.

 Tip

Good Practice

Consider whether your application needs to be internationalized and plan for that before you start coding! Write down all the pieces of text in the user interface that will need to be localized. Think about all the data that will need to be globalized (date formats, number formats, and sorting text behavior).

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore with deeper research into topics of this chapter.

 Exercise 4.1 - test your knowledge

Use the Web to answer the following questions:

	What is the maximum number of characters that can be stored in a string
 ?

	When and why should you use a SecureString
 ?

	When is it appropriate to use a StringBuilder
 ?

	When should you use a LinkedList
 ?

	When should you use a SortedDictionary
 class rather than a SortedList
 class?

	What is the ISO culture code for Welsh?

	What is the difference between localization, globalization, and internationalization?

	In a regular expression, what does $ mean?

	In a regular expression, how could you represent digits?

	Why should you
not

 use the official standard for e-mail addresses to create a regular expression to validate a user's e-mail address?

 Exercise 4.2 - practice regular expressions

Create a console application named Ch04_Exercise02
 that prompts the user to enter a regular expression, and then prompts the user to enter some input and compare the two for a match until the user presses

Esc

 :

The default regular expression checks for at least one digit.

Enter a regular expression (or press ENTER to use the default): ^[a- z]+$

Enter some input: apples

apples matches ^[a-z]+$? True

Press ESC to end or any key to try again.

Enter a regular expression (or press ENTER to use the default): ^[a- z]+$

Enter some input: abc123xyz

abc123xyz matches ^[a-z]+$? False

Press

ESC to end or any key to try again.

 Exercise 4.3 - explore topics

Use the following links to read in more detail the topics covered in this chapter:

	

.NET Core API Reference

 : https://docs.microsoft.com/en-us/dotnet/core/api/index

	

String Class

 : https://docs.microsoft.com/en-us/dotnet/core/api/system.string

	

Regex Class

 : https://docs.microsoft.com/en-us/dotnet/core/api/system.text.regularexpressions.regex

	

Regular expressions in .NET

 : https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/regular-expressions

	

Regular Expression Language - Quick Reference

 : https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/quick-ref

	

RegExr: Learn, Build, & Test RegEx

 : http://regexr.com/

	

Collections (C# and Visual Basic)

 : https://docs.microsoft.com/en-us/dotnet/core/api/system.collections

 Summary

In this chapter, you explored the relationship between assemblies and namespaces, you learned about good choices for types to use to store and manipulate text and which collections to use for storing multiple items, and how to internationalize your code.

In the next chapter, you will learn about debugging, monitoring, and unit testing.

 Chapter5. Debugging, Monitoring, and Testing

This chapter is about debugging tools, monitoring, diagnosing problems, and testing your code, to remove bugs and ensure high performance, stability, and reliability.

This chapter covers the following topics:

	Debugging tools

	Monitoring performance and resource usage

	Unit testing an application

 Debugging tools

In this section, you will learn how to debug problems at design time, trace problems at runtime, and use types such as Debug
 , Trace
 , Process
 , and Stopwatch
 that are in the System.Diagnostics
 namespace.

 Debugging an application

For Visual Studio 2017, press
Ctrl

 +
Shift

 +
N

 , or navigate to
File

 |
New

 |
Project...

 .

In the
New Project

 dialog, from the
Installed

 |
Templates

 list, select
Visual C#

 . In the list at the center, select
Console App (.NET Core)

 , type the name Ch05_Debugging
 , change the location to C:\Code
 , type the solution name Chapter05
 , and then click on
OK

 .

For Visual Studio Code, create a new folder named Chapter05
 , create a new subfolder named Ch05_Debugging
 , and open the folder in Visual Studio Code. In the Integrated Terminal pane, enter the dotnet new console
 command, and restore packages.

Modify the template code to look like this:

 using static System.Console;

 namespace Ch05_Debugging
 {
 class Program
 {
 static double Add(double a, double b)
 {
 return a * b; // deliberate bug!
 }

 static void Main(string[] args)
 {
 double a = 4.5; // or use var
 double b = 2.5;
 double answer = Add(a, b);
 WriteLine($"{a} + {b} = {answer}");
 ReadLine(); // wait for user to press ENTER
 }
 }
 }

Run the console application and view the output:

4.5 + 2.5 = 11.25

There is a bug: 4.5
 added to 2.5
 should be 7
 and not 11.25
 !

We will use the debugging tools in Visual Studio 2017 or Visual Studio Code to squash the bug.

 Setting a breakpoint

Breakpoints allow us to mark a line of code that we want to pause at to find bugs. Click on the open curly brace at the beginning of the Main
 method and press
F9

 .

A red circle will appear in the margin bar on the left-hand side to indicate that a breakpoint has been set, as shown in the following screenshot:

[image: Setting a breakpoint]

Breakpoints can be toggled with
F9

 . You can also left-click in the margin to toggle the breakpoint on and off, or right-click to see more options, like remove, disable, or edit the breakpoint.

In Visual Studio 2017, go to
Debug

 |
Start Debugging

 , or click on the Start toolbar button, or press
F5

 .

In Visual Studio Code, go to
View

 |
Debug

 , or press
Shift

 +
Cmd

 +
D

 , and then click on the
Start Debugging

 button, or press
F5

 .

Visual Studio starts the console application executing and then pauses when it hits the breakpoint. This is known as
break mode

 . The line that will be executed next is highlighted in yellow and a yellow arrow points at the line from the gray margin bar, as shown in the following screenshot:

[image: Setting a breakpoint]

 The debugging toolbar

Visual Studio 2017 enables some extra toolbar buttons to make it easy to access debugging features. Here are a few of those:

	

Continue

 /
F5

 (green triangle): This button will run the code at full speed from the current position

	

Stop Debugging

 /
Shift

 +
F5

 (red square): This button will stop the program

	

Restart

 /
Ctrl

 or
Cmd

 +
Shift

 +
F5

 (circular black arrow): This button will stop and then immediately restart the program

	

Step into

 /
F11

 ,
Step over

 /
F10

 , and
Step out

 /
Shift

 +
F11

 (blue arrows over dots): This button will step through the code in various ways

The following screenshot illustrates Visual Studio 2017's extra toolbar buttons:

[image: The debugging toolbar]

The following screenshot illustrates Visual Studio Code's extra toolbar buttons:

[image: The debugging toolbar]

 Debugging windows

Visual Studio 2017 makes some extra windows visible so that you can monitor useful information, such as variables, while you step through your code. If you cannot find one of these windows, then, in Visual Studio 2017, on the
Debug

 menu, choose
Windows

 , and then select the window you want to view, as shown in the following screenshot:

[image: Debugging windows]

 Note

Most of the debug windows are only available when you are in the
Break

 mode.

In Visual Studio Code, the windows are all in the
Debug

 view on the left-hand side, as shown in the earlier screenshot.

The
Locals

 windows in Visual Studio 2017 and Visual Studio Code, show the name, value, and type for any local variables. Keep an eye on this window while you step through your code, as shown in the following screenshots:

[image: Debugging windows]

In Chapter 1
 ,
Hello, C#!, Welcome, .NET Core!

 , I introduced you to the
C# Interactive window

 . The similar but more basic Visual Studio 2017
Immediate Window

 , and Visual Studio Code
Debug Console

 , also allow live interaction with your code.

For example, you can ask a question such as, "What is 1+2?" by typing 1+2
 and pressing
Enter

 , as shown in the following screenshots:

[image: Debugging windows]

 Stepping through code

From Visual Studio 2017's
Debug

 menu, choose
Debug

 |
Step Into

 , or in both Visual Studio 2017 and Visual Studio Code, click on the
Step

Into

 button in the toolbar, or press
F11

 .

The yellow highlight steps forward one line, as shown in the following screenshot:

[image: Stepping through code]

Choose
Debug

 |
Step Over

 or press
F10

 . The yellow highlight steps forward one line. At the moment, there is no difference between using
Step Into

 or
Step Over

 .

Press
F10

 again so that the yellow highlight is on the line that calls the Add
 method:

[image: Stepping through code]

The difference between
Step Into

 or
Step Over

 can be seen when you are about to execute a method call. If you click on
Step Into

 , the debugger steps
into

 the method so that you can step through every line in that method. If you click on
Step Over

 , the whole method is executed in one go; it does
not

 skip over the method!

Click on
Step Into

 to step inside the method. If you are using Visual Studio 2017, hover your mouse over the multiply (*
) operator. A tooltip will appear, showing that this operator is multiplying a
 by b
 to give the result 11.25
 . We can see that this is the bug. You can pin the tooltip by clicking on the pin icon as I have done here:

[image: Stepping through code]

 Note

Visual Studio Code does not have the hover and pin features.

Fix the bug by changing the *
 to +
 .

We don't need to step through all the lines in the Add
 method, so choose
Step Out

 or press
Shift

 +
F11

 .

If you rerun the console application, you will find that it now calculates correctly.

 Customizing breakpoints

You can also right-click on a breakpoint and choose additional options, such as
Conditions...

 , as shown in the following screenshot:

[image: Customizing breakpoints]

The conditions for a breakpoint include an expression that must be true
 and a hit count to reach for the breakpoint to apply.

In the example, as you can see in the following screenshot, I have set a condition to only apply the breakpoint if both the answer variable is greater than 9
 and we have hit the breakpoint three times:

[image: Customizing breakpoints]

Visual Studio Code has similar, but more limited customization options.

You have now fixed a bug using some of Visual Studio's debugging features.

 Monitoring performance and resource usage

To write high quality applications, we need to be able to monitor the speed and efficiency of our code.

 Evaluating the efficiency of types

What is the best type to use for a scenario? To answer this question, we need to carefully consider what we mean by best. We should consider the following factors:

	

Functionality

 : This can be decided by checking whether the type provides the features you need

	

Memory size

 : This can be decided by the number of bytes of memory the type takes up

	

Performance

 : This can be decided by how fast the type is

	

Future needs

 : This depends on the changes in requirements and maintainability

There will be scenarios, such as storing numbers, where multiple types have the same functionality, so we will need to consider the memory and performance to make a choice.

If we need to store millions of numbers, then the best type to use would be the one that requires the least number of bytes of memory. If we only need to store a few numbers, but we need to perform lots of calculations on them, then the best type to use would be the one that runs fastest on a CPU.

You have seen the use of the sizeof()
 function to show the number of bytes a single instance of a type uses in memory. When we are storing lots of values in more complex data structures, such as arrays and lists, then we need a better way of measuring memory usage.

You can read lots of advice online and in books, but the only way to know for sure what the best type would be for your code is to compare the types yourself. In the next section, you will learn how to write the code to monitor the actual memory requirements and the actual performance when using different types.

Although, today a short
 variable might be the best choice, it might be a better choice to use an int
 variable even though it takes twice as much space in memory because we might need a wider range of values to be stored in the future.

There is another metric we should consider: maintenance. This is a measure of how much effort another programmer would have to put to understand and modify your code. If you use a nonobvious type choice, it might confuse the programmer who comes along later and needs to fix a bug or add a feature. There are analyzing tools that will generate a report that shows how easily maintainable your code is.

 Monitoring performance and memory use

The System.Diagnostics
 namespace has lots of useful types for monitoring your code. The first one we will look at is the Stopwatch
 type.

Add a new console application project named Ch05_Monitoring
 . Set the solution's start up project to be the current selection.

Modify the code to look like this:

 using System;
 using System.Diagnostics;
 using System.Linq;
 using static System.Console;
 using static System.Diagnostics.Process;

 namespace Ch05_Monitoring
 {
 class Recorder
 {
 static Stopwatch timer = new Stopwatch();
 static long bytesPhysicalBefore = 0;
 static long bytesVirtualBefore = 0;

 public static void Start()
 {
 GC.Collect();
 GC.WaitForPendingFinalizers();
 GC.Collect();
 bytesPhysicalBefore = GetCurrentProcess().WorkingSet64;
 bytesVirtualBefore =
 GetCurrentProcess().VirtualMemorySize64;
 timer.Restart();
 }

 public static void Stop()
 {
 timer.Stop();
 long bytesPhysicalAfter = GetCurrentProcess().WorkingSet64;
 long bytesVirtualAfter =
 GetCurrentProcess().VirtualMemorySize64;
 WriteLine("Stopped recording.");
 WriteLine($"{bytesPhysicalAfter - bytesPhysicalBefore:N0}
 physical bytes used.");
 WriteLine($"{bytesVirtualAfter - bytesVirtualBefore:N0}
 virtual bytes used.");
 WriteLine($"{timer.Elapsed} time span ellapsed.");
 WriteLine($"{timer.ElapsedMilliseconds:N0} total
 milliseconds ellapsed.");
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 Write("Press ENTER to start the timer: ");
 ReadLine();
 Recorder.Start();

 int[] largeArrayOfInts =
 Enumerable.Range(1, 10000).ToArray();

 Write("Press ENTER to stop the timer: ");
 ReadLine();
 Recorder.Stop();
 ReadLine();
 }
 }
 }

 Note

The Start
 method of the Recorder
 class uses the
garbage collector

 (
GC

) type to ensure that all the currently allocated memory is collected before recording the amount of used memory. This is an advanced technique that you should almost never use in production code.

You have created a class named Recorder
 with two methods to start and stop recording the time and memory used by any code you run. The Main
 method starts recording when the user presses
Enter

 , creates an array of ten thousand int
 variables, and then stops recording when the user presses

Enter

 again.

The Stopwatch
 type has some useful members, as shown in the following table:

	

Member

	

Description

	
The Restart
 method

	
This resets the elapsed time to zero and then starts the stopwatch.

	
The Stop
 method

	
This stops the stopwatch.

	
The Elapsed
 property

	
This is the elapsed time stored as a TimeSpan
 (
hours:minutes:seconds

).

	
The ElapsedMilliseconds
 property

	
This is the elapsed time in milliseconds stored as a long integer.

The Process
 type has some useful members, as shown in the following table:

	

Member

	

Description

	

VirtualMemorySize64

	
This displays the amount of the virtual memory, in bytes, allocated for the process.

	

WorkingSet64

	
This displays the amount of physical memory, in bytes, allocated for the process.

Run the console application without the debugger attached. The application will start recording the time and memory used when you press
Enter

 and then stop recording when you press
Enter

 again. Wait for a few seconds between pressing
Enter

 twice, as you can see that I did with the following output:

Press ENTER to start the timer:

Press ENTER to stop the timer:

Stopped recording.

942,080 physical bytes used.

0 virtual bytes used.

00:00:03.1166037 time span ellapsed.

3,116 total milliseconds ellapsed.

 Measuring the efficiency of processing strings

Now that you've seen how the Stopwatch
 and Process
 types can be used to monitor your code, we will use them to evaluate the best way to process string variables.

Comment out the previous code in the Main
 method by wrapping it in /* */
 .

Add the following code to the Main
 method. It creates an array of ten thousand int
 variables and then concatenates them with commas for separators using a string
 and a StringBuilder
 :

 int[] numbers = Enumerable.Range(1, 10000).ToArray();
 Recorder.Start();
 WriteLine("Using string");
 string s = "";
 for (int i = 0; i < numbers.Length; i++)
 {
 s += numbers[i] + ", ";
 }
 Recorder.Stop();
 Recorder.Start();
 WriteLine("Using StringBuilder");
 var builder = new System.Text.StringBuilder();
 for (int i = 0; i < numbers.Length; i++)
 {
 builder.Append(numbers[i]);
 builder.Append(", ");
 }
 Recorder.Stop();
 ReadLine();

Run the console application and view the output:

Using string

Stopped recording.

7,540,736 physical bytes used.

69,632 virtual bytes used.

00:00:00.0871730 time span ellapsed.

87 total milliseconds ellapsed.

Using StringBuilder

Stopped recording.

8,192 physical bytes used.

0 virtual bytes used.

00:00:00.0015680 time span ellapsed.

1 total milliseconds ellapsed.

We can summarize the results as follows:

	The string
 class used about 7.5 MB of memory and took 133 milliseconds

	The StringBuilder
 class used 8 KB of memory and took 1.5 milliseconds

In this scenario, StringBuilder
 is about one hundred times faster and about one thousand times more memory efficient when concatenating text!

 Tip

Good Practice

Avoid using the String.Concat
 method or the +
 operator with string
 variables. Instead, use StringBuilder
 or C# $
 string interpolation to concatenate variables together, especially inside loops.

 Unit testing an application

Microsoft has a proprietary unit testing framework known as MS Test, which is closely integrated with Visual Studio. However, to use a unit testing framework that is compatible with .NET Core, we will use the third-party framework:
xUnit.net

 .

 Creating a class library that needs testing with Visual Studio 2017

In Visual Studio 2017, add a new
Class

Library (.NET Standard)

 project named Ch05_Calculator
 , as shown in the following screenshot:

[image: Creating a class library that needs testing with Visual Studio 2017]

In Visual Studio 2017, in the
Solution Explorer

 window, right-click on the Class1.cs
 file and choose
Rename

 . Change its name to Calculator
 . You will be prompted to rename all references. Click
Yes

 .

Modify the code to look like this (note the deliberate bug!):

 namespace Ch05_Calculator
 {
 public class Calculator
 {
 public double Add(double a, double b)
 {
 return a * b;
 }
 }
 }

 Creating a unit test project with Visual Studio 2017

In Visual Studio 2017, add a new
xUnit

Test Project (.NET Core)

 project named Ch05_CalculatorUnitTests
 , as shown in the following screenshot:

[image: Creating a unit test project with Visual Studio 2017]

In
Solution Explorer

 , in the
Ch05_CalculatorUnitTests

 project, right-click on
Dependencies

 , and choose
Add Reference...

 . In the
Reference Manager

 window, select the checkbox for Ch05_Calculator
 and then click on
OK

 :

[image: Creating a unit test project with Visual Studio 2017]

In the
Solution Explorer

 window, right-click on the UnitTest1.cs
 file and choose
Rename

 . Change its name to CalculatorUnitTests
 . Click
Yes

 when prompted.

 Creating a class library that needs testing with Visual Studio Code

Inside the Chapter05
 folder, create a subfolder named Ch05_Calculator
 , and a subfolder named Ch05_CalculatorUnitTests
 .

In Visual Studio Code, open the Ch05_Calculator
 folder, and enter the following command in the Integrated Terminal window:

dotnet new classlib

Rename the file named Class1.cs
 to Calculator.cs
 , and modify the code to look like this (note the deliberate bug!):

 namespace Ch05_Calculator
 {
 public class Calculator
 {
 public double Add(double a, double b)
 {
 return a * b;
 }
 }
 }

Enter the following commands in the Integrated Terminal window:

dotnet restore

dotnet build

Open the Ch05_CalculatorUnitTests
 folder, and enter the following command in the Integrated Terminal window:

dotnet new xunit

Click on the file named Ch05_CalculatorUnitTests.csproj
 and modify the configuration as shown highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk"
 Version="15.0.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio"
 Version="2.2.0" />
 </ItemGroup>

<ItemGroup>
 <ProjectReference

 Include="..\Ch05_Calculator\Ch05_Calculator.csproj" />
 </ItemGroup>

 </Project>

 Note

Note the project reference to the Ch05_Calculator
 class library project.

Rename the file named UnitTest1.cs
 to CalculatorUnitTests.cs
 .

 Writing unit tests

In Visual Studio 2017 and Visual Studio Code, open the file named CalculatorUnitTests.cs
 and then modify the code to look like this:

 using Ch05_Calculator;
 using Xunit;

 namespace Ch05_CalculatorUnitTests
 {
 public class CalculatorUnitTests
 {
 [Fact]
 public void TestAdding2And2()
 {
 // arrange
 double a = 2;
 double b = 2;
 double expected = 4;
 var calc = new Calculator();
 // act
 double actual = calc.Add(a, b);
 // assert
 Assert.Equal(expected, actual);
 }
 [Fact]
 public void TestAdding2And3()
 {
 // arrange
 double a = 2;
 double b = 3;
 double expected = 5;
 var calc = new Calculator();
 // act
 double actual = calc.Add(a, b);
 // assert
 Assert.Equal(expected, actual);
 }
 }
 }

A well-written unit test will have three parts:

	

Arrange

 : This part will declare and instantiate variables for input and output

	

Act

 : This part will execute the unit that you are testing

	

Assert

 : This part will make one or more assertions about the output

 Running unit tests with Visual Studio 2017

Navigate to
Test

 |
Windows

 |
Test Explorer

 .

Navigate to
Build

 |
Build Solution

 , or press
F6

 .

In
Test Explorer

 , click
Run All

 .

Wait for a few seconds for the tests to complete, as shown in the following screenshot. Note that one test passed and the other failed. This is why it is good to write multiple tests for each unit:

[image: Running unit tests with Visual Studio 2017]

Clicking on a test shows more details and, from there, we should be able to diagnose the bug and fix it:

[image: Running unit tests with Visual Studio 2017]

Fix the bug in the Add
 method, and then rerun the unit tests to see that the bug is now fixed, as shown in the following screenshot:

[image: Running unit tests with Visual Studio 2017]

 Running unit tests with Visual Studio Code

At the Integrated Terminal, enter the following command:

dotnet test

You should see the following results:

[image: Running unit tests with Visual Studio Code]

Fix the bug in the Add
 method, and then rerun the unit tests to see that the bug is now fixed.

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore with deeper research into the topics covered in this chapter.

 Exercise 5.1 - test your knowledge

Answer the following questions:

	In Visual Studio 2017, what is the difference between pressing
F5

 ,
Ctrl

 +
F5

 ,
Shift

 +
F5

 , and
Ctrl

 +
Shift

 +
F5

 ?

	Which information can you find out about a process?

	How accurate is the Stopwatch
 ?

	How do you reference another project in a .csproj
 file?

	When writing a unit test, what are the three As?

	What dotnet
 command executes xUnit tests?

 Exercise 5.2 - practice debugging and unit testing

Create a console application named Ch05_Exercise02
 that performs some simple calculations related to your own work. Use the debugging and unit testing tools to fix any problems.

 Exercise 5.3 - explore topics

Use the following links to read more about the topics covered in this chapter:

	

Debugging in Visual Studio Code

:

 https://code.visualstudio.com/docs/editor/debugging

	

System.Diagnostics Namespaces

 :https://docs.microsoft.com/en-us/dotnet/core/api/system.diagnostics

	

Debugger Basics

 : https://docs.microsoft.com/en-us/visualstudio/debugger/debugger-basics

	

xUnit.net

 : http://xunit.github.io/

 Summary

In this chapter, you learned how to use the Visual Studio debugging and diagnostic features, and unit test your code.

In the next chapter, you will learn how to build your own types using object-oriented programming techniques.

 Chapter6.Building Your Own Types with Object-Oriented Programming

This chapter is about making your own types using
object-oriented programming

 (
OOP

). You will learn about all the different categories of members that a type can have, including fields to store data and methods to perform actions. You will use OOP concepts such as aggregation and encapsulation. You will also learn about C# 7 language features, such as tuple syntax support and out
 variables.

This chapter will cover the following topics:

	Talking about OOP

	Building class libraries

	Storing data with fields

	Writing and calling methods

	Controlling how parameters are passed

	Splitting classes using partial

	Controlling access with properties and indexers

 Talking about OOP

An object in the real world is a thing, such as a car or a person. An object in programming often represents something in the real world, such as a product or bank account, but can also be something more abstract.

In C#, we use class
 (usually) or struct
 (rarely) to define each type of object. You can think of a type as being a blueprint or template for an object.

	

Encapsulation

 is the combination of the data and actions that are related to an object. For example, a BankAccount
 type might have data, such as Balance
 and AccountName
 , as well as actions, such as Deposit
 and Withdraw
 . When encapsulating, you often want to control what can access those actions and the data.

	

Composition

 is about what an object is made of. For example, a car is composed of different parts, such as four wheels, several seats, an engine, and so on.

	

Aggregation

 is about what is related to an object. For example, a person could sit in the driver's seat and then becomes the car's driver.

	

Inheritance

 is about reusing code by having a subclass derive from a
base

 or
super

 class. All functionality in the base class becomes available in the derived class.

	

Abstraction

 is about capturing the core idea of an object and ignoring the details or specifics. Abstraction is a tricky balance. If you make a class more abstract, more classes would be able to inherit from it, but there will be less functionality to share.

	

Polymorphism

 is about allowing a derived class to override an inherited action to provide custom behavior.

 Building class libraries

Class library assemblies group types together into easily deployable units (DLL files). Apart from when you learned about unit testing, you have only created console applications to contain your code. To make the code that you write reusable across multiple projects, you should put it in class library assemblies, just like Microsoft does.

 Tip

Good Practice

Put types that you might reuse in a .NET Standard class library to enable them to be reused in .NET Core, .NET Framework, and Xamarin projects.

 Creating a class library with Visual Studio 2017

Start Microsoft Visual Studio 2017. In Visual Studio, press
Ctrl

 +
Shift

 +
N

 , or go to
File

 |
New

 |
Project...

 .

In the
New

Project

 dialog, in the
Installed

 |
Templates

 list, expand
Visual C#

 and select
.NET Standard

 . In the center list, select
Class Library (.NET Standard)

 , type
Name

 as Ch06_PacktLibrary
 , change
Location

 to C:\Code
 , type
Solution name

 as Chapter06
 , and then click on
OK

 .

 Note

Make sure you choose a Class Library (.NET Standard) and
not

 a Console App (.NET Core)!

In
Solution Explorer

 , right-click on the file named Class1.cs
 and choose
Rename

 . Type the name as Person
 . When you are prompted to rename all other references to the class, click on
Yes

 :

[image: Creating a class library with Visual Studio 2017]

 Creating a class library with Visual Studio Code

Create a folder named Chapter06
 with a subfolder named Ch06_PacktLibrary
 .

Start Visual Studio Code and open the Ch06_PacktLibrary
 folder.

View
Integrated Terminal

 and enter the following command:

dotnet new classlib

In the
Explorer

 pane, rename the file named Class1.cs
 to Person.cs
 .

Click Person.cs
 to open it, restore packages, and change the class name to Person
 .

 Defining a class

In either Visual Studio 2017 or Visual Studio Code, change the namespace to Packt.CS7
 because it is important to put your classes in a logically named namespace. In this, and the next chapter, we will learn about OOP and most of the new language features of C# 7. Your class file should now look like the following code:

 using System;

 namespace Packt.CS7
 {
 public class Person
 {
 }
 }

Note that the C# keyword, public
 , is applied before class
 . This keyword is called an
access modifier

 and it allows all code to access this class. If you do not explicitly apply the public
 keyword, then it would only be accessible within the assembly that defined it. We need it to be accessible outside the assembly too. This type does not yet have any members encapsulated within it. We will create some soon.

Members can be fields, methods, or specialized versions of both. They are described here:

	

Fields

 are used to store data. These are the three specialized fields:

	

Constants

 : The data in this field never changes

	

Read-only fields

 : The data in this field cannot change after the class is instantiated

	

Events

 : This refers to methods that you want to call automatically when something happens, such as clicking on a button

	

Methods

 are used to execute statements. These are the four specialized methods:

	

Constructors

 : These are the methods that execute when you use the new
 keyword to allocate memory and instantiate a class

	

Properties

 : These are the methods that execute when you want to access data

	

Indexers

 : These are the methods that execute when you want to access data

	

Operators

 : These are the methods that execute when you want to apply an operator

 Instantiating a class

In this section, we will make an
instance

 of the Person
 class.

 Referencing an assembly using Visual Studio 2017

In Visual Studio 2017, add a new console application project named Ch06_PeopleApp
 to your existing Chapter06
 solution.

 Note

Make sure you add a Console App (.NET Core) and
not

 a Class Library!

Right-click the solution, choose
Properties

 , and set the
Startup Project

 to a single startup project, and choose
Ch06_PeopleApp

 .

This project needs a reference to the class library we just made.

In
Solution Explorer

 , in the
Ch06_PeopleApp

 project, right-click on
Dependencies

 and choose
Add Reference...

 .

In the
Reference Manager

 dialog box, in the list on the left-hand side, choose
Projects

 |
Solution

 , select the Ch06_PacktLibrary
 assembly, and then click on
OK

 , as shown in the following screenshot:

[image: Referencing an assembly using Visual Studio 2017]

In
Solution Explorer

 , expand
Dependencies

 to show the reference to the
Ch06_PacktLibrary

 project, as shown in the following screenshot:

[image: Referencing an assembly using Visual Studio 2017]

 Referencing an assembly using Visual Studio Code

Create a subfolder under Chapter06
 named Ch06_PeopleApp
 .

In Visual Studio Code, open the Ch06_PeopleApp
 folder.

In Integrated Terminal, enter the following command:

dotnet new console

In the
Explorer

 pane, click the file named Ch06_PeopleApp.csproj
 and add a project reference to Ch06_PacktLibrary
 , as shown highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference
 Include="../Ch06_PacktLibrary/Ch06_PacktLibrary.csproj" />
 </ItemGroup>

 </Project>

In Visual Studio Code, in Integrated Terminal, enter the following commands:

dotnet restore

dotnet build

Both the Ch06_PacktLibrary
 project and Ch06_PeopleApp
 project will compile into DLL assemblies, as shown in the following screenshot:

[image: Referencing an assembly using Visual Studio Code]

 Importing a namespace

In both Visual Studio 2017 and Visual Studio Code, at the top of the Program.cs
 file, type the following code to import the namespace for our class and statically import the Console
 :

 using Packt.CS7;
 using static System.Console;

In the Main
 method, type the following code to create an instance of the Person
 type by using the new
 keyword. The new
 keyword allocates memory for the object and initializes any internal data. We could use Person
 in place of the var
 keyword, but the use of var
 involves less typing and is still just as clear:

 var p1 = new Person();
 WriteLine(p1.ToString());

Run the console application and view the output:

Packt.CS7.Person

 Managing multiple projects with Visual Studio Code

If you have multiple projects that you want to work with at the same time, either open a new window by choosing
File

 |
New Window

 or press
Shift

 +
Cmd

 +
N

 , or open a parent folder that contains the project folders that you want to work with.

If you choose to open a parent folder, be careful when executing commands in the Terminal because they will apply to whatever the current folder is.

In Visual Studio Code, open the Chapter06
 folder, and then in Terminal, enter the following command to change the directory to the console application project, as shown in the following screenshot:

cd Ch06_PeopleApp

[image: Managing multiple projects with Visual Studio Code]

 Inheriting from System.Object

Although our Person
 class did not explicitly choose to inherit from a type, all types indirectly inherit from a special type named System.Object
 . The implementation of the ToString
 method in the System.Object
 type simply outputs the full namespace and type name, as shown in the preceding output.

Back in the original Person
 class, we could have explicitly told the compiler that Person
 inherits from the System.Object
 type like this:

 public class Person : System.Object

 Note

When class B
inherits

 from class A, we say that A is the
base

 or
super

 class and B is the
derived

 or
subclass

 . In this case, System.Object
 is the base or super class and Person
 is the derived or subclass.

You can also use the C# type alias keyword, object
 :

 public class Person : object

Modify the code to explicitly inherit from object
 . Then, click inside the keyword and press
F2

 . You will see the Microsoft-defined System.Object
 type and its members. You do not need to understand any of this yet, but notice that it has a method named ToString
 , as shown in the following screenshot:

[image: Inheriting from System.Object]

 Tip

Good Practice

Assume other programmers know that if inheritance is not specified, the class will inherit from System.Object
 .

 Storing data with fields

Next, we will define some fields in the class to store information about a person.

 Defining fields

Inside the Person
 class, write the following code. At this point, we have decided that a person is composed of a name and a date of birth. We have encapsulated these two values inside the person. We have also made the fields public so that they are visible outside the class itself:

 public class Person : object
 {

// fields
 public string Name;
 public DateTime DateOfBirth;

 }

 Note

You can use any type for a field, including arrays and collections, for example, if you need to store multiple values.

In Visual Studio 2017, you might want to click, hold, and drag the tabs for one of your open files to arrange them so that you can see both Person.cs
 and Program.cs
 at the same time, as shown in the following screenshot:

[image: Defining fields]

In Visual Studio Code, you can click on the Split Editor button or press
Cmd +

\

 and then close one copy of the duplicated file editor so that you have two files open side by side, as shown in the following screenshot:

[image: Defining fields]

 Understanding access modifiers

Note that, like we did with the class, we applied the public
 keyword to these fields. If we hadn't, then they would be private
 to the class, which means they are accessible only inside the class.

There are four
access modifier

 keywords that you can apply to a class member, such as a field or method. Part of encapsulation is choosing how visible the members are:

	

Access Modifier

	

Description

	

private

	
Member is accessible inside the type only. This is the default.

	

internal

	
Member is accessible inside the type and any type in the same assembly.

	

protected

	
Member is accessible inside the type and any type that inherits from the type.

	

internal protected

	
Member is accessible inside the type, any type in the same assembly, and any type that inherits from the type.

	

public

	
Member is accessible everywhere.

 Tip

Good Practice

Explicitly apply one of the access modifiers to all type members even if you want to use the default, which is private
 .

Inside the Main
 method, change the code to look like this:

 var p1 = new Person();

p1.Name = "Bob Smith";
 p1.DateOfBirth = new DateTime(1965, 12, 22);
 WriteLine($"{p1.Name} was born on {p1.DateOfBirth:dddd, d MMMM yyyy}");

Run the application and view the output:

Bob Smith was born on Wednesday, 22 December 1965

You can also initialize fields using a short-hand object initializer syntax using curly braces.

Add the following code underneath the existing code to create another new person. Notice the different format code for the date of birth when writing to the console:

 var p2 = new Person { Name = "Alice Jones", DateOfBirth = new
 DateTime(1998, 3, 17) };
 WriteLine($"{p2.Name} was born on {p2.DateOfBirth:d MMM yy}");

Run the application and view the output:

Bob Smith was born on Wednesday, 22 December 1965

Alice Jones was born on 17 Mar 98

 Storing a value using the enum keyword

Sometimes, a value needs to be one of a limited list of options. For example, a person may have a favorite ancient world wonder. Sometimes, a value needs to be combination of a limited list of options. For example, a person may have a bucket list of ancient world wonders they want to visit. We can store this data using an enum
 type.

An enum
 is a very efficient way of storing one or more choices because, internally, it uses int
 values in combination with a lookup table of string descriptions.

In Visual Studio 2017, add a new class to the Ch06_PacktLibrary
 project named WondersOfTheAncientWorld
 by pressing
Shift

 +
Alt

 +
C

 or going to
Project

 |
Add Class...

 .

In Visual Studio Code, add a new class to the project by selecting Ch06_PacktLibrary
 , clicking the New File button in the mini toolbar, and entering the name WondersOfTheAncientWorld.cs
 , as shown in the following screenshot:

[image: Storing a value using the enum keyword]

Modify the WondersOfTheAncientWorld.cs
 class file to make it look like this:

 namespace Packt.CS7
 {
 public enum WondersOfTheAncientWorld
 {
 GreatPyramidOfGiza,
 HangingGardensOfBabylon,
 StatueOfZeusAtOlympia,
 TempleOfArtemisAtEphesus,
 MausoleumAtHalicarnassus,
 ColossusOfRhodes,
 LighthouseOfAlexandria
 }
 }

In the Person
 class, add the following statement to your list of fields:

 public WondersOfTheAncientWorld FavouriteAncientWonder;

Back in the Main
 method of Program.cs
 , add the following statements:

 p1.FavouriteAncientWonder =
 WondersOfTheAncientWorld.StatueOfZeusAtOlympia;
 WriteLine($"{p1.Name}'s favourite wonder is
 {p1.FavouriteAncientWonder}");

Run the application and view the additional output:

Bob Smith's favourite wonder is StatueOfZeusAtOlympia

For the bucket list, we could create a collection of instances of the enum
 , but there is a better way. We can combine multiple choices into a single value using
flags

 .

Modify the enum
 to look as shown in the following code. Note that I have used the left shift operator (<<
) to set individual bits within the flag. I could also have set the values to 1, 2, 4, 8, 16, 32, and so on:

 namespace Packt.CS7
 {

[System.Flags]

 public enum WondersOfTheAncientWorld :
byte

 {

None = 0

,
 GreatPyramidOfGiza
= 1

,
 HangingGardensOfBabylon
= 1 << 1

,
 StatueOfZeusAtOlympia
= 1 << 2

,
 TempleOfArtemisAtEphesus
= 1 << 3

,
 MausoleumAtHalicarnassus
= 1 << 4

,
 ColossusOfRhodes
= 1 << 5

,
 LighthouseOfAlexandria
= 1 << 6

 }
 }

 Note

We are assigning explicit values for each choice that would not overlap when looking at the bits stored in memory. We must also mark the enum
 with the System.Flags
 attribute. Normally, an enum
 uses an int
 variable internally, but since we don't need values that big, we can make it more efficient by telling it to use a byte
 variable.

If we want to indicate that our bucket list includes the
Hanging Gardens

 and the
Mausoleum at Halicarnassus

 , then we would want the
16

 and
2

 bits set to 1
 . In other words, we would store the value 18
 :

	

64

	

32

	

16

	

8

	

4

	

2

	

1

	

0

	
0

	
0

	
1

	
0

	
0

	
1

	
0

	
0

In the Person
 class, add the following statement to your list of fields:

 public WondersOfTheAncientWorld BucketList;

Back in the Main
 method of Ch06_PeopleApp
 , add the following statements to set the bucket list using the |
 operator (logical OR) to combine enum
 values. We could also set the value using the number 18
 cast into the enum
 type as in the comment:

 p1.BucketList = WondersOfTheAncientWorld.HangingGardensOfBabylon |
 WondersOfTheAncientWorld.MausoleumAtHalicarnassus;
 // p1.BucketList = (WondersOfTheAncientWorld)18;
 WriteLine($"{p1.Name}'s bucket list is {p1.BucketList}");

Run the application and view the additional output:

Bob Smith's bucket list is HangingGardensOfBabylon,
MausoleumAtHalicarnassus

 Tip

Good Practice

Use enum
 values to store combinations of discreet options. Derive an enum
 from byte
 if there are up to eight options, from short
 if there are up to 16 options, from int
 if there are up to 32 options, and from long
 if there are up to 64 options.

 Storing multiple values using collections

Let's add a field to store a person's children. This is an example of aggregation because children are instances of a class that is related to the current person, but are not part of the person itself.

We will use a generic List<T>
 collection type, so we need to import the System.Collections.Generic
 namespace:

 using System.Collections.Generic;

Then we can declare a new field in the Person
 class:

 public List<Person> Children = new List<Person>();

Notice that we need to ensure the collection is initialized to a new instance of a collection before we can add items to the collection.

In the Main
 method, add the following code:

 p1.Children.Add(new Person());
 p1.Children.Add(new Person());
 WriteLine($"{p1.Name} has {p1.Children.Count} children.");

Run the application and view the output:

Bob Smith has 2 children.

 Making a field static

The fields that we have created so far have all been instance members, meaning that a copy of each field exists for each instance of the class that is created.

Sometimes, you want to define a field that only has one copy that is shared across all instances. These are called
static

 members.

In the Ch06_PacktLibrary
 project, add a new class named BankAccount
 . Modify the class as shown in the following code:

 namespace Packt.CS7
 {
 public class BankAccount
 {
 public string AccountName;
 public decimal Balance;
 public static decimal InterestRate;
 }
 }

 Note

Each instance of BankAccount
 will have its own AccountName
 and Balance
 , but all instances will share a single InterestRate
 value.

In Program.cs
 and its Main
 method, add the following code where we will set the shared interest rate and then create two instances of the BankAccount
 type:

 BankAccount.InterestRate = 0.012M;
 var ba1 = new BankAccount();
 ba1.AccountName = "Mrs. Jones";
 ba1.Balance = 2400;
 WriteLine($"{ba1.AccountName} earned {ba1.Balance *
 BankAccount.InterestRate:C} interest.");
 var ba2 = new BankAccount();
 ba2.AccountName = "Ms. Gerrier";
 ba2.Balance = 98;
 WriteLine($"{ba2.AccountName} earned {ba2.Balance *
 BankAccount.InterestRate:C} interest.");

Run the application and view the additional output:

Mrs. Jones earned 28.80 interest.

Ms. Gerrier earned 1.18 interest.

 Note

:C
 is a format code that tells .NET to use the currency format for the numbers. In Chapter 4
 ,
Using .NET Standard Types

 , you learned how to control the culture that determines the currency symbol.

 Making a field constant

If the value of a field will never
ever

 change, you can use the const
 keyword and assign the value at compile time.

Inside the Person
 class, add the following code:

 // constants
 public const string Species = "Homo Sapien";

Inside the Main
 method, change the code to look like this. Note that, to read a constant field, you must write the name of the class, not the name of an instance of the class:

 WriteLine($"{p1.Name} is a {Person.Species}");

Run the application and view the additional output:

Bob Smith is a Homo Sapien

Examples of const
 fields in Microsoft types include System.Int32.MaxValue
 and System.Math.PI
 because neither value will ever change, as you can see in the following screenshot:

[image: Making a field constant]

 Note

Good Practice

Constants should be avoided for two important reasons:

The value must be known at compile time, and it must be expressible as a literal string, Boolean, or number value.

Every reference to the const
 field is replaced with the literal value at compile time, which will, therefore, not be reflected if the value changes in a future version.

 Making a field read-only

A better choice for fields that should not change is to mark them as read-only.

Inside the Person
 class, write the following code:

 // read-only fields
 public readonly string HomePlanet = "Earth";

Inside the Main
 method, add the following code statement. Notice that, to get a read-only field, you must write the name of an instance of the class, not the type name, unlike const
 :

 WriteLine($"{p1.Name} was born on {p1.HomePlanet}");

Run the application and view the output:

Bob Smith was born on Earth

 Tip

Good Practice

Use read-only fields over const
 fields for two important reasons:

The value can be calculated or loaded at runtime and can be expressed using any executable statement. So, a read-only field can be set using a constructor.

Every reference to the field is a live reference, so any future changes will be correctly reflected by calling code.

 Initializing fields with constructors

Fields often need to be initialized at runtime. You do this in a constructor that will be called when you make an instance of the class using the new
 keyword. Constructors execute before any fields are set by the code that is using the type.

Inside the Person
 class, add the following highlighted code after the existing read-only HomePlanet
 field:

 // read-only fields
 public readonly string HomePlanet = "Earth";

public readonly DateTime Instantiated;

// constructors
 public Person()
 {
 // set default values for fields
 // including read-only fields
 Name = "Unknown";
 Instantiated = DateTime.Now;

 }

Inside the Main
 method, add the following code:

 var p3 = new Person();
 WriteLine($"{p3.Name} was instantiated at {p3.Instantiated:hh:mm:ss} on
 {p3.Instantiated:dddd, d MMMM yyyy}");

Run the application and view the output:

Unknown was instantiated at 11:58:12 on Sunday, 12 March 2017

You can have multiple constructors in a type.

Inside the Person
 class, add the following code:

 public Person(string initialName)
 {
 Name = initialName;
 Instantiated = DateTime.Now;
 }

Inside the Main
 method, add the following code:

 var p4 = new Person("Aziz");
 WriteLine($"{p4.Name} was instantiated at
 {p4.Instantiated:hh:mm:ss} on {p4.Instantiated:dddd, d MMMM
 yyyy}");

Run the application and view the output:

Aziz was instantiated at 11:59:25 on Sunday, 4 June 2017

Constructors are a special category of
method

 . Let's look at methods in more detail.

 Writing and calling methods

Methods are type members that execute a block of statements.

A method that performs some actions but does not return a value shows this by showing that it returns the void
 type before the name of the method. A method that performs some actions and returns a value shows this by showing that it returns the type of that value before the name of the method.

For example, you will create two methods:

	
WriteToConsole
 : This will perform an action (writing a line), but it will return nothing from the method, indicated by the void
 keyword

	
GetOrigin
 : This will return a string value, indicated by the string
 keyword

Inside the Person
 class, statically import System.Console
 , and then add the following code:

 // methods
 public void WriteToConsole()
 {
 WriteLine($"{Name} was born on {DateOfBirth:dddd, d MMMM
 yyyy}");
 }

 public string GetOrigin()
 {
 return $"{Name} was born on {HomePlanet}";
 }

Inside the Main
 method, add the following code:

 p1.WriteToConsole();
 WriteLine(p1.GetOrigin());

Run the application and view the output:

Bob Smith was born on Wednesday, 22 December 1965

Bob Smith was born on Earth

 Combining multiple values with tuples

Each method can only return a single value that has a single type. That type could be a simple type, such asstring
 in the previous example, a complex type, such asPerson
 , or a collection type, such asList<Person>
 .

Imagine that we want to define a method that returns both a string
 and an int
 value. We could define a new type with a string
 field and an int
 field and return an instance of that complex type. Or we could use tuples.

Tuples have been a part of some languages such as F# since their first version, but .NET only added support for them in .NET 4.0 with the System.Tuple
 type, and it was only in C# 7 that the C# language added syntax support for tuples.

While adding tuple support to the C# 7 language, .NET also added a new System.ValueTuple
 type that is more efficient in some common scenarios than the old .NET 4.0 System.Tuple
 type.

 Note

System.ValueTuple is not part of .NET Standard 1.6, and therefore not available by default in .NET Core 1.0 or 1.1 projects.

 Referencing the System.ValueTuple package with Visual Studio 2017

In Visual Studio 2017, in
Solution Explorer

 , in the
Ch06_PacktLibrary

 project, right-click on
Dependencies

 and choose
Manage NuGet Packages...

Click the
Browse

 tab, search for System.ValueTuple
 , select the package, and click
Install

 , as shown in the following screenshot:

[image: Referencing the System.ValueTuple package with Visual Studio 2017]

In the
Review Changes

 dialog, click
OK

 .

In the
License Agreement

 dialog, click
I Accept

 .

 Referencing the System.ValueTuple package with Visual Studio Code

In Visual Studio Code, in the Ch06_PacktLibrary
 project, open the Ch06_PacktLibrary.csproj
 file and add a package reference, as shown in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard1.4</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="System.ValueTuple"
 Version="4.3.0" />
 </ItemGroup>

 </Project>

When prompted, restore dependency packages.

In the Ch06_PeopleApp
 project, open the Ch06_PeopleApp.csproj
 file, and add the same package reference, and when prompted, restore dependency packages.

 Defining methods with tuples

First, we will define a method that would work in C# 4 or later. Then we will use the new C# 7 language support.

Inside the Person
 class, add the following code to define two methods, the first with a return type of System.Tuple<string, int>
 and the second with a return
 type using C# 7 syntax:

 // the old C# 4 and .NET 4.0 System.Tuple type
 public Tuple<string, int> GetFruitCS4()
 {
 return Tuple.Create("Apples", 5);
 }

 // the new C# 7 syntax and new System.ValueTuple type
 public (string, int) GetFruitCS7()
 {
 return ("Apples", 5);
 }

Inside the Main
 method, add the following code:

 Tuple<string, int> fruit4 = p1.GetFruitCS4();
 WriteLine($"There are {fruit4.Item2} {fruit4.Item1}.");

 (string, int) fruit7 = p1.GetFruitCS7();
 WriteLine($"{fruit7.Item1}, {fruit7.Item2} there are.");

Run the application and view the output:

There are 5 Apples.

Apples, 5 there are.

 Naming the fields of a tuple

To access the fields of a tuple, the default names are
Item1

 ,
Item2

 , and so on.

You can explicitly specify the field names. Inside the Person
 class, add the following code to define a method:

 public (string Name, int Number) GetNamedFruit()
 {
 return (Name: "Apples", Number: 5);
 }

Inside the Main
 method, add the following code:

 var fruitNamed = p1.GetNamedFruit();
 WriteLine($"Are there {fruitNamed.Number} {fruitNamed.Name}?");

Run the application and view the output:

Are there 5 Apples?

 Deconstructing tuples

You can also deconstruct tuples into separate variables. The deconstructing declaration has the same syntax as named field tuples, but without a variable name for the whole tuple. This has the effect of splitting the tuple into its parts and assigning those parts to new variables.

Inside the Main
 method, add the following code:

 (string fruitName, int fruitNumber) = p1.GetFruitCS7();
 WriteLine($"Deconstructed: {fruitName}, {fruitNumber}");

Run the application and view the output:

Deconstructed: Apples, 5

 Note

Deconstruction is not just for tuples. Any type can be deconstructed if it has a
Deconstructor

 method. You can read about this at the following link: https://docs.microsoft.com/en-us/dotnet/articles/csharp/tuples#deconstruction
 .

 Defining and passing parameters to methods

Methods can have parameters passed to them to change their behavior. Parameters are defined a bit like variable declarations, but inside the parentheses of the method.

Inside the Person
 class, add the following code to define two methods, the first without parameters and the second with one parameter:

 public string SayHello()
 {
 return $"{Name} says 'Hello!'";
 }

 public string SayHelloTo(string name)
 {
 return $"{Name} says 'Hello {name}!'";
 }

Inside the Main
 method, add the following code:

 WriteLine(p1.SayHello());
 WriteLine(p1.SayHelloTo("Emily"));

Run the application and view the output:

Bob Smith says 'Hello!'

Bob Smith says 'Hello Emily!'

 Overloading methods

When typing a statement that calls a method, IntelliSense, in both Visual Studio 2017 and Visual Studio Code with the appropriate language extension installed, should show useful tooltips.

In Visual Studio 2017, you can press
Ctrl

 +
K

 ,
I

 or go to
Edit

 |
IntelliSense

 |
Quick Info

 to see
Quick Info

 of a method, as shown in the following screenshot:

[image: Overloading methods]

Here is the SayHelloTo
 method's quick info:

[image: Overloading methods]

Instead of having two different method names, we could give both methods the same name. This is allowed because the methods each have a different signature. A method signature is a list of parameter types that can be passed when calling the method.

In the Person
 class, change the name of the SayHelloTo
 method to SayHello
 . Now, when you view the quick info for the method, it tells you that it has one additional overload:

[image: Overloading methods]

 Tip

Good Practice

Use overloaded methods to simplify your class by making it appear to have fewer methods.

 Optional parameters and named arguments

Another way to simplify methods is to make parameters optional. You make a parameter optional by assigning a default value inside the method parameter list. Optional parameters must always come last in the list of parameters.

You will now create a method with three optional parameters.

Inside the Person
 class, add the following code:

 public void OptionalParameters(string command = "Run!",
 double number = 0.0, bool active = true)
 {
 WriteLine($"command is {command}, number is {number}, active is
 {active}");
 }

Inside the Main
 method, add the following code:

 p1.OptionalParameters();

Watch IntelliSense's
Quick Info

 appear as you type the code, and you will see a tooltip, showing the three optional parameters with default values, as shown in the following screenshot:

[image: Optional parameters and named arguments]

When you run the application, you will see the following output:

command is Run!, number is 0, active is True

In the Main
 method, add the following line, which passes a string for the command and a double for the number parameters:

 p1.OptionalParameters("Jump!", 98.5);

Run the application and see the output:

command is Jump!, number is 98.5, active is True

The default values for command and number have been replaced, but the default for active is still true.

Optional parameters are often combined with naming parameters when you call the method, because naming a parameter allows the values to be passed in a different order than how they were declared.

In the Main
 method, add the following line, which passes a string for the command and a double for the number parameters but using named parameters, so that the order they are passed can be swapped around:

 p1.OptionalParameters(number: 52.7, command: "Hide!");

Run the application and see the output:

command is Hide!, number is 52.7, active is True

You can even use named parameters to skip over optional parameters.

In the Main
 method, add the following line that passes a string for the command using positional order, skips the number parameter, and uses the named active parameter:

 p1.OptionalParameters("Poke!", active: false);

Run the application and see the output:

command is Poke!, number is 0, active is False

 Controlling how parameters are passed

When a parameter is passed into a method, it can be passed in one of three ways:

	By
value

 (this is the default): think of these as being
in-only

	By
reference

 as a ref
 parameter: think of these as being
in-and-out

	As an out
 parameter: think of these as being
out-only

In the Person
 class, add the following method:

 public void PassingParameters(int x, ref int y, out int z)
 {
 // out parameters cannot have a default
 // AND must be initialized inside the method
 z = 99;

 // increment each parameter
 x++;
 y++;
 z++;
 }

In the Main
 method, add the following statements to declare some int
 variables and pass them into the method:

 int a = 10;
 int b = 20;
 int c = 30;
 WriteLine($"Before: a = {a}, b = {b}, c = {c}");
 p1.PassingParameters(a, ref b, out c);
 WriteLine($"After: a = {a}, b = {b}, c = {c}");

Run the application and see the output:

Before: a = 10, b = 20, c = 30

After: a = 10, b = 21, c = 100

 Note

When passing a variable as a parameter by default, its current
value

 gets passed,
not

 the variable itself. Therefore, x
 is a copy of the variable a
 . Variable a
 retains its original value of 10.

When passing a variable as a ref
 parameter, a
reference

 to the variable gets passed into the method. Therefore, y
 is a reference to b
 . Variable b
 gets incremented when parameter y
 gets incremented.

When passing a variable as an out
 parameter, a
reference

 to the variable gets passed into the method. Therefore, z
 is a reference to c
 . Variable c
 gets replaced by whatever code executes inside the method. We could simplify the code in the Main
 method by not assigning the value 30
 to the variable c
 since it will always be replaced anyway.

In C# 7, we can simplify code that uses out
 variables.

Add the following statements to the Main
 method:

 // simplified C# 7 syntax for out parameters
 int d = 10;
 int e = 20;
 WriteLine($"Before: d = {d}, e = {e}, f doesn't exist yet!");
 p1.PassingParameters(d, ref e, out int f);
 WriteLine($"After: d = {d}, e = {e}, f = {f}");

 Note

In C# 7, the ref
 keyword is not just for passing parameters into a method, it can also be applied to the return value. This allows an external variable to reference an internal variable and modify its value after the method call. This might be useful in advanced scenarios, for example, passing around placeholders into big data structures, but it's beyond the scope of this book.

 Splitting classes using partial

When working on large projects with multiple team members, it is useful to be able to split the definition of a complex class across multiple files. You do this using the partial
 keyword.

Imagine we want to add a new method to the Person
 class without having to ask another programmer to close the Person.cs
 file. If the class is defined as partial
 , then we can split it over as many separate files as we like.

In the Person
 class, add the partial
 keyword, as shown highlighted in the following code:

 namespace Packt.CS7
 {
 public
partial

 class Person
 {

In Visual Studio 2017, on the
Project

 menu, go to
Add Class...

 or press
Shift

 +
Alt

 +
C

 . Enter the name Person2
 . We cannot enter Person
 because Visual Studio 2017 isn't smart enough to understand what we want to do. Instead, we must now rename the new class to Person
 , change the namespace, and add the public partial
 keywords, as shown in the following code:

 namespace Packt.CS7
 {

public partial class Person

 {

In Visual Studio Code, click the New File button in the Ch06_PacktLibrary
 folder in the
Explorer

 pane and enter a name of Person2.cs
 . Add the following statements to the new file:

 namespace Packt.CS7
 {
 public partial class Person
 {
 }
 }

 Note

The rest of the code we write for this chapter will be written in the Person2.cs
 file.

 Controlling access with properties and indexers

Earlier, you created a method named GetOrigin
 that returned a string
 containing the name and origin of the person. Languages such as Java do this a lot. C# has a better way:
properties

 .

A property is simply a method (or pair of methods) that act look and like a field when you want to get or set a value, thereby simplifying the syntax.

 Defining read-only properties

In the Person2.cs
 file, inside the Person
 class, add the following code to define three properties:

	The first property will perform the same role as the GetOrigin
 method using the property
 syntax that works with all versions of C# (although, it uses the C# 6 and later string interpolation syntax).

	The second property will return a greeting message using the C# 6 and later lambda expression (=>
) syntax.

	The third property will calculate the person's age.

Here is the code:

 // property defined using C# 1 - 5 syntax
 public string Origin
 {
 get
 {
 return $"{Name} was born on {HomePlanet}";
 }
 }

 // two properties defined using C# 6+ lambda expression syntax
 public string Greeting => $"{Name} says 'Hello!'";

 public int Age => (int)(System.DateTime.Today
 .Subtract(DateOfBirth).TotalDays / 365.25);

In the Main
 method, add the following code. You can see that, to set or get a property, you treat it like a field:

 var max = new Person
 {
 Name = "Max",
 DateOfBirth = new DateTime(1972, 1, 27)
 };
 WriteLine(max.Origin);
 WriteLine(max.Greeting);
 WriteLine(max.Age);

Run the application and view the output:

Max was born on Earth

Max says 'Hello!'

43

 Defining settable properties

To create a settable property, you must use the older syntax and provide a pair of methods-not just a get
 part, but also a set
 part.

In the Person2.cs
 file, add the following code to define a string
 property that has both a get
 and set
 method (aka
getter

 and
setter

). Although, you have not manually created a field to store the person's favorite ice cream, it is there, automatically created by the compiler for you:

 public string FavoriteIceCream { get; set; } // auto-syntax

Sometimes, you need more control over what happens when a property is set. In this scenario, you must use a more detailed syntax and manually create a private
 field to store the value for the property:

 private string favoritePrimaryColor;
 public string FavoritePrimaryColor
 {
 get
 {
 return favoritePrimaryColor;
 }
 set
 {
 switch (value.ToLower())
 {
 case "red":
 case "green":
 case "blue":
 favoritePrimaryColor = value;
 break;
 default:
 throw new System.ArgumentException($"{value} is not a
 primary color. Choose from: red, green, blue.");
 }
 }
 }

In the Main
 method, add the following code:

 max.FavoriteIceCream = "Chocolate Fudge";
 WriteLine($"Max's favorite ice-cream flavor is {max.FavoriteIceCream}.");
 max.FavoritePrimaryColor = "Red";
 WriteLine($"Max's favorite primary color is {max.FavoritePrimaryColor}.");

Run the application and view the output:

Max's favorite ice-cream flavor is Chocolate Fudge.

Max's favorite primary color is Red.

If you try to set the color to any value other than red, green, or blue, then the code will throw an exception. The calling code could then use a try
 statement to display the error message.

 Tip

Good Practice

Use properties instead of fields when you want to validate what value can be stored, when you want to data bind in XAML (we will cover this in Chapter 13
 ,
Building Universal Windows Platform Apps Using XAML

), and when you want to read and write to fields without using methods.

 Defining indexers

Indexers allow the calling code to use the array syntax to access a property. For example, the string
 type defines an
indexer

 so that the calling code can access individual characters in the string individually. We will define an indexer to simplify access to the children of a person.

In the Person2.cs
 file, add the following code to define an indexer to get and set a child using the index (position) of the child:

 // indexers
 public Person this[int index]
 {
 get
 {
 return Children[index];
 }
 set
 {
 Children[index] = value;
 }
 }

 Note

You can overload indexers so that different types can be used to call them. For example, as well as passing an int
 , you could also pass a string
 .

In the Main
 method, add the following code. After adding to the children, we will access the first and second child using the longer Children
 field and the shorter indexer syntax:

 max.Children.Add(new Person { Name = "Charlie" });
 max.Children.Add(new Person { Name = "Ella" });
 WriteLine($"Max's first child is {max.Children[0].Name}");
 WriteLine($"Max's second child is {max.Children[1].Name}");
 WriteLine($"Max's first child is {max[0].Name}");
 WriteLine($"Max's second child is {max[1].Name}");

Run the application and view the output:

Max's first child is Charlie

Max's second child is Ella

Max's first child is Charlie

Max's second child is Ella

 Tip

Good Practice

Only use indexers if it makes sense to use the square bracket/array syntax. As you can see from the preceding example, indexers rarely add much value.

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

 Exercise 6.1 - test your knowledge

Answer the following questions:

	What are the four access modifiers and what do they do?

	What is the difference between the static
 , const
 , and readonly
 keywords?

	How many parameters can a method have?

	What does a constructor do?

	Why do you need to apply the [Flags]
 attribute to an enum
 keyword when you want to store combined values?

	Why is the partial
 keyword useful?

 Exercise 6.2 - practice writing mathematical methods

Create a console application named Ch06_Exercise02
 and add three static methods to the Program
 class to perform the following tasks:

	Numbers used to count are called "cardinal" numbers, for example, 1, 2, 3. Numbers used to order are "ordinal" numbers, for example, 1st
 , 2nd
 , 3rd
 . Write a method named CardinalToOrdinal
 that converts a cardinal int
 into an ordinal string
 , for example, it converts 1 into 1st, 2 into 2nd, and so on.

	The factorial of 5 is 120, because factorials are calculated by multiplying the number by one less than itself and so on, like this: 5 x 4 x 3 x 2 x 1 = 120. The factorial of 3 is 6 because it is 3 x 2 x 1 = 6. Write a method named Factorial
 that calculates the factorial for an int
 variable passed to it as a parameter. You could either use a loop or a technique called
recursion

 , which means a method that calls itself.

	Prime factors are the combination of the smallest prime numbers, that, when multiplied together, will produce the original number. For example, the prime factors of 30 are 2 x 3 x 5. The prime factors of 4 are 2 x 2. Write a method named PrimeFactors
 that, when passed an int
 variable as a parameter, returns a string
 showing the prime factors as stated earlier.

In the Main
 method, prompt the user to press A, B, or C to choose between the three mathematical functions. Then, prompt the user to enter a number as input and then show the output.

 Exercise 6.3 - explore topics

Use the following links to read more about this chapter's topics:

	

Fields (C# programming guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/fields

	

Access modifiers (C# programming guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/access-modifiers

	

Constructors (C# programming guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/constructors

	

Methods (C# programming guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/methods

	

Properties (C# programming guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/properties

 Summary

In this chapter, you learned about making your own types using OOP. You learned about some of the different categories of members that a type can have, including fields to store data and methods to perform actions. You used OOP concepts, such as aggregation and encapsulation, and explored some of the new language syntax features in C# 7.

In the next chapter, you will take these concepts further by defining delegates and events, implementing interfaces, and inheriting from existing classes.

 Chapter7.Implementing Interfaces and Inheriting Classes

This chapter is about deriving new types from existing ones using
object-oriented programming

 (
OOP

). You will learn how to define operators and local functions, delegates and events, implement interfaces about base and derived classes, override a type member, use polymorphism, create extension methods, and cast between classes in an inheritance hierarchy.

This chapter covers the following topics:

	Setting up a class library and console application

	Simplifying methods with operators

	Defining local functions

	Raising and handling events

	Implementing interfaces

	Managing memory with reference and value types

	Inheriting from classes

	Casting within inheritance hierarchies

	Inheriting and extending .NET types

 Setting up a class library and console application

We will start by defining a solution/project like the one created in Chapter 6
 ,
Building Your Own Types with Object-Oriented Programming

 . If you completed all the exercises in that chapter, then you can open it and continue with it. Otherwise, follow the instructions for your preferred development tool below.

 Using Visual Studio 2017

In Visual Studio 2017, press
Ctrl

 +
Shift

 +
N

 or go to
File

 |
New

 |
Project...

 .

In the
New Project

 dialog, in the
Installed

 |
Templates

 list, expand
Visual C#

 , and select
.NET Standard

 . In the center list, select
Class Library (.NET Standard)

 , type
Name

 as Ch07_PacktLibrary
 , change
Location

 to C:\Code
 , type
Solution name

 as Chapter07
 , and then click on
OK

 .

In
Solution Explorer

 , right-click on the file named Class1.cs
 and choose
Rename

 . Type the name as Person
 . Modify the contents like this:

 namespace Packt.CS7
 {
 public class Person
 {
 }
 }

Add a new console application project named Ch07_PeopleApp
 .

In the solution's properties, set the startup project to be the Ch07_PeopleApp
 project.

In
Solution Explorer

 , in the Ch07_PeopleApp
 project, right-click on
Dependencies

 and choose
Add Reference...

 .

In the
Reference Manager

 dialog box, in the list on the left-hand side, choose
Projects

 , select the Ch07_PacktLibrary
 assembly, and then click on
OK

 .

 Using Visual Studio Code

Create a folder named Chapter07
 with two subfolders named Ch07_PacktLibrary
 and Ch07_PeopleApp
 .

Start Visual Studio Code and open the Chapter07
 folder.

In
Integrated Terminal

 , enter the following commands:

cd Ch07_PacktLibrary

dotnet new classlib

cd ..

cd Ch07_PeopleApp

dotnet new console

In the
Explorer

 pane, in the Ch07_PacktLibrary project, rename the file named Class1.cs
 to Person.cs
 . Modify the contents like this:

 namespace Packt.CS7
 {
 public class Person
 {
 }
 }

In the
Explorer

 pane, expand the folder named Ch07_PeopleApp
 and click on the file named Ch07_PeopleApp.csproj
 . Add a project reference to Ch07_PacktLibrary
 , as shown in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

<ItemGroup>
 <ProjectReference Include="..\Ch07_PacktLibrary\Ch07_PacktLibrary.csproj" />
 </ItemGroup>

 </Project>

In
Integrated Terminal

 , enter the following commands:

dotnet restore

dotnet build

 Defining the classes

In either
Visual Studio 2017

 or
Visual Studio Code

 , add the following code to the Person
 class in the class library named Ch07_PacktLibrary
 :

 using System;
 using System.Collections.Generic;
 using static System.Console;

 namespace Packt.CS7
 {
 public partial class Person
 {
 // fields
 public string Name;
 public DateTime DateOfBirth;
 public List<Person> Children = new List<Person>();

 // methods
 public void WriteToConsole()
 {
 WriteLine(
 $"{Name} was born on {DateOfBirth:dddd, d MMMM yyyy}");
 }
 }
 }

 Simplifying methods with operators

We might want two instances of a person to be able to procreate.

 Implementing some functionality with a method

Add the following method to the Person
 class:

 // method to "multiply"
 public Person Procreate(Person partner)
 {
 var baby = new Person
 {
 Name = $"Baby of {this.Name} and {partner.Name}"
 };
 this.Children.Add(baby);
 partner.Children.Add(baby);
 return baby;
 }

At the top of the Program.cs
 file, type the following code to import the namespace for our class and statically import the Console
 type:

 using Packt.CS7;
 using static System.Console;

Now, we can get two people to make a baby by adding the following to the Main
 method of the Program.cs
 file:

 var harry = new Person { Name = "Harry" };
 var mary = new Person { Name = "Mary" };
 var baby1 = harry.Procreate(mary);
 WriteLine($"{mary.Name} has {mary.Children.Count} children.");
 WriteLine($"{harry.Name} has {harry.Children.Count} children.");
 WriteLine($"{harry.Name}'s first child is named
 \"{harry.Children[0].Name}\".");

Run the console application and view the output:

Mary has 1 children.

Harry has 1 children.

Harry's first child is named "Baby of Harry and Mary".

 Implementing some functionality with an operator

An alternative would be to define an operator to allow two people to
multiply

 . To allow this, we need to define a static
 operator for the *
 symbol inside the Person
 class:

 // operator to "multiply"
 public static Person operator *(Person p1, Person p2)
 {
 return p1.Procreate(p2);
 }

Add the following code at the end of the Main
 method, but before writing the children, count to the console:

 var baby1 = harry.Procreate(mary);

var baby2 = harry * mary;

 WriteLine($"{mary.Name} has {mary.Children.Count} children.");

Run the application and view the output:

Mary has 2 children.

Harry has 2 children.

Harry's first child is named "Baby of Harry and Mary".

 Tip

Good Practice

Since it may not be obvious to a programmer who is using your class that instances of the class can use an operator, it's best to have both a method and an operator that perform the same function. For example, the string
 type has both a Concat
 method and can use the +
 operator to concatenate two strings together.

 Defining local functions

A new language feature in C# 7 is the ability to define a local function. They are the method equivalent to local variables. In other words, they are methods that are only visible and callable from within the containing method in which they have been defined. In other languages, they are sometimes called
nested

 or
inner

 functions.

We will use a local function to implement a factorial calculation.

Add the following code to the Person
 class:

 // method with a local function
 public int Factorial(int number)
 {
 if (number < 0)
 {
 throw new ArgumentException(
 $"{nameof(number)} cannot be less than zero.");
 }

 int localFactorial(int localNumber)
 {
 if (localNumber < 1) return 1;
 return localNumber * localFactorial(localNumber - 1);
 }

 return localFactorial(number);
 }

In the Program.cs
 file, in the Main
 method, add the following statement:

 WriteLine($"5! is {harry.Factorial(5)}");

Run the console application and view the output:

5! is 120

 Raising and handling events

Methods

 are often described as
actions that an object can do

 . For example, a List
 class can add an item to itself or clear itself.

Events

 are often described as
actions that happen to an object

 . For example, in a user interface, Button
 has a Click
 event, click being something that happens to a button.

Another way of thinking of events is a way of exchanging messages between two objects.

 Calling methods using delegates

You have already seen the most common way to call or execute a method: use the
dot

 syntax to access the method using its name. For example, Console.WriteLine
 tells the Console
 type to write out the message to the console window or terminal.

The other way to call or execute a method is to use a delegate. If you have used languages that support function pointers, then think of a delegate as being a type-safe method pointer. In other words, a delegate is the memory address of a method that matches the same signature as the delegate so that it can be safely called.

For example, imagine there is a method that must have a string
 passed as its only parameter and it returns an int
 :

 public int MethodIWantToCall(string input)
 {
 return input.Length; // it doesn't matter what this does
 }

I could call this method directly like this:

 int answer = p1.MethodIWantToCall("Frog");

Alternatively, I could define a delegate with a matching signature to call the method indirectly. Notice that the names of parameters do not have to match. Only the types of parameters and return values must match:

 delegate int DelegateWithMatchingSignature(string s);

Now, I can create an instance of the delegate, point it at the method, and finally call the delegate (which calls the method!):

 var d = new DelegateWithMatchingSignature(p1.MethodIWantToCall);
 int answer2 = d("Frog");

You are probably thinking, "What's the point of that?" Well, it provides flexibility.

We could use delegates to create a queue of methods that need to be called in order. Delegates have built-in support for asynchronous operations that run on a different thread for better performance. Most importantly, delegates allow us to create events.

 Note

Delegates and events are one of the most advanced features of C# and can take a few attempts to understand, so don't worry if you're feeling lost!

 Defining events

Microsoft has two predefined delegates for use as events. They look like this:

 public delegate void EventHandler(object sender, EventArgs e);
 public delegate void EventHandler<TEventArgs>(object sender,
 TEventArgs e);

 Tip

Good Practice

When you want to define an event in your own type, you should use one of these two predefined delegates.

Add the following code to the Person
 class. The code defines an event named Shout
 . It also defines a field to store AngerLevel
 and a method named Poke
 . Each time a person is poked, their anger level increments. Once their anger level reaches three, they raise the Shout
 event, but only if the event delegate is pointing at a method defined somewhere else in code, that is, not null:

 // event
 public event EventHandler Shout;

 // field
 public int AngerLevel;

 // method
 public void Poke()
 {
 AngerLevel++;
 if (AngerLevel >= 3)
 {
 // if something is listening...
 if (Shout != null)
 {
 // ...then raise the event
 Shout(this, EventArgs.Empty);
 }
 }
 }

 Note

Checking if an object is null before calling one of its methods is very common. C# allows these statements to be simplified like this:Shout?.Invoke(this, EventArgs.Empty);

In Visual Studio 2017, in the Main
 method, start typing the following code to assign an event handler:

 harry.Shout +=

Notice the IntelliSense that appears when you enter the +=
 operator, as shown in the following screenshot:

[image: Defining events]

Press
Tab

 . You will now see a preview of what Visual Studio would like to do for you, as shown in the following screenshot:

[image: Defining events]

Press
Enter

 to accept the name of the method.

Visual Studio 2017 inserts a method that correctly matches the signature of the event delegate. This method will be automatically called when the event is raised.

Scroll down to find the method Visual Studio 2017 created for you and delete the statement that throws NotImplementedException
 .

In Visual Studio Code, you must write the method and assign its name yourself. The method should look like this. The name can be anything, but Harry_Shout
 is sensible:

 private static void Harry_Shout(object sender, EventArgs e)
 {
 }

In Visual Studio Code, in the Main
 method, add the following statement to assign the method to the event:

 harry.Shout += Harry_Shout;

In both Visual Studio 2017 and Visual Studio Code, add statements to the Harry_Shout
 method to get a reference to the Person
 object and output some information about them, as shown in the following code:

 private static void Harry_Shout(object sender, EventArgs e)
 {

Person p = (Person)sender;
 WriteLine($"{p.Name} is this angry: {p.AngerLevel}.");

 }

Back in the Main
 method, add the following statements to call the Poke
 method four times, after assigning the method to the Shout
 event:

 harry.Shout += harry_Shout;

harry.Poke();
 harry.Poke();
 harry.Poke();
 harry.Poke();

Run the application. Note that Harry only gets angry enough to shout once he's been poked at least three times:

Harry is this angry: 3.

Harry is this angry: 4.

 Implementing interfaces

Interfaces

 are a way of connecting different types together to make new things. Think of them like the studs on top of LEGO bricks that allow them to "stick" together, or electrical standards for plugs and sockets.

If a type implements an interface, then it is making a promise to the rest of .NET that it supports a certain feature.

 Common interfaces

Here are some common interfaces that your types might want to implement:

	

Interface

	

Method(s)

	

Description

	

IComparable

	

CompareTo
 (other)

	
This defines a comparison method that a type implements to order or sort its instances.

	

IComparer

	

Compare
 (first, second)

	
This defines a comparison method that a secondary type implements to order or sort instances of a primary type.

	

IDisposable

	

Dispose()

	
This defines a disposal method to release unmanaged resources more efficiently than waiting for a finalizer.

	

IFormattable

	

ToString
 (format, culture)

	
This defines a culture-aware method to format the value of an object into a string representation.

	

IFormatter

	

Serialize
 (stream, object), Deserialize
 (stream)

	
This defines methods to convert an object to and from a stream of bytes for storage or transfer.

 Comparing objects when sorting

One of the most common interfaces that you will want to implement is IComparable
 . It allows arrays and collections of your type to be sorted.

Add the following code to the Main
 method, which creates an array of Person
 instances, outputs the array, attempts to sort it, and then outputs the sorted array:

 Person[] people =
 {
 new Person { Name = "Simon" },
 new Person { Name = "Jenny" },
 new Person { Name = "Adam" },
 new Person { Name = "Richard" }
 };

 WriteLine("Initial list of people:");
 foreach (var person in people)
 {
 WriteLine($"{person.Name}");
 }

 WriteLine("Use Person's sort implementation:");
 Array.Sort(people);
 foreach (var person in people)
 {
 WriteLine($"{person.Name}");
 }

Run the application, and you will see this runtime error:

Unhandled Exception: System.InvalidOperationException: Failed to
compare two elements in the array. ---> System.ArgumentException: At
least one object must implement IComparable.

As the error explains, to fix the problem, our type must implement IComparable
 .

In the Ch07_PacktLibrary
 project, in the Person
 class, add the following code to the end of the class definition:

 public partial class Person : IComparable<Person>

Visual Studio 2017 and Visual Studio Code will draw a red squiggle under the new code to warn you that you have not yet implemented the method you have promised to.

Visual Studio 2017 and Visual Studio Code can write the skeleton implementation for you if you click on the lightbulb and choose the option
Implement interface

 , as shown in the following screenshot:

[image: Comparing objects when sorting]

 Note

Visual Studio 2017 shows a preview of the change that it will make. Visual Studio Code does not.

Scroll down to find the method that was written for you and delete the statement that throws the NotImplementedException
 error. Modify the method to look like this. Visual Studio Code users must write the whole method themselves:

 public int CompareTo(Person other)
 {
 return Name.CompareTo(other.Name);
 }

I have chosen to compare two Person
 instances by comparing their name fields. People will, therefore, be sorted alphabetically by their name.

Run the application. This time it works:

Initial list of people:

Simon

Jenny

Adam

Richard

Use Person's sort implementation:

Adam

Jenny

Richard

Simon

 Defining a separate comparer

Sometimes, you won't have access to the source code for a type, and it might not implement the IComparable
 interface. Luckily, there is another way to sort instances of a type. You can create a secondary type that implements a slightly different interface, named IComparer
 .

In the Ch07_PacktLibrary
 project, add a new class named PersonComparer
 that implements the IComparer
 interface, as shown in the following block of code. It will compare two people by comparing the length of their Name
 field, or if the names are the same length, then by comparing the names alphabetically:

 using System.Collections.Generic;

 namespace Packt.CS7
 {
 public class PersonComparer : IComparer<Person>
 {
 public int Compare(Person x, Person y)
 {
 int temp = x.Name.Length.CompareTo(y.Name.Length);
 if (temp == 0)
 {
 return x.Name.CompareTo(y.Name);
 }
 else
 {
 return temp;
 }
 }
 }
 }

In the Main
 method, add the following code:

 WriteLine("Use PersonComparer's sort implementation:");
 Array.Sort(people, new PersonComparer());
 foreach (var person in people)
 {
 WriteLine($"{person.Name}");
 }

Run the application. This time, when we sort the people array, we explicitly ask the sorting algorithm to use the PersonComparer
 type instead, so the people are sorted with the shortest names first, and when the lengths of two or more names are equal, to sort them alphabetically:

Use Person's sort implementation:

Adam

Jenny

Richard

Simon

Use PersonComparer's sort implementation:

Adam

Jenny

Simon

Richard

 Tip

Good Practice

If anyone would want to sort an array or collection of instances of your type, then implement the IComparable
 interface.

 Managing memory with reference and value types

There are two categories of memory:
stack

 memory and
heap

 memory. Stack memory is fast but limited and heap memory is slow but plentiful.

There are two C# keywords that you use to create object types: class
 and struct
 . Both can have the same members. The difference between the two is how memory is allocated.

When you define a type using class, you are defining a reference type. This means that the memory for the object itself is allocated on the heap, and only the memory address of the object (and a little overhead) is stored on the stack.

When you define a type using struct
 , you are defining a value type. This means that the memory for the object itself is allocated on the stack.

 Note

If a struct
 uses types that are not of the struct
 type for any of its fields, then those fields will be stored on the heap!

These are the most common struct
 types in .NET Core:

	

Numbers

 : byte
 , sbyte
 , short
 , ushort
 , int
 , uint
 , long
 , ulong
 , float
 , double
 , decimal

	

Miscellaneous

 : char
 , bool

	

System.Drawing

 : Color
 , Point
 , Rectangle

Almost all the other types in .NET Core are class
 types, including string
 .

 Note

You cannot inherit from struct
 .

 Defining a struct type

Add a class file named DisplacementVector.cs
 to the Ch07_PacktLibrary
 project.

 Note

There isn't an item template in Visual Studio 2017 for struct
 , so you must use class and then change it manually.

Modify the file as shown in the following code:

 namespace Packt.CS7
 {
 public struct DisplacementVector
 {
 public int X;
 public int Y;

 public DisplacementVector(int initialX, int initialY)
 {
 X = initialX;
 Y = initialY;
 }

 public static DisplacementVector operator +(
 DisplacementVector vector1, DisplacementVector vector2)
 {
 return new DisplacementVector(vector1.X + vector2.X,
 vector1.Y + vector2.Y);
 }
 }
 }

In the Ch07_PeopleApp
 project, in the Main
 method, add the following code:

 var dv1 = new DisplacementVector(3, 5);
 var dv2 = new DisplacementVector(-2, 7);
 var dv3 = dv1 + dv2;
 WriteLine($"({dv1.X}, {dv1.Y}) + ({dv2.X}, {dv2.Y}) = ({dv3.X},
 {dv3.Y})");

Run the application and view the output:

(3, 5) + (-2, 7) = (1, 12)

 Tip

Good Practice

If all the fields in your type use 16 bytes or less of stack memory, your type only uses struct
 types for its fields, and you will never want to derive from your type, then Microsoft recommends that you use a struct
 . If your type uses more than 16 bytes of stack memory, or if it uses class types for its fields, or if you might want to inherit from it, then use class
 .

 Releasing unmanaged resources

In the previous chapter, we saw that constructors can be used to initialize fields and that a type may have multiple constructors.

Imagine that a constructor allocates an unmanaged resource, that is, anything that is not controlled by .NET. The unmanaged resource must be manually released because .NET cannot do it for us.

 Note

For this topic, I will show some code examples, but you do not need to create them in your current project.

Each type can have a single
finalizer

 (aka destructor) that will be called by the CLR when the resources need to be released. A finalizer has the same name as a constructor, that is, the type name, but it is prefixed with a tilde (~
), as shown in the following example:

 public class Animal
 {
 public Animal()
 {
 // allocate an unmanaged resource
 }
 ~Animal() // Finalizer aka destructor
 {
 // deallocate the unmanaged resource
 }
 }

 Note

Do not confuse a finalizer aka
destructor

 with a
deconstructor

 . A destructor releases resources, that is, it destroys an object. A deconstructor returns an object split up into its constituent parts and uses the new C# 7 deconstruction syntax.

This is the minimum you should do in this scenario. The problem with just providing a finalizer is that the .NET garbage collector requires two garbage collections to completely release the allocated resources for this type.

Though optional, it is recommended to also provide a method to allow a developer who uses your type to explicitly release resources so that the garbage collector can then release the object in a single collection.

There is a standard mechanism to do this in .NET by implementing the IDisposable
 interface, as shown in the following example:

 public class Animal : IDisposable
 {
 public Animal()
 {
 // allocate unmanaged resource
 }

 ~Animal() // Finalizer
 {
 if (disposed) return;
 Dispose(false);
 }

 bool disposed = false; // have resources been released?

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposed) return;
 // deallocate the *unmanaged* resource
 // ...
 if (disposing)
 {
 // deallocate any other *managed* resources
 // ...
 }
 disposed = true;
 }
 }

 Note

There are two Dispose
 methods. The public
 method will be called by a developer using your type. The Dispose
 method with a bool
 parameter is used internally to implement the deallocation of resources, both unmanaged and managed. When the public Dispose
 method is called, both unmanaged and managed resources need to be deallocated, but when the finalizer runs, only unmanaged resources need to be deallocated.

Also, note the call to GC.SuppressFinalize(this)
 ---this is what notifies the garbage collector that it no longer needs to run the finalizer and removes the need for a second collection.

 Ensuring that dispose is called

When someone uses a type that implements IDisposable
 , they can ensure that the public Dispose
 method is called with the using
 statement, as shown in the following code:

 using(Animal a = new Animal())
 {
 // code that uses the Animal instance
 }

The compiler converts your code into something like the following, which guarantees that even if an exception occurs, the Dispose
 method will still be called:

 Animal a = new Animal();
 try
 {
 // code that uses the Animal instance
 }
 finally
 {
 if (a != null) a.Dispose();
 }

 Inheriting from classes

The Person
 type we created earlier implicitly derived (inherited) from System.Object
 . Now, we will create a new class that inherits from Person
 .

Add a new class named Employee.cs
 to the Ch07_PacktLibrary
 project.

Modify its code as shown in the following code:

 using System;

 namespace Packt.CS7
 {
 public class Employee : Person
 {
 }
 }

Add statements to the Main
 method to create an instance of the Employee
 class:

 Employee e1 = new Employee
 {
 Name = "John Jones",
 DateOfBirth = new DateTime(1990, 7, 28)
 };
 e1.WriteToConsole();

Run the console application and view the output:

John Jones was born on Saturday, 28 July 1990

Note that the Employee
 class has inherited all the members of Person
 .

 Extending classes

Now, we will add some employee-specific members to extend the class.

In the Employee
 class, add the following code to define two properties:

 public string EmployeeCode { get; set; }
 public DateTime HireDate { get; set; }

Back in the Main
 method, add the following code:

 e1.EmployeeCode = "JJ001";
 e1.HireDate = new DateTime(2014, 11, 23);
 WriteLine($"{e1.Name} was hired on {e1.HireDate:dd/MM/yy}");

Run the console application and view the output:

John Jones was hired on 23/11/14

 Hiding members

So far, the WriteToConsole
 method is being inherited from Person
 , and it only outputs the employee's name and date of birth. We might want to change what this method does for an employee.

In the Employee
 class, add the following code to redefine the WriteToConsole
 method:

 using System;
 using static System.Console;

 namespace Packt.CS6
 {
 public class Employee : Person
 {
 public string EmployeeCode { get; set; }
 public DateTime HireDate { get; set; }

public void WriteToConsole()
 {
 WriteLine($"{Name}'s birth date is {DateOfBirth:dd/MM/yy} and

 hire date was {HireDate:dd/MM/yy}");
 }

 }
 }

Run the application and view the output:

John Jones's birth date is 28/07/90 and hire date was 01/01/01

John Jones was hired on 23/11/14

Both Visual Studio 2017 and Visual Studio Code warn you that your method now hides the method with the same name that you inherited from the Person
 class by drawing a green squiggle under the method name.

Visual Studio Code also warns you in the output, as shown in the following screenshot:

[image: Hiding members]

You can remove this warning by applying the new
 keyword to the method, to indicate that you are deliberately replacing the old method, as shown in the following code:

 public new void WriteToConsole()

 Overriding members

Rather than hiding a method, it is usually better to override it. You can only override members if the base class chooses to allow overriding, by applying the virtual
 keyword.

In the Main
 method, add the following statement:

 WriteLine(e1.ToString());

Run the application. The ToString
 method is inherited from System.Object
 . The implementation outputs the namespace and type name, as follows:

Packt.CS7.Employee

Let's override this behavior for the Person
 class.

 Note

Make this change to the Person
 class, not the Employee
 class.

In Visual Studio 2017, open the Person.cs
 file, and at the bottom (but inside the class brackets), type the keyword override
 and enter a space after the word. You will see that Visual Studio shows a list of methods that have been marked as virtual
 so that they can be overridden, as shown in the following screenshot:

[image: Overriding members]

Use the arrow keys on your keyboard to choose ToString
 and then press

Enter

 .

Modify the code to look like the following statements:

 // overridden methods
 public override string ToString()
 {
 return $"{Name} is a {base.ToString()}";
 }

 Note

In Visual Studio Code, you must type the whole method yourself.

Run the console application and view the output. Now, when the ToString
 method is called, it outputs the person's name, as well as the base class's implementation of ToString
 , as shown in the following output:

John Jones is a Packt.CS7.Employee

 Tip

Good Practice

Many real-world APIs, for example, Microsoft's Entity Framework, Castle's Windsor proxies, and Episerver's content models, require the properties that you define in your classes to be marked as virtual
 . Unless you have a good reason, mark your method and property members as virtual
 .

 Preventing inheritance and overriding

You can prevent someone from inheriting from your class by applying the sealed
 keyword to its definition. No one can inherit from Scrooge McDuck:

 public sealed class ScroogeMcDuck
 {
 }

 Note

An example of sealed
 in the real world is the string
 class. Microsoft has implemented some extreme optimizations inside the string
 class that could be negatively affected by your inheritance; so, Microsoft prevents that.

You can prevent someone from overriding a method in your class by applying the sealed
 keyword to the method. No one can change the way Lady Gaga sings:

 public class LadyGaga
 {
 public sealed void Sing()
 {
 }
 }

 Polymorphism

You have now seen two ways to change the behavior of an inherited method. We can hide it using new
 (known as nonpolymorphic inheritance), or we can override it (polymorphic inheritance).

Both ways can call the base class using the base
 keyword, so what is the difference?

It all depends on the type of the variable holding a reference to the object. For example, a variable of the Person
 type can hold a reference to a Person
 class,
or any type that derives

 from Person
 .

In the Employee
 class, add the following code:

 public override string ToString()
 {
 return $"{Name}'s code is {EmployeeCode}";
 }

In the Main
 method, write the following code:

 Employee aliceInEmployee = new Employee
 { Name = "Alice", EmployeeCode = "AA123" };
 Person aliceInPerson = aliceInEmployee;
 aliceInEmployee.WriteToConsole();
 aliceInPerson.WriteToConsole();
 WriteLine(aliceInEmployee.ToString());
 WriteLine(aliceInPerson.ToString());

Run the console application and view the output:

Alice's birth date is 01/01/01 and hire date was 01/01/01

Alice was born on Monday, 1 January 0001

Alice's code is AA123

Alice's code is AA123

Note that when a method is hidden with new
 , the compiler is not smart enough to know that the object is an employee, so it calls the WriteToConsole
 method in Person
 .

When a method is overridden with virtual
 and override
 , the compiler is smart enough to know that although the variable is declared as a Person
 class, the object itself is an Employee
 and, therefore, the Employee
 implementation of ToString
 is called.

	

Variable type

	

Access modifier

	

Method executed

	

In class

	

Person

	
	

WriteToConsole

	

Person

	

Employee

	

new

	

WriteToConsole

	

Employee

	

Person

	

virtual

	

ToString

	

Employee

	

Employee

	

override

	

ToString

	

Employee

 Note

Polymorphism is literally academic to most programmers. If you get the concept, that's fine; but, if not, I suggest that you don't worry about it. Some people like to make others feel inferior by saying understanding polymorphism is important, but IMHO it's not. You can have a successful career with C# and never need to be able to explain polymorphism, just as a racing car driver doesn't need to be able to explain the engineering behind fuel injection.

 Casting within inheritance hierarchies

Casting is subtly different from converting between types.

 Implicit casting

In the previous example, you saw how an instance of a derived type can be stored in a variable of its base type (or its base's base type and so on). When we do this, it is called implicit casting.

 Explicit casting

Going the other way is an explicit cast, and you must use parentheses to do it.

In the Main
 method, add the following code:

 Employee e2 = aliceInPerson;

Visual Studio 2017 and Visual Studio Code display a red squiggle and a compile error in the Error List and Problems window, as shown in the following screenshot:

[image: Explicit casting]

Change the code as follows:

 Employee e2 = (Employee)aliceInPerson;

 Handling casting exceptions

The compiler is now happy;
but

 , because aliceInPerson
 might be a different derived type, like a Student
 instead of an Employee
 , we need to be careful. This statement might throw an InvalidCastException
 error.

We can handle this by writing a try
 statement, but there is a better way. We can check the current type of the object using the is
 keyword.

Wrap the explicit cast statement in an if
 statement, as follows:

 if (aliceInPerson is Employee)
 {
 WriteLine($"{nameof(aliceInPerson)} IS an Employee");
 Employee e2 = (Employee)aliceInPerson;
 // do something with e2
 }

Run the console application and view the output:

aliceInPerson IS an Employee

Alternatively, you can use the as
 keyword to cast. Instead of throwing an exception, the as
 keyword returns null
 if the type cannot be cast.

Add the following statements to the end of the Main
 method:

 Employee e3 = aliceInPerson as Employee;
 if (e3 != null)
 {
 WriteLine($"{nameof(aliceInPerson)} AS an Employee");
 // do something with e3
 }

Since accessing a null
 variable can throw a NullReferenceException
 error, you should always check for null
 before using the result.

Run the console application and view the output:

aliceInPerson AS an Employee

 Tip

Good Practice

Use the is
 and as
 keywords to avoid throwing exceptions when casting between derived types.

 Inheriting and extending .NET types

.NET has prebuilt class libraries containing hundreds of thousands of types. Rather than creating your own completely new types, you can often start by inheriting from one of Microsoft's.

 Inheriting from an exception

In the Ch07_PacktLibrary
 project, add a new class named PersonException
 , as shown in the following code:

 using System;

 namespace Packt.CS7
 {
 public class PersonException : Exception
 {
 public PersonException() : base() { }
 public PersonException(string message) : base(message) { }
 public PersonException(string message,
 Exception innerException) : base(
 message, innerException) { }
 }
 }

In the Person
 class, add the following method:

 public void TimeTravel(DateTime when)
 {
 if (when <= DateOfBirth)
 {
 throw new PersonException("If you travel back in time to a
 date earlier than your own birth then the universe will
 explode!");
 }
 else
 {
 WriteLine($"Welcome to {when:yyyy}!");
 }
 }

In the Main
 method, add the following statements to test what happens when we try to time travel too far back:

 try
 {
 e1.TimeTravel(new DateTime(1999, 12, 31));
 e1.TimeTravel(new DateTime(1950, 12, 25));
 }
 catch (PersonException ex)
 {
 WriteLine(ex.Message);
 }

Run the console application and view the output:

Welcome to 1999!

If you travel back in time to a date earlier than your own birth then
the universe will explode!

 Tip

Good Practice

When defining your own exceptions, give them the same three constructors.

 Extending types when you can't inherit

Earlier, we saw how the sealed
 modifier can be used to prevent inheritance.

Microsoft has applied the sealed
 keyword to the System.String
 class so that no one can inherit and potentially break the behavior of strings.

Can we still add new methods to strings? Yes, if we use a language feature named
extension methods

 , which was introduced with C# 3.

 Using static methods to reuse functionality

Since the first version of C#, we could create static
 methods to reuse functionality, such as the ability to validate that a string contains an e-mail address.

In the Ch07_PacktLibrary
 project, add a new class named MyExtensions.cs
 , as shown in the following code:

 using System.Text.RegularExpressions;

 namespace Packt.CS7
 {
 public class MyExtensions
 {
 public static bool IsValidEmail(string input)
 {
 // use simple regular expression to check
 // that the input string is a valid email
 return Regex.IsMatch(input,
 @"[a-zA-Z0-9\.-_]+@[a-zA-Z0-9\.-_]+");
 }
 }
 }

Add the following statements to the bottom of the Main
 method to validate two examples of e-mail addresses:

 string email1 = "pamela@test.com";
 string email2 = "ian&test.com";

 WriteLine($"{email1} is a valid e-mail address:
 {MyExtensions.IsValidEmail(email1)}.");
 WriteLine($"{email2} is a valid e-mail address:
 {MyExtensions.IsValidEmail(email2)}.");

Run the application and view the output:

pamela@test.com is a valid e-mail address: True.

ian&test.com is a valid e-mail address: False.

This works, but extension methods can reduce the amount of code we must type and simplify the usage of this function.

 Using extension methods to reuse functionality

In the MyExtensions
 class, add the static
 modifier before the class, and add the this
 modifier before the string
 type, like this:

 public static class MyExtensions
 {
 public static bool IsValidEmail(this string input)
 {

These two changes inform the compiler that it should treat the method as a method that extends the System.String
 type.

Back in the Program
 class, add some new statements to use the method as an extension method for strings:

 WriteLine($"{email1} is a valid e-mail address:
 {email1.IsValidEmail()}.");
 WriteLine($"{email2} is a valid e-mail address:
 {email2.IsValidEmail()}.");

Note the subtle change in the syntax. The IsValidEmail
 method now appears to be an instance member of the string
 type:

[image: Using extension methods to reuse functionality]

 Note

Extension methods cannot replace or override existing instance methods, so you cannot, for example, redefine the Insert
 method of a string
 variable. The extension method will appear as an overload, but the instance method will be called in preference to the extension method with the same name and signature.

Although extension methods don't seem to give a big benefit compared to simply using static
 methods, in Chapter 9
 ,
Querying and Manipulating Data with LINQ

 , you will see some extremely powerful uses of extension methods.

 Practice and explore

Test your knowledge and understanding by answering some questions. Get some hands-on practice and explore with deeper research into this chapter's topics.

 Exercise 7.1 - test your knowledge

Answer the following questions:

	What is a delegate?

	What is an event?

	How are a base class and a derived class related?

	What is the difference between is
 and as
 ?

	Which keyword is used to prevent a class from being derived from or a method from being overridden?

	Which keyword is used to prevent a class from being instantiated with the new
 keyword?

	Which keyword is used to allow a member to be overridden?

	What's the difference between a destructor and a deconstructor?

	What are the signatures of the constructors that all exceptions should have?

	What is an extension method and how do you define one?

 Exercise 7.2 - practice creating an inheritance hierarchy

Add a new console application named Ch07_Exercise02
 .

Create a class named Shape
 with properties named Height
 , Width
 , and Area
 .

Add three classes that derive from it---Rectangle
 , Square
 , and Circle
 -with any additional members you feel are appropriate and that override and implement the Area
 property correctly.

 Exercise 7.3 - explore topics

Use the following links to read more about the topics covered in this chapter:

	

Operator (C# reference)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/operator

	

Delegates

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/tour-of-csharp/delegates

	

Events (C# programming guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/event

	

Interfaces

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/tour-of-csharp/interfaces

	

Reference Types (C# Reference)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/reference-types

	

Value Types (C# Reference)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/value-types

	

Inheritance (C# Programming Guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/inheritance

	

Destructors (C# Programming Guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/destructors

 Summary

In this chapter, you learned about delegates and events, implementing interfaces, and deriving types using inheritance and OOP. You learned about base and derived classes, how to override a type member, how to use polymorphism, and how to cast between types.

In the next chapter, you will learn about working with databases using the Entity Framework Core.

 Chapter8.Working with Databases Using the Entity Framework Core

This chapter is about reading and writing to databases, such as Microsoft SQL Server and SQLite, using the object-relational mapping technology known as the Entity Framework Core.

This chapter will cover the following topics:

	Relational Database Management Systems

	Using Microsoft SQL Server on Windows

	Using SQLite on macOS and mobile platforms

	Setting up Entity Framework Core

	Querying an EF Core model

	Manipulating data with EF Core

 Relational Database Management Systems

One of the most common places to store data is in a
Relational Database Management System

 (
RDBMS

). Common ones include Microsoft SQL Server, Oracle, and SQLite.

 Using a sample database

To learn how to manage a database using .NET Core, it would be useful to have a sample one to practice on that has a medium complexity and a decent amount of sample records. Microsoft offers several sample databases, most of which are too complex for our needs. So, we will use a database that was first created in the early 1990s known as
Northwind

 .

Use the link https://github.com/markjprice/cs7dotnetcore/tree/master/VSCode/Chapter08
 to download the Northwind.sql
 file for use with Microsoft SQL Server on Windows, or the NorthwindSQLite.sql
 file for use with SQLite on macOS or mobile platforms.

Here is a diagram of the Northwind database that you can refer to as we write queries:

[image: Using a sample database]

 Using Microsoft SQL Server on Windows

Microsoft offers various editions of its SQL Server product. We will use a free version that can run stand-alone, known as
LocalDb

 . The latest version of LocalDb is installed as part of Visual Studio 2017.

 Note

Microsoft SQL Server used to be a Windows-only RDBMS. In 2017, Microsoft plans to release a version for Linux that will be great for cross-platform .NET Core developers. A preview is available, but we will not cover it in this book.

 Connecting to Microsoft SQL Server LocalDb

When you write code to connect to a SQL Server database, you need to know its
server name

 . The name depends on the version you choose to use. Here are some examples:

	

Visual Studio 2017 installs SQL Server 2016

 : (localdb)\mssqllocaldb

	

Visual Studio 2015 installs SQL Server 2014

 : (localdb)\mssqllocaldb

	

Visual Studio 2012/2013 installs SQL Server 2012

 : (localdb)\v11.0

	

If you install SQL Server Express

 : .\sqlexpress

 Creating the Northwind sample database

In Visual Studio 2017, go to
File

 |
Open

 |
File...

 or press
Ctrl

 +
O

 .

Browse to select the Northwind.sql
 file and choose
Open

 .

In the editor window, right-click and choose
Execute...

 or press
Ctrl

 +
Shift

 +
E

 .

In the dialog box, enter the server name as (localdb)\mssqllocaldb
 and click on
Connect

 , as shown in the following screenshot:

[image: Creating the Northwind sample database]

When you see the
Command(s) completed successfully

 message, then the Northwind database has been created, and we can connect to it.

 Note

LocalDb, sometimes, takes too long to start the first time, and you might see a timeout error. Simply click on
Connect

 again, and it should work.

 Managing the Northwind sample database

In Visual Studio 2017, choose
View

 |
Server Explorer...

 or press
Ctrl

 +
W

 ,
L

 .

In the
Server

Explorer

 window, right-click on
Data

Connections

 and choose
Add Connection

 ...

If you see the
Choose Data Source

 dialog, as shown in the following screenshot, then select
Microsoft SQL Server

 and click on
Continue

 :

[image: Managing the Northwind sample database]

In the
Add Connection

 dialog box, enter the server name as (localdb)\mssqllocaldb
 , enter the database name as Northwind
 , and click on
OK

 , as shown in the following screenshot:

[image: Managing the Northwind sample database]

In the
Server Explorer

 window, expand the data connection and its tables. You should see a dozen tables, including the
Products

 table, as shown in the following screenshot:

[image: Managing the Northwind sample database]

Right-click on the
Products

 table and choose
Show Table Data

 , as shown in the following screenshot:

[image: Managing the Northwind sample database]

To see the details of the
Products

 table columns and types, right-click on
Products

 and choose
Show Table Definition

 , as shown in the following screenshot:

[image: Managing the Northwind sample database]

 Using SQLite on macOS and mobile platforms

SQLite is a small, cross-platform, self-contained RDBMS that is available in the public domain. It is the most common RDBMS for mobile platforms such as iOS (iPhone and iPad) and Android.

SQLite is included in macOS in the /usr/bin/
 directory as a command-line application named sqlite3.

You can download a graphical database manager named SQLiteStudio for SQLite here:

http://sqlitestudio.pl

You can read about the SQL statements supported by SQLite here:

https://sqlite.org/lang.html

 Running a script for SQLite

Create a folder named Chapter08
 with a subfolder named Ch08_EFCore
 .

Download the NorthwindSQLite.sql
 file into the Chapter08
 folder.

Start
Terminal

 . Enter commands to change to the Code
 folder, change to the directory named Chapter08
 , and run the SQLite script to create the Northwind.db
 database:

cd Code

cd Chapter08

sqlite3 Northwind.db < NorthwindSQLite.sql

Quit
Terminal

 and launch SQLiteStudio.

 Note

If you see a warning about not being able to run the application, hold down
Shift

 while opening it, and then click
Open

 .

In SQLiteStudio, on the
Database

 menu, choose
Add a database

 or press
Cmd

 +
O

 .

In the
Database

 dialog, click the folder button to browse for existing database file on local computer. Select the Northwind.db
 file. Click on
Test connection

 to see the green tick, as shown in the following screenshot, and then click on
OK

 :

[image: Running a script for SQLite]

Right-click the Northwind
 database and choose
Connect to the database

 , as shown in the following screenshot:

[image: Running a script for SQLite]

You will see the tables that were created by the script, as shown in the following screenshot:

[image: Running a script for SQLite]

Right-click the
Products

 table and choose
Edit the table

 , as shown in the following screenshot:

[image: Running a script for SQLite]

In the table editor window, you will see the structure of the
Products

 table, including column names, data types, keys, and constraints, as shown in the following screenshot:

[image: Running a script for SQLite]

In the table editor window, click the
Data

 tab. You will see 77 products, as shown in the following screenshot:

[image: Running a script for SQLite]

You will write code to work with these products later in this chapter.

 Choosing a .NET data provider

Before we dive into the practicalities of managing data in a RDBMS, let's briefly talk about choosing between
.NET data providers

 .

To manage data, we need classes that know how to efficiently "talk" to the database. .NET data providers are sets of classes that are optimized for a specific RDBMS. They are distributed as NuGet packages.

	

To manage this RDBMS

	

NuGet package

	
Microsoft SQL Server 2008 or later

	

Microsoft.EntityFrameworkCore.SqlServer

	
SQLite 3.7 or later

	

Microsoft.EntityFrameworkCore.SQLite

	
MySQL

	

MySQL.Data.EntityFrameworkCore

	
In-memory (for unit testing)

	

Microsoft.EntityFrameworkCore.InMemory

 Note

Devart is a third party that offers Entity Framework Core providers for a wide range of databases. Find out more at https://www.devart.com/dotconnect/entityframework.html

 Connecting to the database

To connect to Microsoft SQL Server, we need to know some information about it:

	The name of the server computer that is running the RDBMS

	The name of the database

	Security information, such as username and password, or if we should pass the currently logged-on user's credentials automatically

We specify this information in a connection string. For backward compatibility, there are multiple possible keywords we can use. Here are some examples:

	

Data Source or server or addr

 : This is the name of the server (and an optional instance).

	

Initial Catalog or database

 : This is the name of the database.

	

Integrated Security or trusted_connection

 : This keyword is set to true or SSPI to pass the thread's current user credentials.

 Note

To connect to SQLite, we just need to know the database filename.

 Setting up Entity Framework Core

The
Entity Framework

 (
EF

) was first released as part of .
NET Framework 3.5 with Service Pack 1

 back in late 2008. Since then, it has evolved, as Microsoft has observed how programmers use an
object-relational mapping

 (
ORM

) tool in the real world.

The version included with .NET Framework 4.6 is
Entity Framework 6.1.3

 (
EF6

). It is mature, stable, and supports the old EDMX design-time way of defining the model as well as complex inheritance models, and a few other advanced features. However, EF6 is only supported by the .NET Framework, not by the .NET Core.

The cross-platform version,
Entity Framework Core

 (
EF Core

), is different. Microsoft has named it that way to emphasize that it is a reset of functionality. Although EF Core has a similar name, you should be aware that it currently varies from EF6.

Look at its pros and cons:

	Pros

	EF Core is available for the .NET Core as well as the .NET Framework, which means it can be used cross-platform on Linux and macOS as well as Windows.

	EF Core supports modern cloud-based, non-relational, schema-less data stores, such as Microsoft Azure Table Storage and Redis.

	Cons

	EF Core will never support the EDMX design-time XML file format.

	EF Core does not (yet) support lazy loading or complex inheritance models and other advanced features of EF6.

 Using Visual Studio 2017

In Visual Studio 2017, press
Ctrl

 +
Shift

 +
N

 or go to
File

 |
New

 |
Project...

 .

In the
New Project

 dialog, in the
Installed

 |
Templates

 list, expand
Visual C#

 , and select
.NET Core

 . In the center list, select
Console App (.NET Core)

 , type name as Ch08_EFCore
 , change the location to C:\Code
 , type solution name as Chapter08
 , and then click on
OK

 .

Right-click on
Dependencies

 and choose
Manage NuGet packages

 . In
Package Manager

 , click on the
Browse

 tab and, in the search box, enter Microsoft.EntityFrameworkCore.SqlServer
 , and click on
Install

 :

[image: Using Visual Studio 2017]

Review the changes, as shown in the following screenshot, and accept the license agreement:

[image: Using Visual Studio 2017]

 Using Visual Studio Code

Use Visual Studio Code to open the Ch08_EFCore
 folder that you created earlier.

In Integrated Terminal, enter the dotnet new console
 command.

In the
Explorer

 pane, click on the Ch08_EFCore.csproj
 file.

Add a package reference to EF Core for SQLite, as shown highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="1.1.1" />
 </ItemGroup>

 </Project>

In
Integrated Terminal

 , enter the dotnet restore
 command.

 Entity Framework Core models

EF Core uses a combination of
conventions

 ,
annotation attributes

 , and
Fluent API

 statements to build a model at runtime so that any actions performed on the classes can later be automatically translated into actions performed on the actual database.

 EF Core conventions

The code we will write will use the following conventions:

	The name of a table is assumed to match the name of a DbSet<T>
 property in the DbContext
 class, for example, Products
 .

	The names of the columns are assumed to match the names of properties in the class, for example, ProductID
 .

	The string .NET type is assumed to be an nvarchar
 type in the database.

	The int
 .NET type is assumed to be an int
 type in the database.

	A property that is named ID
 or the name of the class with ID
 as the suffix is assumed to be a primary key. If this property is any integer type or the Guid
 type, then it is also assumed to be IDENTITY
 (automatically assigned value when inserting).

 Note

There are many other conventions, and you can even define your own, but that is beyond the scope of this book, and you can read about them at the following link: https://docs.microsoft.com/en-us/ef/core/modeling/

 EF Core annotation attributes

Conventions often aren't enough to completely map the classes to the database objects. A simple way of adding more smarts to your model is to apply annotation attributes.

For example, in the database, the maximum length of a product name is 40
 , and the value cannot be null (empty). In a Product
 class, we could apply attributes to specify this:

 [Required]
 [StringLength(40)]
 public string ProductName { get; set; }

When there isn't an obvious map between .NET types and database types, an attribute can be used. For example, in the database, the column type of UnitPrice
 for the Products
 table is money. .NET does not have a money
 type, so it should use decimal
 instead:

 [Column(TypeName = "money")]
 public decimal? UnitPrice { get; set; }

In the Category
 table, the Description
 column can be longer than the 8,000 characters that can be stored in an nvarchar
 variable, so it needs to map to ntext
 instead:

 [Column(TypeName = "ntext")]
 public string Description { get; set; }

There are many other attributes, but they are beyond the scope of this book.

 EF Core Fluent API

The last way that the model can be defined is using the
Fluent API

 . It can be used instead of attributes or in addition to them. For example, look at the following two attributes in a Product
 class:

 [Required]
 [StringLength(40)]
 public string ProductName { get; set; }

They could be deleted and replaced with this Fluent API statement in the Northwind
 class' OnModelBuilding
 method:

 modelBuilder.Entity<Product>()
 .Property(product => product.ProductName)
 .IsRequired()
 .HasMaxLength(40);

 Building an EF Core Model

In both Visual Studio 2017 and Visual Studio Code, add three class files to the project named Northwind.cs
 , Category.cs
 , and Product.cs
 .

Northwind.cs
 should look like this:

 using Microsoft.EntityFrameworkCore;

 namespace Packt.CS7
 {
 // this manages the connection to the database
 public class Northwind : DbContext
 {
 // these properties map to tables in the database
 public DbSet<Category> Categories { get; set; }
 public DbSet<Product> Products { get; set; }

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 // for Microsoft SQL Server
 // optionsBuilder.UseSqlServer(
 // @"Data Source=(localdb)\mssqllocaldb;" +
 // "Initial Catalog=Northwind;" +
 // "Integrated Security=true;");

 // for SQLite
 optionsBuilder.UseSqlite(
 "Filename=../../../../Northwind.db");
 }

 protected override void OnModelCreating(
 ModelBuilder modelBuilder)
 {
 // example of using Fluent API instead of attributes
 modelBuilder.Entity<Category>()
 .Property(category => category.CategoryName)
 .IsRequired()
 .HasMaxLength(40);
 }
 }
 }

Category.cs
 should look like this:

 using System.Collections.Generic;
 using System.ComponentModel.DataAnnotations.Schema;

 namespace Packt.CS7
 {
 public class Category
 {
 public int CategoryID { get; set; }
 public string CategoryName { get; set; }

 [Column(TypeName = "ntext")]
 public string Description { get; set; }

 // defines a navigation property for related rows
 public virtual ICollection<Product> Products { get; set; }

 public Category()
 {
 this.Products = new List<Product>();
 }
 }
 }

Product.cs
 should look like this:

 using System.ComponentModel.DataAnnotations;
 using System.ComponentModel.DataAnnotations.Schema;

 namespace Packt.CS7
 {
 public class Product
 {
 public int ProductID { get; set; }

 [Required]
 [StringLength(40)]
 public string ProductName { get; set; }

 [Column(TypeName = "money")]
 public decimal? UnitPrice { get; set; }

 // these two define the foreign key relationship
 // to the Categories table
 public int CategoryID { get; set; }
 public virtual Category Category { get; set; }
 }
 }

Note that you did not need to include all columns from a table as properties on a class.

 Note

The two properties that relate the two entities, Category.Products
 and Product.Category
 , are both marked as virtual
 . This allows EF to inherit and override them to provide extra features, such as lazy loading. Currently, EF Core does not support lazy loading, but EF6 does. Microsoft intends to add lazy loading support into EF Core soon.

 Querying an EF Core model

Open the Program.cs
 file and import the following namespaces:

 using static System.Console;
 using Packt.CS7;
 using Microsoft.EntityFrameworkCore;
 using System.Linq;

In the Main
 method, add the following statements to:

	Create an instance of the Northwind
 class that will manage the database

	Create a query for all categories that includes their related products

	Enumerates through the categories, outputting the name and number of products for each one

	Prompt the user for a price for products

	Create a query for products that cost more than the price by using LINQ

	Loop through the results

 using(var db = new Northwind())
 {
 WriteLine("List of categories and the number of products:");

 IQueryable<Category> cats =
 db.Categories.Include(c => c.Products);

 foreach(Category c in cats)
 {
 WriteLine(
 $"{c.CategoryName} has {c.Products.Count} products.");
 }

 WriteLine("List of products that cost more than a given price
 with most expensive first.");
 string input;
 decimal price;
 do
 {
 Write("Enter a product price: ");
 input = ReadLine();
 } while (!decimal.TryParse(input, out price));

 IQueryable<Product> prods = db.Products
 .Where(product => product.UnitPrice > price)
 .OrderByDescending(product => product.UnitPrice);

 foreach (Product item in prods)
 {
 WriteLine($"{item.ProductID}: {item.ProductName} costs
 {item.UnitPrice:$#,##0.00}");
 }
 }

 Note

You will learn much more about LINQ in Chapter 9
 ,
Querying and Manipulating Data with LINQ

 .

Run the console program, and enter 50
 when prompted to enter a product price:

List of categories and the number of products:

Beverages has 12 products.

Condiments has 12 products.

Confections has 13 products.

Dairy Products has 10 products.

Grains/Cereals has 7 products.

Meat/Poultry has 6 products.

Produce has 5 products.

Seafood has 12 products.

List of products that cost more than a given price with most
expensive first.

Enter a product price: 50

38: Cte de Blaye costs $263.50

29: Thringer Rostbratwurst costs $123.79

9: Mishi Kobe Niku costs $97.00

20: Sir Rodney's Marmalade costs $81.00

18: Carnarvon Tigers costs $62.50

59: Raclette Courdavault costs $55.00

51: Manjimup Dried Apples costs $53.00

 Logging EF Core

To monitor the interaction between EF Core and the database, we need to enable logging. This requires the registering of a
logging provider

 and the implementation of a
logger

 .

In Visual Studio 2017 or Visual Studio Code, add a class to your project named ConsoleLogger.cs
 .

Modify it to look like this:

 using Microsoft.Extensions.Logging;
 using System;
 using static System.Console;

 namespace Packt.CS7
 {
 public class ConsoleLogProvider : ILoggerProvider
 {
 public ILogger CreateLogger(string categoryName)
 {
 return new ConsoleLogger();
 }

 // if your logger uses unmanaged resources,
 // you can release the memory here
 public void Dispose() { }
 }

 public class ConsoleLogger : ILogger
 {
 // if your logger uses unmanaged resources, you can
 // return the class that implements IDisposable here
 public IDisposable BeginScope<TState>(TState state)
 {
 return null;
 }

 public bool IsEnabled(LogLevel logLevel)
 {
 // to avoid overlogging, you can filter
 // on the log level
 switch (logLevel)
 {
 case LogLevel.Trace:
 case LogLevel.Information:
 case LogLevel.None:
 return false;
 case LogLevel.Debug:
 case LogLevel.Warning:
 case LogLevel.Error:
 case LogLevel.Critical:
 default:
 return true;
 };
 }

 public void Log<TState>(LogLevel logLevel,
 EventId eventId, TState state, Exception exception,
 Func<TState, Exception, string> formatter)
 {
 // log the level and event identifier
 Write($"Level: {logLevel}, Event ID: {eventId}");

 // only output the state or exception if it exists
 if (state != null)
 {
 Write($", State: {state}");
 }
 if (exception != null)
 {
 Write($", Exception: {exception.Message}");
 }
 WriteLine();
 }
 }
 }

At the top of the Program.cs
 file, add the following statements to import namespaces:

 using System;
 using Microsoft.EntityFrameworkCore.Infrastructure;
 using Microsoft.Extensions.DependencyInjection;
 using Microsoft.Extensions.Logging;

In the Main
 method, add the following statements immediately inside the using
 block for the Northwind database context:

 using (var db = new Northwind())
 {

var loggerFactory = db.GetService<ILoggerFactory>();
 loggerFactory.AddProvider(new ConsoleLogProvider());

Run the console application and view the output:

List of categories and the number of products:

Level: Debug, Event ID: 2

Level: Debug, Event ID: 3

Level: Debug, Event ID: 4

Level: Debug, Event ID: 5

Level: Debug, Event ID: 3, State: { Database = main, DataSource =
../../../../North

wind.db }

Beverages has 12 products.

Condiments has 12 products.

Confections has 13 products.

 Note

The event ID values and what they mean will be specific to the .NET data provider.

 Loading patterns with EF Core

There are three
loading patterns

 that are commonly used with the Entity Framework:
lazy loading

 ,
eager loading

 , and
explicit loading

 .

Unfortunately, although EF6 supports all three, EF Core does not currently support lazy loading. This feature is a high priority for the EF Core team so, hopefully, it will be implemented soon.

 Eager and lazy loading entities

In the Main
 method, the code currently uses the Categories DbSet
 (equivalent to a table) to loop through each category, outputting the category name and the number of products in that category. This only works because when we wrote the query, we used the Include method to use eager loading (aka early loading) for the related products.

Modify the query to comment out the Include
 method call, like this:

 IQueryable<Categories> cats =
 db.Categories; //.Include(c => c.Products);

Run the console application and view the output:

Beverages has 0 products.

Condiments has 0 products.

Confections has 0 products.

Dairy Products has 0 products.

Grains/Cereals has 0 products.

Meat/Poultry has 0 products.

Produce has 0 products.

Seafood has 0 products.

Each item in foreach
 is an instance of the Category
 class, which has a property named Products
 , that is, the list of products in that category. Since the original query is only selected from the Categories
 table, this property is empty for each category.

When lazy loading is finally implemented in EF Core, every time the loop enumerates and an attempt is made to read the Products
 , EF Core will automatically check if they are loaded. If not, EF Core will load them for us "lazily" by executing a SELECT
 statement to load just that set of products for the current category, and then the correct count would be returned to the output.

The problem with lazy loading is that multiple round trips to the database server are required to eventually fetch all the data. Therefore, it has not been a priority for the EF Core team.

 Explicit loading entities

Another type of loading is explicit loading. It works like lazy loading, but you are in control of exactly which related data is loaded and when.

Modify your query definition code to make it look like this:

 IQueryable<Category> cats;
 // = db.Categories.Include(c => c.Products);

 Write("Enable eager loading? (Y/N): ");
 bool eagerloading = (ReadKey().Key == ConsoleKey.Y);
 bool explicitloading = false;
 WriteLine();
 if (eagerloading)
 {
 cats = db.Categories.Include(c => c.Products);
 }
 else
 {
 cats = db.Categories;
 Write("Enable explicit loading? (Y/N): ");
 explicitloading = (ReadKey().Key == ConsoleKey.Y);
 WriteLine();
 }

Inside the foreach
 loop, before the WriteLine
 method call, add the following statements:

 if (explicitloading)
 {
 Write($"Explicitly load products for {c.CategoryName}? (Y/N):
 ");
 if (ReadKey().Key == ConsoleKey.Y)
 {
 var products = db.Entry(c).Collection(c2 => c2.Products);
 if (!products.IsLoaded) products.Load();
 }
 WriteLine();
 }

Run the console application, disable eager loading, and enable explicit loading. For each category, press Y
 or N
 to load its products as you wish.

For example, this is the output when I ran it. I chose to load products for only four of the eight categories:

List of categories and the number of products:

Enable eager loading? (Y/N): n

Enable explicit loading? (Y/N): y

Level: Debug, Event ID: 2

Level: Debug, Event ID: 3

Level: Debug, Event ID: 5

Level: Debug, Event ID: 3, State: { Database = main, DataSource =
../../../../North

wind.db }

Explicitly load products for Beverages? (Y/N): n

Beverages has 0 products.

Explicitly load products for Condiments? (Y/N): y

Level: Debug, Event ID: 2

Level: Debug, Event ID: 3

Level: Debug, Event ID: 5

Condiments has 12 products.

Explicitly load products for Confections? (Y/N): y

Confections has 13 products.

Explicitly load products for Dairy Products? (Y/N): y

Dairy Products has 10 products.

Explicitly load products for Grains/Cereals? (Y/N): n

Grains/Cereals has 0 products.

Explicitly load products for Meat/Poultry? (Y/N): y

Meat/Poultry has 6 products.

Explicitly load products for Produce? (Y/N): n

Produce has 0 products.

Explicitly load products for Seafood? (Y/N): n

Seafood has 0 products.

Level: Debug, Event ID: 4, State: { Database = main, DataSource =
/Users/markjprice

/Code/Chapter08/Northwind.db }

 Tip

Good Practice

Carefully consider which loading pattern is best for your code. In the future, the default of lazy loading could literally make you a lazy database developer!

 Manipulating data with EF Core

It is easy to insert, update, and delete entities using EF Core.

 Inserting entities

At the bottom of the Main
 method, after the foreach
 statement, add the following code to insert a new product and relist all products:

 var newProduct = new Product
 {
 CategoryID = 6, // Meat & Poultry
 ProductName = "Bob's Burger",
 UnitPrice = 500M
 };
 // mark product as added in change tracking
 db.Products.Add(newProduct);
 // save tracked changes to database
 db.SaveChanges();
 foreach (var item in db.Products)
 {
 WriteLine($"{item.ProductID}: {item.ProductName} costs
 {item.UnitPrice:$#,##0.00}");
 }

Rerun the application and enter 50
 . You will see that the product has been inserted:

78: Bob's Burger costs $500.00

 Updating entities

Add the following code to increase the price of the first product with a name that begins with "Bob"
 by $20 and then relist the products:

 Product updateProduct = db.Products.First(
 p => p.ProductName.StartsWith("Bob"));
 updateProduct.UnitPrice += 20M;
 db.SaveChanges();
 foreach (var item in db.Products)
 {
 WriteLine($"{item.ProductID}: {item.ProductName} costs
 {item.UnitPrice:$#,##0.00}");
 }

Rerun the application and notice that the existing entity for Bob's Burgers has increased in price by $20:

78: Bob's Burger costs $520.00

 Deleting entities

Add the following code to delete the first product with a name that begins with "Bob"
 and then relist the products:

 Product deleteProduct = db.Products.First(
 p => p.ProductName.StartsWith("Bob"));
 db.Products.Remove(deleteProduct);
 db.SaveChanges();
 foreach (var item in db.Products)
 {
 WriteLine($"{item.ProductID}: {item.ProductName} costs
 {item.UnitPrice:$#,##0.00}");
 }

 Transactions

Every time you call the SaveChanges
 method, an
implicit transaction

 is started so that if something goes wrong, it would automatically rollback all the changes. If every operation succeeds, then the transaction is committed.

Transactions maintain the integrity of your database by applying locks to prevent reads and writes while a sequence of operations is occurring.

Transactions are ACID, which is explained here:

	

A

 is for atomic. Either all the operations in the transaction commit or none of them do.

	

C

 is for consistent. The state of the database before and after a transaction is consistent. This is dependent on your code logic.

	

I

 is for isolated. During a transaction, changes are hidden from other processes. There are multiple isolation levels that you can pick from (see the following table). The stronger the level, the better the integrity of the data. However, more locks must be applied, which will negatively affect other processes. Snapshot is a special case because it creates multiple copies of rows to avoid locks, but this will increase the size of your database while transactions occur.

	

D

 is for durable. If a failure occurs during a transaction, it can be recovered. The opposite of durable is volatile.

	

Isolation level

	

Lock(s)

	

Integrity problems allowed

	

ReadUncommitted

	
None

	
Dirty reads, non-repeatable reads, and phantom data

	

ReadCommitted

	
When editing, it applies read lock(s) to block other users from reading the record(s) until the transaction ends

	
Non-repeatable reads and phantom data

	

RepeatableRead

	
When reading, it applies edit lock(s) to block other users from editing the record(s) until the transaction ends

	
Phantom data

	

Serializable

	
Applies key-range locks to prevent any action that would affect the results, including inserts and deletes

	
None

	

Snapshot

	
None

	
None

 Defining an explicit transaction

You can control explicit transactions using the Database
 property of the database context.

Import the following namespace to use the IDbContextTransaction
 interface:

 using Microsoft.EntityFrameworkCore.Storage;

After the instantiation of the db
 variable, add the following statements to start an explicit transaction and output its isolation level:

 using(var db = new Northwind())
 {

using(IDbContextTransaction t =
 db.Database.BeginTransaction())

 {

WriteLine($"Transaction started with this isolation level:

 {t.GetDbTransaction().IsolationLevel}");

At the bottom of the Main
 method, commit the transaction, and close the brace, as shown in the following code:

 t.Commit();
 }

When using Microsoft SQL Server, you will see the following isolation level:

Transaction started with this isolation level: ReadCommitted

When using SQLite, you will see the following isolation level:

Transaction started with this isolation level: Serializable

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

 Exercise 8.1 - test your knowledge

Answer the following questions:

	Which .NET data provider would you use to work with Microsoft SQL Server 2012 Express Edition?

	When defining a DbContext
 class, what type would you use for the property that represents a table, for example, the Products
 property of a Category
 entity?

	What is the EF convention for primary keys?

	When would you use an annotation attribute in an entity class?

	Why might you choose the Fluent API in preference to annotation attributes?

 Exercise 8.2 - explore the EF Core documentation

Go to the following website and read the official Entity Framework Core documentation. Follow the tutorials to create Windows desktop, and web applications and services. If you have a macOS or a Linux virtual machine, follow the tutorials to use EF Core on those alternative platforms.

https://docs.microsoft.com/en-us/ef/core/index

 Summary

In this chapter, you learned how to connect to a database, how to execute a simple LINQ query and process the results, and how to build Code First entity data models for an existing database, such as Northwind.

In the next chapter, you will learn how to write more advanced LINQ queries to select, filter, sort, join, and group.

 Chapter9.Querying and Manipulating Data with LINQ

This chapter is about
Language Integrated Query

 (
LINQ

), a set of language extensions that add the ability to work with sequences of items and then filter, sort, and project them into different outputs.

This chapter covers the following topics:

	Writing LINQ queries

	Working with sets

	Projecting entities with Select

	Sweetening the syntax with syntactic sugar

	Using multiple threads with parallel LINQ

	Creating your own LINQ extension methods

	Working with LINQ to XML

 Writing LINQ queries

Although we wrote a few LINQ queries in Chapter 8
 ,
Working with Databases Using the Entity Framework Core

 , I didn't properly explain how LINQ works.

LINQ has several parts; some are required and some are optional:

	

Extension methods (required)

 : These include examples like Where
 , OrderBy
 , Select
 , and so on. These are what provide the functionality of LINQ.

	

LINQ providers (required)

 : These include LINQ to Objects, LINQ to Entities, LINQ to XML, LINQ to OData, LINQ to Amazon, and so on are LINQ providers. These are what convert standard LINQ operations into specific commands for different types of data.

	

Lambda expressions (optional)

 : These can be used instead of named methods to simplify LINQ extension method calls.

	

LINQ query comprehension syntax (optional)

 : These include from
 , in
 , where
 , orderby
 , descending
 , select
 , and so on. These are C# keywords that are an alias for some of the LINQ extension methods, and their use can simplify the queries you write, especially if you already have experience with other query languages, such as
Structured Query Language

 (
SQL

).

 Note

When programmers are first introduced to LINQ, they often believe that the query comprehension syntax is LINQ but, ironically, that is one of the parts of LINQ that is optional!

 Extending sequences with the enumerable class

The extension methods, such as Where
 and Select
 , are appended by the Enumerable
 static class to any type, known as a
sequence

 , that implements IEnumerable<T>
 .

For example, an array of any type automatically implements the IEnumerable<T>
 class, where T
 is the type of item in the array, so all arrays support LINQ to query and manipulate them.

All generic collections, such as List<T>
 , Dictionary<TKey, TValue>
 , Stack<T>
 , and Queue<T>
 , implement IEnumerable<T>
 so they can be queried and manipulated with LINQ.

 Filtering entities with Where

The most common reason for using LINQ is to filter items in a sequence using the Where
 extension method.

In
Visual Studio 2017

 , press
Ctrl

 +
Shift

 +
N

 or navigate to
File

 |
New

 |
Project...

 . In the
New Project

 dialog, in the
Installed

 |
Templates

 list, expand
Visual C#

 , and select
.NET Core

 . In the list at the center, select
Console App (.NET Core)

 , type the name Ch09_LinqToObjects
 , change the location to C:\Code
 , type the solution name Chapter09
 , and then click on
OK

 .

In
Visual Studio Code

 , make a directory named Chapter09
 with a subfolder named Ch09_LinqToObjects
 . Open the Ch09_LinqToObjects
 folder and execute the dotnet new console
 command in the Terminal.

In the Main
 method, add the following statements:

 var names = new string[] { "Michael", "Pam", "Jim",
 "Dwight", "Angela", "Kevin", "Toby", "Creed" };
 var query = names.Where(

As you type the Where
 method, note that it is missing from the IntelliSense list of members of a string
 array, as shown in the following screenshot:

[image: Filtering entities with Where]

This is because the Where
 method is an
extension method

 . It does not exist on the array type. It exists in a separate assembly and namespace. To make the Where
 extension method available, we must import the System.Linq
 namespace.

Add the following statement to the top of the Program.cs
 file:

 using System.Linq;

Now, as you type the open parenthesis after Where
 , note the IntelliSense. It tells us that to call Where
 , we must pass in an instance of a Func<string, bool>
 delegate. This delegate must target a method with a matching signature:

[image: Filtering entities with Where]

Enter the following code to create a new delegate instance:

 var query = names.Where(new Func<string, bool>())

Note the IntelliSense shown in Visual Studio 2017 (but not in Visual Studio Code). This tells us that the target
 method must have a single input parameter of type string
 , and a return of type bool
 , as shown in the following screenshot:

[image: Filtering entities with Where]

For each string
 variable passed to the method, the method must return a Boolean value. If the method returns true
 , it indicates that we should include the string
 in the results, and if the method returns false
 , it indicates that we should exclude it.

 Targeting a named method

Let's define a method that only includes names that are longer than four characters.

Add the following method under the Main
 method:

 static bool NameLongerThanFour(string name)
 {
 return name.Length > 4;
 }

Modify the Where
 call and loop through the query items, as shown in the following code:

 var query = names.Where(
 new Func<string, bool>(NameLongerThanFour));
 foreach (var item in query)
 {
 WriteLine(item);
 }

In
Visual Studio 2017

 , run the console application by pressing
Ctrl

 +
F5

 .

In
Visual Studio Code

 , run the console application by entering dotnet run
 .

View the following output:

Michael

Dwight

Angela

Kevin

Creed

 Simplifying the code by removing the explicit delegate instantiation

We can simplify the code by deleting the explicit instantiation of the Func<string, bool>
 delegate. The C# compiler will instantiate the Func<string, bool>
 delegate for us, so you never need to explicitly do it.

Modify the query to look like this:

 var query = names.Where(NameLongerThanFour);

Rerun the application and note that it has the same behavior.

 Targeting a lambda expression

We can simplify our code even further using a
lambda expression

 in place of the named method.

Although it can look complicated at first, a lambda expression is simply a
nameless function

 . It uses the =>
 (read as "goes to") symbol to indicate the return value.

Modify the query to look like the following statement:

 var query = names.Where(name => name.Length > 4);

Note that the syntax for a lambda expression includes all the important parts of the NameLongerThanFour
 method, but nothing more. A lambda expression only needs to define the following:

	The names of input parameters

	A return value expression

The type of the name
 input parameter is inferred from the fact that the sequence contains string
 values, and the return type must be a bool
 value for Where
 to work, so the expression after the =>
 symbol must return a bool
 value.

The compiler does most of the work for us, so our code can be as concise as possible.

Rerun the application and note that it has the same behavior.

 Sorting entities with OrderBy

Where
 is just one of about 30 extension methods provided by the Enumerable
 type. Extension methods can be chained if the previous method returns another sequence, that is, a type that implements the IEnumerable<T>
 class.

Append a call to OrderBy
 to the end of the existing query, as shown here:

 var query = names

 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length);

 Tip

Good Practice

Format the LINQ statement so that each extension method call happens on its own line to make them easier to read.

Rerun the application and note that the names are now sorted with shortest first:

Kevin

Creed

Dwight

Angela

Michael

 Note

To put the longest name first, you will use OrderByDescending
 .

 Sorting by multiple properties with the ThenBy method

We might want to sort by more than one property.

Append a call to ThenBy
 to the end of the existing query, as shown here:

 var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)

.ThenBy(name => name);

Rerun the application and note the slight difference in the following sort order. Within a group of names of the same length, the names are sorted alphabetically by the full value of the string, so Creed
 comes before Kevin
 , and Angela
 comes before Dwight
 :

Creed

Kevin

Angela

Dwight

Michael

 Working with sets

Sets are one of the most fundamental concepts in mathematics. A set is a collection of one or more objects. You might remember being taught about Venn diagrams in school. Common set operations include the
intersect

 or
union

 between sets.

Add a new console application project named Ch09_Sets
 in either Visual Studio 2017 or Visual Studio Code.

In Visual Studio 2017, set the solution's start up project to be the current selection.

This application will define three arrays of strings for cohorts of apprentices and then perform some common set operations.

Import the following additional namespaces:

 using System.Collections.Generic; // for IEnumerable<T>
 using System.Linq; // for LINQ extension methods

Inside the Program
 class, before the Main
 method, add the following method that outputs any sequence of string
 variables as a comma-separated single string
 to the console output along with an optional description:

 private static void Output(
 IEnumerable<string> cohort, string description = "")
 {
 if (!string.IsNullOrEmpty(description))
 {
 WriteLine(description);
 }
 Write(" ");
 WriteLine(string.Join(", ", cohort.ToArray()));
 }

In the Main
 method, write the following statements:

 var cohort1 = new string[]
 { "Rachel", "Gareth", "Jonathan", "George" };
 var cohort2 = new string[]
 { "Jack", "Stephen", "Daniel", "Jack", "Jared" };
 var cohort3 = new string[]
 { "Declan", "Jack", "Jack", "Jasmine", "Conor" };

 Output(cohort1, "Cohort 1");
 Output(cohort2, "Cohort 2");
 Output(cohort3, "Cohort 3");
 WriteLine();

 Output(cohort2.Distinct(), "cohort2.Distinct(): removes
 duplicates");
 Output(cohort2.Union(cohort3), "cohort2.Union(cohort3): combines
 two sequences and removes any duplicates");
 Output(cohort2.Concat(cohort3), "cohort2.Concat(cohort3): combines
 two sequences but leaves in any duplicates");
 Output(cohort2.Intersect(cohort3), "cohort2.Intersect(cohort3):
 returns items that are in both sequences");
 Output(cohort2.Except(cohort3), "cohort2.Except(cohort3): removes
 items from the first sequence that are in the second sequence");
 Output(cohort1.Zip(cohort2, (c1, c2) => $"{c1} matched with
 {c2}"), "cohort1.Zip(cohort2, (c1, c2) => $"{c1} matched with
 {c2}"): matches items based on position in the sequence");

Run the console application and view the output:

Cohort 1

Rachel, Gareth, Jonathan, George

Cohort 2

Jack, Stephen, Daniel, Jack, Jared

Cohort 3

Declan, Jack, Jack, Jasmine, Conor

cohort2.Distinct(): removes duplicates

Jack, Stephen, Daniel, Jared

cohort2.Union(cohort3): combines two sequences and removes any
duplicates

Jack, Stephen, Daniel, Jared, Declan, Jasmine, Conor

cohort2.Concat(cohort3): combines two sequences but leaves in any
duplicates

Jack, Stephen, Daniel, Jack, Jared, Declan, Jack, Jack, Jasmine,
 Conor

cohort2.Intersect(cohort3): returns items that are in both sequences

Jack

cohort2.Except(cohort3): removes items from the first sequence that
are in the second sequence

Stephen, Daniel, Jared

cohort1.Zip(cohort2, (c1, c2) => $"{c1} matched with {c2}"): matches
items based on position in the sequence

Rachel matched with Jack, Gareth matched with Stephen, Jonathan
 matched with Daniel, George matched with Jack

 Note

With Zip
 , if there are unequal numbers of items in the two sequences, then some items will not have a matching partner.

 Projecting entities with Select

To learn about
projection

 , it is best to have some more complex sequences to work with; so, in the next project, we will use the Northwind
 sample database.

Add a new console application project named Ch09_Projection
 .

In
Visual Studio 2017

 , in the
Ch09_Projection

 project, right-click
Dependencies

 and choose
Manage NuGet Packages

 . Search for the Microsoft.EntityFrameworkCore.SqlServer
 package and install it.

If you did not complete Chapter 8
 ,
Working with Databases Using the Entity Framework Core

 , then open the Northwind.sql
 file and right-click and choose
Execute

 to create the Northwind
 database on the server named (localdb)\mssqllocaldb
 .

In
Visual Studio Code

 , modify the Ch09_Projection.csproj
 file as highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

<ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="1.1.1" />
 </ItemGroup>

 </Project>

Copy the NorthwindSQLite.sql
 file into the Ch09_Projection
 folder, and then use
Integrated Terminal

 to create the Northwind
 database by executing the following command:

sqlite3 Northwind.db < NorthwindSQLite.sql

 Building an EF Core model

In both Visual Studio 2017 and Visual Studio Code, add three class files to the project named Northwind.cs
 , Category.cs
 , and Product.cs
 .

Northwind.cs
 should look like this:

 using Microsoft.EntityFrameworkCore;

 namespace Packt.CS7
 {
 public class Northwind : DbContext
 {
 public DbSet<Category> Categories { get; set; }
 public DbSet<Product> Products { get; set; }

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 // for Microsoft SQL Server
 // optionsBuilder.UseSqlServer(
 // @"Data Source=(localdb)\mssqllocaldb;" +
 // "Initial Catalog=Northwind;" +
 // "Integrated Security=true;");

 // for SQLite
 optionsBuilder.UseSqlite(
 "Filename=../../../Northwind.db");
 }
 }
 }

Category.cs
 should look like this:

 using System.ComponentModel.DataAnnotations;

 namespace Packt.CS7
 {
 public class Category
 {
 public int CategoryID { get; set; }
 [Required]
 [StringLength(15)]
 public string CategoryName { get; set; }
 public string Description { get; set; }
 }
 }

Product.cs
 should look like this:

 using System.ComponentModel.DataAnnotations;

 namespace Packt.CS7
 {
 public class Product
 {
 public int ProductID { get; set; }
 [Required]
 [StringLength(40)]
 public string ProductName { get; set; }
 public int? SupplierID { get; set; }
 public int? CategoryID { get; set; }
 [StringLength(20)]
 public string QuantityPerUnit { get; set; }
 public decimal? UnitPrice { get; set; }
 public short? UnitsInStock { get; set; }
 public short? UnitsOnOrder { get; set; }
 public short? ReorderLevel { get; set; }
 public bool Discontinued { get; set; }
 }
 }

Open the Program.cs
 file and import the following namespaces:

 using static System.Console;
 using Packt.CS7;
 using Microsoft.EntityFrameworkCore;
 using System.Linq;

In the Main
 method, write the following statements:

 var db = new Northwind();

 var query = db.Products
 .Where(product => product.UnitPrice < 10M)
 .OrderByDescending(product => product.UnitPrice);

 WriteLine("Products that cost less than $10.");
 foreach (var item in query)
 {
 WriteLine($"{item.ProductID}: {item.ProductName} costs
 {item.UnitPrice:$#,##0.00}");
 }
 WriteLine();

Run the console application and view the output:

41: Jack's New England Clam Chowder costs $9.65

45: Rogede sild costs $9.50

47: Zaanse koeken costs $9.50

19: Teatime Chocolate Biscuits costs $9.20

23: Tunnbrd costs $9.00

75: Rhnbru Klosterbier costs $7.75

54: Tourtire costs $7.45

52: Filo Mix costs $7.00

13: Konbu costs $6.00

24: Guaran Fantstica costs $4.50

33: Geitost costs $2.50

Although this query outputs the information we want, it does so inefficiently because it returns all columns from the Products
 table instead of just the three columns we need, which is the equivalent of the following SQL statement:

 SELECT * FROM Products;

 Note

You might have also noticed that the sequences implement IQueryable<T>
 and IOrderedQueryable<T>
 instead of IEnumerable<T>
 or IOrderedEnumerable<T>
 . This is an indication that we are using a LINQ provider that uses deferred execution and builds the query in memory using expression trees. The query will not be executed until the last possible moment and only then will it be converted into another query language, such as Transact-SQL for Microsoft SQL Server. Enumerating the query with foreach
 or calling a method such as ToArray
 will force immediate execution of the query.

In the Main
 method, modify the LINQ query to use the Select
 method to return only the three properties (table columns) that we need, as shown in the following statements:

 var query = db.Products
 .Where(product => product.UnitPrice < 10M)
 .OrderByDescending(product => product.UnitPrice);

.Select(product => new
 {
 product.ProductID,
 product.ProductName,
 product.UnitPrice
 });

Run the console application and confirm that the output is the same as before.

 Joining and grouping

There are two extension methods for joining and grouping:

	
Join
 : This method has four parameters: the sequence that you want to join with, the property or properties on the
left

 sequence to match on, the property or properties on the
right

 sequence to match on, and a projection

	
GroupJoin
 : This method has the same parameters, but it combines the matches into a group object with a Key
 for the matching value and an IEnumerable<T>
 for the multiple matches

In the Main
 method, write the following statements:

 // create two sequences that we want to join together
 var categories = db.Categories.Select(c => new { c.CategoryID,
 c.CategoryName }).ToArray();

 var products = db.Products.Select(p => new { p.ProductID,
 p.ProductName, p.CategoryID }).ToArray();

 // join every product to its category to return 77 matches
 var queryJoin = categories.Join(products,
 category => category.CategoryID,
 product => product.CategoryID,
 (c, p) => new { c.CategoryName, p.ProductName, p.ProductID });

 foreach (var item in queryJoin)
 {
 WriteLine($"{item.ProductID}: {item.ProductName} is in
 {item.CategoryName}.");
 }

Run the console application and view the output.

Note that there is a single line output for each of the 77 products, and the results show all products in the Beverages
 category first, then the Condiments
 category, and so on:

1: Chai is in Beverages.

2: Chang is in Beverages.

24: Guaran Fantstica is in Beverages.

34: Sasquatch Ale is in Beverages.

35: Steeleye Stout is in Beverages.

38: Cte de Blaye is in Beverages.

39: Chartreuse verte is in Beverages.

43: Ipoh Coffee is in Beverages.

67: Laughing Lumberjack Lager is in Beverages.

70: Outback Lager is in Beverages.

75: Rhnbru Klosterbier is in Beverages.

76: Lakkalikri is in Beverages.

3: Aniseed Syrup is in Condiments.

4: Chef Anton's Cajun Seasoning is in Condiments.

Change the query to sort by ProductID
 :

 var queryJoin = categories.Join(products,
 category => category.CategoryID,
 product => product.CategoryID,
 (c, p) => new { c.CategoryName, p.ProductName, p.ProductID })

.OrderBy(cp => cp.ProductID);

Rerun the application and view the output:

1: Chai is in Beverages.

2: Chang is in Beverages.

3: Aniseed Syrup is in Condiments.

4: Chef Anton's Cajun Seasoning is in Condiments.

5: Chef Anton's Gumbo Mix is in Condiments.

6: Grandma's Boysenberry Spread is in Condiments.

7: Uncle Bob's Organic Dried Pears is in Produce.

8: Northwoods Cranberry Sauce is in Condiments.

9: Mishi Kobe Niku is in Meat/Poultry.

10: Ikura is in Seafood.

11: Queso Cabrales is in Dairy Products.

12: Queso Manchego La Pastora is in Dairy Products.

13: Konbu is in Seafood.

14: Tofu is in Produce.

15: Genen Shouyu is in Condiments.

Add some new statements, as shown in the following code, to the bottom of the Main
 method to show the use of the GroupJoin
 method, and in the output, show the group name and then all the items within each group:

 // group all products by their category to return 8 matches
 var queryGroup = categories.GroupJoin(products,
 category => category.CategoryID,
 product => product.CategoryID,
 (c, Products) => new { c.CategoryName,
 Products = Products.OrderBy(p => p.ProductName) });

 foreach (var item in queryGroup)
 {
 WriteLine(
 $"{item.CategoryName} has {item.Products.Count()} products.");
 foreach (var product in item.Products)
 {
 WriteLine($" {product.ProductName}");
 }
 }

Rerun the console application and view the output.

Note that the products inside each category have been sorted by their name as the query asked:

Beverages has 12 products.

Chai

Chang

Chartreuse verte

Cte de Blaye

Guaran Fantstica

Ipoh Coffee

Lakkalikri

Laughing Lumberjack Lager

Outback Lager

Rhnbru Klosterbier

Sasquatch Ale

Steeleye Stout

Condiments has 12 products.

Aniseed Syrup

Chef Anton's Cajun Seasoning

Chef Anton's Gumbo Mix

 Sweetening the syntax with syntactic sugar

C# 3 introduced some new keywords in 2008 to make it easier for programmers with experience in SQL to write LINQ queries. This
syntactic sugar

 is sometimes called the
LINQ query comprehension syntax

 .

 Note

The LINQ query comprehension syntax is limited in functionality. You must use extension methods to access all the features of LINQ.

Consider the following code:

 var names = new string[] { "Michael", "Pam", "Jim",
 "Dwight", "Angela", "Kevin", "Toby", "Creed" };

 var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name);

Instead of writing the preceding code using
extension methods

 and
lambda expressions

 , you can write the following code using
query comprehension syntax

 :

 var query = from name in names
 where name.Length > 4
 orderby name.Length, name
 select name;

The compiler changes the query comprehension syntax to the extension method and lambda expression equivalent for you.

 Note

The select
 keyword is always required for LINQ query comprehension syntax. The Select
 extension method is optional when using extension methods and lambda expressions.

Not all extension methods have a C# keyword equivalent, for example, the Skip
 and Take
 extension methods that are commonly used to implement paging for lots of data. The following query cannot be written using only the query syntax:

 var query = names
 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name)
 .Skip(80)
 .Take(10);

Luckily, you can wrap query comprehension syntax in parentheses and then switch to using extension methods, as shown in the following code:

 var query = (from name in names
 where name.Length > 4
 orderby name.Length, name
 select name)
 .Skip(80)
 .Take(10);

 Tip

Good Practice

Learn both extension methods with lambda expressions and the query comprehension syntax ways of writing LINQ queries because you are likely to have to maintain code that uses both.

 Using multiple threads with parallel LINQ

By default, only one thread is used to execute a LINQ query.
Parallel LINQ

 (
PLINQ

) is an easy way to enable multiple threads to execute a LINQ query.

 Tip

Good Practice

Do not assume that using parallel threads will improve the performance of your applications. Always measure real-world timings and resource usage.

To see it in action, we will start with some code that only uses a single thread to double 200 million integers. We will use the StopWatch
 type to measure the change in performance. We will use operating system tools to monitor CPU and CPU core usage.

Use either Visual Studio 2017 or Visual Studio Code to add a new console application project named Ch09_PLINQ
 .

Import the System.Diagnostics
 namespace so that we can use the StopWatch
 type; System.Collections.Generic
 so that we can use the IEnumerable<T>
 type, System.Linq
 ; and statically import the System.Console
 type.

Add the following statements to the Main
 method:

 var watch = Stopwatch.StartNew();
 Write("Press ENTER to start. ");
 ReadLine();
 watch.Start();
 IEnumerable<int> numbers = Enumerable.Range(1, 200_000_000);
 var squares = numbers.Select(number => number * 2).ToArray();
 // var squares = numbers.AsParallel()
 // .Select(number => number * 2).ToArray();
 watch.Stop();
 WriteLine($"{watch.ElapsedMilliseconds:#,##0} elapsed
 milliseconds.");

Run the console application, but
do not

 press
Enter

 to start yet.

In Windows 10, right-click on the Windows Start button or press
Ctrl

 +
Alt

 +

Delete

 , and then click on
Task Manager

 .

At the bottom of the
Task Manager

 window, click on the
More details

 button. At the top of the
Task Manager

 window, click on the
Performance

 tab.

Right-click on the
CPU Utilization

 graph, choose
Change graph to

 , and then
Logical processors

 , as you can see in the following screenshot:

[image: Using multiple threads with parallel LINQ]

In macOS, run
Activity Monitor

 . Increase the frequency of CPU measurements by navigating to
View

 |
Update Frequency

 |
Very often (1 sec)

 . To see the CPU graphs, navigate to
Window

 |
CPU History

 .

 Note

If you do not have multiple CPUs, then this exercise won't show much!

Rearrange
Task Manager

 and your console application, or
CPU History

 and Visual Studio Code Integrated Terminal so that they are side by side, as shown in the following screenshot:

[image: Using multiple threads with parallel LINQ]

Wait for the CPUs to settle and then press
Enter

 to start the stopwatch and run the query. Your output should look like this:

Press ENTER to start.

31,230 elapsed milliseconds.

[image: Using multiple threads with parallel LINQ]

On macOS, it'll look something like this:

[image: Using multiple threads with parallel LINQ]

Task Manager

 or
CPU History

 windows should show that one or two CPUs were used the most. Others may execute background tasks at the same time, such as the garbage collector, so the others CPUs won't be completely flat, but the work certainly is not being evenly spread amongst all possible CPUs.

Back in the Main
 method, modify the query to make a call to the AsParallel
 extension method as follows:

 var squares = numbers.AsParallel()
 .Select(number => number * 2).ToArray();

Run the application again. Wait for the
Task Manager

 or
CPU History

 windows to settle and then press
Enter

 to start the stopwatch and run the query.

This time, the application should complete in less time (although it might not be as less as you might hope for-managing those multiple threads takes extra effort!).

Press ENTER to start.

26,830 elapsed milliseconds.

The
Task Manager

 or
CPU History

 windows should show that all CPUs were used equally to execute the LINQ query, as shown in the following screenshot for Windows 10:

[image: Using multiple threads with parallel LINQ]

And, in this screenshot for macOS:

[image: Using multiple threads with parallel LINQ]

 Note

You will learn more about managing multiple threads in Chapter 12
 ,
Improving Performance and Scalability with Multitasking

 .

 Creating your own LINQ extension methods

In Chapter 7
 ,
Implementing Interfaces and Inheriting Classes

 , you learned how to create your own extension methods. To create LINQ extension methods, all you must do is extend the IEnumerable<T>
 type.

 Tip

Good Practice

Put your own extension methods in a separate class library so that they can be easily deployed as their own assembly or NuGet package.

In either Visual Studio 2017 or Visual Studio Code, open the Ch09_LinqToObjects
 project or folder, and add a new class file named MyLINQExtensions.cs
 .

Modify the class to look like the following code. Note that the ProcessSequence
 extension method doesn't modify the sequence because it exists only as an example. It would be up to you to process the sequence in whatever manner you want. The SummariseSequence
 extension method also doesn't do anything especially useful. It simply returns a long
 count of the number of items in the sequence using the built-in LongCount
 extension method. Again, it would be up to you to decide exactly what this method should do and what type it should return:

 using System.Collections.Generic;

 namespace System.Linq
 {
 public static class MyLINQExtensions
 {
 // this is a chainable LINQ extension method
 public static IEnumerable<T> ProcessSequence<T>(
 this IEnumerable<T> sequence)
 {
 return sequence;
 }

 // this is a scalar LINQ extension method
 public static long SummariseSequence<T>(
 this IEnumerable<T> sequence)
 {
 return sequence.LongCount();
 }
 }
 }

To use your LINQ extension methods, you would simply need to reference the class library assembly because the System.Linq
 namespace is usually already imported.

Modify the LINQ query to call your chainable extension method as follows:

 var query = names

 .ProcessSequence()

 .Where(name => name.Length > 4)
 .OrderBy(name => name.Length)
 .ThenBy(name => name);

If you run the console application, then you will see the same output as before because your method doesn't modify the sequence. But, you now know how to extend LINQ with your own functionality.

 Working with LINQ to XML

LINQ to XML

 is a LINQ provider that allows you to query and manipulate XML.

 Generating XML using LINQ to XML

Open the console application project or folder named Ch09_Projection
 .

In the Program.cs
 file, import the System.Xml.Linq
 namespace.

In the Main
 method, at the bottom, write the following statements:

 var productsForXml = db.Products.ToArray();

 var xml = new XElement("products",
 from p in productsForXml
 select new XElement("product",
 new XAttribute("id", p.ProductID),
 new XAttribute("price", p.UnitPrice),
 new XElement("name", p.ProductName)));

 WriteLine(xml.ToString());

Run the console application and view the output.

Note the structure of the XML generated matches the elements and attributes that the LINQ to XML statement declaratively described in the preceding code:

 <products>
 <product id="1" price="18.0000">
 <name>Chai</name>
 </product>
 <product id="2" price="19.0000">
 <name>Chang</name>
 </product>
 <product id="3" price="10.0000">
 <name>Aniseed Syrup</name>
 </product>

 Reading XML by using LINQ to XML

You might want to use LINQ to XML to easily query XML files.

In the Ch09_Projection
 project, add an XML file named settings.xml
 . Modify its contents to look like this:

 <?xml version="1.0" encoding="utf-8" ?>
 <appSettings>
 <add key="color" value="red" />
 <add key="size" value="large" />
 <add key="price" value="23.99" />
 </appSettings>

Back in the Program
 class, add the following statements to:

	Load the XML file.

	Use LINQ to XML to search for an element named appSettings
 , and its descendants named add
 .

	Project the XML into an array of an anonymous type with a Key
 and Value
 property.

	Enumerate through the array to show the results.

 XDocument doc = XDocument.Load("settings.xml");

 var appSettings = doc.Descendants(
 "appSettings").Descendants("add")
 .Select(node => new
 {
 Key = node.Attribute("key").Value,
 Value = node.Attribute("value").Value
 })
 .ToArray();

 foreach (var item in appSettings)
 {
 WriteLine($"{item.Key}: {item.Value}");
 }

Run the console application and view the output:

color: red

size: large

price: 23.99

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore with deeper research into the topics covered in this chapter.

 Exercise 9.1 - test your knowledge

Answer the following questions:

	What are the two required parts of LINQ?

	Which LINQ extension method would you use to return a subset of properties from a type?

	Which LINQ extension method would you use to filter a sequence?

	List five LINQ extension methods that perform aggregation.

	What is the difference between the Select
 and SelectMany
 extension methods?

 Exercise 9.2 - practice querying with LINQ

Create a console application, named Ch09_Exercise02
 , that prompts the user for a city and then lists the company names for Northwind customers in that city:

Enter the name of a city: London

There are 6 customers in London:

Around the Horn

B's Beverages

Consolidated Holdings

Eastern Connection

North/South

Seven Seas Imports

Enhance the application by displaying a list of all unique cities that customers already reside in as a prompt to the user before they enter their preferred city:

Aachen, Albuquerque, Anchorage, rhus, Barcelona, Barquisimeto,
Bergamo, Berlin, Bern, Boise, Brcke, Brandenburg, Bruxelles, Buenos
Aires, Butte, Campinas, Caracas, Charleroi, Cork, Cowes, Cunewalde,
Elgin, Eugene, Frankfurt a.M., Genve, Graz, Helsinki, I. de
Margarita, Kirkland, Kobenhavn, Kln, Lander, Leipzig, Lille, Lisboa,
London, Lule, Lyon, Madrid, Mannheim, Marseille, Mxico D.F.,
Montral, Mnchen, Mnster, Nantes, Oulu, Paris, Portland, Reggio
Emilia, Reims, Resende, Rio de Janeiro, Salzburg, San Cristbal, San
Francisco, Sao Paulo, Seattle, Sevilla, Stavern, Strasbourg,
Stuttgart, Torino, Toulouse, Tsawassen, Vancouver, Versailles, Walla
Walla, Warszawa

 Exercise 9.3 - explore topics

Use the following links to read more details about the topics covered in this chapter:

	

LINQ in C#

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/linq/linq-in-csharp

	

101 LINQ Samples

 : https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

	

Parallel LINQ (PLINQ)

 : https://msdn.microsoft.com/en-us/library/dd460688(v=vs.110).aspx

	

LINQ to XML (C#)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/linq/linq-to-xml

	

LINQPad - The .NET Programmer's Playground

 : https://www.linqpad.net/

 Summary

In this chapter, you learned how to write LINQ queries to select, project, filter, sort, join, and group data in many different formats, including XML, which are tasks you will perform every day.

In the next chapter, we will manage files and streams, encode and decode text, and perform serialization.

 Chapter10.Working with Files, Streams, and Serialization

This chapter is about reading and writing to files and streams, text encoding, and serialization.

This chapter will cover the following topics:

	Managing the filesystem

	Reading and writing with streams

	Encoding text

	Serializing object graphs

 Managing the filesystem

Your applications will often need to perform input and output with files and directories. The System.IO
 namespace contains classes for this purpose.

 Managing directories

In Visual Studio 2017, press
Ctrl

 +
Shift

 +
N

 or choose
File

 |
New

 |
Project...

 .

In the
New Project

 dialog, in the
Installed

 |
Templates

 list, select
.NET Core

 . In the center list, select
Console App (.NET Core)

 , type
Name

 as Ch10_FileSystem
 , change the location to C:\Code
 , type the solution name as Chapter10
 , and then click on
OK

 .

In Visual Studio Code, in the Integrated Terminal, make a new directory named Chapter10
 , and a subdirectory named Ch10_FileSystem
 . Open the folder and enter the command dotnet new console
 .

At the top of the Program.cs
 file, add the following import statements. Note that we will statically import the Directory
 type to simplify our code:

 using static System.Console;
 using System.IO;
 using static System.IO.Directory;

In the Main
 method, write the following statements to check for the existence of a directory. Then, create and delete it. Note that the path is different for Windows and macOS:

 // define a directory path
 // string dir = @"C:\Code\Ch10_Example"; // Windows
 string dir = @"/Users/markjprice/Code/Ch10_Example/"; // macOS

 // check if it exists
 WriteLine($"Does {dir} exist? {Exists(dir)}");
 // create a directory
 CreateDirectory(dir);
 WriteLine($"Does {dir} exist? {Exists(dir)}");
 // delete a directory
 Delete(dir);
 WriteLine($"Does {dir} exist? {Exists(dir)}");

Run the console application and view the output:

Does /Users/markjprice/Code/Ch10_Example/ exist? False

Does /Users/markjprice/Code/Ch10_Example/ exist? True

Does /Users/markjprice/Code/Ch10_Example/ exist? False

 Managing files

Note that, this time we will not statically import the File
 type, because it has some of the same methods as the Directory
 type and they would conflict. The File
 type has a short enough name not to matter in this case.

In the Main
 method, add the following statements to:

	Check for the existence of a file

	Create a text file

	Write a line of text to the file

	Copy the file to a backup

	Delete the original file

	Read the backup file's contents

 // string textFile = @"C:\Code\Ch10.txt"; // Windows
 // string backupFile = @"C:\Code\Ch10.bak"; // Windows
 string textFile = @"/Users/markjprice/Code/Ch10.txt"; // macOS
 string backupFile = @"/Users/markjprice/Code/Ch10.bak"; // macOS

 // check if a file exists
 WriteLine($"Does {textFile} exist? {File.Exists(textFile)}");

 // create a new text file and write a line to it
 StreamWriter textWriter = File.CreateText(textFile);
 textWriter.WriteLine("Hello, C#!");
 textWriter.Dispose();
 WriteLine($"Does {textFile} exist? {File.Exists(textFile)}");

 // copy a file and overwrite if it already exists
 File.Copy(textFile, backupFile, true);
 WriteLine($"Does {backupFile} exist? {File.Exists(backupFile)}");

 // delete a file
 File.Delete(textFile);
 WriteLine($"Does {textFile} exist? {File.Exists(textFile)}");

 // read from a text file
 StreamReader textReader = File.OpenText(backupFile);
 WriteLine(textReader.ReadToEnd());
 textReader.Dispose();

Run the console application and view the output:

Does C:\Code\Ch10.txt exist? False

Does C:\Code\Ch10.txt exist? True

Does C:\Code\Ch10.bak exist? True

Does C:\Code\Ch10.txt exist? False

Hello, C#!

 Note

In .NET Framework, you can use either the Close
 or Dispose
 method when you are finished with StreamReader
 or StreamWriter
 . In .NET Core, you can only use Dispose
 , because Microsoft has simplified the API.

 Managing paths

Sometimes, you need to work with paths, for example, you might want to extract just the folder name, the file name, or the extension. Sometimes, you need to generate temporary folders and file names. You can do this with the Path
 class.

Add the following statements to the Main
 method:

 WriteLine($"File Name: {Path.GetFileName(textFile)}");
 WriteLine($"File Name without Extension:
 {Path.GetFileNameWithoutExtension(textFile)}");
 WriteLine($"File Extension: {Path.GetExtension(textFile)}");
 WriteLine($"Random File Name: {Path.GetRandomFileName()}");
 WriteLine($"Temporary File Name: {Path.GetTempFileName()}");

Run the console application and view the output:

File Name: Ch10.txt

File Name without Extension: Ch10

File Extension: .txt

Random File Name: u45w1zki.co3

Temporary File Name: /var/folders/tz/xx0y_wld5sx0nv0fjtq4tnpc0000gn/T/tmpyqrepP.

tmp

 Note

The GetTempFileName
 method creates a zero-byte file and returns its name, ready for you to use. GetRandomFileName
 just returns a filename; it doesn't create the file.

 Getting file information

To get more information about a file or directory, you can create an instance of the FileInfo
 or DirectoryInfo
 class.

Add the following statements to the end of the Main
 method:

 string backup = @"/Users/markjprice/Code/Ch10.bak"; // macOS
 // string backup = @"C:\Code\Ch10.bak"; // Windows
 var info = new FileInfo(backup);
 WriteLine($"{backup} contains {info.Length} bytes.");
 WriteLine($"{backup} was last accessed {info.LastAccessTime}.");
 WriteLine($"{backup} has readonly set to {info.IsReadOnly}.");

Run the console application and view the output:

C:\Code\Ch10.bak contains 11 bytes.

C:\Code\Ch10.bak was last accessed 29/08/2015 16:25:47.

C:\Code\Ch10.bak has readonly set to False.

 Reading and writing with streams

A
stream

 is a sequence of bytes.

There is an abstract class named Stream
 that represents a stream. There are many classes that inherit from this base class, so they all work the same way. In the following table are some of the common members of the Stream
 class:

	

Member

	

Description

	

CanRead
 , CanWrite

	
This determines whether you can read from and write to the stream

	

Length
 , Position

	
This determines the total number of bytes and the current position within the stream

	

Dispose()

	
This closes the stream and releases its resources

	

Flush()

	
If the stream has a buffer, then it is cleared and written to the underlying stream

	

Read()
 , ReadAsync()

	
This reads a specified number of bytes from the stream into a byte array and advances the position

	

ReadByte()

	
This reads the next byte from the stream and advances the position

	

Seek()

	
This moves the position to the specified position (if CanSeek is true)

	

Write()
 , WriteAsync()

	
This writes the contents of a byte array into the stream

	

WriteByte()

	
This writes a byte to the stream

Storage streams

 can be readand written to, and the bytes will be stored in that location.

[image: Reading and writing with streams]

Function streams

 can only be "plugged onto" other streams to add functionality.

	

Namespace

	

Class

	

Description

	

System.Security.Cryptography

	

CryptoStream

	
This encrypts and decrypts the stream

	

System.IO.Compression

	

GZipStream
 , DeflateStream

	
This compresses and decompresses the stream

	

System.Net.Security

	

AuthenticatedStream

	
This sends credentials across the stream

Although there will be occasions where you need to work with streams at a low level, most often, you can plug helper classes into the chain to make things easier. Here are some helper classes to handle common scenarios:

[image: Reading and writing with streams]

 Writing to text and XML streams

Add a new console application project named Ch10_Streams
 .

In Visual Studio 2017, set the solution's start-up project to be the current selection.

Import the System.IO
 and System.Xml
 namespaces, statically import the System.Console
 type, and add the following statement to the Main
 method:

 // define an array of strings
 string[] callsigns = new string[] { "Husker", "Starbuck",
 "Apollo", "Boomer", "Bulldog", "Athena", "Helo", "Racetrack" };

 // define a file to write to using a text writer helper
 string textFile = @"/Users/markjprice/Code/Ch10_Streams.txt";
 // string textFile = @"C:\Code\Ch10_Streams.txt"; // Windows
 StreamWriter text = File.CreateText(textFile);

 // enumerate the strings writing each one to the stream
 foreach (string item in callsigns)
 {
 text.WriteLine(item);
 }
 text.Dispose(); // close the stream

 // output all the contents of the file to the Console
 WriteLine($"{textFile} contains {new FileInfo(textFile).Length}
 bytes.");
 WriteLine(File.ReadAllText(textFile));

 // define a file to write to using the XML writer helper
 string xmlFile = @"/Users/markjprice/Code/Ch10_Streams.xml";
 // string xmlFile = @"C:\Code\Ch10_Streams.xml";

 FileStream xmlFileStream = File.Create(xmlFile);
 XmlWriter xml = XmlWriter.Create(xmlFileStream,
 new XmlWriterSettings { Indent = true });

 // write the XML declaration
 xml.WriteStartDocument();

 // write a root element
 xml.WriteStartElement("callsigns");

 // enumerate the strings writing each one to the stream
 foreach (string item in callsigns)
 {
 xml.WriteElementString("callsign", item);
 }

 // write the close root element
 xml.WriteEndElement();
 xml.Dispose();
 xmlFileStream.Dispose();

 // output all the contents of the file to the Console
 WriteLine($"{xmlFile} contains {new FileInfo(xmlFile).Length}
 bytes.");
 WriteLine(File.ReadAllText(xmlFile));

Run the console application and view the output:

C:\Code\Ch10_Streams.txt contains 68 bytes.

Husker

Starbuck

Apollo

Boomer

Bulldog

Athena

Helo

Racetrack

C:\Code\Ch10_Streams.xml contains 320 bytes.

<?xml version="1.0" encoding="utf-8"?>

<callsigns>

<callsign>Husker</callsign>

<callsign>Starbuck</callsign>

 <callsign>Apollo</callsign>

 <callsign>Boomer</callsign>

 <callsign>Bulldog</callsign>

<callsign>Athena</callsign>

<callsign>Helo</callsign>

 <callsign>Racetrack</callsign>

</callsigns>

 Compressing streams

XML is relatively verbose, so it takes up more space in bytes than plain text. We can squeeze the XML using a common compression algorithm known as
GZIP

 .

Import the following namespace:

 using System.IO.Compression;

Add the following code to the end of the Main
 method:

 // compress the XML output
 string gzipFilePath = @"/Users/markjprice/Code/Ch10.gzip";
 // string gzipFilePath = @"C:\Code\Ch10.gzip"; // Windows

 FileStream gzipFile = File.Create(gzipFilePath);
 GZipStream compressor = new GZipStream(gzipFile,
 CompressionMode.Compress);
 XmlWriter xmlGzip = XmlWriter.Create(compressor);
 xmlGzip.WriteStartDocument();
 xmlGzip.WriteStartElement("callsigns");
 foreach (string item in callsigns)
 {
 xmlGzip.WriteElementString("callsign", item);
 }
 xmlGzip.Dispose();
 compressor.Dispose(); // also closes the underlying stream

 // output all the contents of the compressed file to the Console
 WriteLine($"{gzipFilePath} contains {new
 FileInfo(gzipFilePath).Length} bytes.");
 WriteLine(File.ReadAllText(gzipFilePath));

 // read a compressed file
 WriteLine("Reading the compressed XML file:");
 gzipFile = File.Open(gzipFilePath, FileMode.Open);
 GZipStream decompressor = new GZipStream(gzipFile,
 CompressionMode.Decompress);
 XmlReader reader = XmlReader.Create(decompressor);
 while (reader.Read())
 {
 // check if we are currently on an element node named callsign
 if ((reader.NodeType == XmlNodeType.Element) && (reader.Name ==
 "callsign"))
 {
 reader.Read(); // move to the Text node inside the element
 WriteLine($"{reader.Value}"); // read its value
 }
 }
 reader.Dispose();
 decompressor.Dispose();

Rerun the application and notice that the compressed XML is less than half the size of the same XML without compression:

C:\Code\Ch10.gzip contains 150 bytes.
▼
{?{??}En?BYjQqf~???????Bj^r~Jf^??RiI??????MrbNNqfz^1?i?QZ??Zd?☼↨@H?$
▬%?
&gc?t,?????*????H?????t?&?d??%b??H?aUPbrjIQ"??◄? ??9∟:)

Reading the compressed XML file:

Husker

Starbuck

Apollo

Boomer

Bulldog

Athena

Helo

Racetrack

 Encoding text

Text characters can be represented in different ways. For example, the alphabet can be encoded using Morse code into a series of dots and dashes for transmission over a telegraph line.

In a similar way, text inside a computer is stored as bits (ones and zeros). .NET Core uses a standard called
Unicode

 to encode text internally. Sometimes, you will need to move text outside .NET Core for use by systems that do not use Unicode or use a variation of Unicode.

The following table lists some alternative text encodings commonly used by computers:

	

Encoding

	

Description

	
ASCII

	
This encodes a limited range of characters using the lower seven bits of a byte

	
UTF-8

	
This represents each Unicode code point as a sequence of one to four bytes

	
UTF-16

	
This represents each Unicode code point as a sequence of one or two 16-bit integers

	
ANSI/ISO encodings

	
This provides support for a variety of code pages that are used to support a specific language or group of languages

 Encoding strings as byte arrays

Add a new console application project named Ch10_Encoding
 .

Import the System.Text
 namespace and add the following statements to the Main
 method. The code encodes a string using the chosen encoding, loops through each byte, and then decodes back into a string and outputs it:

 WriteLine("Encodings");
 WriteLine("[1] ASCII");
 WriteLine("[2] UTF-7");
 WriteLine("[3] UTF-8");
 WriteLine("[4] UTF-16 (Unicode)");
 WriteLine("[5] UTF-32");
 WriteLine("[any other key] Default");

 // choose an encoding
 Write("Press a number to choose an encoding: ");
 ConsoleKey number = ReadKey(false).Key;
 WriteLine();
 WriteLine();

 Encoding encoder;
 switch (number)
 {
 case ConsoleKey.D1:
 encoder = Encoding.ASCII;
 break;
 case ConsoleKey.D2:
 encoder = Encoding.UTF7;
 break;
 case ConsoleKey.D3:
 encoder = Encoding.UTF8;
 break;
 case ConsoleKey.D4:
 encoder = Encoding.Unicode;
 break;
 case ConsoleKey.D5:
 encoder = Encoding.UTF32;
 break;
 default:
 encoder = Encoding.GetEncoding(0);
 break;
 }

 // define a string to encode
 string message = "A pint of milk is 1.99";

 // encode the string into a byte array
 byte[] encoded = encoder.GetBytes(message);

 // check how many bytes the encoding needed
 WriteLine($"{encoder.GetType().Name} uses {encoded.Length}
 bytes.");

 // enumerate each byte
 WriteLine($"Byte Hex Char");
 foreach (byte b in encoded)
 {
 WriteLine($"{b,4} {b.ToString("X"),4} {(char)b,5}");
 }

 // decode the byte array back into a string and display it
 string decoded = encoder.GetString(encoded);
 WriteLine(decoded);

Run the application and press 1
 to choose ASCII. Notice that when outputting the bytes, the pound sign (
) cannot be represented in ASCII, so it uses a question mark (?
) instead:

Encodings

[1] ASCII

[2] UTF-7

[3] UTF-8

[4] UTF-16 (Unicode)

[5] UTF-32

[any other key] Default

Press a number to choose an encoding: 1

ASCIIEncoding uses 23 bytes.

Byte Hex Char

65 41 A

32 20

112 70 p

105 69 i

110 6E n

 116 74 t

 32 20

 111 6F o

102 66 f

32 20

109 6D m

105 69 i

108 6C l

107 6B k

32 20

105 69 i

115 73 s

 32 20

 63 3F ?

49 31 1

 46 2E .

 57 39 9

 57 39 9

A pint of milk is ?1.99

Rerun the application and press 3
 to choose UTF-8. Notice that, UTF-8 requires one extra byte (24 bytes instead of 23 bytes), but it can store the
 :

UTF8Encoding uses 24 bytes.

Byte Hex Char

65 41 A

32 20

112 70 p

 105 69 i

 110 6E n

116 74 t

 32 20

 111 6F o

102 66 f

32 20

109 6D m

105 69 i

 108 6C l

107 6B k

 32 20

 105 69 i

 115 73 s

 32 20

 194 C2

 163 A3

49 31 1

 46 2E .

57 39 9

 57 39 9

A pint of milk is 1.99

Rerun the application and press 4
 to choose Unicode (UTF-16). Notice that UTF-16 requires two bytes for every character, but it can store the
 :

UnicodeEncoding uses 46 bytes.

 Encoding and decoding text in files

When using stream helper classes, such as StreamReader
 and StreamWriter
 , you can specify the encoding you want to use. As you write to the helper, the strings will automatically be encoded, and as you read from the helper, the bytes will be automatically decoded. This is how you can specify the encoding:

 var reader = new StreamReader(stream, Encoding.UTF7);
 var writer = new StreamWriter(stream, Encoding.UTF7);

 Tip

Good Practice

Often, you won't have a choice of encoding to use, because you will be generating a file for use by another system. However, if you do, pick one that uses the least number of bytes but can store every character you need.

 Serializing object graphs

Serialization

 is the process of converting a live object into a sequence of bytes using a specified format.
Deserialization

 is the reverse process.

There are dozens of formats you can choose, but the two most common ones are
eXtensible Markup Language

 (
XML

) and
JavaScript Object Notation

 (
JSON

).

 Tip

Good Practice

JSON is more compact and is best for web and mobile applications. XML is more verbose, but is better supported in older systems. Ironically, Microsoft originally chose JSON for the project.json
 file format in .NET Core 1.0, but then changed their mind and went back to XML with the C# project .csproj
 file format!

.NET Core has multiple classes that will serialize to and from XML and JSON. We will start by looking at XmlSerializer
 and JsonSerializer
 .

 Serializing with XML

Add a new console application project named Ch10_Serialization
 .

In Visual Studio 2017, in the
Solution

Explorer

 , right-click
Dependencies

 and choose
Manage NuGet Packages

 . Search for System.Xml.XmlSerializer
 , select the found item, and then click on
Install

 , as shown in the following screenshot:

[image: Serializing with XML]

 Tip

Good Practice

If there are updates to other packages found, then install those too.

In Visual Studio Code, edit the Ch10_Serialization.csproj
 file to add a package reference for System.Xml.XmlSerializer
 version 4.3.0
 , as highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

<ItemGroup>
 <PackageReference Include="System.Xml.XmlSerializer"
 Version="4.3.0" />
 </ItemGroup>

 </Project>

To show a common example, we will define a custom class to store information about a person and then create an object graph using a list of Person
 instances with nesting.

Add a class named Person
 with the following definition. Notice that the Salary
 property is protected, meaning it is only accessible to itself and derived classes. To populate the salary, the class has a constructor with a single parameter to set the initial salary:

 using System;
 using System.Collections.Generic;

 namespace Ch10_Serialization
 {
 public class Person
 {
 public Person(decimal initialSalary)
 {
 Salary = initialSalary;
 }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime DateOfBirth { get; set; }
 public HashSet<Person> Children { get; set; }
 protected decimal Salary { get; set; }
 }
 }

Back in Program.cs
 , import the following namespaces:

 using System;
 using System.Collections.Generic;
 using System.Xml.Serialization;
 using System.IO;
 using static System.Console;

Add the following statements to the Main
 method:

 // create an object graph
 var people = new List<Person>
 {
 new Person(30000M) { FirstName = "Alice", LastName = "Smith",
 DateOfBirth = new DateTime(1974, 3, 14) },
 new Person(40000M) { FirstName = "Bob", LastName = "Jones",
 DateOfBirth = new DateTime(1969, 11, 23) },
 new Person(20000M) { FirstName = "Charlie", LastName = "Rose",
 DateOfBirth = new DateTime(1964, 5, 4),
 Children = new HashSet<Person>
 { new Person(0M) { FirstName = "Sally", LastName = "Rose",
 DateOfBirth = new DateTime(1990, 7, 12) } } }
 };

 // create a file to write to
 string xmlFilepath = @"/Users/markjprice/Code/Ch10_People.xml";
 // string xmlFilepath = @"C:\Code\Ch10_People.xml"; // Windows
 FileStream xmlStream = File.Create(xmlFilepath);

 // create an object that will format as List of Persons as XML
 var xs = new XmlSerializer(typeof(List<Person>));

 // serialize the object graph to the stream
 xs.Serialize(xmlStream, people);

 // you must close the stream to release the file lock
 xmlStream.Dispose();

 WriteLine($"Written {new FileInfo(xmlFilepath).Length} bytes of
 XML to {xmlFilepath}");
 WriteLine();

 // Display the serialized object graph
 WriteLine(File.ReadAllText(xmlFilepath));

Run the console application and view the output.

Note that an exception is thrown:

Unhandled Exception: System.InvalidOperationException:
Ch10_Serialization.Person cannot be serialized because it does not
have a parameterless constructor.

Back in the Person.cs
 file, add the following statement to define a parameter-less constructor. Note that the constructor does not need to do anything, but it must exist so that the XmlSerializer
 can call it to instantiate new Person
 instances during the deserialization process:

 public Person() { }

Rerun the console application and view the output.

Note that the object graph is serialized as XML and the Salary
 property is not included:

Written 778 bytes of XML to C:\Code\Ch10_People.xml

<?xml version="1.0"?>

<ArrayOfPerson xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Person>

 <FirstName>Alice</FirstName>

 <LastName>Smith</LastName>

 <DateOfBirth>1974-03-14T00:00:00</DateOfBirth>

 </Person>

 <Person>

 <FirstName>Bob</FirstName>

 <LastName>Jones</LastName>

 <DateOfBirth>1969-11-23T00:00:00</DateOfBirth>

 </Person>

 <Person>

 <FirstName>Charlie</FirstName>

 <LastName>Rose</LastName>

 <DateOfBirth>1964-05-04T00:00:00</DateOfBirth>

 <Children>

 <Person>

 <FirstName>Sally</FirstName>

 <LastName>Rose</LastName>

 <DateOfBirth>1990-07-12T00:00:00</DateOfBirth>

 </Person>

 </Children>

 </Person>

</ArrayOfPerson>

We could make the XML more efficient using attributes instead of elements for some fields.

In the Person.cs
 file, import the System.Xml.Serialization
 namespace and modify all the properties, except Children
 , with the [XmlAttribute]
 attribute:

 [XmlAttribute("fname")]
 public string FirstName { get; set; }
 [XmlAttribute("lname")]
 public string LastName { get; set; }
 [XmlAttribute("dob")]
 public DateTime DateOfBirth { get; set; }

Rerun the application and notice that the XML is now more efficient:

Written 473 bytes of XML to C:\Code\Ch10_People.xml

<?xml version="1.0"?>

<ArrayOfPerson xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="

http://www.w3.org/2001/XMLSchema">

 <Person fname="Alice" lname="Smith" dob="1974-03-14T00:00:00" />

 <Person fname="Bob" lname="Jones" dob="1969-11-23T00:00:00" />

 <Person fname="Charlie" lname="Rose" dob="1964-05-04T00:00:00">

 <Children>

 <Person fname="Sally" lname="Rose" dob="1990-07-12T00:00:00" />

 </Children>

 </Person>

</ArrayOfPerson>

 Deserializing with XML

Add the following statements to the end of the Main
 method:

 FileStream xmlLoad = File.Open(xmlFilepath, FileMode.Open);
 // deserialize and cast the object graph into a List of Person
 var loadedPeople = (List<Person>)xs.Deserialize(xmlLoad);
 foreach (var item in loadedPeople)
 {
 WriteLine($"{item.LastName} has {item.Children.Count}
 children.");
 }
 xmlLoad.Dispose();

Rerun the application and notice that the people are loaded successfully from the XML file:

Smith has 0 children.

Jones has 0 children.

Rose has 1 children.

 Customizing the XML

There are many other attributes that can be used to control the XML generated. See the references at the end of this chapter for more information.

 Tip

Good Practice

When using XmlSerializer
 , remember that only public
 fields and properties are included, and the type must have a parameter-less constructor. You can customize the output with attributes.

 Serializing with JSON

In Visual Studio 2017, in the
Solution

Explorer

 , in theCh10_Serialization
 project, right-click on
Dependencies

 and choose
Manage NuGet Packages

 . Search for Newtonsoft.Json
 , select the found item, and then click on
Install

 .

In Visual Studio Code, edit the Ch10_Serialization.csproj
 file to add a package reference for the Newtonsoft.Json
 version 9.0.1
 , as shown in the following markup:

 <PackageReference Include="Newtonsoft.Json"
 Version="9.0.1" />

Import the following namespace at the top of the Program.cs
 file:

 using Newtonsoft.Json;

Add the following statements to the end of the Main
 method:

 // create a file to write to
 string jsonFilepath = @"/Users/markjprice/Code/Ch10_People.json";
 // string jsonFilepath = @"C:\Code\Ch10_People.json"; // Windows
 StreamWriter jsonStream = File.CreateText(jsonFilepath);

 // create an object that will format as JSON
 var jss = new JsonSerializer();

 // serialize the object graph into a string
 jss.Serialize(jsonStream, people);

 // you must dispose the stream to release the file lock
 jsonStream.Dispose();

 WriteLine();
 WriteLine($"Written {new FileInfo(jsonFilepath).Length} bytes of
 JSON to: {jsonFilepath}");

 // Display the serialized object graph
 WriteLine(File.ReadAllText(jsonFilepath));

Rerun the application and notice that JSON requires less than half the number of bytes compared to XML with elements. It's even smaller than XML, which uses attributes:

Written 368 bytes of JSON to: C:\Code\Ch10_People.json

[{"FirstName":"Alice","LastName":"Smith","DateOfBirth":"\/Date(132451
 200000)\/",
 "Children":null},{"FirstName":"Bob","LastName":"Jones","DateOfBirth":
 "\/Date(-
 3369600000)\/","Children":null},{"FirstName":"Charlie","LastName":"Ro
 se","DateOfBirth":"\/Date(-
 178678800000)\/","Children":[{"FirstName":"Sally","LastName":"Rose","
 DateOfBirth":"\/Date(647737200000)\/","Children":null}]}]

 Tip

Good Practice

Use JSON to minimize the size of serialized object graphs. JSON is also a good choice when sending object graphs to web applications and mobile applications because JSON is the native serialization format for JavaScript.

 Serializing with other formats

There are many other formats available as NuGet packages that you can use for serialization. A commonly used pair are: DataContractSerializer
 (for XML) and DataContractJsonSerializer
 (for JSON), which are both in the System.Runtime.Serialization
 namespace.

The main serializer that is available for .NET Framework but was not ported to .NET Core are the System.Runtime.Serialization
 formatters, especially the BinaryFormatter
 .

 Practice and explore

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

 Exercise 10.1 - test your knowledge

Answer the following questions:

	What is the difference between using the File
 class and the FileInfo
 class?

	What is the difference between the ReadByte
 method and the Read
 method of a stream?

	When would you use the StringReader
 , TextReader
 , and StreamReader
 classes?

	What does the DeflateStream
 type do?

	How many bytes per character does the UTF-8 encoding use?

	What is an object graph?

	What is the best serialization format to choose for minimizing space requirements?

	What is the best serialization format to choose for cross-platform compatibility?

 Exercise 10.2 - practice serializing as XML

Create a console application named Ch10_Exercise02
 that creates a list of shapes, uses serialization to save it to the filesystem using XML, and then deserializes it back:

 // create a list of Shapes to serialize
 var listOfShapes = new List<Shape>
 {
 new Circle { Colour = "Red", Radius = 2.5 },
 new Rectangle { Colour = "Blue", Height = 20.0, Width = 10.0 },
 new Circle { Colour = "Green", Radius = 8 },
 new Circle { Colour = "Purple", Radius = 12.3 },
 new Rectangle { Colour = "Blue", Height = 45.0, Width = 18.0 }
 };

Shapes should have a read-only property named Area
 so that, when you deserialize, you can output a list of shapes, including their areas, as shown here:

 List<Shape> loadedShapesXml = serializerXml.Deserialize(fileXml)
 as List<Shape>;
 foreach (Shape item in loadedShapesXml)
 {
 WriteLine($"{item.GetType().Name} is {item.Colour} and has an
 area of {item.Area}");
 }

This is what your output should look like when you run the application:

Loading shapes from XML:

Circle is Red and has an area of 19.6349540849362

Rectangle is Blue and has an area of 200

Circle is Green and has an area of 201.061929829747

Circle is Purple and has an area of 475.2915525616

Rectangle is Blue and has an area of 810

 Exercise 10.3 - explore serialization formats

Create a console application named Ch10_Exercise03
 that queries the Northwind database for all the categories and products and then serializes the data using at least three formats of serialization available to .NET Core.

Which uses the least number of bytes?

 Exercise 10.4 - explore topics

Use the following links to read more on this chapter's topics:

	

File System and the Registry (C# Programming Guide)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/file-system/

	

Character encoding in .NET

 : https://docs.microsoft.com/en-us/dotnet/articles/standard/base-types/character-encoding

	

Serialization (C#)

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/serialization/

	

Serializing to Files, TextWriters, and XmlWriters

 : https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/concepts/linq/serializing-to-files-textwriters-and-xmlwriters

	

Newtonsoft Json.NET

 : http://www.newtonsoft.com/json

 Summary

In this chapter, you learned how to read from and write to text files and XML files, how to compress and decompress files, how to encode and decode text, and how to serialize an object into JSON and XML (and deserialize it back again).

In the next chapter, you will learn how to protect data and files.

 Chapter11.Protecting Your Data

This chapter is about protecting your data from being viewed by malicious users using encryption, and from being manipulated or corrupted using hashing and signing.

This chapter covers the following topics:

	Understanding the vocabulary of protection

	Encrypting and decrypting data

	Hashing data

	Signing data

 Understanding the vocabulary of protection

There are many techniques to protect your data; some of them are as follows:

	

Encryption and decryption

 : This is a two-way process to convert your data from clear-text into crypto-text and back again.

	

Hashes

 : This is a one-way process to generate a hash value to securely store passwords or that can be used to detect malicious changes or corruption of your data.

	

Signatures

 : This technique is used to ensure that data has come from someone you trust by validating a signature that has been applied to some data against someone's public key.

	

Authentication

 : This technique is used to identify someone by checking their credentials.

	

Authorization

 : This technique is used to ensure that someone has permission to perform an action or work with some data by checking the roles or groups they belong to.

 Note

Authentication and authorization will be covered in Chapter 14
 ,
Building Web Applications Using ASP.NET Core MVC

 .

 Tip

Good Practice

If security is important to you (and it should be!) then hire an experienced security expert for guidance rather than relying on advice found online. It is very easy to make small mistakes and leave your applications and data vulnerable without realizing until it is too late!

 Keys and key sizes

Protection algorithms often use a
key

 . Keys can be
symmetric

 (also known as shared or secret because the same key is used to encrypt and decrypt) or
asymmetric

 (a public-private key pair where the public key is used to encrypt and only the private key can be used to decrypt).

 Tip

Good Practice

Symmetric key encryption algorithms are fast and can encrypt large amounts of data using a stream. Asymmetric key encryption algorithms are slow and can only encrypt small byte arrays. In the real world, use the best of both worlds by using symmetric to encrypt your data, and asymmetric to share the symmetric key. For example, this is how
Secure Sockets Layer

 (
SSL

) encryption on the Internet works.

Keys are represented by byte arrays of varying sizes.

 Tip

Good Practice

Choose a bigger key size for stronger protection.

 IVs and block sizes

When encrypting large amounts of data, there are likely to be repeating sequences. For example, in an English document, the sequence of characters "the" would appear frequently. A good cracker would use this knowledge to make it easier to crack the encryption:

When
the

 wind blew hard
the

 umbrella broke.

5:s4&
hQ2

aj#D f9d1d8fh"&
hQ2

s0)an DF8SFd#][1

We can avoid repeating sequences by dividing data into
blocks

 . After encrypting a block, a byte array value is generated from that block and this value is fed into the next block to adjust the algorithm so that "the" isn't encrypted in the same way. To encrypt the first block, we need a byte array to feed in. This is called the
initialization vector

 (
IV

).

 Tip

Good Practice

Choose a small block size for stronger encryption.

 Salts

A salt is a random byte array that is used as an additional input to a one-way hash function. If you do not use a salt when generating hashes, then when many of your users register with
123456

 as their password (about 8% of users still do this!), they all have the same hashed value, and their account will be vulnerable to a dictionary attack.

When a user registers, a salt should be randomly generated and concatenated with their chosen password before being hashed. The output (but not the original password) is stored with the salt in the database.

When the user next logs in and enters their password, you look up their salt, concatenate it with the entered password, regenerate a hash, and then compare its value with the hash stored in the database. If they are the same, you know they entered the correct password.

 Generating keys and IVs

Keys and IVs are byte arrays. You can reliably generate a key or IV using a
password-based key derivation function

 (
PBKDF2

). A good one is the Rfc2898DeriveBytes
 class, which takes a password, a salt, and an iteration count, and then generates keys and IVs by making calls to its GetBytes
 method.

 Tip

Good Practice

The salt size should be 8 bytes or larger and the iteration count should be greater than zero. The minimum recommended number of iterations is 1,000.

 Encrypting and decrypting data

There are multiple encryption algorithms you can choose from in .NET Core. Some algorithms are implemented by the operating system and their names are suffixed with the CryptoServiceProvider
 class, some are implemented entirely in .NET, some use symmetric keys, and some use asymmetric keys.

 Tip

Best Practice

Choose AES for symmetric encryption and RSA for asymmetric encryption.

 Encrypting symmetrically with AES

To make it easier to reuse your protection code in the future, we will create a static class named Protector
 in its own class library.

 Using Visual Studio 2017

In Visual Studio 2017, press
Ctrl

 +
Shift

 +
N

 or navigate to
File

 |
New

 |
Project...

 .

In the
New Project

 dialog, in the
Installed

 |
Templates

 list, expand
Visual C#

 and select
.NET Standard

 . In the list at the center, select
Class Library (.NET Standard)

 , type the name Ch11_CryptographyLib
 , change the location to C:\Code
 , type the solution name as Chapter11
 , and then click on
OK

 . Rename Class1.cs
 to Protector.cs
 .

In Visual Studio 2017, add a new console application project named Ch11_EncryptionApp
 .

 Note

Make sure that you add
Console App (.NET Core)

 and not
Class Library (.NET Standard)

 !

Set your solution's startup project as the current selection.

In
Solution Explorer

 , in the Ch11_EncryptionApp
 project, right-click on
Dependencies

 and choose
Add Reference...

 , select the Ch11_CryptographyLib
 project, and then click on
OK

 .

 Using Visual Studio Code

In macOS, in the Code
 folder, create a folder named Chapter11
 , with two subfolders named Ch11_CryptographyLib
 and Ch11_EncryptionApp
 .

In Visual Studio Code, open the folder named Ch11_CryptographyLib
 .

In the
Integrated Terminal

 , enter the following command:

dotnet new classlib

Open the folder named Ch11_EncryptionApp
 .

In the
Integrated Terminal

 , enter the following command:

dotnet new console

Open the folder named Chapter11
 .

In the
Explorer

 window, expand Ch11_CryptographyLib
 and rename the Class1.cs
 file to Protector.cs
 .

In the Ch11_EncryptionApp
 project folder, open the file named Ch11_EncryptionApp.csproj
 , and add a package reference to the Ch11_CryptographyLib
 library, as shown highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

<ItemGroup>
 <ProjectReference Include="..\Ch11_CryptographyLib\Ch11_CryptographyLib.csproj"
 />
 </ItemGroup>

 </Project>

In the
Integrated Terminal

 , enter the following commands:

cd Ch11_EncryptionApp

dotnet restore

dotnet build

 Creating the Protector class

In both Visual Studio 2017 and Visual Studio Code, open the Protector.cs
 file and change its contents to look like this:

 using System;
 using System.Collections.Generic;
 using System.IO;
 using System.Security.Cryptography;
 using System.Text;
 using System.Xml.Linq;

 namespace Packt.CS7
 {
 public static class Protector
 {
 // salt size must be at least 8 bytes, we will use 16 bytes
 private static readonly byte[] salt =
 Encoding.Unicode.GetBytes("7BANANAS");

 // iterations must be at least 1000, we will use 2000
 private static readonly int iterations = 2000;

 public static string Encrypt(
 string plainText, string password)
 {
 byte[] plainBytes = Encoding.Unicode.GetBytes(plainText);
 var aes = Aes.Create();
 var pbkdf2 = new Rfc2898DeriveBytes(
 password, salt, iterations);
 aes.Key = pbkdf2.GetBytes(32); // set a 256-bit key
 aes.IV = pbkdf2.GetBytes(16); // set a 128-bit IV
 var ms = new MemoryStream();
 using (var cs = new CryptoStream(
 ms, aes.CreateEncryptor(), CryptoStreamMode.Write))
 {
 cs.Write(plainBytes, 0, plainBytes.Length);
 }
 return Convert.ToBase64String(ms.ToArray());
 }

 public static string Decrypt(
 string cryptoText, string password)
 {
 byte[] cryptoBytes = Convert.FromBase64String(cryptoText);
 var aes = Aes.Create();
 var pbkdf2 = new Rfc2898DeriveBytes(
 password, salt, iterations);
 aes.Key = pbkdf2.GetBytes(32);
 aes.IV = pbkdf2.GetBytes(16);
 var ms = new MemoryStream();
 using (var cs = new CryptoStream(
 ms, aes.CreateDecryptor(), CryptoStreamMode.Write))
 {
 cs.Write(cryptoBytes, 0, cryptoBytes.Length);
 }
 return Encoding.Unicode.GetString(ms.ToArray());
 }
 }
 }

Note the following points:

	We used double the recommended salt size and iteration count

	Although the salt and iteration count can be hardcoded, the password
must

 be passed at runtime when calling Encrypt
 and Decrypt

	We use a temporary MemoryStream
 type to store the results of encrypting and decrypting and then call ToArray
 to turn the stream into a byte array

	We convert the encrypted byte arrays to and from a Base64 encoding to make them easier to read

 Tip

Good Practice

Never hardcode a password in your source code because, even after compilation, the password can be read in the assembly by using disassembler tools.

In the Ch11_EncryptionApp
 project, open the Program.cs
 file and then import the following namespace and type:

 using Packt.CS7;
 using static System.Console;

In the Main
 method, add the following statements to prompt the user for a message and a password and then encrypt and decrypt:

 Write("Enter a message that you want to encrypt: ");
 string message = ReadLine();
 Write("Enter a password: ");
 string password = ReadLine();
 string cryptoText = Protector.Encrypt(message, password);
 WriteLine($"Encrypted text: {cryptoText}");
 Write("Enter the password: ");
 string password2 = ReadLine();
 try
 {
 string clearText = Protector.Decrypt(cryptoText, password2);
 WriteLine($"Decrypted text: {clearText}");
 }
 catch
 {
 WriteLine(
 "Enable to decrypt because you entered the wrong password!");
 }

Run the console application.

 Note

In Visual Studio 2017, press
Ctrl

 +
F5

 . In Visual Studio Code, in the Integrated Terminal, enter the command: dotnet run

Try entering a message and password, and view the output:

Enter a message that you want to encrypt: Hello Bob

Enter a password: secret

Encrypted text: pV5qPDf1CCZmGzUMH2gapFSkn573lg7tMj5ajice3cQ=

Enter the password: secret

Decrypted text: Hello Bob

Rerun the application and try entering a message and password, but this time enter the password incorrectly after encrypting and view the output:

Enter a message that you want to encrypt: Hello Bob

Enter a password: secret

Encrypted text: pV5qPDf1CCZmGzUMH2gapFSkn573lg7tMj5ajice3cQ=

Enter the password: 123456

Enable to decrypt because you entered the wrong password!

 Hashing data

There are multiple hash algorithms you can choose from in .NET Core. Some do not use any key, some use symmetric keys, and some use asymmetric keys.

There are two important factors to consider when choosing a hash algorithm:

	

Collision resistance

 : How rare is it to find two inputs that share the same hash?

	

Preimage resistance

 : For a hash, how difficult would it be to find another input that shares the same hash?

Here are some common hashing algorithms:

	

Algorithm

	

Hash size

	

Description

	
MD5

	
16 bytes

	
This is commonly used because it is fast, but it is not collision-resistant.

	
SHA1, SHA256, SHA384, SHA512

	
20 bytes, 32 bytes, 48 bytes, 64 bytes

	
These are Secure Hashing Algorithm 2nd
 generation algorithms (SHA2) with different hash sizes. The use of SHA1s on the Internet has been deprecated since 2011.

 Tip

Good Practice

Avoid MD5 and SHA1 because they have known weaknesses. Choose a larger hash size to reduce the possibility of repeated hashes.

 Hashing with SHA256

In the Ch11_CryptographyLib
 class library project, add a new class named User
 . This will represent a user stored in memory, a file, or a database:

 namespace Packt.CS7
 {
 public class User
 {
 public string Name { get; set; }
 public string Salt { get; set; }
 public string SaltedHashedPassword { get; set; }
 }
 }

Add the following code to the Protector
 class. We will use a dictionary to store multiple users in memory. There are two methods, one to register a new user and one to validate their password when they subsequently log in:

 private static Dictionary<string, User> Users =
 new Dictionary<string, User>();

 public static User Register(string username, string password)
 {
 // generate a random salt
 var rng = RandomNumberGenerator.Create();
 var saltBytes = new byte[16];
 rng.GetBytes(saltBytes);
 var saltText = Convert.ToBase64String(saltBytes);

 // generate the salted and hashed password
 var sha = SHA256.Create();
 var saltedPassword = password + saltText;
 var saltedhashedPassword = Convert.ToBase64String(
 sha.ComputeHash(Encoding.Unicode.GetBytes(saltedPassword)));

 var user = new User
 {
 Name = username,
 Salt = saltText,
 SaltedHashedPassword = saltedhashedPassword
 };
 Users.Add(user.Name, user);

 return user;
 }

 public static bool CheckPassword(string username, string password)
 {
 if (!Users.ContainsKey(username))
 {
 return false;
 }
 var user = Users[username];

 // re-generate the salted and hashed password
 var sha = SHA256.Create();
 var saltedPassword = password + user.Salt;
 var saltedhashedPassword = Convert.ToBase64String(
 sha.ComputeHash(Encoding.Unicode.GetBytes(saltedPassword)));

 return (saltedhashedPassword == user.SaltedHashedPassword);
 }

Add a new console application project named Ch11_HashingApp
 . Add a reference to the Ch11_CryptographyLib
 assembly as you did before, and then import the following namespace and type:

 using Packt.CS7;
 using static System.Console;

In the Main
 method, add the following statements to register a user and prompt to register a second user, and then prompt to log in as one of those users and validate the password:

 WriteLine("A user named Alice has been registered with Pa$$w0rd as
 her password.");
 var alice = Protector.Register("Alice", "Pa$$w0rd");
 WriteLine($"Name: {alice.Name}");
 WriteLine($"Salt: {alice.Salt}");
 WriteLine(
 $"Salted and hashed password: {alice.SaltedHashedPassword}");
 WriteLine();
 Write("Enter a different username to register: ");
 string username = ReadLine();
 Write("Enter a password to register: ");
 string password = ReadLine();
 var user = Protector.Register(username, password);
 WriteLine($"Name: {user.Name}");
 WriteLine($"Salt: {user.Salt}");
 WriteLine(
 $"Salted and hashed password: {user.SaltedHashedPassword}");

 bool correctPassword = false;
 while (!correctPassword)
 {
 Write("Enter a username to log in: ");
 string loginUsername = ReadLine();
 Write("Enter a password to log in: ");
 string loginPassword = ReadLine();
 correctPassword = Protector.CheckPassword(
 loginUsername, loginPassword);
 if (correctPassword)
 {
 WriteLine(
 $"Correct! {loginUsername} has been logged in.");
 }
 else
 {
 WriteLine("Invalid username or password. Try again.");
 }
 }

 Note

When using multiple projects in Visual Studio Code, remember to manually restore dependencies by entering the dotnet restore
 command before entering the dotnet run
 command.

Run the console application and view the output:

A user named Alice has been registered with Pa$$w0rd as her password.

Name: Alice

Salt: tLn3gRn9DXmp2oeuvBSxTg==

Salted and hashed password:
 w8Ub2aH5NNQ8MJarYsUgm29bbbl0lV/9dlozjWs2Ipk=

Enter a different username to register: Bob

Enter a password to register: Pa$$w0rd

Name: Bob

Salt: zPU9YyFLaz0idhQkKpzY+g==

Salted and hashed password:
 8w14w8WNHoZddEeIx2+UJhpHQqSs4EmyoazqjbmmEz0=

Enter a username to log in: Bob

Enter a password to log in: secret

Invalid username or password. Try again.

Enter a username to log in: Alice

Enter a password to log in: secret

Invalid username or password. Try again.

Enter a username to log in: Bob

Enter a password to log in: Pa$$w0rd

Correct! Bob has been logged in.

 Note

Even if two users register with the same password, they have randomly generated salts so that their salted and hashed passwords are different.

 Signing data

To prove that some data has come from someone we trust, it can be signed. Actually, you don't sign the data itself; instead, you sign a hash of the data. We will use the RSA algorithm combined with the SHA256 algorithm.

 Signing with SHA256 and RSA

In the Ch11_CryptographyLib
 class library project, add the following code to theProtector
 class:

 public static string PublicKey;

 public static string ToXmlString(
 this RSA rsa, bool includePrivateParameters)
 {
 var p = rsa.ExportParameters(includePrivateParameters);
 XElement xml;
 if (includePrivateParameters)
 {
 xml = new XElement("RSAKeyValue"
 , new XElement("Modulus", Convert.ToBase64String(p.Modulus))
 , new XElement("Exponent",
 Convert.ToBase64String(p.Exponent))
 , new XElement("P", Convert.ToBase64String(p.P))
 , new XElement("Q", Convert.ToBase64String(p.Q))
 , new XElement("DP", Convert.ToBase64String(p.DP))
 , new XElement("DQ", Convert.ToBase64String(p.DQ))
 , new XElement("InverseQ",
 Convert.ToBase64String(p.InverseQ))
);
 }
 else
 {
 xml = new XElement("RSAKeyValue"
 , new XElement("Modulus", Convert.ToBase64String(p.Modulus))
 , new XElement("Exponent",
 Convert.ToBase64String(p.Exponent))
);
 }
 return xml?.ToString();
 }

 public static void FromXmlString(
 this RSA rsa, string parametersAsXml)
 {
 var xml = XDocument.Parse(parametersAsXml);
 var root = xml.Element("RSAKeyValue");
 var p = new RSAParameters
 {
 Modulus = Convert.FromBase64String(
 root.Element("Modulus").Value),
 Exponent = Convert.FromBase64String(
 root.Element("Exponent").Value)
 };
 if(root.Element("P") != null)
 {
 p.P = Convert.FromBase64String(root.Element("P").Value);
 p.Q = Convert.FromBase64String(root.Element("Q").Value);
 p.DP = Convert.FromBase64String(root.Element("DP").Value);
 p.DQ = Convert.FromBase64String(root.Element("DQ").Value);
 p.InverseQ = Convert.FromBase64String(
 root.Element("InverseQ").Value);
 }
 rsa.ImportParameters(p);
 }

 public static string GenerateSignature(string data)
 {
 byte[] dataBytes = Encoding.Unicode.GetBytes(data);
 var sha = SHA256.Create();
 var hashedData = sha.ComputeHash(dataBytes);

 var rsa = RSA.Create();
 PublicKey = rsa.ToXmlString(false); // exclude private key

 return Convert.ToBase64String(rsa.SignHash(hashedData,
 HashAlgorithmName.SHA256, RSASignaturePadding.Pkcs1));
 }

 public static bool ValidateSignature(
 string data, string signature)
 {
 byte[] dataBytes = Encoding.Unicode.GetBytes(data);
 var sha = SHA256.Create();
 var hashedData = sha.ComputeHash(dataBytes);

 byte[] signatureBytes = Convert.FromBase64String(signature);

 var rsa = RSA.Create();
 rsa.FromXmlString(PublicKey);

 return rsa.VerifyHash(hashedData, signatureBytes,
 HashAlgorithmName.SHA256, RSASignaturePadding.Pkcs1);
 }

Note the following:

	I have recreated two useful methods that exist on the RSA type in the .NET Framework: ToXmlString
 and FromXmlString
 . These serialize and deserialize the RSAParameters
 structure that contains the public and private keys. .NET Core's implementation of RSA does not include them.

	Only the public part of the public-private key pair needs to be made available to the code that is checking the signature so that we can pass the value false
 when we call the ToXmlString
 method.

	The hash algorithm used to generate the hash from the data must match the hash algorithm set on the signer and checker. In the preceding code, we used SHA256
 .

Add a new console application project named Ch11_SigningApp
 . Add a reference to the Ch11_CryptographyLib
 assembly, and then import the following namespaces:

 using static System.Console;
 using Packt.CS7;

In the Main
 method, add the following code:

 Write("Enter some text to sign: ");
 string data = ReadLine();
 var signature = Protector.GenerateSignature(data);
 WriteLine($"Signature: {signature}");
 WriteLine("Public key used to check signature:");
 WriteLine(Protector.PublicKey);

 if (Protector.ValidateSignature(data, signature))
 {
 WriteLine("Correct! Signature is valid.");
 }
 else
 {
 WriteLine("Invalid signature.");
 }

 // create a fake signature by replacing the
 // first character with an X
 var fakeSignature = signature.Replace(signature[0], 'X');
 if (Protector.ValidateSignature(data, fakeSignature))
 {
 WriteLine("Correct! Signature is valid.");
 }
 else
 {
 WriteLine($"Invalid signature: {fakeSignature}");
 }

Run the console application and enter some text:

Enter some text to sign: The cat sat on the mat.

Signature:
LSmfgRuRRvYzM1/jg7U7jkKINCU4KKGpFUCvCB87hmWpa3gDVLjLj0Wift+CktZuPSkc/ gAnIzC1bQCOyELsrNWzATnPDFa/B0Gpy0vAJ8VJ9FPs1vFy353mMnGcnQU8fOummKgEv4 r1JpsnkJQ41MGUMNCH9YVodO6Bn6o81g0=

Public key used to check signature:

<RSAKeyValue><Modulus>qPnY4UHIqJMuUJ0CQ4F0Xy/fxaugNFFe/QNikGsufdKrwa1 t+CcQqCmWso4zUDW3NTFCWFGilisJ4SqTBgYee/VT9UGuFng68TrZXNiNJO8dP8OZHNBi rWkhtsNQx9A6rq9bZ/9dsjY1hYsWpGKCw4WhxsHjmGuevQew8C+I2z0=</Modulus><Ex
ponent>AQAB</Exponent></RSAKeyValue>

Correct! Signature is valid.

Invalid signature:
X1uDRfCDXvOyhMtqXlxqzSljhADD/81E0UonuVs9VfZ7ceuyFWh4O7rwkdc1+l25DzGf6 4swtbXZsukpSupFqvkAOIJ6XqMlD92vlG1nquereiWkshYnxxVts30QJIFKKyOTBTfN/V OljlZVMxT/RA6pggPtESlv+urDJT4z/PEtR5jdx+CTZHQc9WiceFbpuybyf/vEdddtF0T 7g8NeLKEPbT6b7CHGDM1HKbRqnSecv456QNfHNmEXxRk9MpI0DgQLnXpOhHcVwEFc6+dY 6kdNnWd6NIOY3qX6FT782t0lQ2swcWxF9fUcvWVSeC84EgVK447X9Xewkrf6CF7jxg==

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore the topics covered in this chapter with deeper research.

 Exercise 11.1 - test your knowledge

Answer the following questions:

	Of the encryption algorithms provided by .NET, which is the best choice for symmetric encryption?

	Of the encryption algorithms provided by .NET, which is the best choice for asymmetric encryption?

	For encryption algorithms, is it better to have a larger or smaller block size?

 Exercise 11.2 - practice protecting data with encryption and hashing

Create a console application named Ch11_Exercise02
 that protects an XML file, such as the following example. Note that the customer's credit card number and password are currently stored in clear text. The credit card must be encrypted so that it can be decrypted and used later, and the password must be salted and hashed:

 <?xml version="1.0" encoding="utf-8" ?>
 <customers>
 <customer>
 <name>Bob Smith</name>
 <creditcard>1234-5678-9012-3456</creditcard>
 <password>Pa$$w0rd</password>
 </customer>
 </customers>

 Exercise 11.3 - practice protecting data with decryption

Create a console application named Ch11_Exercise03
 that opens the XML file that you protected in the preceding code and decrypts the credit card number.

 Exercise 11.4 - explore topics

Use the following links to read more about the topics covered in this chapter:

	

Key Security Concepts

 : https://msdn.microsoft.com/en-us/library/z164t8hs(v=vs.110).aspx

	

Encrypting Data

 : https://msdn.microsoft.com/en-us/library/as0w18af(v=vs.110).aspx

	

Cryptographic Signatures

 : https://msdn.microsoft.com/en-us/library/hk8wx38z(v=vs.110).aspx

 Summary

In this chapter, you learned how to encrypt and decrypt using symmetric encryption, how to generate a salted hash, and how to sign data and check that signature.

In the next chapter, you will use the Task
 type to improve the performance of your applications.

 Chapter12.Improving Performance and Scalability with Multitasking

This chapter is about allowing multiple actions to occur at the same time to improve performance, scalability, and user productivity.

In this chapter, we will cover the following topics:

	Understanding processes, threads, and tasks

	Running tasks asynchronously

	Synchronizing access to shared resources

	Implementing multitasking for a GUI

 Note

The
Implementing multitasking for a GUI

 section requires Visual Studio 2017 on Windows 7 or later.

 Understanding processes, threads, and tasks

A
process

 , for example, each of the console applications we have created has resources allocated to it, such as memory and threads. A
thread

 executes your code, statement by statement. By default, each process only has one thread, and this can cause problems when we need to do more than one
task

 at the same time.

Windows and most other modern operating systems use preemptive multitasking, which simulates the parallel execution of tasks. It divides the processor time among the threads, allocating a "time slice" to each thread one after another. The current thread is suspended when its time slice finishes. The processor allows another thread to run for a time slice.

When Windows switches from one thread to another, it saves the context of the thread and reloads the previously saved context of the next thread in the thread queue. This takes time and resources.

Threads may have to compete for, and wait for access to, shared resources, such as variables, files, and database objects.

Depending on the task, doubling the number of threads (workers) to perform a task does not halve the number of seconds the task will take. In fact, it can
increase

 the duration of the task, as pointed out by the following tweet:

[image: Understanding processes, threads, and tasks]

 Tip

Good Practice

Never assume that more threads (workers) will improve performance.

Run performance tests on a base line code implementation
without

 multiple threads, and then again on a code implementation
with

 multiple threads.

Run performance tests in a staging environment that is as close as possible to the production environment.

 Running tasks asynchronously

First, we will write a simple console application that needs to execute three methods, and execute them synchronously (one after the other).

 Running multiple actions synchronously

In Visual Studio 2017, press
Ctrl

 +
Shift

 +
N

 or go to
File

 |
New

 |
Project...

 .

In the
New

Project

 dialog, in the
Installed

 |
Templates

 list, expand
Visual C#

 , and select
.NET Core

 . In the center list, select
Console App (.NET Core)

 , type the name as Ch12_Tasks
 , change the location to C:\Code
 , type the solution name as Chapter12
 , and then click on
OK

 .

In Visual Studio Code, create a directory named Chapter12
 with a subfolder named Ch12_Tasks
 , and open the Ch12_Tasks
 folder. In the Integrated Terminal, execute the command: dotnet new console
 .

In both Visual Studio 2017 and Visual Studio Code, ensure that the following namespaces have been imported:

 using System;
 using System.Threading;
 using System.Threading.Tasks;
 using System.Diagnostics;
 using static System.Console;

There will be three methods that need to be executed: the first takes three seconds, the second takes two seconds, and the third takes one second. To simulate that work, we can use the Thread
 class to tell the current thread to go to sleep for a specified number of milliseconds.

Inside the Program
 class, add the following code:

 static void MethodA()
 {
 WriteLine("Starting Method A...");
 Thread.Sleep(3000); // simulate three seconds of work
 WriteLine("Finished Method A.");
 }

 static void MethodB()
 {
 WriteLine("Starting Method B...");
 Thread.Sleep(2000); // simulate two seconds of work
 WriteLine("Finished Method B.");
 }

 static void MethodC()
 {
 WriteLine("Starting Method C...");
 Thread.Sleep(1000); // simulate one second of work
 WriteLine("Finished Method C.");
 }

In the Main
 method, add the following statements:

 static void Main(string[] args)
 {
 var timer = Stopwatch.StartNew();
 WriteLine("Running methods synchronously on one thread.");
 MethodA();
 MethodB();
 MethodC();
 WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");
 WriteLine("Press ENTER to end.");
 ReadLine();
 }

Run the console application and view the output.

 Note

In Visual Studio 2017, press
Ctrl

 +
F5.

 In Visual Studio Code, in Integrated Terminal, enter the command:dotnet run

As there is only one thread, the total time required is just over six seconds:

Running methods synchronously on one thread.

Starting Method A...

Finished Method A.

Starting Method B...

Finished Method B.

Starting Method C...

Finished Method C.

6,047ms elapsed.

Press ENTER to end.

 Running multiple actions asynchronously using tasks

The Thread
 class has been available since the first version of C# and can be used to create new threads and manage them, but it can be tricky to work with directly.

C# 4 introduced the Task
 class, which is a wrapper around a thread that enables easier creating and management. Creating multiple threads wrapped in tasks will allow our code to execute asynchronously (at the same time).

We will look at three ways to start the methods using Task
 instances. Each has a slightly different syntax, but they all define a Task
 and start it.

Comment out the calls to the three methods and the associated console message, and then add the new statements, as shown highlighted in the following code:

 static void Main(string[] args)
 {
 var timer = Stopwatch.StartNew();

//WriteLine("Running methods synchronously on one thread.");
 //MethodA();
 //MethodB();
 //MethodC();
 WriteLine("Running methods asynchronously on multiple threads.");
 Task taskA = new Task(MethodA);
 taskA.Start();
 Task taskB = Task.Factory.StartNew(MethodB);
 Task taskC = Task.Run(new Action(MethodC));

 WriteLine($"{timer.ElapsedMilliseconds:#,##0}ms elapsed.");
 WriteLine("Press ENTER to end.");
 ReadLine();
 }

Rerun the console application and view the output.

The actual elapsed milliseconds will depend on the performance of your CPU, so you are likely to see a different value than shown in the following example output:

Running methods asynchronously on multiple threads.

10 milliseconds elapsed.

Press ENTER to end.

Starting Method C...

Starting Method A...

Starting Method B...

Finished Method C.

Finished Method B.

Finished Method A.

Note the elapsed time is output almost immediately, because each of the three methods are now being executed by three
new

 threads. The
original

 thread continues executing until it reaches the ReadLine
 call at the end of the Main
 method.

Meanwhile, the three new threads execute their code simultaneously, and they start in any order. MethodC
 will usually finish first, because it takes only one second, then MethodB
 , and finally MethodA
 , because it takes three seconds.

However, the actual CPU used has a big effect on the results. It is the CPU that allocates time slices to each process to allow them to execute their threads. You have no control over when the methods run.

 Waiting for tasks

Sometimes, you need to wait for a task to complete before continuing. To do this, you can use the Wait
 method on a Task
 instance, or the WaitAll
 or WaitAny
 static methods on an array of tasks.

	

Method

	

Description

	

t.Wait()

	
Waits for the task instance named t
 to complete execution.

	

Task.WaitAny(Task[])

	
Waits for any of the tasks in the array to complete execution.

	

Task.WaitAll(Task[])

	
Waits for all the tasks in the array to complete execution.

Add the following statements to the Main
 method immediately after creating the three tasks. This will combine references to the three tasks into an array and pass them to the WaitAll
 method. Now, the original thread will pause on that statement, waiting for all three tasks to finish before outputting the elapsed time:

 Task[] tasks = { taskA, taskB, taskC };
 Task.WaitAll(tasks);

Rerun the console application and view the output:

Running methods asynchronously on multiple threads.

Starting Method B...

Starting Method C...

Starting Method A...

Finished Method C.

Finished Method B.

Finished Method A.

3,024 milliseconds elapsed.

Press ENTER to end.

Notice that the total time is now slightly more than the time to run the longest method. If all three tasks can be performed at the same time, then this will be all we need to do.

However, often a task is dependent on the output from another task. To handle this scenario, we need to define
continuation tasks

 .

 Continuing with another task

Add the following methods to the Program
 class:

 static decimal CallWebService()
 {
 WriteLine("Starting call to web service...");
 Thread.Sleep((new Random()).Next(2000, 4000));
 WriteLine("Finished call to web service.");
 return 89.99M;
 }

 static string CallStoredProcedure(decimal amount)
 {
 WriteLine("Starting call to stored procedure...");
 Thread.Sleep((new Random()).Next(2000, 4000));
 WriteLine("Finished call to stored procedure.");
 return $"12 products cost more than {amount:C}.";
 }

These methods simulate a call to a web service that returns a monetary amount that then needs to be used to retrieve how many products cost more than that amount in a database. The result returned from the first method needs to be fed into the input of the second method.

 Note

I used the Random
 class to wait for a random interval of between two and four seconds for each method call to simulate the work.

Inside the Main
 method, comment out the previous tasks by highlighting the statements and, in Visual Studio Code, press
Cmd

 +
K

 ,
C

 , or in Visual Studio 2017 press
Ctrl

 +
K

 ,
C

 .

Then, add the following statements before the existing statement that outputs the total time elapsed and then calls ReadLine
 to wait for the user to press

Enter

 :

 WriteLine("Passing the result of one task as an input into
 another.");

 var taskCallWebServiceAndThenStoredProcedure =
 Task.Factory.StartNew(CallWebService)
 .ContinueWith(previousTask =>
 CallStoredProcedure(previousTask.Result));

 WriteLine($"{taskCallWebServiceAndThenStoredProcedure.Result}");

Run the console application and view the output:

Passing the result of one task as an input into another.

Starting call to web service...

Finished call to web service.

Starting call to stored procedure...

Finished call to stored procedure.

12 products cost more than 89.99.

5,971 milliseconds elapsed.

Press ENTER to end.

 Nested and child tasks

Add a new console application project named Ch12_NestedAndChildTasks
 .

In Visual Studio 2017, in the solution's
Properties

 , remember to change
Startup Project

 to
Current selection

 .

Ensure the following namespaces have been imported:

 using System;
 using System.Threading;
 using System.Threading.Tasks;
 using System.Diagnostics;
 using static System.Console;

Inside the Main
 method, add the following statements:

 var outer = Task.Factory.StartNew(() =>
 {
 WriteLine("Outer task starting...");
 var inner = Task.Factory.StartNew(() =>
 {
 WriteLine("Inner task starting...");
 Thread.Sleep(2000);
 WriteLine("Inner task finished.");
 });
 });
 outer.Wait();
 WriteLine("Outer task finished.");
 WriteLine("Press ENTER to end.");
 ReadLine();

Run the console application and view the output:

Outer task starting...

Outer task finished.

Inner task starting...

Inner task finished.

Press ENTER to end.

Note that, although we wait for the outer task to finish, its inner task does not have to finish as well. To link the two tasks, we must use a special option.

Modify the existing code that defines the inner task to add a TaskCreationOption
 value of AttachedToParent
 :

 var inner = Task.Factory.StartNew(() =>
 {
 WriteLine("Inner task starting...");
 Thread.Sleep(2000);
 WriteLine("Inner task finished.");
 },
TaskCreationOptions.AttachedToParent

);

Rerun the console application and view the output. Note that the inner task must finish before the outer task can:

Outer task starting...

Inner task starting...

Inner task finished.

Outer task finished.

Press ENTER to end.

 Synchronizing access to shared resources

When you have multiple threads executing at the same time, there is a possibility that two or more threads may access the same variable or other resource at the same time and cause a problem.

For this reason, you should carefully consider how to make your code "thread safe".

The simplest mechanism for implementing thread safety is to use an object variable as a "flag" or "traffic light" to indicate when a shared resource has an exclusive lock applied.

 Note

In William Golding's
Lord of the Flies

 , Piggy and Ralph spot a conch shell and use it to call a meeting. The boys impose a "rule of the conch" on themselves, deciding that no one can speak unless he's holding the conch. I like to name the object variable I use the "conch." When a thread has the conch, no other thread can access the shared resource(s) represented by that conch.

 Accessing a resource from multiple threads

Add a new console application project named Ch12_LockAndMonitor
 .

Ensure that the following namespaces have been imported:

 using System;
 using System.Threading;
 using System.Threading.Tasks;
 using System.Diagnostics;
 using static System.Console;

Inside the Program
 class, add the following statements to:

	Declare and instantiate an object to generate random wait times

	Declare a string
 variable to store a message (this is the shared resource)

	Declare two methods that add a letter, A
 or B
 , to the shared string
 five times in a loop, and wait for a random interval of up to two seconds for each iteration

	A Main
 method that executes both methods on separate threads using a pair of tasks and waits for them to complete before outputting the elapsed milliseconds it took

 static Random r = new Random();
 static string Message; // a shared resource

 static void MethodA()
 {
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "A";
 Write(".");
 }
 }

 static void MethodB()
 {
 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "B";
 Write(".");
 }
 }

 static void Main(string[] args)
 {
 WriteLine("Please wait for the tasks to complete.");
 Stopwatch watch = Stopwatch.StartNew();

 Task a = Task.Factory.StartNew(MethodA);
 Task b = Task.Factory.StartNew(MethodB);

 Task.WaitAll(new Task[] { a, b });
 WriteLine();
 WriteLine($"Results: {Message}.");
 WriteLine($"{watch.ElapsedMilliseconds:#,##0} elapsed
 milliseconds.");
 }

Run the console application and view the output:

Please wait for the tasks to complete.

..........

Results: BABBABBAAA.

6,099 elapsed milliseconds.

Note that the results show that both threads were modifying the message concurrently. In an actual application, this could be a problem. We could prevent concurrent access by applying a mutually exclusive lock.

 Applying a mutually exclusive lock to a resource

In the Program
 class, add an object variable instance to act as a "conch":

 static object conch = new object();

In both MethodA
 and MethodB
 , add a lock
 statement around the for
 statement:

 lock(conch)
 {

 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "A";
 Write(".");
 }
 }

Rerun the console application and view the output:

Please wait for the tasks to complete.

..........

Results: AAAAABBBBB.

9,751 elapsed milliseconds.

Although the time elapsed was longer, only one method at a time could access the shared resource. Only once a method has finished its work on the shared resource, does the conch get released and the other method has a chance to do its work.

 Note

Either MethodA
 or MethodB
 could start first.

 Understanding the lock statement

The compiler changes this:

 lock(conch)
 {
 // access shared resource
 }

Into this:

 try
 {
 Monitor.Enter(conch);
 // access shared resource
 }
 finally
 {
 Monitor.Exit(conch);
 }

Knowing how the lock
 statement works internally is important because using the lock
 statement can cause a deadlock.

Deadlocks occur when there are two or more shared resources (and therefore conches) and the following sequence of events happen:

	Thread X locks conch A

	Thread Y locks conch B

	Thread X attempts to lock conch B but is blocked because thread Y already has it

	Thread Y attempts to lock conch A but is blocked because thread X already has it

A proven way to prevent deadlocks is to specify a timeout when attempting to get a lock. To do this, you must manually use the Monitor
 class instead of using the lock
 statement.

Modify your code to replace the lock
 statements with code that tries to enter the conch with a timeout like this:

 try
 {
 Monitor.TryEnter(conch, TimeSpan.FromSeconds(15));

 for (int i = 0; i < 5; i++)
 {
 Thread.Sleep(r.Next(2000));
 Message += "A";
 Write(".");
 }
 }

 finally

 {
 Monitor.Exit(conch);
 }

Rerun the console application and view the output. It should return the same results as before, but is better code because it would avoid potential deadlocks.

 Tip

Good Practice

Never use the lock
 keyword. Always use the Monitor.TryEnter
 method instead, in combination with a try
 statement, so that you can supply a timeout and avoid a potential deadlock scenario.

 Making operations atomic

Look at the following increment operation:

 int x = 3;
 x++; // is this an atomic CPU operation?

 Note

Atomic

 : from Greek
atomos

 ,
undividable

 .

It is not atomic! Incrementing an integer requires the following three CPU operations:

	Load a value from an instance variable into a register.

	Increment the value.

	Store the value in the instance variable.

A thread could be preempted after executing the first two steps. A second thread could then execute all three steps. When the first thread resumes execution, it will overwrite the value in the variable, and the effect of the increment or decrement performed by the second thread will be lost!

There is a type named Interlocked
 that can perform atomic actions on value types, such as integers and floats.

Declare another shared resource that will count how many operations have occurred:

 static int Counter; // another shared resource

In both methods, inside the for
 statement, after modifying string
 , add the following statement to safely increment the counter:

 Interlocked.Increment(ref Counter);

After outputting the elapsed time, output the counter:

 WriteLine($"{Counter} string modifications.");

Rerun the console application and view the output:

10 string modifications.

 Applying other types of synchronization

Monitor
 and Interlocked
 are mutually exclusive locks that are simple and effective but, sometimes, you need more advanced options to synchronize access to shared resources.

	

Type

	

Description

	

ReaderWriterLock
 and ReaderWriterLockSlim
 (recommended)

	
This allows multiple threads to be in
read mode

 , one thread to be in the
write mode

 with exclusive ownership of the lock, and one thread that has read access to be in the
upgradeable read mode

 , from which the thread can upgrade to the write mode without having to relinquish its read access to the resource.

	

Mutex

	
Like Monitor
 , this provides exclusive access to a shared resource, except it is used for
inter-process

 synchronization

	

Semaphore
 and SemaphoreSlim

	
This limits the number of threads that can access a resource or pool of resources concurrently by defining
slots

	

AutoResetEvent
 and ManualResetEvent

	
Event wait handles allow threads to synchronize activities by
signaling

 each other and by waiting for each other's signals

 Implementing multitasking for a GUI

In this section, you will use threads to improve multitasking in a graphical app.

 Note

Visual Studio Code cannot be used to create GUI applications, so you will need Visual Studio 2017 on Windows 7 or later to complete this last section of the chapter. In Chapter 13
 ,
Building Universal Windows Platform Apps Using XAML

 , you will learn about Universal Windows Platform apps; however, these can only be created on Windows 10. So, if you only have Visual Studio Code on a non-Windows OS, at this point, you might want to jump ahead to Chapter 14
 ,
Building Web Applications Using ASP.NET Core MVC

 .

C# 5 introduced two keywords to simplify working with the Task
 type. They are especially useful for:

	Implementing multitasking for a
graphical user interface

 (
GUI

)

	Improving the scalability of web applications and services

In this chapter, we will explore how the async
 and await
 keywords can implement multitasking with a GUI running on Windows 7 or later.

In Chapter 14
 ,
Building Web Applications Using ASP.NET Core MVC

 , we will explore how the async
 and await
 keywords can improve scalability in web applications.

In Chapter 15
 ,
Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

 , we will explore how the async
 and await
 keywords can implement multitasking with a mobile GUI and improve scalability in a web service.

 Creating a GUI that blocks

In Visual Studio 2017, go to
File

 |
Add

 |
New Project...

 . In the
Add

New Project

 dialog, in the
Installed

 |
Templates

 list, select
Visual C#

 . In the center list, select
WPF App (.NET Framework)

 , type the name as Ch12_GUITasks
 , and then click on
OK

 .

You will learn more about XAML in the next chapter, but for now, just enter the following markup in the XAML view inside the <Grid>
 element:

 <StackPanel>
 <Button Name="GetProductsButton">Get Products</Button>
 <TextBox>Type in here while the products load...</TextBox>
 <ListBox Name="ProductsListBox"></ListBox>
 </StackPanel>

Your main editor window should now look like the following screenshot:

[image: Creating a GUI that blocks]

Inside the Button
 element, after setting the Name
 , enter an attribute named Click
 , as shown in the following screenshot, and when the IntelliSense appears, press
Enter

 to insert a new event handler:

[image: Creating a GUI that blocks]

Choose the
View

 |
Code

 menu, or press

F7

 ,

 or click on the MainWindow.xaml.cs
 tab.

Add the following code to the top of the code file:

 using System.Data.SqlClient;

Add the following code inside the GetProductsButton_Click
 method:

 var connection = new SqlConnection(
 @"Data Source=(localdb)\mssqllocaldb;" +
 "Initial Catalog=Northwind;Integrated Security=true;");

 connection.Open();

 var getProducts = new SqlCommand(
 "WAITFOR DELAY '00:00:05';" +
 "SELECT ProductID, ProductName, UnitPrice FROM Products",
 connection);

 SqlDataReader reader = getProducts.ExecuteReader();

 int indexOfID = reader.GetOrdinal("ProductID");
 int indexOfName = reader.GetOrdinal("ProductName");
 int indexOfPrice = reader.GetOrdinal("UnitPrice");

 while (reader.Read())
 {
 ProductsListBox.Items.Add(
 string.Format("{0}: {1} costs {2:c}",
 reader.GetInt32(indexOfID),
 reader.GetString(indexOfName),
 reader.GetDecimal(indexOfPrice)));
 }
 reader.Dispose();
 connection.Dispose();

 Note

The database connection string uses Microsoft SQL Server LocalDb and connects to the Northwind sample database The SQL statement waits for five seconds before returning four columns from the Products
 table

Run the WPF app by pressing
Ctrl

 +
F5.

Click inside the text box and enter some text. The user interface is responsive.

Click on the
Get Products

 button and then try to enter some text in the text box again.

The user interface is blocked because the thread is busy running the SQL command, as shown in the following screenshot. Only once the list of products has been populated does the UI become responsive and you can type into the text box again.

[image: Creating a GUI that blocks]

 Creating a GUI that doesn't block

The types in the SqlClient
 namespace have been improved in .NET Framework 4.5 and later by giving any method that might take a long time an asynchronous equivalent that returns a Task
 .

For example, the SqlConnection
 class has both an Open
 method that returns void
 and an OpenAsync
 method that returns Task
 . SqlCommand
 has both an ExecuteReader
 method that returns SqlDataReader
 and an ExecuteReaderAsync
 method that returns Task<SqlDataReader>
 .

We can use these Task
 objects as we did earlier, but that would still block the user interface when we call any of the Wait
 methods.

Instead, we can use the await
 keyword for any Task
 . This means that the main thread will not be blocked while we wait, but will remember its current position within the statements so that, once the Task
 has completed, the main thread continues executing from that same point. This allows us to write code that looks as simple as synchronous, but underneath, it is much more complex.

 Note

Internally, await
 creates a state machine to manage the complexity of passing state between any worker threads and the user interface thread.

Modify the statements as shown in the following code. Note that, to use the await
 keyword, we must mark the containing method await
 with the async
 keyword. They always work as a pair:

 private async void GetProductsButton_Click(
 object sender, RoutedEventArgs e)
 {
 var connection = new SqlConnection(
 @"Data Source=(localdb)\mssqllocaldb;" +
 "Initial Catalog=Northwind;Integrated Security=true;");

await connection.OpenAsync();

 var getProducts = new SqlCommand(
 "WAITFOR DELAY '00:00:05';" +
 "SELECT ProductID, ProductName, UnitPrice FROM Products",
 connection);

SqlDataReader reader = await getProducts.ExecuteReaderAsync();

 int indexOfID = reader.GetOrdinal("ProductID");
 int indexOfName = reader.GetOrdinal("ProductName");
 int indexOfPrice = reader.GetOrdinal("UnitPrice");

while (await reader.ReadAsync())

 {

ProductsListBox.Items.Add(
 string.Format("{0}: {1} costs {2:c}",
 await reader.GetFieldValueAsync<int>(indexOfID),
 await reader.GetFieldValueAsync<string>(indexOfName),
 await reader.GetFieldValueAsync<decimal>(indexOfPrice)));

 }
 reader.Dispose();
 connection.Dispose();
 }

Rerun the application by pressing
Ctrl

 +
F5.

This time, after clicking on the
Get Products

 button, you will be able to enter text in the text box while the command executes:

[image: Creating a GUI that doesn't block]

 Other types with Async methods

Here are some of the other types that have an asynchronous method support:

	

Type

	

Methods

	

HttpClient

	

GetAsync
 , PostAsync
 , PutAsync
 , DeleteAsync
 , SendAsync

	

StreamReader

	

ReadAsync
 , ReadLineAsync
 , ReadToEndAsync

	

StreamWriter

	

WriteAsync
 , WriteLineAsync
 , FlushAsync

 Tip

Good Practice

Any time you see a method that ends in the suffix Async
 , check to see whether it returns Task
 or Task<T>
 . If it does, then you should use it instead of the synchronous non-Async suffixed method. Remember to call it using await
 and decorate your method with async
 .

 await in catch blocks

In C# 5, it was only possible to use the await
 keyword in a try
 exception handling block, but not in a catch
 block.

In C# 6 or later, it is now possible to use await
 in both try
 and catch
 blocks.

 Improving scalability for client-server applications

In the previous example, we saw how using the async
 and await
 keywords can improve the performance of a client-side graphical application by preventing the blocking of the user interface thread.

The same keywords can be applied on the server side when building web applications and services. From the client application's point of view, nothing changes (or they might even notice a small increase in the time for a request to return). So, from a single client's point of view, the use of async
 on the server side makes their experience worse!

On the server side, additional, cheaper worker threads are created to wait for long-running tasks to finish so that expensive IO threads can handle other client's requests instead of being blocked. This improves the overall scalability of a web application or service. More clients can be supported simultaneously.

 Note

You will create asynchronous operations on the server side in Chapter 14
 ,
Building Web Applications Using ASP.NET Core MVC

 .

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

 Exercise 12.1 - test your knowledge

Answer the following questions:

	By convention, what suffix should be applied to a method that returns Task
 or Task<T>
 ?

	To use the await
 keyword inside a method, what keyword must be applied to the method declaration?

	How do you create a child task?

	Why should you avoid the lock
 keyword?

	When should you use the Interlocked
 class?

 Exercise 12.2 - explore topics

Use the following links to read more about this chapter's topics:

	

Threads and threading

 : https://msdn.microsoft.com/en-us/library/6kac2kdh(v=vs.110).aspx

	

Task parallelism (task parallel library)

 : https://msdn.microsoft.com/en-us/library/dd537609(v=vs.110).aspx

	

await (C# reference)

 : https://msdn.microsoft.com/en-GB/library/hh156528.aspx

	

Asynchronous Programming with Async and Await (C# and Visual Basic)

 : https://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx

	

Interlocked Operations

 : https://msdn.microsoft.com/en-us/library/sbhbke0y(v=vs.110).aspx

	

EventWaitHandle, AutoResetEvent, CountdownEvent, ManualResetEvent

 : https://msdn.microsoft.com/en-us/library/ksb7zs2x(v=vs.110).aspx

 Summary

In this chapter, you learned how to define and start a task, how to wait for one or more tasks to finish, and how to control task completion order. You also learned how to use async
 and await
 to prevent the user interface thread from being blocked and how to synchronize access to shared resources.

In the next chapter, you will learn how to create apps for the Universal Windows Platform.

 Chapter13. Building Universal Windows Platform Apps Using XAML

This chapter is about seeing what can be achieved with XAML when defining the user interface for a graphical app, in particular, for
Universal Windows Platform

 (
UWP

).

In a single chapter, we will only be able to scratch the surface of everything that can be done with UWP. However, I hope to excite you into wanting to learn more about this cool technology and platform.

Think of this chapter as a whistle-stop tour of the coolest parts of UWP and XAML, including template-able controls, data binding, and animation!

 Note

Some important points about this chapter

UWP apps are not cross-platform, but they are cross-device if those devices run a modern flavor of Windows. You will need Windows 10 and Visual Studio 2017 to create the examples in this chapter. UWP apps use a custom forked implementation of .NET Core. UWP supports .NET Native, which means that your code is compiled to native CPU instructions for a smaller memory footprint and faster execution.

In this chapter, we will cover the following topics:

	Understanding Universal Windows Platform

	Understanding XAML

	Creating an app for Universal Windows Platform

	Using resources and templates

	Data binding

	Animating with storyboards

	Testing in emulators

 Understanding Universal Windows Platform

UWP is Microsoft's latest technology solution to build applications for its Windows suite of operating systems.

UWP provides a guaranteed API layer across multiple device types. You can create a single app package that can be uploaded to a single Store to be distributed to reach all the device types your app can run on. These devices include Windows 10, Windows 10 Mobile, Xbox One, and Microsoft HoloLens.

 Adapting your app's layout

XAML and UWP provide layout panels that adapt how they display their child controls to make the most of the device they are currently running on. It is the Windows app equivalent of web page responsive design.

XAML and UWP provide visual state triggers to alter the layout based on dynamic changes, such as the horizontal or vertical orientation of a tablet.

 Taking advantage of unique device capabilities

UWP provides standard mechanisms to detect the capabilities of the current device and then activate additional features of your app to fully take advantage of them.

 Understanding XAML

In 2006, Microsoft released WPF, which was the first technology to use XAML. It is used even today to create desktop applications.

 Note

Microsoft Visual Studio 2017 is a WPF application.

XAML

 can be used to create:

	

UWP apps

 for Windows 10, Windows 10 Mobile, Xbox One, and Microsoft HoloLens

	

Windows Store apps

 for Windows 8 and 8.1

	

Windows Presentation Foundation

 (
WPF

) applications for the Windows desktop, including Windows 7 and later

	

Silverlight applications

 for web browsers, Windows Phone, and desktop

 Note

Although Silverlight is still supported by Microsoft, it is not being actively developed, so it should be avoided.

 Simplifying code using XAML

XAML simplifies C# code, especially when building a user interface.

Imagine that you need two or more buttons laid out horizontally to create a toolbar. In C#, you would write this code:

 var toolbar = new StackPanel();
 toolbar.Orientation = Orientation.Horizontal;
 var newButton = new Button();
 newButton.Content = "New";
 newButton.Background = new SolidColorBrush(Colors.Pink);
 toolbar.Children.Add(newButton);
 var openButton = new Button();
 openButton.Content = "Open";
 openButton.Background = new SolidColorBrush(Colors.Pink);
 toolbar.Children.Add(openButton);

In XAML, this would be simplified to the following lines of code. When this XAML is processed, the equivalent properties are set, and methods are called to achieve the same goal as the preceding C# code:

 <StackPanel Name="toolbar" Orientation="Horizontal">
 <Button Name="newButton" Background="Pink">New</Button>
 <Button Name="OpenButton" Background="Pink">Open</Button>
 </StackPanel>

XAML is an alternative (better) way of declaring and instantiating .NET types.

 Choosing common controls

There are lots of predefined controls that you can choose from for common user interface scenarios. Almost all versions of XAML support these controls.

	

Control(s)

	

Description

	

Button
 , Menu
 , Toolbar

	
Executing actions

	

CheckBox
 , RadioButton

	
Choosing options

	

Calendar
 , DatePicker

	
Choosing dates

	

ComboBox
 , ListBox
 , ListView
 , TreeView

	
Choosing items from lists and hierarchical trees

	

Canvas
 , DockPanel
 , Grid
 , StackPanel
 , WrapPanel

	
Layout containers that affect their children in different ways

	

Label
 , TextBlock

	
Displaying read-only text

	

RichTextBox
 , TextBox

	
Editing text

	

Image
 , MediaElement

	
Embedding images, videos, and audio files

	

DataGrid

	
Viewing and editing bound data

	

Scrollbar
 , Slider
 , StatusBar

	
Miscellaneous user interface elements

 Creating an app for Universal Windows Platform

To be able to create apps for UWP, you must enable developer mode in Windows 10.

Go to
Start Menu

 |
Settings

 |
Update & security

 |
For developers

 , and then click on
Developer mode

 , as shown in the following screenshot. Accept the warning about how it "could expose your device and personal data to security risk or harm your device," and then close the
Settings

 app. You might need to restart your PC.

[image: Creating an app for Universal Windows Platform]

In Visual Studio 2017, press
Ctrl

 +
Shift

 +
N

 or choose
File

 |
New

 |
Project...

 .

In the
New Project

 dialog, in the
Installed

 |
Templates

 list, select
Visual C#

 . In the center list, select
Blank App (Universal Windows)

 , type the name as Ch13_UWP
 , change the location to C:\Code
 , type the solution name as Chapter13
 , and then click on
OK

 .

In the
New Universal Windows Project

 dialog box, as shown in the following screenshot, choose
Minimum Version

 of
Windows 10 (10.0; Build 10240)

 and click
OK

 .

[image: Creating an app for Universal Windows Platform]

 Tip

Good Practice

Developers writing UWP apps for a general audience should choose the latest build of Windows 10 for the
Minimum Version

 . Developers writing Enterprise apps should choose an older
Minimum Version

 . Build 10240 was released in July 2015 and is the best choice for maximum compatibility.

In the
Solution Explorer

 window, double-click on the MainPage.xaml
 file to open it for editing. You will see the XAML design window showing a graphical view and an XAML view of the MainWindow.xaml
 file. You will be able to make the following observations:

	The XAML designer is split horizontally, but you can toggle to a vertical split and collapse one side by clicking the buttons on the right edge of the divider

	You can swap views by clicking the double-arrow button in the divider

	You can scroll and zoom both views

[image: Creating an app for Universal Windows Platform]

On the
View

 menu, choose
Toolbox

 or press
Ctrl + W, X

 . Note that the toolbox has sections for
Common XAML Controls

 ,
All XAML Controls

 , and
General

 . At the top of the toolbox is a search box. Enter the letters bu
 , as shown in the following screenshot. Note that the list of controls is filtered:

[image: Creating an app for Universal Windows Platform]

Drag and drop the
Button

 control from the toolbox onto the graphical view. Resize it by clicking, holding, and dragging any of the eight square resize handles on each edge and in each corner. Note that the button is given a fixed width and height, and fixed left and top margins, to position and size it inside the grid.

[image: Creating an app for Universal Windows Platform]

Although you can drag and drop controls, it is better to use the XAML view for layout.

In the XAML view, find the Button
 element and delete it.

In the XAML view, inside the Grid
 element, enter the following markup:

 <Button Margin="6" Padding="6" Name="clickMeButton">
 Click Me
 </Button>

Note that the button is automatically sized to its content, Click Me
 , aligned vertically in the center and aligned horizontally to the left, as shown in the following screenshot:

[image: Creating an app for Universal Windows Platform]

Modify the XAML to wrap the Button
 element inside a horizontally orientated StackPanel
 that is inside a vertically orientated, by default, StackPanel
 , and note the change in its layout:

 <StackPanel>
 <StackPanel Orientation="Horizontal">

 <Button Margin="6" Padding="6" Name="clickMeButton">
 Click Me
 </Button>

</StackPanel>
 </StackPanel>

Modify the Button
 element to give it a new event handler for its Click
 event:

 <Button Margin="6" Padding="6" Name="clickMeButton"

Click="clickMeButton_Click">

 Click Me
 </Button>

In the MainWindows.xaml.cs
 file, add the following statement to the event handler:

 clickMeButton.Content = DateTime.Now.ToString("hh:mm:ss");

Run the application by pressing
Ctrl

 +
F5.

Click on the Click Me
 button. Every time you click the button, the button's content changes to show the current time:

[image: Creating an app for Universal Windows Platform]

 Using resources and templates

When building graphical user interfaces, you will often want to use a resource, such as a brush, to paint the background of controls. These resources can be defined in a single place and shared throughout the app.

 Sharing resources

In the
Solution Explorer

 window, double-click on the App.xaml
 file.

Add the following markup inside the existing <Application>
 element:

 <Application.Resources>
 <LinearGradientBrush x:Key="rainbow">
 <GradientStop Color="Red" Offset="0" />
 <GradientStop Color="Orange" Offset="0.1" />
 <GradientStop Color="Yellow" Offset="0.3" />
 <GradientStop Color="Green" Offset="0.5" />
 <GradientStop Color="Blue" Offset="0.7" />
 <GradientStop Color="Indigo" Offset="0.9" />
 <GradientStop Color="Violet" Offset="1" />
 </LinearGradientBrush>
 </Application.Resources>

In the MainPage.xaml
 file, modify the Grid
 element to have its background set to the rainbow brush that you just defined, like this:

<Grid Background="{StaticResource rainbow}">

Rerun the application and view the result:

[image: Sharing resources]

 Tip

Good Practice

A resource can be an instance of any object. To share it within an application, define it in the App.xaml
 file and give it a unique Key
 . To set an element's property to apply the resource, use StaticResource
 with the Key
 .

 Replacing a control template

You can redefine how a control looks by replacing its default template.

One of the most common resources is a Style
 that can set multiple properties at once. If a style has a unique Key
 , then it must be explicitly set, like we did earlier with the linear gradient. If it doesn't have a Key
 , then it will be automatically applied based on the TargetType
 .

In the App.xaml
 file, add the following markup inside the <Application.Resources>
 element:

 <ControlTemplate x:Key="DarkGlassButton" TargetType="Button">
 <Border BorderBrush="#FFFFFFFF"
 BorderThickness="1,1,1,1" CornerRadius="4,4,4,4">
 <Border x:Name="border" Background="#7F000000"
 BorderBrush="#FF000000" BorderThickness="1,1,1,1"
 CornerRadius="4,4,4,4">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Border Opacity="0" HorizontalAlignment="Stretch"
 x:Name="glow" Width="Auto" Grid.RowSpan="2"
 CornerRadius="4,4,4,4">
 </Border>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center" Width="Auto"
 Grid.RowSpan="2" Padding="4"/>
 <Border HorizontalAlignment="Stretch" Margin="0,0,0,0"
 x:Name="shine" Width="Auto"
 CornerRadius="4,4,0,0">
 <Border.Background>
 <LinearGradientBrush EndPoint="0.5,0.9"
 StartPoint="0.5,0.03">
 <GradientStop Color="#99FFFFFF" Offset="0"/>
 <GradientStop Color="#33FFFFFF" Offset="1"/>
 </LinearGradientBrush>
 </Border.Background>
 </Border>
 </Grid>
 </Border>
 </Border>
 </ControlTemplate>
 <Style TargetType="Button">
 <Setter Property="Template"
 Value="{StaticResource DarkGlassButton}" />
 <Setter Property="Foreground" Value="White" />
 </Style>

Rerun the application and view the results. Note the "black glass" effect on the button:

[image: Replacing a control template]

 Data binding

When building graphical user interfaces, you will often want to bind a property of one control to another or to some data.

 Binding to elements

In the MainWindow.xaml
 file, add the following markup after the Button
 element inside the horizontally orientated StackPanel
 :

 <Slider Value="50" Maximum="100" Minimum="0"
 Width="200" Name="slider"/>
 <TextBlock Text="{Binding ElementName=slider, Path=Value}"
 VerticalAlignment="Center" Margin="10"/>

Rerun the app. Click, hold, and drag the slider, and notice that the text block shown to the right of the slider always shows the current value of the slider:

[image: Binding to elements]

Under the horizontally orientated stack panel, but inside the outer stack panel, add the following markup to define some instructions to the user, a slider for values between 0
 and 360
 degrees, and a red square with a rotation transformation:

 <TextBlock>Use the slider below to rotate the square:</TextBlock>
 <Slider Value="0" Minimum="0" Maximum="360"
 Name="sliderRotation"/>
 <Rectangle Height="100" Width="100" Fill="Red">
 <Rectangle.RenderTransform>
 <RotateTransform
 Angle="{Binding ElementName=sliderRotation, Path=Value}" />
 </Rectangle.RenderTransform>
 </Rectangle>

Note that the angle of the rotation transform is data bound to the slider's value.

Rerun the app and click, hold, and drag the slider to rotate the red square:

[image: Binding to elements]

 Binding to data

Add a new
Blank App (Universal Windows)

 project named Ch13_DataBinding
 .

Set the solution's startup project to be the current selection.

In the
Solution Explorer

 window, right-click on the new project and add a new folder named Models
 .

Right-click on the Models
 folder and add a new class named Employee
 . Add the following statements to it:

 public class Employee
 {
 public int EmployeeID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime DOB { get; set; }
 public decimal Salary { get; set; }
 }

Add another class named EmployeesViewModel
 :

 public class EmployeesViewModel
 {
 public HashSet<Employee> Employees { get; set; }

 public EmployeesViewModel()
 {
 Employees = new HashSet<Employee>();
 Employees.Add(new Employee
 { EmployeeID = 1, FirstName = "Alice", LastName = "Smith",
 DOB = new DateTime(1972, 1, 27), Salary = 34000M });
 Employees.Add(new Employee
 { EmployeeID = 2, FirstName = "Bob", LastName = "Jones",
 DOB = new DateTime(1965, 4, 13), Salary = 64000M });
 }
 }

Open MainPage.xaml
 . Add the following ListBox
 element whose items are bound to each employee instance in the Employees
 hash set of the view model:

 <ListBox ItemsSource="{Binding Employees}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding EmployeeID}" FontSize="30" />
 <TextBox Text="{Binding FirstName}"
 Header="First Name" Margin="10" />
 <TextBox Text="{Binding LastName}"
 Header="Last Name" Margin="10" />
 <DatePicker Date="{Binding DOB}"
 Header="DOB" Margin="10" />
 <TextBox Text="{Binding Salary}"
 Header="Salary" Margin="10" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

 Note

Since the data won't be loaded until runtime, you won't see a preview of the layout in the design window. You
can

 configure a UWP project with sample data for use at design time, but that is beyond the scope of this book.

In the XAML for the Page
 element, insert a new event handler for the Load
 event:

 Loading="Page_Loading"

Press

F7

 to view the code.

Add the following statement to the event handler for Page_Loading
 . The DataContext
 method is inherited by all controls, so the instance of the view model can be easily bound to by everything on the page:

 DataContext = new Models.EmployeesViewModel();

Run the application. The user can click inside each box to modify the data values:

[image: Binding to data]

Note the date picker. This will look different and is optimized for input on different devices:

[image: Binding to data]

 Note

In the real world, you would load the data from a file or service. You will learn how to build services in Chapter 15,
Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

 .

 Animating with storyboards

You can make your application feel more natural and organic (and fun) using storyboard animations.

Add a new
Blank App (Universal Windows)

 project named Ch13_BouncingBall
 .

Open the MainPage.xaml
 file, change Grid
 into Canvas
 , and add an ellipse to make a red ball. Save your changes:

 <Canvas Background=
 "{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Ellipse Fill="Red" Height="100" Width="100"/>
 </Canvas>

In the
Solution Explorer

 window, right-click on the Ch13_BouncingBall
 project and choose
Design in Blend...

 Note

Be patient. The first time you start Blend, it can take a few minutes.

The project will open in the
Microsoft Blend for Visual Studio

 tool, which is used by designers because it has better support for graphical effects and animation than Visual Studio does.

On the drawing surface, click on the red ellipse to select it, as shown in the following screenshot.

In the
Objects and Timeline

 window on the left, click on the small green
+

 button, or click on the down triangle to drop down a menu, to create a
New Storyboard

 resource:

[image: Animating with storyboards]

Change the name of the storyboard resource to
BounceBall

 and click on
OK

 :

[image: Animating with storyboards]

A red box appears around the drawing surface, and you will see in the top-right corner that timeline recording is on. Later, you will click on the red dot to stop recording:

[image: Animating with storyboards]

In the
Objects and Timeline

 window, click on the Record Keyframe button---it looks like a green
+

 symbol combined with a small diamond, and is to the left of the current time indicator. This will record the current properties of the ball at time
0:00.000

 :

[image: Animating with storyboards]

On the timeline, drag the down-pointing orange triangle and its vertical orange line to time position
0:00.800

 . This means 0.8 seconds later:

[image: Animating with storyboards]

On the drawing surface, drag the red ellipse down and a little to the right. This change will be recorded automatically:

[image: Animating with storyboards]

Drag the orange triangle to time position
0:01.000

 . Click and drag the resize handle at the top of the ball to squash it down a little:

[image: Animating with storyboards]

Drag the orange triangle to time position
0:01.200

 . Resize the ball to stretch it back to its original height. Don't worry about accuracy. You will modify the recorded values later.

Drag the orange triangle to time position
0:02.000

 . Click near the middle of the ball when the mouse pointer has a four-pointed arrow next to it, and drag it back up to near the top of the window and a little to the right:

[image: Animating with storyboards]

Click the red dot to stop recording:

[image: Animating with storyboards]

In the
Objects and Timeline

 window, click on the small green triangle
Play

 button.

You should see the red ball smoothly drop down. When it hits the bottom, it squashes slightly, as a rubber ball would in real life, before bouncing back up to the top.

Save your work and exit from Blend.

When you return to Visual Studio 2017, it should warn you that the file has changes and prompts you to reload it. Click on
Yes

 .

Notice that Blend created some XAML elements to define a storyboard named BounceBall
 that animates properties of the Ellipse
 object.

Three properties were animated, and are listed as follows:

	

TranslateY

 : This property moves the ball vertically

	

ScaleY

 : This property squashes the ball vertically

	

TranslateX

 : This property moves the ball horizontally

Modify the squashing effect by changing the value of ScaleY to be 0.666 (that is, 66.6%) of its normal height at time position 1s, and return to exactly 1 at time position 1.2s:

 <DoubleAnimationUsingKeyFrames Storyboard.TargetProperty=
 "(UIElement.RenderTransform).(CompositeTransform.ScaleY)"
 Storyboard.TargetName="ellipse">
 <EasingDoubleKeyFrame KeyTime="0:0:0.8" Value="1"/>
 <EasingDoubleKeyFrame KeyTime="0:0:1" Value="0.666"/>
 <EasingDoubleKeyFrame KeyTime="0:0:1.2" Value="1"/>
 </DoubleAnimationUsingKeyFrames>

In the toolbox, choose Button
 and draw one on the canvas named BounceBallButton
 . Change its contents to Bounce Ball
 . Give it a Click
 event handler:

 <Button Name="BounceBallButton" Content="Bounce Ball"
 Canvas.Left="154" Canvas.Top="45"
 Click="BounceBallButton_Click"/>

In the code behind file, add the following statement to the event handler method:

 BounceBall.Begin();

Run the application. Click on the Bounce Ball
 button to run the animation:

[image: Animating with storyboards]

 Testing in emulators

While developing a UWP app, you can quickly see what it would look like on various devices in the XAML design window.

The following screenshot shows the
23" Desktop (1920 x 1080) 100% scale

 emulator:

[image: Testing in emulators]

The following screenshot shows the
57" HoloLens 2D App (1280 x 720) 150% scale

 emulator:

[image: Testing in emulators]

You can also run the app in a
Simulator

 rather than on your
Local Machine

 . You can also choose
Remote Machine

 or
Device

 :

[image: Testing in emulators]

Simulator

 can rotate and change input modes and the screen resolution using the buttons in the toolbar on the right edge of the
Simulator

 window:

[image: Testing in emulators]

 Tip

Good Practice

Test your apps with
Simulator

 , and then also test on all the actual devices that your users will deploy your app to.

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

 Exercise 13.1 - test your knowledge

Answer the following questions:

	Which control would you choose to allow the user to easily choose their date of birth on many different types of devices?

	Which XAML element would you use to adapt the layout of your app to handle different device families?

	How can you set multiple properties on an XAML element as a single group?

	What is the difference between a control template and a data template?

	Can XAML bindings be two-ways or just one-way?

 Exercise 13.2 - practice building a universal tip calculator

Create an app for UWP that calculates a tip for common percentages.

 Exercise 13.3 - explore topics

Use the following links to read more about this chapter's topics.

	

Enable your device for development

 : https://docs.microsoft.com/en-us/windows/uwp/get-started/enable-your-device-for-development

	

Intro to the Universal Windows Platform

:

 https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide

	

Design and UI

 : https://developer.microsoft.com/en-us/windows/apps/design

	

How-to articles for UWP apps on Windows 10

 : https://developer.microsoft.com/en-us/windows/apps/develop

 Summary

In this chapter, you learned how to build a graphical user interface using XAML, how to share resources in a central location, how to replace a control's template, how to bind to data and controls, and how to animate properties.

In the next chapter, you will learn how to build web applications using ASP.NET Core MVC.

 Chapter14.Building Web Applications Using ASP.NET Core MVC

This chapter is about building web applications with a modern HTTP architecture on the server side using Microsoft ASP.NET Core MVC. You will learn about the startup configuration, authentication, authorization, routes, models, views, and controllers that make up ASP.NET Core MVC.

This chapter will cover the following topics:

	Understanding ASP.NET Core

	Exploring an ASP.NET Core MVC web application

	ASP.NET Core MVC controllers

	ASP.NET Core MVC models

	ASP.NET Core MVC views

	Taking ASP.NET Core MVC further

 Understanding ASP.NET Core

Microsoft ASP.NET Core is part of a history of Microsoft technologies used to build web applications and services that have evolved over the years:

	

Active Server Pages

 (
ASP

) was released in 1996, and was Microsoft's first attempt at a platform for dynamic server-side execution of web application code. ASP files are written in the VBScript language.

	

ASP.NET Web Forms

 was released in 2002 with the .NET Framework, and is designed to enable non-web developers, such as those familiar with Visual Basic, to quickly create web applications by dragging and dropping visual components and writing event-driven code in Visual Basic or C#. Web Forms can only be hosted on Windows, but is still used today in products such as Microsoft SharePoint. It should be avoided for new web projects in favor of ASP.NET Core.

	

Windows Communication Foundation

 (
WCF

) was released in 2006, and enables developers to build SOAP and REST services. SOAP is powerful but complex, so it should be avoided unless you need advanced features such as distributed transactions and complex messaging topologies.

	

ASP.NET MVC

 was released in 2009, and is designed to cleanly separate the concerns of web developers between the
models

 that represent the data, the
views

 that present that data, and the
controllers

 that fetch the model and pass it to a view. This separation enables improved reuse and unit testing.

	

ASP.NET Web API

 was released in 2012, and enables developers to create HTTP aka REST services that are simpler and more scalable than SOAP services.

	

ASP.NET SignalR

 was released in 2013, and enables real-time communication in web applications by abstracting underlying technologies and techniques, such as
Web Sockets

 and
Long Polling

 .

	

ASP.NET Core

 was released in 2016 and combines MVC, Web API, and SignalR, running on the .NET Core. Therefore, it is cross-platform.

 Tip

Good Practice

Choose ASP.NET Core to develop web applications and services because it includes three web-related technologies that are modern and cross-platform.

 Classic ASP.NET versus modern ASP.NET Core

ASP.NET celebrates its 15th birthday in 2017. It's a teenager!

Until now, it has been built on top of a large assembly in the .NET Framework named System.Web.dll
 . Over the years, this assembly has accumulated a lot of features, many of which are not suitable for modern cross-platform development.

ASP.NET Core is a major redesign of ASP.NET. It removes the dependency on the System.Web.dll
 assembly and is composed of modular lightweight packages, just like the rest of .NET Core.

You can develop and run ASP.NET Core applications cross-platform on Windows, macOS, and Linux. Microsoft has even created a cross-platform, super performant web server named
Kestrel

 . The entire stack is open source, and it is designed to integrate with a variety of client-side tools and frameworks, including Bower, Gulp, Grunt, AngularJS, jQuery, and Bootstrap.

 Client-side web development

When building web applications, a developer needs to know more than just C# and .NET Core. On the client (that is, in the web browser), you will use a combination of the following components:

	

HTML5

 : This is used for the content and structure of a web page

	

CSS3

 : This is used for the styles applied to elements on the web page

	

JavaScript

 : This is used for the procedural actions of the web page

	

Bower

 : This is a client-side package manager for the web

 Note

This book is about C#, so we will cover some of the basics of client-side web development, but for more detail, I recommend the book
HTML5 Web Application Development By Example

 by
Packt Publishing

 at https://www.packtpub.com/web-development/html5-web-application-development-example-beginners-guide
 .

To make it easier to work with HTML5, CSS3, and JavaScript, both Visual Studio 2017 and Visual Studio Code have extensions such as the ones listed here:

	Mads Kristensen's extensions for Visual Studio: https://marketplace.visualstudio.com/search?term=publisher%3A%22Mads%20Kristensen%22&target=VS&sortBy=Relevance

	HTML Programming in VS Code: https://code.visualstudio.com/Docs/languages/html

	Microsoft's Visual Studio Code extensions:https://marketplace.visualstudio.com/search?term=publisher%3A%22Microsoft%22&target=VSCode&sortBy=Relevance

 Note

Mads Kristensen wrote one of the most popular extensions for web development with Visual Studio 2010 and later named Web Essentials. It has now been broken up into smaller extensions that can be individually installed.

 Understanding HTTP

To communicate with a web server, the client makes calls over the network using a protocol known as
HTTP

 (
Hypertext Transfer Protocol

). HTTP is the technical underpinning of the "Web". So, when we talk about web applications or web services, we mean they use HTTP to communicate between a client (often a web browser) and a server.

A client makes an HTTP request for a resource, such as a page identified by a
URL

 (
Uniform Resource Locator

), and the server sends back an HTTP response. You can use Google Chrome and other browsers to record requests and responses.

 Tip

Good Practice

Google Chrome

 is available on more operating systems than any other browser and it has powerful built-in developer tools, so it is a good first choice of browser. Always test your web application with Chrome and at least two other browsers, for example,
Firefox

 and either
Microsoft Edge

 for Windows 10 and
Safari

 for macOS.

Start
Google Chrome

 . To show developer tools in Chrome:

	On macOS, press
Alt

 +
Cmd

 +
I

	On Windows, press
F2

 or
Ctrl

 +
Shift

 +
I

Click on the
Network

 tab. Chrome should immediately start recording the network traffic between your browser and any web servers, as shown in the following screenshot:

[image: Understanding HTTP]

In Chrome's address box, enter https://www.asp.net/get-started
 .

In the
Developer

Tools

 window, in the list of recorded requests, click on the first entry, as shown in the following screenshot:

[image: Understanding HTTP]

On the right-hand side, click the
Headers

 tab, and you will see details about the request and the response, as shown in the following screenshot:

[image: Understanding HTTP]

Note the following aspects:

	

Request Method

 is GET
 . Other methods that HTTP defines include POST
 , PUT
 , DELETE
 , HEAD
 , and PATCH
 .

	

Status Code

 is 200 OK
 . This means the server found the resource that the browser requested. Other status codes include 404 Missing
 .

	

Request Headers

 include
Accept

 , which lists what formats the browser accepts. In this case, the browser is saying it understands HTML, XHTML, XML, and others.

	

Accept-Encoding

 header means the browser has told the server that it understands the GZIP and DEFLATE compression algorithms.

	The browser has also told the server which human languages it would prefer: US English and then any dialect of English (with a quality value of 0.8).

	I must have been to this site before because a Google Analytics cookie, named _ga
 , is being sent to the server so that it can track me.

	The server has sent back the response compressed using the GZIP algorithm because it knows that the client can decompress that format.

 Creating an ASP.NET Core project with Visual Studio 2017

In Visual Studio 2017, press
Ctrl

 +
Shift

 +
N

 or choose
File

 |
New

 |
Project...

 .

In the
New Project

 dialog, in the
Installed

 |
Templates

 list, expand
Visual C#

 , and select
.NET Core

 . In the center list, select
ASP.NET Core Web Application (.NET Core)

 , type the name as Ch14_WebApp
 , type the solution name as Chapter14
 , and then click on
OK

 .

In the
New ASP.NET Core Web Application (.NET Core)

 dialog box, select the
Web Application

 template. Ensure that
Authentication

 is set to
Individual User Accounts

 by clicking the
Change Authentication

 button. The
Host in the cloud

 box should be left unchecked. Click
OK

 , as shown in the following screenshot:

[image: Creating an ASP.NET Core project with Visual Studio 2017]

After a few seconds, your
Solution Explorer

 window will look as shown in the following screenshot. Note the following points:

	
Dependencies
 contain Bower packages on the client side and NuGet packages on the server side.

	The Data
 folder contains C# classes to perform initial database operations, known as migrations, to create the tables required to store users and roles for the authentication system.

	The wwwroot
 folder contains client-side files, such as CSS style sheets, images, and JavaScript libraries.

	The Controllers
 , Models
 , and Views
 folders contain ASP.NET Core classes and .cshtml
 files for execution on the server. We will look at this in more detail later.

	There are two C# classes in the root folder: Program.cs
 and Startup.cs
 .

	There are multiple configuration files. The old format used XML, for example Web.config
 , and the newer format uses JSON, for example appsettings.json
 , as shown in the following screenshot:

[image: Creating an ASP.NET Core project with Visual Studio 2017]

 Performing database migrations

Before we test the web application, we need to ensure that the database migrations have been executed.

Open the appsettings.json
 file and note the database connection string. It should look something like this:

Server=(localdb)\\mssqllocaldb;Database=aspnet-Ch14_WebApp-584f323f-
a60e-4933-9845-f67225753337;
Trusted_Connection=True;MultipleActiveResultSets=true

When the database migrations execute, it will create a database with the preceding name in Microsoft SQL Server LocalDb. You could modify the database name now to make it less GUID-y, for example, as in the following connection string:

Server=(localdb)\\mssqllocaldb;Database=
Ch14_WebApp

;
Trusted_Connection=True;MultipleActiveResultSets=true

Right-click on the Ch14_WebApp
 project and choose
Open Folder in File Explorer

 .

Click in the address box and copy the path to the clipboard.

From the Windows Start menu, start
Developer Command Prompt for Visual Studio 2017

 .

Change to the project directory and execute the database migrations by entering the following commands:

cd C:\Code\Chapter14\src\Ch14_WebApp

dotnet ef database update

You should see output, as shown in the following screenshot:

[image: Performing database migrations]

In the Visual Studio 2017 toolbar, click the dropdown arrow next to
IIS Express

 , choose
Web Browser

 , and then
Google Chrome

 , as shown in the following screenshot:

 Note

Sometimes, you must drop down the menu twice for Visual Studio to populate the browser list!

[image: Performing database migrations]

Run the application by pressing
Ctrl

 +
F5.

Note that your ASP.NET Core application is hosted in a cross-platform web server named Kestrel (here, integrated with IIS Express) using a random port number for local testing and that the sample ASP.NET Core web application project returns a site with half a dozen pages, including
Home

 ,
About

 ,
Contact

 ,
Register

 , and
Log in

 , as shown in the following screenshot:

[image: Performing database migrations]

Click on the
Register

 link and then complete the form to create a new account in the database that was created by the migration, as shown in the following screenshot:

[image: Performing database migrations]

Note that if you enter a password that is not strong enough, there is built-in validation.

Close Chrome.

 Reviewing authentication with ASP.NET Identity

Use
Server Explorer

 to add a database connection to the Ch14_WebApp
 database, as shown in the following screenshot:

[image: Reviewing authentication with ASP.NET Identity]

Right-click the AspNetUsers
 table, and note the row that was added to the database when you completed the register form, as shown in the following screenshot:

[image: Reviewing authentication with ASP.NET Identity]

 Tip

Good Practice

The ASP.NET Core web application project follows good practice by storing a hash of the password instead of the password itself. The
ASP.NET Core Identity

 system can be extended to support two-factor authentication.

 Creating an ASP.NET Core project with Visual Studio Code

Create a folder named Chapter14
 with a subfolder named Ch14_WebApp
 . In
Visual Studio Code

 , open the Ch14_WebApp
 folder. In the
Integrated Terminal

 , enter the following command to review your options when creating an ASP.NET MVC application with the CLI tool:

dotnet new mvc --help

You will see the following output:

bash-3.2$ dotnet new mvc --help

Template Instantiation Commands for .NET Core CLI.

Usage: dotnet new [arguments] [options]

Arguments:

 template The template to instantiate.

Options:

 -l|--list List templates containing the specified name.

 -lang|--language Specifies the language of the template to create

 -n|--name The name for the output being created. If no name
is specified, the name of th

e current directory is used.

-o|--output Location to place the generated output.

-h|--help Displays help for this command.

-all|--show-all Shows all templates

ASP.NET Core Web App (C#)

Author: Microsoft

Options:

-au|--auth The type of authentication to use

 None - No authentication

 Individual - Individual authentication

 Default: None

-uld|--use-local-db Whether or not to use LocalDB instead of SQLite

 bool - Optional

 Default: false

-f|--framework

 netcoreapp1.0 - Target netcoreapp1.0

 netcoreapp1.1 - Target netcoreapp1.1

 Default: netcoreapp1.1

 Note

Options when creating a new ASP.NET Core MVC application include choosing the type of authentication to use, None or Individual, and choosing between SQL Server LocalDb and SQLite to store the users and roles.

At the Terminal prompt, enter the following command to create a new ASP.NET Core MVC web application project with individual user accounts for authentication, stored in SQLite:

dotnet new mvc --auth Individual

Note the folders and files created in the
Explorer

 pane, as shown in the following screenshot, including some database migrations that must be executed to create the database for registering new users, as shown in the following screenshot:

[image: Creating an ASP.NET Core project with Visual Studio Code]

Open the appsettings.json
 file and note the database connection string. It should be something like this:

Data Source=.\\Ch14_WebApp.db

When the database migrations execute, it will create a database with the preceding name in the current folder using SQLite.

In the
Integrated Terminal

 , enter the following commands to restore packages and then execute the database migrations:

dotnet restore

dotnet ef database update

In the
Explorer

 pane, expand the bin
 folder and note that the database named Ch14_WebApp.db
 has been created.

If you installed an SQLite tool such as
SQLiteStudio

 , then you could open the database and see the tables that the ASP.NET Identity system uses to register users and roles, as shown in the following screenshot:

[image: Creating an ASP.NET Core project with Visual Studio Code]

In the
Integrated Terminal

 , enter the following command:

dotnet run

You will see the following output:

bash-3.2$ dotnet run

Hosting environment: Production

Content root path: /Users/markjprice/Code/Chapter14/Ch14_WebApp

Now listening on: http://localhost:5000

Application started. Press Ctrl+C to shut down.

Leave the web application running and start
Chrome

 .

Navigate to http:/localhost:5000/
 and view the results, as shown in the following screenshot:

[image: Creating an ASP.NET Core project with Visual Studio Code]

Click
Register

 and complete the form to register a new user.

 Note

This ASP.NET Core web application project has the same behavior as the one created by Visual Studio 2017, except that it uses SQLite instead of SQL Server LocalDb for the ASP.NET Identity database.

Close
Chrome

 , and in the
Integrated Terminal

 , press
Ctrl

 +
C

 to stop the console application and shut down the Kestrel web server that is hosting your ASP.NET Core web application.

 Managing client-side packages with Bower

In the next section, we will use Bower to manage client-side packages, for example, Bootstrap and jQuery. Bower is not installed by default.

In
Visual Studio Code

 , choose
View

 |
Extensions

 or press
Shift

 +
Cmd

 +
X

 .

Search for bower
 to find the most popular Bower extension, and click
Install

 , as shown in the following screenshot:

[image: Managing client-side packages with Bower]

Click
Reload

 .

Navigate to
View

 |
Command Palette...

 , or press
Shift

 +
Cmd

 +

P

 .

Enter the command Bower
 , and then choose
Bower Install

 to restore packages, as shown in the following screenshot:

[image: Managing client-side packages with Bower]

Expand wwwroot
 and note that the lib
 folder has been created with four subfolders for the packages that are specified in the bower.json
 file:

 {
 "name": "webapplication",
 "private": true,
 "dependencies": {
 "bootstrap": "3.3.6",
 "jquery": "2.2.3",
 "jquery-validation": "1.15.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
 }

 Exploring an ASP.NET Core MVC web application

Let's walk through the parts that make up a modern ASP.NET Core MVC application.

In
Visual Studio 2017

 , look at
Solution Explorer

 for the Ch14_WebApp
 project. In
Visual Studio Code

 , look at the
Explorer

 pane. Note the following:

	
wwwroot
 : This folder contains static content, such as CSS for styles, images, JavaScript, and a favicon.ico
 file.

	
Data
 : This folder contains Entity Framework Core classes used by the ASP.NET Identity system to provide authentication and authorization.

	
Dependencies
 (
Visual Studio 2017 only

): This folder contains a graphical representation of Bower
 and NuGet
 for modern package management. The actual files are bower.json
 and Ch14_WebApp.csproj
 . In Visual Studio 2017, you could edit the project manually by right-clicking the project and choosing
Edit

 Ch14_WebApp.csproj
 .

	
Ch14_WebApp.csproj
 : This file contains a list of NuGet packages, such as the Entity Framework Core, that your project requires.

	
.vscode/launch.json
 (
Visual Studio Code only

) and Properties/launchSettings.json
 (
Visual Studio 2017 only

): These files configure options for starting the web application from inside your development environment.

	
Controllers
 : This folder contains C# classes that have methods (known as actions) that fetch a
model

 and pass it to a
view

 .

	
Models
 : This folder contains C# classes that represent all the data required to respond to an HTTP request.

	
Views
 : This folder contains .cshtml
 files that combine HTML and C# code to enable the dynamic generation of an HTML response.

	
Services
 : This folder contains C# interfaces and classes for integrating with external services, such as SMS for sending text messages.

	
appsettings.json
 : This file contains settings that your web application can load at runtime, for example, the database connection string for the ASP.NET Identity system.

	
bower.json
 : This file contains client-side packages that combine resources such as jQuery and Bootstrap.

	
gulpfile.js
 : This file is an optional task runner that can perform actions such as bundling and minimization.

	
Program.cs
 : This file is a console application that contains the Main
 entry point that performs initial configuration, compilation, and executes the web application. It can call the UseStartup<T>()
 method to specify another class that can perform additional configuration.

	
Startup.cs
 : This optional file performs additional configuration of the services, for example, ASP.NET Identity for authentication, SQLite for data storage, and so on, and routes for your application.

 ASP.NET Core startup

Open the Startup.cs
 file.

Note the ConfigureServices
 method that adds support for MVC along with other framework and application services such as ASP.NET Identity, as shown in the following code:

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration
 .GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
 }

Next, we have the Configure
 method. Note the following:

	If the web application is running in the development environment, then (1) when an exception is thrown, a rich error page showing source code is displayed, and (2) browser link is enabled so that Visual Studio tools can push updates to the actively running browsers.

	Static files are enabled to allow CSS, JavaScript, and so on, to be served from the file system.

	ASP.NET Identity is enabled for authentication and authorization.

	The most important statement here is the one that calls UseMvc
 and maps a default route. This route is very flexible, because it would map to almost any incoming URL, as you will see in the next section:

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseIdentity();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }

 Understanding the default route

The default route looks at any URL entered by the user in the address bar and matches it to extract the name of a controller, the name of an action, and an optional id
 value (the ?
 symbol makes it optional). If the user hasn't entered these names, it uses defaults of Home
 for the controller and Index
 for the action (the =
 assignment sets a default for a named segment).

Contents in curly-brackets {}
 are called
segments

 , and they are like a named parameter of a method. The value of these segments can be any string.

The responsibility of a route is to discover the name of a controller and an action.

The following table contains example URLs and how MVC would work out the names:

	

URL

	

Controller

	

Action

	

ID

	

/

	
Home

	
Index

	

	

/Muppet

	
Muppet

	
Index

	

	

/Muppet/Kermit

	
Muppet

	
Kermit

	

	

/Muppet/Kermit/Green

	
Muppet

	
Kermit

	
Green

	

/Products

	
Products

	
Index

	

	

/Products/Detail

	
Products

	
Detail

	

	

/Products/Detail/3

	
Products

	
Detail

	
3

Note that if the user does not supply a name, then the defaults,
Home

 and
Index

 , are used as specified when the route was registered. You could change these defaults if you wanted.

 ASP.NET Core MVC controllers

Now that ASP.NET Core MVC knows the name of the controller and action, it will look for a class that implements an interface named IController
 . To simplify the requirements, Microsoft supplies a class named Controller
 that your classes can inherit from.

The responsibilities of a controller are as follows:

	To extract parameters from the HTTP request

	To use the parameters to fetch the correct model and pass it to the correct view

	client as an HTTP response

To return the results from the view to the client as an HTTP responseDefining the Home controller's actions

Expand the Controllers
 folder and double-click on the file named HomeController.cs
 :

 public class HomeController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }
 public IActionResult About()
 {
 ViewData["Message"] = "Your application description page.";
 return View();
 }
 public IActionResult Contact()
 {
 ViewData["Message"] = "Your contact page.";
 return View();
 }
 public IActionResult Error()
 {
 return View();
 }
 }

 Note

If the user enters /
 or /Home
 , then it is the equivalent of /Home/Index
 because those were the defaults.

Note the following:

	None of the action methods currently use a model

	Two of the action methods use a dictionary named ViewData
 to store a string
 item named
message

 that can then be read inside a view

	All of the action methods call a method named View()
 and return the results as an IActionResult
 to the client

 ASP.NET Core MVC models

In ASP.NET Core MVC, the model represents the data required for a request. For example, an HTTP GET request for http://www.example.com/products/details/3
 might mean that the browser is asking for the details of product number 3.

The controller would need to use the ID value 3
 to retrieve the record for that product and pass it to a view that can then turn the model into HTML for display in the browser.

In the following example, we will create an Entity Framework Core data model to directly access data in the Northwind database.

 Tip

Good Practice

Use a data repository (typically implemented as a service) to manage your data instead of accessing it directly in an ASP.NET Core MVC web application.

 Create Entity models for Northwind

Follow the instructions in Chapter 8
 ,
Working with Databases Using the Entity Framework Core

 , to create the Northwind database:

	On Windows, create it in the
(local)\mssqllocaldb

 server. If you completed the earlier chapters, then you have already done this.

	On macOS, create the Northwind.db
 file in the \bin\Debug\netcoreapp1.1\
 folder by copying the NorthwindSQLite.sql
 file into that folder, and then enter the following command in
Terminal

 :

 sqlite3 Northwind.db < NorthwindSQLite.sql

In both
Visual Studio 2017

 and
Visual Studio Code

 , add three class files to the Models
 folder named Northwind.cs
 , Category.cs
 , and Product.cs
 .

Northwind.cs
 should look like this:

 using Microsoft.EntityFrameworkCore;

 namespace Packt.CS7
 {
 public class Northwind : DbContext
 {
 public DbSet<Category> Categories { get; set; }
 public DbSet<Product> Products { get; set; }
 public Northwind(DbContextOptions options) : base(options)
 {}
 }
 }

 Note

We will set the database connection string in the ASP.NET Core startup so it does not need to be done in the Northwind
 class, but the class derived from DbContext
 must have a constructor with a DbContextOptions
 parameter.

Category.cs
 should look like this:

 using System.ComponentModel.DataAnnotations;

 namespace Packt.CS7
 {
 public class Category
 {
 public int CategoryID { get; set; }
 [Required]
 [StringLength(15)]
 public string CategoryName { get; set; }
 public string Description { get; set; }
 }
 }

Supplier.cs
 should look like this:

 using System.ComponentModel.DataAnnotations;
 using System.ComponentModel.DataAnnotations.Schema;

 namespace Packt.CS7
 {
 [Table("Suppliers")]
 public class Supplier
 {
 public int SupplierID { get; set; }
 [Required]
 [StringLength(15)]
 public string CompanyName { get; set; }
 }
 }

Product.cs
 should look like this:

 using System.ComponentModel.DataAnnotations;

 namespace Packt.CS7
 {
 public class Product
 {
 public int ProductID { get; set; }
 [Required]
 [StringLength(40)]
 public string ProductName { get; set; }
 public int? SupplierID { get; set; }
 public Supplier Supplier { get; set; }
 public int? CategoryID { get; set; }
 public Category Category { get; set; }
 [StringLength(20)]
 public string QuantityPerUnit { get; set; }
 public decimal? UnitPrice { get; set; }
 public short? UnitsInStock { get; set; }
 public short? UnitsOnOrder { get; set; }
 public short? ReorderLevel { get; set; }
 public bool Discontinued { get; set; }
 }
 }

 Tip

Good Practice

Create a separate class library project for your entity models. This allows easier sharing between servers and clients.

 Configure Entity Framework Core as a service

Services, such as the Entity Framework Core, that are needed by MVC controllers must be registered as a service during startup.

Open the Startup.cs
 file.

Add the following statement to the ConfigureServices
 method.

For Windows with SQL Server LocalDb:

 services.AddDbContext<Packt.CS7.Northwind>(options =>
 options.UseSqlServer(Configuration
 .GetConnectionString("NorthwindConnection")));

For macOS with SQLite:

 services.AddDbContext<Packt.CS7.Northwind>(options =>
 options.UseSqlite(Configuration
 .GetConnectionString("NorthwindConnection")));

Open the appsettings.json
 file and add a connection string.

For Windows with SQL Server LocalDb:

 "NorthwindConnection":
 "Server=(localdb)\\mssqllocaldb;Database=Northwind;Trusted_Connect
 ion=True;MultipleActiveResultSets=true"

For macOS with SQLite:

 "NorthwindConnection": "Data Source=Northwind.db"

 Create view models for requests

Imagine that when a user comes to our website, we want to show them a list of products and a count of the number of visitors we have had this month. All the data that we want to show in response to a request is the MVC model, sometimes called a
view model

 , because it is a
model

 that is passed to a
view

 .

Add a class to the Models
 folder and name it HomeIndexViewModel
 .

Modify the class definition to make it look like this:

 using System.Collections.Generic;

 namespace Packt.CS7
 {
 public class HomeIndexViewModel
 {
 public int VisitorCount;
 public ICollection<Product> Products { get; set; }
 }
 }

 Fetch the model in the controller

Open the HomeController
 class.

Import the Packt.CS7
 namespace.

Add a field to store a reference to a Northwind
 instance and initialize it in a constructor:

 private Northwind db;

 public HomeController(Northwind injectedContext)
 {
 db = injectedContext;
 }

Modify the contents of the Index
 action method to make it look like this:

 var model = new HomeIndexViewModel
 {
 VisitorCount = (new Random()).Next(1, 1001),
 Products = db.Products.ToArray()
 };
 return View(model); // pass model to view

 Note

We will simulate a visitor count using the Random
 class to generate a number between 1
 and 1000
 .

 ASP.NET Core MVC views

The responsibility of a view is to transform a model into HTML or other formats. There are multiple
view

engines

 that can be used to do this. The default view engine for ASP.NET MVC 3 and later is called
Razor

 , and it uses the @
 symbol to indicate server-side code execution.

 Rendering the Home controller's views

Expand the Views
 folder, and then expand the Home
 folder. Note the three files with the .cshtml
 file extension.

 Note

The .cshtml
 file extension means this is a file that mixes C# and HTML.

When the View()
 method is called in a controller's action method, ASP.NET Core MVC looks in the Views
 folder for a subfolder with the same name as the current controller, that is,
Home

 . It then looks for a file with the same name as the current action, that is, Index
 , About
 , or Contact
 .

In the Index.cshtml
 file, note the block of C# code wrapped in @{ }
 . This will execute first and can be used to store data that needs to be passed into a shared layout file:

 @{
 ViewData["Title"] = "Home Page";
 }

Note the static HTML content in several <div>
 elements that uses Bootstrap for styling.

 Tip

Good Practice

As well as defining your own styles, base your styles on a common library, such as Bootstrap, that implements responsive design. To learn more about CSS3 and responsive design, read the book
Responsive Web Design with HTML5 and CSS3 - Second Edition

 by
Packt Publishing

 at https://www.packtpub.com/web-development/responsive-web-design-html5-and-css3-second-edition
 .

 Sharing layouts between views

There is a file named _ViewStart.cshtml
 that gets executed by the View()
 method. It is used to set defaults that apply to all views.

For example, it sets the Layout
 property of all views to a shared layout file:

 @{
 Layout = "_Layout";
 }

In the Shared
 folder, open the _Layout.cshtml
 file. Note that the title is being read from the ViewData
 dictionary that was set earlier in the Index.cshtml
 view.

Modify the title to have the suffix,
My First ASP.NET Core App

 , as shown in the following markup:

 <title>@ViewData["Title"] - My First ASP.NET Core App</title>

Note the rendering of common styles to support Bootstrap and the two sections. During
development

 , the fully commented and nicely formatted versions of CSS files will be used. For
staging

 and
release

 , the minified versions will be used:

 <environment names="Development">
 <link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment names="Staging,Production">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/
 bootstrap/3.3.5/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only"
 asp-fallback-test-property="position"
 asp-fallback-test-value="absolute" />
 <link rel="stylesheet"
 href="~/css/site.min.css"
 asp-append-version="true" />
 </environment>

 Note

~

 means the wwwroot
 folder.

Note the rendering of hyperlinks to allow users to click between pages using the navigation bar at the top of every page. The <a>
 elements use "tag helper" attributes to specify the controller name and action name that will execute when the link is clicked:

 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <a asp-controller="Home" asp-action="Index">Home
 <a asp-controller="Home" asp-action="About">About
 <a asp-controller="Home"
 asp-action="Contact">Contact

 </div>

Note the rendering of the body:

 @RenderBody()

Note the rendering of script blocks at the bottom of the page so that it doesn't slow down the display of the page:

 <environment names="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment names="Staging,Production">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-
 2.1.4.min.js" asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery">
 </script>
 <script
 src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.5/bootstrap.min
 .js" asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn &&
 window.jQuery.fn.modal">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true">
 </script>
 </environment>

You can add your own script blocks into an optional defined section named
scripts

 :

 @RenderSection("scripts", required: false)

 Defining custom styles

In the wwwroot\css
 folder, open the site.css
 file.

Add a new style that will apply to an element with the newspaper
 ID like this:

 #newspaper {
 column-count: 3;
 }

 Note

In Visual Studio Code, you will need to add the style to site.min.css
 too. Usually you would have a build step to minify your site.css
 into a site.min.css
 , but for now, just do it manually.

 Defining a typed view

To improve the IntelliSense when writing a view, you can define the type the view can expect using a @model
 directive at the top.

Back in the Index.cshtml
 view, enter the following code as the first line of the file:

 @model Packt.CS7.HomeIndexViewModel

Now, whenever we enter @Model
 in this view, the IntelliSense will know the correct type and will provide IntelliSense.

 Note

To declare the type for the model, use @model
 (with lowercase m
).

To read from the model, use @Model
 (with uppercase M
).

In Index.cshtml
 , delete all the <div>
 elements and replace them with this markup:

 <div class="row">
 <div class="col-md-12">
 <h1>Northwind</h1>
 <p class="lead">We have had @Model.VisitorCount
 visitors this month.
 </p>
 <h2>Products</h2>
 <div id="newspaper">

 @foreach (var item in @Model.Products)
 {
 <a asp-controller="Home"
 asp-action="ProductDetail"
 asp-route-id="@item.ProductID">
 @item.ProductName costs
 @item.UnitPrice.Value.ToString("C")

 }

 </div>
 </div>
 </div>

Note how easy it is to mix static HTML elements such as
 and
 with C# code to output the list of product names.

Note the <div>
 element with the id
 attribute of newspaper
 . This will use the custom style that we defined earlier, so all the content in that element will display in three columns.

In
Visual Studio 2017

 , press
Ctrl

 +
F5.

In
Visual Studio Code

 , enter the command dotnet run
 , and then run
Chrome

 and navigate to http://localhost:5000/
 .

The home page will look as shown in the following screenshot:

[image: Defining a typed view]

 Taking ASP.NET Core MVC further

Now that you've seen the basics of how models, views, and controllers work together to provide a web application, let's look at some common scenarios, such as passing parameters and annotating models.

 Passing parameters using a route value

Back in the HomeController
 class, add the following action method. It uses a class calleddefaultmodelbinder
 to automatically match the id
 passed in the route to the parameter named id
 in the method.

 Note

Model binders are very powerful, and the default one does a lot for you. For advanced scenarios, you can create your own by implementing the IModelBinder
 interface, but that is beyond the scope of this book.

Inside the method, we check to see whether id
 is null, and if so, it returns a 404 status code and message. Otherwise, we can connect to the database and try to retrieve a product using the id
 variable. If we find a product, we pass it to a view; otherwise, we return a different 404 status code and message, as shown in the following code:

 public IActionResult ProductDetail(int? id)
 {
 if (!id.HasValue)
 {
 return NotFound("You must pass a product ID in the route, for
 example, /Home/ProductDetail/21");
 }
 var model = db.Products.SingleOrDefault(p => p.ProductID == id);
 if (model == null)
 {
 return NotFound($"A product with the ID of {id} was not
 found.");
 }
 return View(model); // pass model to view
 }

Now, we need to create a view for this request.

In
Visual Studio 2017

 , inside the Views
 folder, right-click on
Home

 and choose
Add

 |
New Item...

 . Choose
MVC

View Page

 and name it ProductDetail.cshtml
 .

In
Visual Studio Code

 , inside the Views/Home
 folder, add a new file named ProductDetail.cshtml
 .

Modify the contents, as shown in the following markup:

 @model Packt.CS7.Product
 @{
 ViewData["Title"] = "Product Detail - " + Model.ProductName;
 }
 <h2>Product Detail</h2>
 <hr />
 <div>
 <dl class="dl-horizontal">
 <dt>Product ID</dt>
 <dd>@Model.ProductID</dd>
 <dt>Product Name</dt>
 <dd>@Model.ProductName</dd>
 <dt>Category ID</dt>
 <dd>@Model.CategoryID</dd>
 <dt>Unit Price</dt>
 <dd>@Model.UnitPrice.Value.ToString("C")</dd>
 <dt>Units In Stock</dt>
 <dd>@Model.UnitsInStock</dd>
 </dl>
 </div>

Run the web application, and when the home page appears with the list of products, click one of them, for example, product 2, Chang. The result should look something like the following screenshot:

[image: Passing parameters using a route value]

 Passing parameters using a query string

In the HomeController
 class, import the Microsoft.EntityFrameworkCore
 namespace.

Add a new action method, as shown in the following code:

 public IActionResult ProductsThatCostMoreThan(decimal? price)
 {
 if (!price.HasValue)
 {
 return NotFound("You must pass a product price in the query
 string, for example, /Home/ProductsThatCostMoreThan?price=50");
 }
 var model = db.Products.Include(p => p.Category).Include(
 p => p.Supplier).Where(p => p.UnitPrice > price).ToArray();
 if (model.Count() == 0)
 {
 return NotFound($"No products cost more than {price:C}.");
 }
 ViewData["MaxPrice"] = price.Value.ToString("C");
 return View(model); // pass model to view
 }

Inside the Views/Home
 folder, add a new file named ProductsThatCostMoreThan.cshtml
 .

Modify the contents, as shown in the following code:

 @model IEnumerable<Packt.CS7.Product>
 @{
 ViewData["Title"] =
 "Products That Cost More Than " + ViewData["MaxPrice"];
 }
 <h2>Products That Cost More Than @ViewData["MaxPrice"]</h2>
 <table class="table">
 <tr>
 <th>
 @Html.DisplayNameFor(
 model => model.Category.CategoryName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Supplier.CompanyName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ProductName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.UnitPrice)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.UnitsInStock)
 </th>
 </tr>
 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Category.CategoryName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Supplier.CompanyName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ProductName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.UnitPrice)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.UnitsInStock)
 </td>
 </tr>
 }
 </table>

In the Views/Home
 folder, open Index.cshtml
 and add the following div
 element at the bottom of the file. This will provide a form for the user to enter a price. The user can then click on a submit button to call the action method that shows only products that cost more than the entered price:

 <div class="row">
 <form asp-action="ProductsThatCostMoreThan" method="get">
 <input name="price" placeholder="Enter a product price" />
 <input type="submit" />
 </form>
 </div>

Run the web application, and on the home page, scroll down and enter a price in the form, for example, 50
 . Then, click
Submit Query

 , as shown in the following screenshot:

[image: Passing parameters using a query string]

You will see a table of the products that cost more than the price that you entered, as shown in the following screenshot:

[image: Passing parameters using a query string]

 Annotating models

You might have noted that the column headings in the table used the names of the properties by default. This means that if the property is multiple words, it won't have spaces. We can use data annotations to improve this.

In the Models
 folder, open the Product
 class.

Add the [Display]
 attributes before each property that you want to have a different label, for example,
Product

Name

 ,
Unit

Price

 ,
Units

in

Stock

 , and so on, like this code example:

 [Display(Name = "Product Name")]
 public string ProductName { get; set; }

Apply the [Display]
 attribute to some of the properties of the other classes, especially Category's Category Name and Supplier's Company Name.

Restart the web application.

Enter a product price and click on
Submit

Query

 .

Note that the column headings now reflect the display attributes and not the property names, as shown in the following screenshot:

[image: Annotating models]

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

 Exercise 14.1 - test your knowledge

Answer the following questions:

	What is the difference between a web browser and a web server?

	What is the difference between a URI, a URL, and a URN?

	What are the four most common HTTP methods?

	What does it mean when a web server responds with status code 302?

	What are the responsibilities of a route?

	What are the responsibilities of a controller?

	What are the responsibilities of a model?

	What are the responsibilities of a view?

 Exercise 14.2 - practice building a data-driven web application

Create an ASP.NET Core web application that connects to the Northwind sample database and enables the user to see a list of customers grouped by country. When the user clicks on a customer record, they then see a page showing the full contact details of that customer and a list of their orders.

 Exercise 14.3 - explore topics

Use the following links to read more details about this chapter's topics:

	

ASP.NET Core

 : https://www.asp.net/core

	

Introduction to ASP.NET Core

 : https://docs.microsoft.com/en-gb/aspnet/core/

	

Overview of ASP.NET Core MVC

 : https://docs.microsoft.com/en-gb/aspnet/core/mvc/overview

	

Working with Data in ASP.NET Core

 : https://docs.microsoft.com/en-gb/aspnet/core/data/

	

ASP.NET Core Schedule and Roadmap

 : https://github.com/aspnet/Home/wiki/Roadmap

 Summary

In this chapter, you learned how to build an ASP.NET Core MVC web application that manages data using Entity Framework Core.

In the next chapter, you will learn how to build an ASP.NET Core Web API service that can be called from mobile apps built using Xamarin.Forms and Visual Studio for Mac.

 Chapter15.Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

This chapter is about learning how to build C# mobile by building a cross-platform mobile app for iOS and Android. The mobile app will allow the listing and management of customers in the Northwind database.

The mobile app will call a web service built with the ASP.NET Core Web API. The server-side code will be written with
Visual Studio Code

 and the client-side Xamarin.Forms mobile app will be written with
Visual Studio for Mac

 .

 Note

You will need a computer with macOS to complete this chapter.

In this chapter, we will cover the following topics:

	Understanding Xamarin.Forms

	Building services using ASP.NET Core Web API and Visual Studio Code

	Building mobile apps using Xamarin.Forms and Visual Studio for Mac

 Understanding Xamarin.Forms

Xamarin

 enables developers to build mobile apps for Apple iOS (iPhone and iPad), Google Android, and Windows Mobile using C#. It is based on a third-party open source implementation of .NET known as Mono.

 How Xamarin.Forms extends Xamarin

Xamarin.Forms

 extends Xamarin to make cross-platform mobile development even easier by sharing most of the user experience layer, as well as the business logic layer.

Like Universal Windows Platform apps, Xamarin.Forms uses XAML to define the user interface once for all platforms using abstractions of platform-specific user interface components. Applications built with Xamarin.Forms draw the user interface using native platform widgets, so the apps look-and-feel fits naturally with the target mobile platform.

 Mobile first, cloud first

Mobile apps are often supported by services in the cloud. Satya Nadella, CEO of Microsoft, famously said:

"To me, when we say mobile first, it's not the mobility of the device, it's actually the mobility of the individual experience. [...] The only way you are going to be able to orchestrate the mobility of these applications and data is through the cloud."

As you have seen throughout this book, the best tool for cross-platform .NET Core development is Visual Studio Code, so we will use that to create the ASP.NET Core Web API service to support the mobile app.

To create Xamarin.Forms apps, developers can use either Visual Studio 2017 or Visual Studio for Mac (this is the new branding for Xamarin Studio). To create iOS apps, you will require a Mac and Xcode. A summary of which IDE can be used to create and compile which type of app is shown in the following table:

[image: Mobile first, cloud first]

 Note

If you would like to learn more details about Xamarin, then I recommend
Xamarin Cross-platform Application Development, Second Edition

 by Jonathan Peppers, and
Mastering Cross-Platform Development with Xamarin

 by Can Bilgin, all by Packt Publishing.

 Installing Xcode

If you have not already installed Xcode on your Mac, install it now from the App Store.

On the Apple menu, choose
App Store...

In
App Store

 , enter xcode
 in the
Search

 box, and one of the first results will be
Xcode

 , as shown in the following screenshot:

[image: Installing Xcode]

 Installing Visual Studio for Mac

Go to the following link to download and install Visual Studio for Mac:

https://developer.xamarin.com/visual-studio-mac/
 .

In the
Visual Studio for Mac Preview

Installer

 , accept the License Terms and the Privacy Statement, click
Accept

 , choose to install all components, and then click
Continue

 , as shown in the following screenshot:

[image: Installing Visual Studio for Mac]

Click
Continue

 , and then click
Install

 .

Agree to the license terms for the components, such as the Android SDK, click
Continue

 , and wait for Visual Studio for Mac to fully install, as shown in the following screenshot:

[image: Installing Visual Studio for Mac]

Start Visual Studio for Mac to see the
Welcome Page

 , as shown in the following screenshot:

[image: Installing Visual Studio for Mac]

If you are prompted to update components, then click on
Restart and Install Updates

 , as shown in the following screenshot:

[image: Installing Visual Studio for Mac]

 Building services using ASP.NET Core Web API and Visual Studio Code

Although HTTP was originally designed to request and respond with HTML and other resources for us to look at, it is also good to build services. Roy Fielding stated in his doctoral dissertation describing the
Representational State Transfer

 (
REST

) architectural style that the HTTP standard defines:

	URLs to uniquely identify resources

	Methods to perform common tasks, such as GET
 and DELETE

	The ability to negotiate media formats, such as XML and JSON

To allow the easy creation of services, ASP.NET Core has combined what used to be two types of controller.

In earlier versions of ASP.NET, you would derive from ApiController
 to create a Web API service and then register API routes in the same route table that MVC uses.

With ASP.NET Core, you use the same Controller
 base class as you used with MVC, except the routes are configured on the controller itself, using attributes, rather than in the route table.

 Creating an ASP.NET Core Web API project

Create a folder named Chapter15
 with a subfolder named Ch15_WebApi
 .

In Visual Studio Code, open the Ch15_WebApi
 folder.

In an Integrated Terminal, enter the following commands to:

	Create a new Web API project

	Restore dependency packages

	Start the website

dotnet new webapi

dotnet restore

dotnet run

Start Google Chrome.

Navigate to http:/localhost:5000/api/values
 and view the results, as shown in the following output:

["value1","value2"]

Close Google Chrome.

In an Integrated Terminal, press
Ctrl

 +
C

 to stop the console application and shut down the Kestrel web server that is hosting your ASP.NET Core web application.

 Creating a web service for the Northwind database

Unlike ASP.NET Core MVC controllers, ASP.NET Core Web API controllers do not call views to return HTML responses for humans to see in browsers. Instead, they use content negotiation with the client application that made the HTTP request to return XML, JSON, or X-WWW-FORMURLENCODED data formats in the HTTP response.

The client application must then deserialize the data from the negotiated format. The most commonly used format for modern services is
JavaScript Object Notation (JSON)

 because it is compact and works natively with JavaScript in a browser.

 Creating the Northwind database

Create the Northwind.db
 file in the \Ch15_WebApi\bin\Debug\netcoreapp1.1\
 folder by copying the NorthwindSQLite.sql
 file into that folder and then entering the following command in
Integrated Terminal

 :

sqlite3 Northwind.db < NorthwindSQLite.sql

 Referencing the EF Core NuGet packages

Open the Ch15_WebApi.csproj
 file and add package references, as shown highlighted in the following code:

 <Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore"
 Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc"
 Version="1.1.2" />
 <PackageReference Include="Microsoft.Extensions.Logging.Debug"
 Version="1.1.1" />

<PackageReference Include=
 "Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore"
 Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.StaticFiles"
 Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design"
 Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="1.1.1" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Sqlite.Design" Version="1.1.1"
 PrivateAssets="All" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Tools"
 Version="1.1.0" PrivateAssets="All" />
 </ItemGroup>

 <ItemGroup>
 <DotNetCliToolReference
 Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="1.0.0"
 />
 <DotNetCliToolReference
 Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools"
 Version="1.0.0" />
 </ItemGroup>

 </Project>

 Creating the entity model and database context

Create a Models
 folder in the Ch15_WebApi
 folder.

Add two class files to the Models
 folder named Northwind.cs
 and Customer.cs
 .

Northwind.cs
 should look like this:

 using Microsoft.EntityFrameworkCore;

 namespace Packt.CS7.Models
 {
 public class Northwind : DbContext
 {
 public DbSet<Customer> Customers { get; set; }

 public Northwind(DbContextOptions options) : base(options) {}
 }
 }

Customer.cs
 should look like this:

 using System.ComponentModel.DataAnnotations;

 namespace Packt.CS7.Models
 {
 public class Customer
 {
 [Key]
 [StringLength(5)]
 public string CustomerID { get; set; }

 [Required]
 [StringLength(40)]
 public string CompanyName { get; set; }

 [StringLength(30)]
 public string ContactName { get; set; }

 [StringLength(15)]
 public string City { get; set; }

 [StringLength(15)]
 public string Country { get; set; }

 [StringLength(24)]
 public string Phone { get; set; }
 }
 }

 Creating the data repository

Add two class files to the Models
 folder named ICustomerRepository.cs
 and CustomerRepository.cs
 .

ICustomerRepository
 should look like this:

 using System.Collections.Generic;

 namespace Packt.CS7.Models
 {
 public interface ICustomerRepository
 {
 Customer Add(Customer c);

 IEnumerable<Customer> GetAll();

 Customer Find(string id);

 bool Remove(string id);

 Customer Update(string id, Customer c);
 }
 }

CustomerRepository
 should look like this:

 using System.Collections.Generic;
 using System.Collections.Concurrent;
 using System.Linq;

 namespace Packt.CS7.Models
 {
 public class CustomerRepository : ICustomerRepository
 {
 // cache the customers in a thread-safe dictionary
 // so restarting the service will reset the customers
 // in real world the repository would perform CRUD
 // on the database
 private static
 ConcurrentDictionary<string, Customer> customers;

 public CustomerRepository(Northwind db)
 {
 // load customers from database as a normal
 // Dictionary with CustomerID is the key,
 // then convert to a thread-safe
 // ConcurrentDictionary
 customers = new ConcurrentDictionary<string, Customer>(
 db.Customers.ToDictionary(c => c.CustomerID));
 }

 public Customer Add(Customer c)
 {
 // normalize CustomerID into uppercase
 c.CustomerID = c.CustomerID.ToUpper();
 // if the customer is new, add it, else
 // call Update method
 return customers.AddOrUpdate(c.CustomerID, c, Update);
 }

 public IEnumerable<Customer> GetAll()
 {
 return customers.Values;
 }

 public Customer Find(string id)
 {
 id = id.ToUpper();
 Customer c;
 customers.TryGetValue(id, out c);
 return c;
 }

 public bool Remove(string id)
 {
 id = id.ToUpper();
 Customer c;
 return customers.TryRemove(id, out c);
 }

 public Customer Update(string id, Customer c)
 {
 id = id.ToUpper();
 c.CustomerID = c.CustomerID.ToUpper();
 Customer old;
 if (customers.TryGetValue(id, out old))
 {
 if (customers.TryUpdate(id, c, old))
 {
 return c;
 }
 }
 return null;
 }
 }
 }

 Configuring and registering the data repository

Open the Startup.cs
 file.

Import the following namespaces:

 using Microsoft.EntityFrameworkCore;
 using Packt.CS7.Models;

Add the following statements to the bottom of the ConfigureServices
 method that will:

	Set the Northwind database context to use SQLite and load the connection string from appsettings.json

	Register the CustomerRepository
 for use at runtime by ASP.NET Core

 services.AddDbContext<Packt.CS7.Models.Northwind>(options =>
 options.UseSqlite(Configuration
 .GetConnectionString("NorthwindConnection")));

 services.AddSingleton<ICustomerRepository, CustomerRepository>();

 Set the database connection string

Open the appsettings.json
 file and add a connection string named NorthwindConnection
 , as shown in the following code:

 {

"ConnectionStrings": {
 "NorthwindConnection": "Data Source=Northwind.db"
 },

 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
 }

 Creating the Web API controller

In the
Explorer

 pane, select the Controllers
 folder and add a new file named CustomersController.cs
 .

 Note

We could delete the ValuesController.cs
 file, but it is good to have a simple Web API controller in a service for testing purposes.

In the CustomersController
 class, add the following code, and note:

	The controller class registers a route that starts with api
 and includes the name of the controller, that is, api/customers

	The constructor uses dependency injection to instantiate the registered repository for the customers

	There are five methods to perform CRUD operations on customers---twoGETs
 (all customers or one customer), POST
 (create), PUT
 (update), and DELETE
 :

 using System.Collections.Generic;
 using System.Linq;
 using Microsoft.AspNetCore.Mvc;
 using Packt.CS7.Models;

 namespace Packt.CS7.Controllers
 {
 // base address: api/customers
 [Route("api/[controller]")]
 public class CustomersController : Controller
 {
 private ICustomerRepository repo;

 // constructor injects registered repository
 public CustomersController(ICustomerRepository repo)
 {
 this.repo = repo;
 }

 // GET: api/customers
 // GET: api/customers/?country=[country]
 [HttpGet]
 public IEnumerable<Customer> GetCustomers(string country)
 {
 if (string.IsNullOrWhiteSpace(country))
 {
 return repo.GetAll();
 }
 else
 {
 return repo.GetAll()
 .Where(customer => customer.Country == country);
 }
 }

 // GET: api/customers/[id]
 [HttpGet("{id}", Name = "GetCustomer")]
 public IActionResult GetCustomer(string id)
 {
 Customer c = repo.Find(id);
 if (c == null)
 {
 return NotFound(); // 404 Resource not found
 }
 return new ObjectResult(c); // 200 OK
 }

 // POST: api/customers
 // BODY: Customer (JSON, XML)
 [HttpPost]
 public IActionResult Create([FromBody] Customer c)
 {
 if (c == null)
 {
 return BadRequest(); // 400 Bad request
 }
 repo.Add(c);
 return CreatedAtRoute("GetCustomer",
 new { id = c.CustomerID.ToLower() }, c); // 201 Created
 }

 // PUT: api/customers/[id]
 // BODY: Customer (JSON, XML)
 [HttpPut("{id}")]
 public IActionResult Update(string id, [FromBody] Customer c)
 {
 id = id.ToUpper();
 c.CustomerID = c.CustomerID.ToUpper();

 if (c == null || c.CustomerID != id)
 {
 return BadRequest(); // 400 Bad request
 }

 var existing = repo.Find(id);
 if (existing == null)
 {
 return NotFound(); // 404 Resource not found
 }

 repo.Update(id, c);
 return new NoContentResult(); // 204 No content
 }

 // DELETE: api/customers/[id]
 [HttpDelete("{id}")]
 public IActionResult Delete(string id)
 {
 var existing = repo.Find(id);
 if (existing == null)
 {
 return NotFound(); // 404 Resource not found
 }

 repo.Remove(id);
 return new NoContentResult(); // 204 No content
 }
 }
 }

 Note

If you have used older versions of ASP.NET Web API, then you know that in that technology, you could create C# methods that begin with any HTTP method (GET
 , POST
 , PUT
 , and so on), and the controller would automatically execute the correct one. In ASP.NET Core, this doesn't happen anymore because we are not inheriting from ApiController
 . So, you must apply an attribute such as [HttpGet]
 to explicitly map HTTP methods to C# methods. This allows us to use any name we like for the methods themselves.

 Testing the web service

In an
Integrated Terminal

 , start the web service by entering the following command:

dotnet run

 Testing GET requests with any browser

Start Google Chrome, and in the address bar, enter the following URL:

http://localhost:5000/api/customers

You should see a JSON document returned containing all the 91 customers in the Northwind database, as shown in the following screenshot:

[image: Testing GET requests with any browser]

In the address bar, enter the following URL:

http://localhost:5000/api/customers/alfki

You should see a JSON document returned containing only the customer named
Alfreds Futterkiste

 , as shown in the following screenshot:

[image: Testing GET requests with any browser]

In the address bar, enter the following URL:

http://localhost:5000/api/customers/?country=USA

You should see a JSON document returned, containing the customers in the USA, as shown in the following screenshot:

[image: Testing GET requests with any browser]

 Testing POST, PUT, DELETE, and other requests with Postman

There is a free application named
Postman

 that makes it easy to test REST services like the one we just created. Postman is also available as an extension to Google Chrome, although the full application has more features.

In the real world, it would be sensible to test all the methods in our service, for example, the POST
 method, using a tool like Postman, as shown in the following screenshot, however the details of doing that are beyond the scope of this book:

[image: Testing POST, PUT, DELETE, and other requests with Postman]

 Note

To learn more about Postman, visit the following link: https://www.getpostman.com/docs/

In an
Integrated Terminal

 , press
Ctrl

 +
C

 to stop the console application and shut down the Kestrel web server that is hosting your ASP.NET Core web application.

You are now ready to build a mobile app that calls the service.

 Building mobile apps using Xamarin.Forms and Visual Studio for Mac

Start Visual Studio for Mac.

 Creating a Xamarin.Forms project

Navigate to
File

 |
New Solution...

In the
New

Project

 dialog box, choose
Multiplatform

 |
App

 in the left-hand column.

Choose
Xamarin.Forms

 |
Blank

Forms App

 in the middle column, as shown in the following screenshot:

[image: Creating a Xamarin.Forms project]

Click on
Next

 .

Enter the
App Name

 Ch15_MobileApp
 , and
Organization Identifier

 com.packt
 , as shown in the following screenshot:

[image: Creating a Xamarin.Forms project]

Click on
Next

 .

Change the
Solution Name

 to Chapter15
 , and
Location

 to /Users/[user_folder]/Code
 , as shown in the following screenshot:

[image: Creating a Xamarin.Forms project]

Click on
Create

 .

After a few moments, the solution and project will be created, as shown in the following screenshot:

[image: Creating a Xamarin.Forms project]

 Creating a model

Right-click on the project named Ch15_MobileApp
 , choose
Add

 |
New Folder

 , and name it Models
 .

Right-click on the Models
 folder and choose
Add

 |
New File...

In the
New File

 dialog, choose
General

 |
Empty Class

 , enter the name Customer
 , as shown in the following screenshot, and click on
New

 :

[image: Creating a model]

Modify the statements as shown in the following code, and note:

	The class implements INotifyPropertyChanged
 so a two-way bound user interface components such asEditor
 will update the property and vice versa. There is a PropertyChanged
 event that is raised whenever one of the properties is modified.

	After loading from the service, the customers will be cached locally in the mobile app using ObservableCollection
 . This supports notifications to any bound user interface components, such as ListView
 .

	As well as properties for storing values retrieved from the REST service, the class defines a readonly Location
 property. This will be used to bind to in a summary list of customers.

	For testing purposes, when the REST service is not available, there is a method to populate three sample customers:

 using System.Collections.Generic;
 using System.Collections.ObjectModel;
 using System.ComponentModel;

 namespace Ch15_MobileApp.Models
 {
 public class Customer : INotifyPropertyChanged
 {
 public static IList<Customer> Customers;

 static Customer()
 {
 Customers = new ObservableCollection<Customer>();
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private string customerID;
 private string companyName;
 private string contactName;
 private string city;
 private string country;
 private string phone;

 public string CustomerID
 {
 get { return customerID; }
 set
 {
 customerID = value;
 if (PropertyChanged != null) PropertyChanged(this,
 new PropertyChangedEventArgs("CustomerID"));
 }
 }

 public string CompanyName
 {
 get { return companyName; }
 set
 {
 companyName = value;
 if (PropertyChanged != null) PropertyChanged(this,
 new PropertyChangedEventArgs("CompanyName"));
 }
 }

 public string ContactName
 {
 get { return contactName; }
 set
 {
 contactName = value;
 if (PropertyChanged != null) PropertyChanged(this,
 new PropertyChangedEventArgs("ContactName"));
 }
 }
 public string City
 {
 get { return city; }
 set
 {
 city = value;
 if (PropertyChanged != null) PropertyChanged(this,
 new PropertyChangedEventArgs("City"));
 }
 }

 public string Country
 {
 get { return country; }
 set
 {
 country = value;
 if (PropertyChanged != null) PropertyChanged(this,
 new PropertyChangedEventArgs("Country"));
 }
 }

 public string Phone
 {
 get { return phone; }
 set
 {
 phone = value;
 if (PropertyChanged != null) PropertyChanged(this,
 new PropertyChangedEventArgs("Phone"));
 }
 }

 public string Location
 {
 get
 {
 return string.Format("{0}, {1}", City, Country);
 }
 }

 // for testing before calling web service
 public static void SampleData()
 {
 Customers.Clear();

 Customers.Add(new Customer
 {
 CustomerID = "ALFKI",
 CompanyName = "Alfreds Futterkiste",
 ContactName = "Maria Anders",
 City = "Berlin",
 Country = "Germany",
 Phone = "030-0074321"
 });

 Customers.Add(new Customer
 {
 CustomerID = "FRANK",
 CompanyName = "Frankenversand",
 ContactName = "Peter Franken",
 City = "Mnchen",
 Country = "Germany",
 Phone = "089-0877310"
 });

 Customers.Add(new Customer
 {
 CustomerID = "SEVES",
 CompanyName = "Seven Seas Imports",
 ContactName = "Hari Kumar",
 City = "London",
 Country = "UK",
 Phone = "(171) 555-1717"
 });
 }
 }
 }

 Creating an interface for dialing phone numbers and implement for iOS and Android

Right-click on the Ch15_MobileApp
 folder and choose
New File...

 .

Choose
General

 |
Empty Interface

 , name the file
IDialer

 , and click on
New

 , as shown in the following screenshot:

[image: Creating an interface for dialing phone numbers and implement for iOS and Android]

Modify the IDialer
 contents, as shown in the following code:

 namespace Ch15_MobileApp
 {
 public interface IDialer
 {
 bool Dial(string number);
 }
 }

Right-click on the Ch15_MobileApp.iOS
 folder and choose
New File...

 .

Choose
General

 |
Empty Class

 , name the file PhoneDialer
 , and click on
New

 .

Modify its contents, as shown in the following code:

 using Foundation;
 using Ch15_MobileApp.iOS;
 using UIKit;
 using Xamarin.Forms;

 [assembly: Dependency(typeof(PhoneDialer))]
 namespace Ch15_MobileApp.iOS
 {
 public class PhoneDialer : IDialer
 {
 public bool Dial(string number)
 {
 return UIApplication.SharedApplication.OpenUrl(
 new NSUrl("tel:" + number));
 }
 }
 }

Right-click on the Ch15_MobileApp.Droid
 folder and choose
New File...

 .

Choose
General

 |
Empty Class

 , name the file PhoneDialer
 , and click on
New

 .

Modify its contents, as shown in the following code:

 using Android.Content;
 using Android.Telephony;
 using Ch15_MobileApp.Droid;
 using System.Linq;
 using Xamarin.Forms;
 using Uri = Android.Net.Uri;

 [assembly: Dependency(typeof(PhoneDialer))]
 namespace Ch15_MobileApp.Droid
 {
 public class PhoneDialer : IDialer
 {
 public bool Dial(string number)
 {
 var context = Forms.Context;
 if (context == null)
 return false;

 var intent = new Intent(Intent.ActionCall);
 intent.SetData(Uri.Parse("tel:" + number));

 if (IsIntentAvailable(context, intent))
 {
 context.StartActivity(intent);
 return true;
 }

 return false;
 }

 public static bool IsIntentAvailable(Context context, Intent
 intent)
 {
 var packageManager = context.PackageManager;

 var list = packageManager.QueryIntentServices(intent, 0)
 .Union(packageManager.QueryIntentActivities(intent, 0));

 if (list.Any())
 return true;

 var manager = TelephonyManager.FromContext(context);
 return manager.PhoneType != PhoneType.None;
 }
 }
 }

In Ch15_MobileApp.Droid
 , expand
Properties

 , and open AndroidManifest.xml
 .

In
Required permissions

 , check the
CallPhone

 permission.

 Creating views for the customers list and customer details

Right-click on Ch15_MobileAppPage.xaml
 , click on
Remove

 , and then click on
Remove from Project

 , as shown in the following screenshot:

[image: Creating views for the customers list and customer details]

Right-click on the project named Ch15_MobileApp
 , choose
Add

 |
New Folder

 , and name it Views
 .

Right-click on the Views
 folder and choose
New File...

 .

Choose
Forms

 |
Forms ContentPage Xaml

 , name the file CustomersList
 , and click on
New

 , as shown in the following screenshot:

[image: Creating views for the customers list and customer details]

In Ch15_MobileApp
 , open CustomersList.xaml
 , and modify its contents, as shown in the following markup, and note:

	Event handlers have been written for: loading the customers when the view appears, a customer being tapped (to show detail), the list being swiped down to refresh, a customer being deleted by swiping left and then clicking a
Delete

 button

	A data template defines how to display each customer: large text for the company name and smaller text for the location underneath

	An
Add

 button is displayed so users can navigate to a detail view to add a new customer

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Ch15_MobileApp.CustomersList"
 Title="List">
 <ContentPage.Content>
 <ListView ItemsSource="{Binding .}"
 VerticalOptions="Center" HorizontalOptions="Center"
 IsPullToRefreshEnabled="True"
 ItemTapped="Customer_Tapped"
 Refreshing="Customers_Refreshing">
 <ListView.Header>
 <Label Text="Northwind Customers"
 BackgroundColor="Silver" />
 </ListView.Header>
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding CompanyName}"
 Detail="{Binding Location}">
 <TextCell.ContextActions>
 <MenuItem Clicked="Customer_Phoned" Text="Phone" />
 <MenuItem Clicked="Customer_Deleted"
 Text="Delete" IsDestructive="True" />
 </TextCell.ContextActions>
 </TextCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </ContentPage.Content>
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Activated="Add_Activated"
 Order="Primary" Priority="0" />
 </ContentPage.ToolbarItems>
 </ContentPage>

Modify the contents of CustomersList.xaml.cs
 , as shown in the following code:

 using System.Threading.Tasks;
 using Ch15_MobileApp.Models;
 using Xamarin.Forms;

 namespace Ch15_MobileApp
 {
 public partial class CustomersList : ContentPage
 {
 public CustomersList()
 {
 InitializeComponent();
 Customer.SampleData();
 BindingContext = Customer.Customers;
 }

 async void Customer_Tapped(object sender,
 Xamarin.Forms.ItemTappedEventArgs e)
 {
 Customer c = e.Item as Customer;
 if (c == null) return;
 // navigate to the detail view and show the tapped customer
 await Navigation.PushAsync(new CustomerDetail(c));
 }

 async void Customers_Refreshing(
 object sender, System.EventArgs e)
 {
 ListView listView = sender as ListView;
 listView.IsRefreshing = true;
 // simulate a refresh
 await Task.Delay(1500);
 listView.IsRefreshing = false;
 }

 void Customer_Deleted(object sender, System.EventArgs e)
 {
 MenuItem menuItem = sender as MenuItem;
 Customer c = menuItem.BindingContext as Customer;
 Customer.Customers.Remove(c);
 }

 async void Customer_Phoned(object sender, System.EventArgs e)
 {
 MenuItem menuItem = sender as MenuItem;
 Customer c = menuItem.BindingContext as Customer;
 if (await this.DisplayAlert("Dial a Number",
 "Would you like to call " + c.Phone + "?",
 "Yes", "No"))
 {
 var dialer = DependencyService.Get<IDialer>();
 if (dialer != null)
 dialer.Dial(c.Phone);
 }
 }

 async void Add_Activated(object sender, System.EventArgs e)
 {
 await Navigation.PushAsync(new CustomerDetail());
 }
 }
 }

Add another
Forms ContentPage Xaml

 named CustomerDetails
 .

Open CustomerDetails.xaml
 , and modify its contents, as shown in the following markup:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Ch15_MobileApp.CustomerDetail" Title="Edit Customer">
 <ContentPage.Content>
 <StackLayout VerticalOptions="Fill"
 HorizontalOptions="Fill">
 <Grid BackgroundColor="Silver">
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Label Text="Customer ID"
 VerticalOptions="Center" Margin="6" />
 <Editor Text="{Binding CustomerID, Mode=TwoWay}"
 Grid.Column="1" />
 <Label Text="Company Name" Grid.Row="1"
 VerticalOptions="Center" Margin="6" />
 <Editor Text="{Binding CompanyName, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="1" />
 <Label Text="Contact Name" Grid.Row="2"
 VerticalOptions="Center" Margin="6" />
 <Editor Text="{Binding ContactName, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="2" />
 <Label Text="City" Grid.Row="3"
 VerticalOptions="Center" Margin="6" />
 <Editor Text="{Binding City, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="3" />
 <Label Text="Country" Grid.Row="4"
 VerticalOptions="Center" Margin="6" />
 <Editor Text="{Binding Country, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="4" />
 <Label Text="Phone" Grid.Row="5"
 VerticalOptions="Center" Margin="6" />
 <Editor Text="{Binding Phone, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="5" />
 </Grid>
 <Button x:Name="InsertButton" Text="Insert Customer"
 Clicked="InsertButton_Clicked" />
 </StackLayout>
 </ContentPage.Content>
 </ContentPage>

Open CustomerDetail.xaml.cs
 , and modify its contents, as shown in the following code:

 using Ch15_MobileApp.Models;
 using Xamarin.Forms;

 namespace Ch15_MobileApp
 {
 public partial class CustomerDetail : ContentPage
 {
 private bool newCustomer = false;

 public CustomerDetail()
 {
 InitializeComponent();
 BindingContext = new Customer();
 newCustomer = true;
 Title = "Add Customer";
 }

 public CustomerDetail(Customer customer)
 {
 InitializeComponent();
 BindingContext = customer;
 InsertButton.IsVisible = false;
 }

 async void InsertButton_Clicked(
 object sender, System.EventArgs e)
 {
 if (newCustomer)
 {
 Customer.Customers.Add((Customer)BindingContext);
 }
 await Navigation.PopAsync(animated: true);
 }
 }
 }

Open App.xaml.cs
 .

Modify the statement that sets MainPage
 to create an instance of CustomersList
 wrapped in NavigationPage
 , as shown in the following code:

 MainPage = new NavigationPage(new CustomersList());

 Test the mobile app with iOS

Click on the
Start

 button in the toolbar, as shown in the following screenshot, or choose
Run

 |
Start Debugging

 :

[image: Test the mobile app with iOS]

After a few moments, the
Simulator

 will show your running mobile app, as shown in the following screenshot:

[image: Test the mobile app with iOS]

Click on a customer and modify its
Company Name

 , as shown in the following screenshot:

[image: Test the mobile app with iOS]

Click on
List

 to return to the list of customers and note that the company name has been updated.

Click on
Add

 .

Fill in the fields for a new customer, as shown in the following screenshot:

[image: Test the mobile app with iOS]

Click on
Insert Customer

 and note that the new customer has been added to the list, as shown in the following screenshot:

[image: Test the mobile app with iOS]

Slide one of the customers to the left to reveal two action buttons,
Phone

 and
Delete

 , as shown in the following screenshot:

[image: Test the mobile app with iOS]

Click on
Phone

 and note the prompt to the user, as shown in the following screenshot:

[image: Test the mobile app with iOS]

Slide one of the customers to the left to reveal two action buttons,
Phone

 and
Delete

 , and click on
Delete

 , and note that the customer is removed.

 Adding NuGet packages for calling a REST service

In the project named Ch15_MobileApp
 , right-click on the folder named Packages
 and choose
Add Packages...

 .

In the
Add Packages

 dialog box, enter http
 in the
Search

 box. Select the package named
System.Net.Http

 and click on
Add Package

 , as shown in the following screenshot:

[image: Adding NuGet packages for calling a REST service]

In the
License Acceptance

 dialog box, click on
Accept

 .

In the project named Ch15_MobileApp
 , right-click on the folder named Packages
 and choose
Add Packages...

 .

In the
Add Packages

 dialog box, enter Json.NET
 in the
Search

 box. Select the package named
Json.NET

 and click on
Add Package

 .

 Getting customers from the service

Open CustomersList.xaml.cs
 and import the following highlighted namespaces:

 using System.Threading.Tasks;
 using Ch15_MobileApp.Models;
 using Xamarin.Forms;

using System;
 using System.Linq;
 using System.Collections.Generic;
 using System.Net.Http;
 using System.Net.Http.Headers;
 using Newtonsoft.Json;

Modify the CustomersList
 constructor to load the list of customers using the service proxy instead of the SampleData
 method, as shown in the following code:

 public CustomersList()
 {
 InitializeComponent();

 //Customer.SampleData();

 var client = new HttpClient();

 client.BaseAddress = new Uri(
 "http://localhost:5000/api/customers");

 client.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/json"));

 HttpResponseMessage response = client.GetAsync("").Result;

 response.EnsureSuccessStatusCode();

 string content =
 response.Content.ReadAsStringAsync().Result;

 var customersFromService = JsonConvert.DeserializeObject
 <IEnumerable<Customer>>(content);

 foreach (Customer c in customersFromService
 .OrderBy(customer => customer.CompanyName)
 {
 Customer.Customers.Add(c);
 }

 BindingContext = Customer.Customers;
 }

In Visual Studio Code, run the Ch15_WebApi
 project.

In Visual Studio for Mac, run the Ch15_MobileApp
 project, and note that 91 customers are loaded from the web service, as shown in the following screenshot:

[image: Getting customers from the service]

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore this chapter's topics with deeper research.

 Exercise 15.1 - test your knowledge

Answer the following questions:

	How does ASP.NET Core distinguish a request for MVC from a request for Web API?

	What data formats does ASP.NET Core Web API support by default?

	What is the difference between Xamarin and Xamarin.Forms?

	What types of cell are supported by the ListView?

 Exercise 15.2 - explore topics

Use the following links to read more about this chapter's topics:

	

Building Web APIs

:

 https://docs.microsoft.com/en-us/aspnet/core/mvc/web-api/

	

Visual Studio Code for Mac developers

 : https://channel9.msdn.com/Series/Visual-Studio-Code-for-Mac-Developers

	

Xamarin.Forms

:

 https://www.xamarin.com/forms

	

Xamarin Developer Center

 : https://developer.xamarin.com

 Summary

In this chapter, you learned how to build an ASP.NET Core Web API service that can be hosted cross-platform. You also learned how to build a mobile app using Xamarin.Forms that is cross-platform for iOS and Android (and potentially Windows Mobile) that consumes a REST/HTTP service by using the HttpClient
 and Newtonsoft.Json
 packages.

In the next chapter, you will learn how to package and deploy your .NET Core code.

 Chapter16.Packaging and Deploying Your Code Cross-Platform

This chapter is about porting existing .NET Framework codebases to .NET Core, publishing your .NET Core apps and libraries, creating and distributing NuGet packages, and deploying your code cross-platform and to the cloud.

This chapter covers the following topics:

	Porting to .NET Core

	Sharing code cross-platform with .NET Standard class libraries

	Understanding NuGet packages

	Publishing your applications

	Deploying to the cloud

	Developing on and for Linux

 Porting to .NET Core

If you are an existing .NET developer, then you may have existing applications written for older platforms, such as .NET Framework, that you are wondering if you should port to .NET Core.

You should consider carefully if porting is the right choice for your code. Sometimes, the best choice is not to port.

 Could you port?

.NET Core has great support for the following types of applications:

	

ASP.NET Core MVC

 web applications

	

ASP.NET Core Web API

 web services (REST/HTTP)

	

Universal Windows Platform

 (
UWP

) applications

	

Console

 applications

.NET Core does not support the following types of applications:

	

ASP.NET Web Forms

 web applications

	

Windows Forms

 desktop applications

	

Windows Presentation Foundation (WPF)

 desktop applications

	

Silverlight

 applications

Luckily, WPF and Silverlight applications use a dialect of XAML which is like the XAML dialect used by UWP and Xamarin.Forms.

 Should you port?

Even if you
could

 port,
should

 you? What benefits do you gain? Some common benefits include:

	

Deployment to Linux or Docker

 : These OSes are lightweight and cost-effective as web application and web service platforms, especially when compared to Windows Server.

	

Removal of dependency on IIS and

 System.Web.dll
 : Even if you continue to deploy to Windows Server, ASP.NET Core can be hosted on lightweight, higher performance Kestrel (or other) web servers.

	

Command-line tools

 that developers and administrators use to automate their tasks are written as console applications. The ability to run a single tool cross-platform is very useful.

 Differences between .NET Framework and .NET Core

There are three key differences:

	.NET Core is distributed as NuGet packages, so each application can be deployed with its own app-local copy of the version of .NET Core that it needs. .NET Framework is distributed as a system-wide shared set of assemblies (literally, in the Global Assembly Cache).

	.NET Core is split into small, layered components, so a minimal deployment can be performed. .NET Framework is a monolithic deployment.

	.NET Core removes unnecessary components. As well as removing older technologies such as Windows Forms and Web Forms, .NET Core removes non-cross-platform features such as AppDomains, .NET Remoting, and binary serialization.

 Understanding the .NET Portability Analyzer

Microsoft has a useful tool that you can run against your existing applications to generate a report for porting. Watch a demonstration of the tool at the following link:

https://channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-Portability-Analyzer

 Sharing code cross-platform with .NET Standard class libraries

Before .NET Standard, there was
Portable Class Libraries

 (
PCL

). With PCLs, you can create a library of code and explicitly specify which platforms that you want the library to support, such as Xamarin, Silverlight, Windows 8, and so on. Your library can then use the intersection of APIs that are supported by the specified platforms.

Microsoft has realized that this is unsustainable, so they have been working on .NET Standard---a single API that all future .NET platforms will support.

If you want to create a library of types that will work across .NET Framework (on Windows), .NET Core (on Windows, macOS, and Linux), and Xamarin (on iOS, Android, and Windows Mobile), you can do so most easily with .NET Standard.

The following table summarizes versions of .NET Standard, and which platforms they support. Note:

	.NET Core and Xamarin support .NET Standard 1.6

	.NET Framework 4.6.1 already supports .NET Standard 2.0, but does not support .NET Standard 1.6

	We must wait for a future release of .NET Core and Xamarin before all platforms are synchronized and support .NET Standard 2.0

	

Platform

	

1.1

	

1.2

	

1.3

	

1.4

	

1.5

	

1.6

	

2.0

	
.NET Core

	

	

	

	

	

	
1.0, 1.1

	
vNext

	
.NET Framework

	
4.5

	
4.5.1

	
4.6

	

	

	

	
4.6.1

	
Xamarin/Mono

	

	

	

	

	

	
4.6

	
vNext

	
UWP

	

	

	

	
10

	

	

	
vNext

 Creating a .NET Standard class library

We will create a class library using .NET Standard so that it can be used cross-platform (at least in theory!).

 Using Visual Studio 2017

Start Microsoft Visual Studio 2017.

In Visual Studio, press
Ctrl

 +
Shift

 +
N

 or choose
File

 |
New

 |
Project...

 .

In the
New Project

 dialog, in the
Installed

 |
Templates

 list, expand
Visual C#

 , and then select
.NET Standard

 . In the list at the center, select
Class Library (.NET Standard)

 , type the name Ch16_SharedLibrary
 , change the location to C:\Code
 , type the solution name Chapter16
 , and then click on
OK

 , as shown in the following screenshot:

[image: Using Visual Studio 2017]

In
Solution Explorer

 , expand
Dependencies

 ,
SDK

 , and
NETStandard.Library

 , and note the long list of packages that are included, as shown in the following screenshot:

[image: Using Visual Studio 2017]

Right-click on Ch16_SharedLibrary
 and choose
Edit Ch16_SharedLibrary.csproj

 .

Note a Class Library (.NET Standard) targets version 1.4 by default, as shown in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard1.4</TargetFramework>
 </PropertyGroup>

 </Project>

 Using Visual Studio Code on macOS

In the Code
 folder in your user folder, create a subfolder named Chapter16
 , and then a sub-sub-folder named Ch16_SharedLibrary
 .

Start Visual Studio Code and open the Code/Chapter16/Ch16_SharedLibrary
 folder.

In Visual Studio Code, navigate to
View

 |
Integrated Terminal

 , and then enter the following command:

dotnet new classlib

Click on the Ch16_SharedLibrary.csproj
 file and then note that a class library generated by the dotnet
 CLI targets version 1.4 by default, as shown in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard1.4</TargetFramework>
 </PropertyGroup>

 </Project>

 Understanding NuGet packages

.NET Core is split into a set of packages. Each of these packages represents a single assembly of the same name. For example, the System.Collections
 package contains the System.Collections.dll
 assembly.

The following are the benefits of packages:

	Packages can ship on their own schedule

	Packages can be tested independently of other packages

	Packages can support different OSes and CPUs

	Packages can have dependencies specific to only one library

	Apps are smaller because unreferenced packages aren't part of the distribution

The following table lists some of the more important packages:

	

Package

	

Important types

	

System.Runtime

	

Object, String, Array

	

System.Collections

	

List<T>, Dictionary<TKey, TValue>

	

System.Net.Http

	

HttpClient, HttpResponseMessage

	

System.IO.FileSystem

	

File, Directory

	

System.Reflection

	

Assembly, TypeInfo, MethodInfo

 Referencing packages

Packages are referenced in the project file; for example, let us explicitly reference the System.Collections.Specialized
 package version 4.3, so that we can use the NameValueCollection
 type.

In both Visual Studio 2017 and Visual Studio Code, open Ch16_SharedLibrary.csproj
 , and add the following markup:

 <ItemGroup>
 <PackageReference Include="System.Collections.Specialized"
 Version="4.3" />
 </ItemGroup>

In Class1.cs
 , import the System.Collections.Specialized
 namespace, and declare a public field of type NameValueCollection
 , as shown in the following code:

 using System.Collections.Specialized;

 namespace Ch16_SharedLibrary
 {
 public class Class1
 {
 public NameValueCollection stuff;
 }
 }

 Understanding metapackages

Metapackages

 describe a set of packages that are used together. Metapackages are referenced just like any other NuGet package. By referencing a metapackage, you have, in effect, added a reference to each of its dependent packages.

Visual Studio 2017 nicely shows the relationship between metapackages, packages, and assemblies, as shown in the following screenshot:

[image: Understanding metapackages]

 Note

Metapackages are often just referred to as packages in Microsoft's documentation, as you are about to see.

The following list contains links to some common metapackages and packages, including an official list of their dependencies:

	
https://www.nuget.org/packages/Microsoft.NETCore.App

	
https://www.nuget.org/packages/NETStandard.Library

	
https://www.nuget.org/packages/Microsoft.NETCore.Runtime.CoreCLR

	
https://www.nuget.org/packages/System.IO

	
https://www.nuget.org/packages/System.Collections

	
https://www.nuget.org/packages/System.Runtime

If you were to go to the link for the Microsoft.NETCore.App
 metapackage, you would see the information shown in the following screenshot:

[image: Understanding metapackages]

If you were to scroll down the page, you would see the list of dependencies for the metapackage, as shown in the following screenshot:

[image: Understanding metapackages]

Note that Microsoft.NETCore.App
 1.1.1 has a dependency on NETStandard.Library
 1.6.1.

 Understanding Frameworks

There is a two-way relationship between frameworks and packages. Packages define the APIs, Frameworks group packages. A Framework without any packages would not define any APIs.

 Note

If you have a strong understanding of interfaces and types that implement them, you might find the following URL useful for grasping how packages and their APIs relate to frameworks such as the various .NET Standard versions: https://gist.github.com/davidfowl/8939f305567e1755412d6dc0b8baf1b7

.NET Core packages each support a set of frameworks. For example, the System.IO.FileSystem
 package supports the following frameworks:

	.NETStandard,Version=1.3

	.NETFramework,Version=4.6

	6 Xamarin platforms (for example, xamarinios10)

The two most important package-based frameworks for .NET Core are these:

	
NETStandard.Library
 : about 40 packages and will support all varieties of .NET with version 2.0 and later

	
Microsoft.NETCore.App
 : about 60 packages that add console support and other APIs, but limits you to running on .NET Core

Remember---Microsoft.NETCore.App
 is a superset of NETStandard.Library
 .

 Tip

Good Practice

Choose NETStandard.Library
 if you are creating a class library that is intended to be referenced by multiple platforms, such as .NET Framework and Xamarin, as well as .NET Core.

 Fixing dependencies

To consistently restore packages and write reliable code, it's important that you fix your dependencies. Fixing dependencies means you are using the same family of packages released for a specific version of .NET Core, for example, 1.0.

To fix dependencies, every package should have a single version with no additional qualifiers. Additional qualifiers include release candidates (rc4) and wild cards (*). Wildcards are especially dangerous because it could result in the restore of incompatible packages that break your code.

The following dependencies are NOT fixed and should be avoided:

 <PackageReference Include="System.Net.Http"
 Version="4.1.0-*" />
 <PackageReference Include="Microsoft.NETCore.App"
 Version="1.0.0-rc4-00454-00" />

 Tip

Good Practice

Microsoft guarantees that if you fixed your dependencies to what ships with a specific version of .NET Core, for example, 1.1, those packages will all work together. Always fix your dependencies.

 Switching to a different .NET Standard

It is easy to target a different .NET Standard in a class library.

In either Visual Studio 2017 or Visual Studio Code, modify the Ch16_SharedLibrary.csproj
 file to use version 1.1, as shown highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

<TargetFramework>netstandard1.1</TargetFramework>

 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="System.Collections.Specialized"
 Version="4.3" />
 </ItemGroup>

 </Project>

In Visual Studio 2017, you will note that when you save the change, you immediately get a restore error, as shown in the following screenshot:

[image: Switching to a different .NET Standard]

In Visual Studio Code, in the Terminal, enter the command: dotnet restore
 , and you will see a similar error message.

The error message tells us that the System.Collections.Specialized
 package that we want to use is not compatible with .NET Standard 1.1, and that the lowest version of .NET Standard that
is

 compatible is version 1.3.

Modify the version to 1.3 and restore packages. This will fix the error.

 Note

Bear in mind that lower version numbers of .NET Standard are always subsets of higher version numbers.

 Publishing your applications

There are two ways to publish and deploy a .NET Core application:

	Framework-dependent

	Self-contained

If you choose to deploy your application and its dependencies, but not .NET Core itself, then you rely on .NET Core already being on the target computer. This works well for web applications deployed to a server because .NET Core and lots of other web applications are likely already on the server.

Sometimes, you want to be able to give someone a USB key containing your application and know that it can execute on their computer. You want to perform a self-contained deployment. The size of the deployment files will be larger, but I will know that it will just work.

 Creating a console application to publish

Add a new console application project named Ch16_DotNetCoreEverywhere
 .

Modify the code to look like this:

 using System;

 namespace Ch16_DotNetCoreEverywhere
 {
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("I can run everywhere!");
 }
 }
 }

Open Ch16_DotNetCoreEverywhere.csproj
 , and add the runtime identifiers to target four operating systems, as shown in the following markup:

<RuntimeIdentifiers>win10-x64;osx.10.12-x64;rhel.7-x64;ubuntu.14.04-x64</RuntimeIdentifiers>

 Note

The RID value win10-64
 means Windows 10 or Windows Server 2016. The RID value osx.10.12-x64
 means macOS Sierra. You can find the full list of currently supported
Runtime IDentifier

 (
RID

) values at the following link: https://docs.microsoft.com/en-us/dotnet/articles/core/rid-catalog

 Publishing with Visual Studio 2017

In Visual Studio 2017, right-click Ch16_DotNetCoreEverywhere
 , and choose
Publish...

 , and then click
Publish

 , as shown in the following screenshot:

[image: Publishing with Visual Studio 2017]

You have now published the Windows version, as shown in the following screenshot:

[image: Publishing with Visual Studio 2017]

Click
Settings

 , and change the
Target Runtime

 to
osx.10.12-x64

 , as shown in the following screenshot, and then click
Save

 :

[image: Publishing with Visual Studio 2017]

Click
Publish

 .

In
Solution Explorer

 , show all files, expand
bin

 ,
Release

 ,
netcoreapp1.1

 ,
osx.10.12-x64,

 and
win10-x64

 , as shown in the following screenshot, and note the application files:

[image: Publishing with Visual Studio 2017]

You can repeat these instructions for the other two operating systems.

 Publishing with Visual Studio Code

In Visual Studio Code, in Terminal, enter the following commands to build release versions for Windows 10, macOS, Red Hat Enterprise Linux, and Ubuntu Linux:

dotnet restore

dotnet publish -c Release -r win10-x64

dotnet publish -c Release -r osx.10.12-x64

dotnet publish -c Release -r rhel.7-x64

dotnet publish -c Release -r ubuntu.14.04-x64

Open a
Finder

 window, navigate to Ch16_DotNetCoreEverywhere\bin\Release\netcoreapp1.1
 , and note the output folders for the four operating systems, and the files, including a Windows executable named Ch16_DotNetCoreEverywhere.exe
 , as shown in the following screenshot:

[image: Publishing with Visual Studio Code]

If you copy any of those folders to the appropriate operating system, the console application will run because it is a self-contained deployable .NET Core application.

 Deploying to the cloud

You can deploy your .NET Core applications to the cloud using any cloud provider, for example,
Amazon Web Services

 (
AWS

) or Microsoft Azure.

 Creating an ASP.NET Core MVC web application to publish

In Visual Studio 2017, add a new
ASP.NET Core Web Application (.NET Core)

 project named Ch16_ImageEditorSite
 . Choose the
Web Application

 template and enable Docker support, as shown in the following screenshot:

[image: Creating an ASP.NET Core MVC web application to publish]

In Visual Studio Code, create a folder named Ch16_ImageEditorSite
 , and open the folder. In Terminal, enter the command: dotnet new mvc
 .

Since we are focusing on learning how to publish and deploy, rather than how to build web applications, we will use the MVC template web site as an example. The only addition I made is to add a portrait that my Mum painted of me to the About page, as shown in the following screenshot:

[image: Creating an ASP.NET Core MVC web application to publish]

 Register an Azure account

Go to http://portal.azure.com/
 and register an account to get a free trial. You will be able to continue after the end of the free trial, because we will only use the free features of Azure.

You can use any Microsoft account, for example, Hotmail, MSN, or Live account. For the first edition of this book, I registered an account named cs6dotnetcore@outlook.com
 , and I will use it for this example.

 Create an Azure web app

Go to the Azure portal (https://portal.azure.com/
) where you will see the Azure dashboard, as shown in the following screenshot:

[image: Create an Azure web app]

Click on
All resources

 and then click on the
+ Add

 button, as shown in the following screenshot:

[image: Create an Azure web app]

In the
Search Everything

 box, enter web app
 and press
Enter

 . Click on
Web App

 and then click on
Create

 , as shown in the following screenshot:

[image: Create an Azure web app]

In the
Web App

 blade, enter a globally unique name for your web app, as shown in the following screenshot:

[image: Create an Azure web app]

 Note

I entered muppets
 , so this name is now taken. No one else will be able to have a web app with that name. You will need to choose something different.

Leave the other options as their defaults and click on
Create

 . You will be taken back to the Azure dashboard where you will see a new tile telling you that your Web App is being deployed. This process normally takes a few minutes. Once it is running, click on it, as shown in the following screenshot:

[image: Create an Azure web app]

Click on the
URL

 to open a browser and show the example web page. You are now ready to deploy any ASP.NET web application project (both ASP.NET 4.6 and ASP.NET Core) to your web app in Azure.

 Publishing an ASP.NET web application to the web app

In the
Solution Explorer

 window, right-click on the Ch16_ImageEditorSite
 project and choose
Publish...

 .

Select
Azure App Service Linux (Preview)

 as the publish target, as shown in the following screenshot, and click
Publish

 :

[image: Publishing an ASP.NET web application to the web app]

In the
Create

App Service

 dialog, choose the account that you previously registered, and choose the web app name that you created earlier, and click
Create

 , as shown in the following screenshot:

[image: Publishing an ASP.NET web application to the web app]

Visual Studio 2017 will download a
publishing profile

 that you can use to easily deploy the web application to Azure.

Visual Studio 2017 will rebuild and deploy your application and then start a browser to show that it has succeeded.

 Developing on and for Linux

The following Linux operating systems are supported as a deployment target for .NET Core:

	Red Hat Enterprise Linux 7 Server

	Ubuntu 14.04, 16.04

	Linux Mint 17

	Debian 8.2

	Fedora 23

	CentOS 7.1

	Oracle Linux 7.1

	openSUSE 13.2

If you want to choose a Linux operating systems that supports:

	Visual Studio Code for development

	SQL Server 2016 for an RDBMS

	.NET Core for a platform

Then, you have the following two choices:

	Red Hat Enterprise Linux (RHEL) 7.12

	Ubuntu 16.04

 Practicing and exploring

Test your knowledge and understanding by answering some questions, get some hands-on practice, and explore with deeper research into the topics covered in this chapter.

 Exercise 16.1 - test your knowledge

Answer the following questions:

	What are some of the dotnet
 commands for working with .NET Core?

	What are some of the operating systems that are supported by .NET Core?

	How many web apps can you host in Microsoft Azure for free?

	Does Microsoft Azure only support Windows as a host operating system?

	What options does Microsoft Azure offer for data storage?

 Exercise 16.2 - explore topics

Use the following links to read more about the topics covered in this chapter:

	

Porting to .NET Core from .NET Framework

 : https://docs.microsoft.com/en-us/dotnet/articles/core/porting/

	

Packages, Metapackages and Frameworks

 : https://docs.microsoft.com/en-us/dotnet/articles/core/packages

	

.NET Core Application Deployment

 : https://docs.microsoft.com/en-us/dotnet/articles/core/deploying/

	

Installing ASP.NET Core 1.0 on Linux

 : https://docs.asp.net/en/latest/getting-started/installing-on-linux.html

	

Enterprise Application Architecture with .NET Core

 : https://www.packtpub.com/application-development/enterprise-application-architecture-net-core

	

Visual Studio Code - All the Git Features!!!

 : https://blogs.msdn.microsoft.com/user_ed/2016/02/08/visual-studio-code-all-the-git-features/

	

Microsoft Azure: Cloud and Computing Services

 : https://azure.microsoft.com/en-us/

 Summary

In this chapter, we discussed options for porting existing .NET Framework codebases, publishing your apps and libraries, and deploying your code cross-platform and to the cloud.

Hopefully, this book and the C# 7 language and .NET Core features we've covered will inspire you to think about how you can use C# 7 and .NET Core to build well-architected and modern applications that run cross-platform on Windows, macOS, Docker, and Linux.

With C# 7 and .NET Core in your arsenal of tools and technologies, you can conquer the universe of cross-platform development and build any type of application that you need.

 AppendixA.Answers to the Test Your Knowledge Questions

This appendix has the answers to the questions in the
Test Your Knowledge

 section at the end of each chapter.

 Chapter 1 - Hello, C#! Welcome, .NET Core!

	Why can a programmer use different languages, for example C# and F#, to write applications that run on .NETCore?

	Multiple languages are supported on .NET Core because each one has a compiler that translates the source code into IL (intermediate language) code. This IL code is then compiled to native CPU instructions at runtime by the CLR.

	What do you type at the prompt to build and execute C# source code?

	Using .NET Core CLI in a folder with a ProjectName.csproj
 file, we type dotnet run
 .

	What is the Visual C# developer settings keyboard shortcut to save, compile, and run an application without attaching the debugger?

	Ctrl +
F5.

	What is the Visual Studio Code keyboard shortcut to view the Integrated Terminal?

	Ctrl +
`

 (back tick).

	Is Visual Studio 2017 better then Visual Studio Code?

	No. Each is optimized for different tasks. Visual Studio 2017 is large, heavy-weight, and can create applications with graphical user interfaces, for example WPF, UWP, and Xamarin mobile apps, but is only available on Windows. Visual Studio Code is smaller, lighter-weight, command line and code-focused, and available cross-platform.

	Is .NET Core better than .NET Framework?

	It depends on what you need. .NET Core is a slimmed down, cross-platform version of the more full-featured, mature .NET Framework.

	How is .NET Native different from .NET Core?

	.NET Native is an ahead-of-time compiler that can produce native code assemblies that have better performance and reduced memory footprint, and it has its .NET assemblies statically linked, which removes its dependency on CoreCLR.

	What is .NET Standard and why is it important?

	.NET Standard is an API that future versions of .NET Framework, .NET Core, and Xamarin will implement to provide a single, standard API that developers can learn and target.

	What is the difference between Git and GitHub?

	Git is a source code management platform. GitHub is a popular web service that implements Git.

	What is the name of the entry point method of a .NET console application and how should it be declared? public static void Main() // minimum
 public static int Main(string[] args) // recommended

	Its name is Main
 and the preceding code is how it is declared. An optional string
 array for command-line arguments and a return type of int
 are recommended, but they are not required.

 Chapter 2 - Speaking C#

What type would you choose for the following "numbers"?

	A person's telephone number

	string
 .

	A person's height

	
float
 or double
 .

	A person's age

	int
 for performance or byte
 (0 to 255) for size.

	A person's salary

	
decimal
 .

	A book's ISBN

	
string
 .

	A book's price

	
decimal
 .

	A book's shipping weight

	float
 or double
 .

	A country's population

	uint
 (0 to about 4 billion).

	The number of stars in the Universe

	ulong
 (0 to about 18 quadrillion) or System.Numerics.BigInteger
 (allows an arbitrarily large integer).

	The number of employees in each of the small or medium businesses in the UK (up to about 50,000 employees per business)

	Since there are hundreds of thousands of small or medium businesses, we need to take memory size as the determining factor so choose ushort
 because it only takes 2 bytes compared to an int
 , which takes 4 bytes.

 Chapter 3 - Controlling the Flow, Converting Types, and Handling Exceptions

	Where would you look for help about a C# keyword?

	
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/

	Where would you look for solutions to common programming problems?

	
http://stackoverflow.com

	What happens when you divide an int
 variable by 0?

	A DivideByZeroException
 is thrown when dividing an integer or decimal.

	What happens when you divide a double
 variable by 0
 ?

	The double
 contains a special value of Infinity
 . Instances of floating-point numbers can have special values--NaN
 (not a number), PositiveInfinity
 , and NegativeInfinity
 .

	What happens when you overflow an int
 variable, that is, set it to a value beyond its range?

	It will loop unless you wrap the statement in a checked
 block in which case an OverflowException
 will be thrown.

	What is the difference between x = y++;
 and x = ++y;
 ?

	In x = y++;
 , y
 will be assigned to x
 and then y
 will be incremented, and in x = ++y;
 , y
 will be incremented and then the result will be assigned to x
 .

	What is the difference between break
 , continue
 , and return
 when used inside a loop statement?

	The break
 statement will end the whole loop and continue executing after the loop, the continue
 statement will end the current iteration of the loop and continue executing at the start of the loop block for the next iteration, and the return
 statement will end the current method call and continue executing after the method call.

	What are the three parts of a for
 statement and which of them are required?

	The three parts of a for
 statement are the initializer, condition, and incrementer. The condition is required to be an expression that returnstrue
 or false
 , but the other two are optional.

	What is the difference between the =
 and ==
 operators?

	The = operator is the assignment operator for assigning values to variables, and the == operator is the equality check operator that returns true
 or false
 .

	Does the following statement compile? for (; true;) ;

	Yes. The for
 statement only requires a Boolean expression. The initializer
 and incrementer
 statements are optional. This for statement will execute the empty ;
 statement forever. It is an example of an infinite loop.

Exercise 3.2

	What will happen if this code executes? int max = 500;
 for (byte i = 0; i < max; i++)
 {
 WriteLine(i);
 }

	The code will loop nonstop because the value of i
 can only be between 0
 and 255
 , so once it gets incremented beyond 255
 , it goes back to 0
 and therefore will always be less than max
 (500
).

	To prevent it from looping nonstop, you can add a checked statement around the code. This would cause an exception to be thrown after 255
 , like this:

 254

 255

 System.OverflowException says Arithmetic operation
 resulted in an overflow.

 Chapter 4 - Using .NET Standard Types

	What is the maximum number of characters that can be stored in a string
 ?

	The maximum size of a string
 variable is 2 GB or about 1 billion characters because each char
 variable uses 2 bytes due to the internal use of Unicode (UTF-16) encoding for characters.

	When and why should you use a SecureString
 ?

	The string type leaves text data in memory for too long and it's too visible. The SecureString
 type encrypts the text and ensures that the memory is released immediately. WPF's PasswordBox
 control stores the password as a SecureString
 variable, and when starting a new process, the Password
 parameter must be a SecureString
 variable.For more discussion, visit:

	
http://stackoverflow.com/questions/141203/when-would-i-need-a-securestring-in-net

	When is it appropriate to use a StringBuilder
 ?

	When concatenating more than about three string
 variables, you will use less memory and get improved performance using StringBuilder
 than using string.Concat
 method or the +
 operator.

	When should you use a LinkedList<T>
 ?

	Each item in a linked list has a reference to its previous and next siblings as well as the list itself so should be used when items need to be inserted and removed from positions in the list without actually moving the items in memory.

	When should you use a SortedDictionary
 variable rather than a SortedList
 variable?

	The SortedList
 class uses less memory than SortedDictionary
 , SortedDictionary
 has faster insertion and removal operations for unsorted data. If the list is populated all at once from sorted data, SortedList
 is faster than SortedDictionary
 .For more discussion, visit:

	
http://stackoverflow.com/questions/935621/whats-the-difference-between-sortedlist-and-sorteddictionary

	What is the ISO culture code for Welsh? cy-GB

	For a complete list of culture codes, visit:http://timtrott.co.uk/culture-codes/

	What is the difference between localization, globalization, and internationalization?

	Localization affects the user interface of your application. Localization is controlled by a neutral (language only) or specific (language and region) culture. You provide multiple language versions of text and other values. For example, the label of a text box might be
First name

 in English, and
Prnom

 in French.

	Globalization affects the data of your application. Globalization is controlled by a specific (language and region) culture, for example, en-GB
 for British English, or fr-CA
 for Canadian French. The culture must be specific because a decimal value formatted as currency must know to use Canadian dollars instead of French Euros.

	Internationalization is the combination of localization and globalization.

	In a regular expression, what does $
 mean?

	$
 represents the end of the input.

	In a regular expression, how would you represent digits?

	\d+

	[0-9]+

	Why should you not use the official standard for e-mail addresses to create a regular expression to validate a user's e-mail address?

	The effort is not worth the pain for you or your users. Validating an e-mail address using official specification doesn't check whether that address actually exists or whether the person entering the address is its owner. For more discussion, visit:

	
http://davidcel.is/posts/stop-validating-email-addresses-with-regex/

	
http://stackoverflow.com/questions/201323/using-a-regular-expression-to-validate-an-email-address

 Chapter 5 - Debugging, Monitoring, and Testing

	In Visual Studio 2017, what is the difference between pressing
F5, Ctrl

 +
F5, Shift

 +
F5,

 and
Ctrl

 +
Shift

 +
F5?

	

F5

 saves, compiles, runs, and attaches the debugger,
Ctrl

 +
F5

 saves, compiles, and runs the debugger,
Shift

 +
F5

 stops the debugger, and
Ctrl

 +
Shift

 +
F5

 restarts the debugger.

	What information can you find out about a process?

	The Process
 class has many properties including: ExitCode
 , ExitTime
 , Id
 , MachineName
 , PagedMemorySize64
 , ProcessorAffinity
 , StandardInput
 , StandardOutput
 , StartTime
 , Threads
 , TotalProcessorTime
 , and so on. You can find more information about
Process Properties

 at https://msdn.microsoft.com/en-us/library/System.Diagnostics.Process_properties(v=vs.110).aspx

	How accurate is the Stopwatch
 class?

	The Stopwatch
 class can be accurate to within a nanosecond (a billionth of a second) but you shouldn't rely on that. You can improve accuracy by setting processor affinity as shown in the article at http://www.codeproject.com/Articles/61964/Performance-Tests-Precise-Run-Time-Measurements-wi

	How do you reference another project in a .csproj
 file? <ItemGroup>
 <ProjectReference
 Include="..\Ch05_Calculator\Ch05_Calculator.csproj" />
 </ItemGroup>

	When writing a unit test, what are the three As?

	Arrange, Act, Assert.

	What dotnet command executes xUnit test?

	dotnet test

 Chapter 6 - Building Your Own Types with Object-Oriented Programming

	What are the four access modifiers and what do they do?

	
private
 : This modifier makes a member only visible inside the class.

	
internal
 : This modifier makes a member only visible inside the class or within the same assembly.

	
protected
 : This modifier makes a member only visible inside the class or derived classes.

	
public
 : This modifier makes a member visible everywhere.

	What is the difference between the static
 , const
 , and readonly
 keywords?

	
static
 : This keyword makes the member shared by all instances and accessed through the type.

	
const
 : This keyword makes a field a fixed literal value that should never change.

	
readonly
 : This keyword makes a field that can only be assigned at runtime using a constructor.

	How many parameters can a method have?

	A method with 16383 parameters can be compiled, ran, and called. Any more than that and an unstated exception is thrown at runtime. IL has predefined opcodes to load up to four parameters and a special opcode to load up to 16-bits (65,536) parameters. A best practice is to limit your methods to three or four parameters. You can combine multiple parameters into a new class to encapsulate them into a single parameter. You can find more information on this at http://stackoverflow.com/questions/12658883/what-is-the-maximum-number-of-parameters-that-a-c-sharp-method-can-be-defined-as

	What does a constructor do?

	A constructor allocates memory and initializes field values.

	Why do you need to apply the [Flags]
 attribute to an enum
 type when you want to store combined values?

	If you don't apply the [Flags]
 attribute to an enum
 type when you want to store combined values, then a stored enum
 value that is a combination will return as the stored integer value instead of a comma-separated list of text values.

	Why is the partial keyword useful?

	You can use the partial
 keyword to split the definition of a type over multiple files.

 Chapter 7 - Implementing Interfaces and Inheriting Classes

	What is a delegate?

	A delegate is a type-safe method reference. It can be used to execute any method with a matching signature.

	What is an event?

	An event is a field that is a delegate having the event
 keyword applied. The keyword ensures that only +=
 and -=
 are used; this safely combines multiple delegates without replacing any existing event handlers.

	How is a base class and a derived class related?

	A derived class (or subclass) is a class that inherits from a base class (or superclass).

	What is the difference between the is
 and as
 operators?

	The is
 operator returns true
 if an object can be cast to the type. The as
 operator returns a reference if an object can be cast to the type; otherwise, it returns null
 .

	Which keyword is used to prevent a class from being derived from, or a method from being overridden? sealed

	Find more information on the sealed
 keyword at https://msdn.microsoft.com/en-us/library/88c54tsw.aspx

	Which keyword is used to prevent a class from being instantiated with the new
 keyword? abstract

	Find more information on the abstract
 keyword at https://msdn.microsoft.com/en-us/library/sf985hc5.aspx

	Which keyword is used to allow a member to be overridden? virtual

	Find more information on the virtual
 keyword at https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx

	What's the difference between a destructor and a deconstructor?

	A destructor, also known as a finalizer, must be used to release resources owned by the object. A deconstructor is a new feature of C# 7 that allows a complex object to be broken down into smaller parts.

	What are the signatures of the constructors that all exceptions should have?

	The following are the signatures of the constructors that all exceptions should have:

	A constructor with no parameters

	A constructor with a string
 parameter usually named message

	A constructor with a string
 parameter, usually named message
 , and an Exception
 parameter usually named innerException

	What is an extension method and how do you define one?

	An extension method is a compiler trick that makes a static method of a static class appear to be one of the members of a type. You define which type you want to extend by prefixing the type with this
 .

 Chapter 8 - Working with Databases Using Entity Framework Core

	Which .NET data provider would you use to work with Microsoft SQL Server 2012 Express Edition?

	.NET Core Data Provider for SQL Server.

	When defining a DbContext
 class, what type would you use for the property that represents a table, for example, the Products
 property?

	
DbSet<T>
 , where T
 is the entity type, for example, Product
 .

	For a Products
 property on another entity, for example, Category
 , that represents a one-to-many relationship between entities, use ICollection<T>
 , where T
 is the related entity type.

	What is the EF convention for primary keys?

	The property named ID
 or ClassNameID
 is assumed to be the primary key. If the type of that property is any of the following, then the property is also marked as being an IDENTITY
 column: tinyint
 , smallint
 , int
 , bigint
 , guid
 .

	When would you use an annotation attribute in an entity class?

	You would use an annotation attribute in an entity class when the conventions cannot work out the correct mapping between the classes and tables. For example, if a class name does not match a table name or a property name does not match a column name.

	Why might you choose fluent API in preference to annotation attributes?

	You might choose fluent API in preference to annotation attributes when the conventions cannot work out the correct mapping between the classes and tables, and you do not want to use annotation attributes because you want to keep your entity classes clean and free from extraneous code.

 Chapter 9 - Querying and Manipulating Data with LINQ

	What are the two required parts of LINQ?

	A LINQ provider and the LINQ extension methods. You must import the System.Linq
 namespace to make the LINQ extension methods available and reference a LINQ provider assembly for the type of data that you want to work with.

	Which LINQ extension method would you use to return a subset of properties from a type?

	The Select
 method allows projection (selection) of properties.

	Which LINQ extension method would you use to filter a sequence?

	The Where
 method allows filtering by supplying a delegate (or lambda expression) that returns a Boolean to indicate whether the value should be included in the results.

	List five LINQ extension methods that perform aggregation.

	
Max
 , Min
 , Count
 , Average
 , Sum
 , and Aggregate
 .

	What is the difference between the Select and SelectMany
 extension methods?

	Select returns exactly what you specify to return. SelectMany
 checks that the items you have selected are themselves IEnumerable<T>
 and then breaks them down into smaller parts. For example, if the type you select is a string value (which is IEnumerable<char>
), SelectMany
 will break each string value returned into their individual char
 values.

 Chapter 10 - Working with Files, Streams, and Serialization

	What is the difference between using the File
 class and the FileInfo
 class?

	The File
 class has static methods so it cannot be instantiated. It is best used for one-off tasks such as copying a file. The FileInfo
 class requires the instantiation of an object that represents a file. It is best used when you need to perform multiple operations on the same file.

	What is the difference between the ReadByte
 method and the Read
 method of a stream?

	The ReadByte
 method returns a single byte each time it is called and the Read
 method fills a temporary array with bytes up to a specified length. It is generally best to use Read
 to process blocks of bytes at once.

	When would you use the StringReader
 , TextReader
 , and StreamReader
 classes?

	
StringReader
 is used for efficiently reading from a string stored in memory

	
TextReader
 is an abstract class that StringReader
 and StreamReader
 both inherit from for their shared functionality

	
StreamReader
 is used for reading strings from a stream that can be any type of text file, including XML and JSON

	What does the DeflateStream
 type do?

	
DeflateStream
 implements the same compression algorithm as GZIP but without a cyclical redundancy check, so although it produces smaller compressed files, it cannot perform integrity checks when decompressing.

	How many bytes per character does the UTF-8 encoding use?

	It depends on the character. Most Western alphabet characters are stored using a single byte. Other characters may need two or more bytes.

	What is an object graph?

	An object graph is any instance of classes in memory that reference each other, thereby forming a set of related objects. For example, a Customer
 object may have a property that references a set of Order
 instances.

	What is the best serialization format to choose for minimizing space requirements?

	JavaScript Object Notation (JSON).

	What is the best serialization format to choose for cross-platform compatibility?

	eXtensible Markup Language (XML), although JSON is even better these days.

 Chapter 11 - Protecting Your Data

	Of the encryption algorithms provided by .NET, which is the best choice for symmetric encryption?

	The AES algorithm is the best choice for symmetric encryption.

	Of the encryption algorithms provided by .NET, which is the best choice for asymmetric encryption?

	The RSA algorithm is the best choice for asymmetric encryption.

	For encryption algorithms, is it better to have a larger or smaller block size?

	For encryption algorithms, it is better to have a smaller block size.

 Chapter 12 - Improving Performance and Scalability with Multitasking

	By convention, what suffix should be applied to a method that returns a Task
 or a Task<T>
 ?

	Async, for example, OpenAsync
 for a method named Open
 .

	To use the await
 keyword inside a method, which keyword must be applied to the method declaration?

	The async
 keyword must be applied to the method declaration.

	How do you create a child task?

	Call the Task.Factory.StartNew
 method with the TaskCreationOptions.AttachToParent
 option to create a child task.

	Why should you avoid the lock
 keyword?

	The lock
 keyword does not allow you to specify a timeout; this can cause deadlocks. Use Monitor.Enter
 with a TimeSpan
 and Monitor.Exit
 instead.

	When should you use the Interlocked
 class?

	If you have integers and floats that are shared between multiple threads, you should use the Interlocked
 class.

 Chapter 13 - Building Universal Windows Platform Apps Using XAML

	Which control would you choose to allow the user to easily choose their date of birth on many different types of device?

	The DatePicker
 control will allow the user to easily choose their date of birth on many different types of device.

	Which XAML element would you use to adapt the layout of your app to handle different device families?

	The VisualStateManager
 element is used to adapt the layout of your app to handle different device families.

	How can you set multiple properties on an XAML element as a single group?

	We can set multiple properties on an XAML element as a single group by defining a style with setters.

	What is the difference between a control template and a data template?

	Control templates are used to define the look and feel of the external parts of a control, such as a button or list box. Data templates are used to define the look and feel of the internal content of a button or the items with a list box.

	Can XAML bindings be two-way or just one-way?

	XAML bindings can be two-way, one-way, or one-time.

 Chapter 14 - Building Web Applications Using ASP.NET Core MVC

	What is the difference between a web browser and a web server?

	A web browser makes HTTP requests for resources and a web server sends HTTP responses back containing a mix of HTML, CSS, JavaScript, and other media formats, which the browser then displays to the end user.

	What is the difference between a URI, a URL, and a URN?

	Uniform Resource Identifier (URI) is the more general term instead of URL or URN. A Uniform Resource Locator (URL) is a type of URI that species a location of a resource. A Uniform Resource Name (URN) is intended to serve as persistent, location-independent identifier.

	What are the four most common HTTP methods?

	The GET
 , POST
 , PUT
 , and DELETE
 are the most common HTTP methods.

	What does it mean when a web server responds with status code 302
 ?

	The web server is indicating a temporary redirect. This means that the web server found the resource but it is at a different location. A response header is used to tell the web browser about the new location. Note that status code 301
 is similar but represents a permanent redirect.

	What are the responsibilities of a route?

	At the minimum, a route must provide the name of a controller and an action. It can also provide additional parameter values defined in segments.

	What are the responsibilities of a controller?

	A controller (and one of its actions) must examine the request and decide which model needs to be passed to which view and then return the response to the client.

	What are the responsibilities of a model?

	A model represents all the data required for a particular request.

	What are the responsibilities of a view?

	A view converts a model into another format, typically HTML, but it could be any media type, for example, JPEG, DOCX, JSON, XML, and so on.

 Chapter 15 - Building Mobile Apps Using Xamarin.Forms and ASP.NET Core Web API

	How does ASP.NET distinguish a request for MVC from a request for Web API?

	Multiple entries are added to the route table. By convention, Web API controllers should use attributes to register routes that look for URLs that begin with api/
 . If a URL doesn't begin with api/
 then it should match other routes registered by MVC.

	What data formats does Web API support by default?

	x-www-formurlencoded, JSON, and XML.

	What is the difference between Xamarin and Xamarin.Forms?

	Xamarin allows developers to build native iOS, Android, and Windows apps using existing skills, teams, and code written in C# and .NET. But the user interfaces must be developed specifically for each platform. Xamarin.Forms allows developers to build native user interfaces for iOS, Android and Windows from a single, shared C# codebase using XAML.

	What types of cell are supported by the ListView
 ?

	Data in a ListView
 is presented in cells. TextCell
 displays a string of text, optionally with a second line in smaller font with an accent color. ImageCell
 displays an image on the left with text. SwitchCell
 and EntryCell
 can be used, but this is rare. Custom cells can also be defined.

 Chapter 16 - Packaging and Deploying Your Code Cross-Platform

	What are some of the dotnet
 commands for working with .NET Core?

	
dotnet new console
 , dotnet new web
 , dotnet new mvc
 , dotnet new webapi
 , dotnet new classlib
 , dotnet restore
 , dotnet test
 , dotnet run
 , dotnet pack
 , dotnet migrate
 , dotnet publish

	What are some of the operating systems that are supported by .NET Core?

	Windows 7 SP1, Windows Server 2008 R2 SP1, OS X El Capitan (version 10.11) and macOS Sierra (version 10.12), Red Hat Enterprise Linux 7.2, Ubuntu 14.04 LTS, 16.04 LTS, Linux Mint 17, Debian 8.2, CentOS 7.1, Oracle Linux 7.1

	How many web apps can you host in Microsoft Azure for free?

	10

	Does Microsoft Azure only support Windows as a host operating system?

	No. You can create Virtual Machines to host Linux, Docker, and other operating systems.

	What options does Microsoft Azure offer for data storage?

	The following options are what Microsoft Azure offers for data storage:

	Azure Storage for schema-less entities, blobs, and files

	Azure Redis for distributed caching and general entity storage

	Azure DocumentDb for schema-less JSON entities

	Azure SQL Database for relational data

	Azure Data Lake for hybrid storage and analysis

OEBPS/Image00071.jpg
Summary :
Converts the string representation of a number to its 32-bit signed integer equivalent.

Parameters:
8%
A string containing a number to convert.

Returns:
A 32-bit signed integer equivalent to the number contained in s.

Exceptions:
T:System.ArgumentNullException:
s is null.

:System.FormatException:
s is not in the correct format.

:System.OverflowException:
s represents a number less than System.Int32.MinValue or greater than System.Int32.MaxValue.
static Int32 Parse(string s);

OEBPS/Image00192.jpg
Register - Ch14_WebApp X

& C' | ® localhost:55198/Account/Register Y o

Ch14_WebApp Home About Contact

Register.

Create a new account.

Email mark@chapter14.com
Password
Confirm password
Register

©2017 - Ch14_WebApp

OEBPS/Image00070.jpg
[&#] MetadataAsSourceProject ~| &% System.Int32 M R
|Assembly mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Fusing El

Zlnamespace System

{
Elpublic struct Int32 : IComparable, IFormattable, IConvertible, IComparable<Int32>
{
.. .]Jpublic const Int32 MaxValue = 2147483647;
public const Int32 MinValue = -2147483648;

OEBPS/Image00191.jpg
Home Page - Ch14_Web X

C | ® localhost:55198

Ch14_WebApp Home

Application
uses

« Sample pages using
ASP.NET Core MVC

About Contact

Learn More

How to

« Add a Controller and View
« Add an appsetting in config
and access it in app.
1)

o Manage User Secrets

Overview

« Conceptual overview of
what is ASP.NET Core
« Fundamentals of ASP.NET

(& siich as Startup and

3%

Register Login !

Run & Deploy

« Run your app
» Run tools such as EF
migrations and more

o Pyblish to Microsoft Azure

OEBPS/Image00073.jpg
garbage collection

Web Maps Images Videos Books More ~ Search tools

About 26,900,000 results (0.39 seconds)

Garbage collection (computer science) - Wikipedia, the free ...
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science) v

In computer science, garbage collection (GC) is a form of automatic memory
management. The garbage collector, or just collector, attempts to reclaim garbage, ...
Principles - Tracing garbage collectors - Reference counting - Escape analysis

Clear It Waste (A) 91 Michael Cliffe House
clearitwaste.co.uk Skinner Street, London

5.0 %%k kK 55 Google reviews - Google+ page 020 8504 2380

junk clearance (B) Leathwaite Rd
plus.google.com London, battersea

Google+ page

Best Clearance Ltd) 35 Grafton Way

bestclearance.co.uk London
Google+ page 07737 639920

OEBPS/Image00194.jpg
Server Explorer

>
>
>
>
>
>
>
>

b [desktop-evglkvn\localdb#15d7
4 [desktop-evqlkvn\localdb#fc03:
4 [Tables

ER _ EFMigrationsHistory
FH AspNetRoleClaims

FH AspNetRoles

FH AspNetUserClaims

FH AspNetUserLogins

FH AspNetUserRoles

FEH AspNetUsers

FH AspNetUserTokens

O | | Max Rows: 1000 v | Loy [0y
Id HHH PasswordHash
b = Azure (markjprice@msn.com - 0 s > 3b8cd.. AQAAAAEAACCQAAAAEFXD
4 gl Data Connections | * NULL NULL NULL

OEBPS/Image00072.jpg
Q: Using SecureString

Can this be simplified to a one liner? Feel free to completely rewrite it as long as secureString gets
initialized properly. SecureString secureString = new SecureString (); foreach (char c in
"fizzbuzz". ToCharArray()) { secureString.AppendChar (c); } ...

c# security securestring asked Mar 10 '10 by Todd Smith

Q: Convert String to SecureString

How to convert String to SecureString? ...

c# securestring asked Oct 15 '09 by Nila

Q: When would | need a SecureString in .NET?

I'm trying to grok the purpose of .NET's SecureString. From MSDN: An instance of the System.String class
is both immutable and, when no longer needed, cannot be programmatically scheduled ... from computer
memory. A SecureString object is similar to a String object in that it has a text value. However, the value of
a SecureString object is automatically encrypted, can be modified ...

net security encryption asked Sep 26 '08 by Richard Morgan

OEBPS/Image00193.jpg
Add Connection ?

Enter information to connect to the selected data source or click “"Change" to choose a
different data source and/or provider.

Data source:

‘Microsoft SQL Server (SqlClient) ‘ Change...

Server name:

‘(Iocaldb)\mssqllocaldb v ‘ Refresh

Log on to the server

Authentication: Windows Authentication X

Save my password

Connect to a database

@® Select or enter a database name:

ch14_WebApp v

QO Attach a database file:

Browse...

Advanced...

Test Connection Cancel

OEBPS/Image00075.jpg
garbage collection site:stackoverflow.com -c++ -java

Web Maps Images Videos Books More ~ Search tools

About 19,100 results (0.30 seconds)

c# - Garbage Collection not happening even when needed ...
stackoverflow.com/.../garbage-collection-not-happening-even-when-nee... ~

4 Apr 2012 - As a sanity check, | have a button to force GC. When | push that, | quickly
get 6GB back. Doesn't that prove my 6 arrays were not being referenced and ...

How expensive is it to call the Garbage Collector manually?
stackoverflow.com/.../how-expensive-is-it-to-call-the-garbage-collector-... ~

4 Feb 2014 - Yes, there are some other drawbacks. Even if you call GC.Collect, you
can not ensure that objects that you believe are gone, are actually gone.

c# - Garbage collection of circular referenced object - Stack ...
stackoverflow.com/.../garbage-collection-of-circular-referenced-object ~

16 May 2013 - The garbage collector looks through the active references, and
anything that isn't found from there can be collected. That way it doesn't matter that
the ...

OEBPS/Image00074.jpg
garbage collection site:stackoverflow.com

Web Maps Images Videos Books More ~ Search tools

About 49,400 results (0.27 seconds)

Newest 'garbage-collection' Questions - Stack Overflow
stackoverflow.com/questions/tagged/garbage-collection ~

Garbage collection (GC) is a form of automatic memory management. It attempts to
reclaim garbage, or memory occupied by objects that are no longer in use by ...

Garbage Collection: Algorithms for Automatic Dynamic ...
rads.stackoverflow.com ... » Algorithms » Memory Management ~

Garbage Collection: Algorithms for Automatic Dynamic Memory Management
[Richard Jones, Rafael D Lins] on Amazon.com. *FREE* shipping on qualifying ...

c++ - Why garbage collection when RAll is available ...
stackoverflow.com/.../why-garbage-collection-when-raii-is-available ~

23 Jun 2013 - | hear talks of C++14 introducing a garbage collector in the C++ ..
Garbage collection and RAIl are useful in different contexts. The presence of ...

OEBPS/Image00195.jpg
@ Code File Edit Selection
o000

]
Jo
)2

®
[

EXPLORER

4 OPEN EDITORS
4 CH14_WEBAPP
> Controllers
4 Data
» Migrations
ApplicationDbContext.cs
> Models
> Services
> Views
4 wwwroot

View Go Window Help

> css
> images
> js
> lib

favicon.ico
.bowerrc
appsettings.Development.json
appsettings.json
bower.json
bundleconfig.json
Ch14_WebApp.csproj
Ch14_WebApp.db
Program.cs
Startup.cs

Ch14_WebApp

Show All Commands 1+ 3P
Go to File 8P

Find in Files 1+ 3F
Start Debugging F5

Toggle Terminal ~°

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL 1: bash v L m x

bash-3.2$ dotnet new mvc ——auth Individual

Content generation time: 592.6265 ms

The template "ASP.NET Core Web App" created successfully.
bash-3.2$

OEBPS/Image00186.jpg
Name

|| get-started

| | get-started.css

| | get-started-1.png

- get-started-2.png

= jquery-1.7.2.min.js

| | get-started.js

= broker.js

= js?mt_id=1007149&mt_adid=16...
up_loader.1.1.0.js
analytics.js
ms.js
waterMarkGlobe.png
data:image/svg+xml;...
c.gif?DI=40508did=18&t=
trans_pixel.aspx?wcs.tz=0&wcs....
collect?v=18&_ v=j478a=2710408...
up?adv=uivi7wd&ref=https%3A...
ados.js
universal_pixel.1.1.1.js
ados?t=1483287619285&reques...
iframe?mt_uuid=46af57e0-4f15-...

32 requests | 226KB transferred | ...

X | Headers Preview Response Cookies Timing

v General
Request URL: https://www.asp.net/get-started
Request Method: GET
Status Code: @ 200 0K
Remote Address: 191.236.106.123:443

v Response Headers view source
Arr-Disable-Session-Affinity: true
Cache-Control: private
Content-Encoding: gzip
Content-Length: 11495
Content-Type: text/html; charset=utf-8
Date: Sun, 01 Jan 2017 16:20:20 GMT
Strict-Transport-Security: max-age=15768000; includeSubDomains;
Vary: Accept-Encoding

v Request Headers view source
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,im
age/webp,*/*;q=0.8
Accept-Encoding: gzip, deflate, sdch, br
Accept-Language: en-US,en;q=0.8
Connection: keep-alive
Cookie: _ga=GAl.2.23344396.1483287464; _gat=1; MC0=148328746484
2;
MSFPC=ID=c8811c9cb31ed94ab0379257cd1f@c36&CS=3&LV=201701&V=1
Host: www.asp.net
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_12_2) Apple

WebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.95 Safari/53
7.36

OEBPS/Image00067.jpg
Chris Adamson @invalidname - May 26
Had a colleague remove my {} surrounding a 1-line if clause today. No, not angry.

It's on his conscience now. #gotofail

10 15

OEBPS/Image00188.jpg
BE-o-5aB| L=
Search Solution Explorer (Ctrl+;)

m Solution 'Chapter14' (1 project)
4 Ch14 WebApp
&p Connected Services
4 =B Dependencies
4 4. Bower
b &8 bootstrap (3.3.7)
&1 jquery (2.2.0)
b &8 jquery-validation (1.14.0)
b &1 jquery-validation-unobtrusive (3.2.6)
&8 NuGet
=1 sbk
> E] MicrosoftNETCore.App
K Properties
@ wwwroot
b Ml css
> images
b Ml js
> b
favicon.ico
1 Controllers
. Data
4 . Migrations
b 00000000000000_CreateldentitySchema.cs
P c# ApplicationDbContextModelSnapshot.cs
b c# ApplicationDbContext.cs
1 Models
1 Services
1 Views
I5) appsettings.json
£T bowerjson

£T bundleconfigjson

C# Program.cs
C# Startup.cs

Solution Explorer BEET W51l

OEBPS/Image00066.jpg
- C:\WINDOWS\system32\cmd.exe = O X

Type Byte(s) of memory Max
sbyte 1 -128 127
byte 1 [} 255
short 2 -32768 32767
ushort 2 -] 65535
int 4 -2147483648 2147483647
uint 4 2] 4294967295
long 8 -9223372036854775808 9223372036854775807
ulong 8 2] 18446744073709551615
[float 4 -3.402823E+38 3.402823E+38
double 8 -1.79769313486232E+308 1.79769313486232E+308

decimal 16 -79228162514264337593543950335 79228162514264337593543950335

Press any key to continue . . .

OEBPS/Image00187.jpg
New ASP.NET Core Web Application (NET Core) - Ch14_WebApp
ASP.NET Core 1.1 ¥ | Learn more
ASP.NET Core 1.1 Templates

S B gE]

Empty Web API Web
Application

["] Enable Docker Support
Requires Docker for Windows

Docker support can also be enabled later Learn more

A project template for creating an ASP.NET Core
application with example ASP.NET MVC Views and
Controllers. This template can also be used for RESTful
HTTP services.

Learn more

Change Authentication

Authentication: Individual User Accounts

OEBPS/Image00069.jpg
int x = intMaxvalue + 1;

Error List

Y - | €3 1 Error | ‘ 0 Warnings | (i JO) Messages

* Code Description

€3 CS0220 The operation overflows at compile time in checked mode

OEBPS/Image00190.jpg
Tools Test Analyze Window Help
Any CPU ~ P IIS Express ~ ¢ '| Mo

IS Express

IS Express
Ch14_WebApp

Browse With...

Tools Test Analyze Window Help

Any CPU ~ P IS Express ~ 0 v| M

IS Express

IIS Express

Ch14_WebApp

Web Browser (Google Chrome) Google Chrome

Browse With... Internet Explorer
Microsoft Edge
Open in Mac

OEBPS/Image00068.jpg
Error List

Y - 1 Error 1 0 Warnings | (i J) Messages

* Code Description

CS0266 Cannot implicitly convert type ‘double’ to ‘int'. An explicit
conversion exists (are you missing a cast?)

OEBPS/Image00189.jpg
Developer Command Prompt for VS 2017
3k 3k 3k 3k 3k 3k 3k 3k %k % 3k 3k 3k 3 % % 3k 5k 3k %k % 3% 3k 5k 3k 3k % 3% 3k 3k 3k %k %k ok 3k 3k 3k %k % %k ok 3k %k %k R Kok sk kR Rk ok Rk R kokokk kR kokkkkkkk
** Visual Studio 2017 Developer Command Prompt v15.0.26228.4

** Copyright (c) 2017 Microsoft Corporation
3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3 % % 3k 5k 3k %k % 3% 3k 3k 3k %k % % 3k 3k 3k %k %k ok 3k 3k 3k %k %k %ok %k %k R R Rk kR kR Rk Rk R kokkk kR kkkkkk Kk

C:\Program Files (x86)\Microsoft Visual Studio\2017\Community>cd C:\Code\Chapter14\Ch14_WebApp

C:\Code\Chapter14\Ch14_WebApp>dotnet ef database update
Build succeeded.
0 Warning(s)

@ Error(s)

Time Elapsed ©0:00:05.42
Done.

C:\Code\Chapteri14\Ch14_WebApp>_

OEBPS/Image00082.jpg
Program.cs X

using System;
using static System.Console;

namespace ConsoleApplication
{
0 references
public class Program
{
0 references
public static void Main(string[] args)
{

var doc = new XDocument();

using System.Xml.Ling;
System.Xml.Ling.XDocument

Generate type
Remove Unnecessary Usings

OEBPS/Image00203.jpg
o0 e | Products That Cost More Tha: x Mark

< C 0 @ localhost:5000/Home/ProductsThatCostMoreThan?price=50 D g

WebApplication Home About Contact Register Log in

Products That Cost More Than £50.00

CategoryName CompanyName ProductName UnitPrice UnitsinStock
Meat/Poultry Tokyo Traders Mishi Kobe Niku 97.00 29

Seafood Pavlova, Ltd. Carnarvon Tigers 62.50 42
Confections Specialty Biscuits, Ltd. Sir Rodney's Marmalade 81.00 40
Meat/Poultry Plutzer LebensmittelgroBmérkte AG Thiringer Rostbratwurst 123.79 0

Beverages Aux joyeux ecclésiastiques Cote de Blaye 263.50 17

Produce G'day, Mate Manjimup Dried Apples 53.00 20

Dairy Products Gai paturage Raclette Courdavault 55.00 79

© 2016 - WebApplication

OEBPS/Image00081.jpg
Ch04_AssembliesAndNamespaces

aea O T A W N R

1¢

@
<

IEijsing System;

Lusing static System.

Elclass Program
|{

{

var d

using System.Xml.Ling;

»

System.Xml.Ling.XDocument

Generate type 'XDocument' »

Rename 'xml' to ‘doc’

-| " Program -| e, Main(string[] args)

=] static void Main(string[] args)

= new XDocument();

i € 50246 The type or namespace name ‘XDocument' could not be
found (are you missing a using directive or an assembly reference?)

using System;
using System.Xml.Ling;
using static System. 5

Preview changes

_b"”"4.

OEBPS/Image00202.jpg
| Home Page - My First ASP.NE X

C {0 @ localhost:5000

Ikura costs £31.00
Queso Cabrales costs £21.00

Queso Manchego La Pastora costs
£38.00

Konbu costs £6.00

Tofu costs £23.25

Genen Shouyu costs £15.50

Pavlova costs £17.45

Alice Mutton costs £39.00

Carnarvon Tigers costs £62.50

Teatime Chocolate Biscuits costs £9.20
Sir Rodney's Marmalade costs £81.00
Sir Rodney's Scones costs £10.00
Gustaf's Knackebrod costs £21.00
Tunnbréd costs £9.00

Guarana Fantastica costs £4.50

Submit

© 2016 - WebApplication

Gravad lax costs £26.00
Cote de Blaye costs £263.50
Chartreuse verte costs £18.00
Boston Crab Meat costs £18.40

Jack's New England Clam Chowder costs

£9.65

Singaporean Hokkien Fried Mee costs
£14.00

Ipoh Coffee costs £46.00

Gula Malacca costs £19.45

Rogede sild costs £9.50

Spegesild costs £12.00

Zaanse koeken costs £9.50
Chocolade costs £12.75

Maxilaku costs £20.00

Valkoinen suklaa costs £16.25
Manjimup Dried Apples costs £53.00

£33.25
Louisiana Fiery Hot Pepper Sauce costs
£21.05

Louisiana Hot Spiced Okra costs £17.00

Laughing Lumberjack Lager costs £14.00

Scottish Longbreads costs £12.50
Gudbrandsdalsost costs £36.00
Outback Lager costs £15.00
Flotemysost costs £21.50
Mozzarella di Giovanni costs £34.80
Rod Kaviar costs £15.00

Longlife Tofu costs £10.00
Rhonbrau Klosterbier costs £7.75
Lakkalikori costs £18.00

Original Frankfurter griine SoBe costs
£13.00

Mark

OEBPS/Image00084.jpg
Cod
LN

@ EXPLORER

4 OPEN EDITORS
Program.cs
4 CHO5_DEBUGGING

0 b .vscode
» bin
» obj

Ch05_Debugging.csproj
Program.cs

File Edit Selection

Program.cs - Ch05_Debugging

Program.cs X

using System;
using static System.Console;

namespace Cho5_Debugging

{
0 references
class Program
{
1 reference
static double Add(double a, double b)
{
return a * b; // deliberate bug!
}
0 references
static void Main(stringll args)
double a = 4.5; // or use var
double b = 2.5
double answer = Add(a, b);
WriteLine(s"{a} + {b} = {answer}");
ReadLine(); // wait for user to press ENTER
)
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL 1: dotnet

bash-3.2$ dotnet new console
Content generation time: 70.0147
The template “Console Applicatio
bash-3.2$ dotnet run

4.5 + 2.5 = 11.25

i]

" created successfully.

OEBPS/Image00205.jpg
Android

‘Windows Mobile

ASP.NET Core Web API

Visual Studio Code

x

v

Visual Studio for Mac

x

v

Visual Studio 2017

OEBPS/Image00083.jpg
Program.cs X @ M

using System;
2 using System.Xml.Ling;

namespace Ch@4_Assemblies

i

0 references

class Program

it
Represents a 32-bit signed integer.To browse the .NET Framework source code for
this type, see the Reference Source.
System.Int32

int age = 2
2 }

OEBPS/Image00204.jpg
© @ | Products That Cost More Tha: X Mark

€= C 10 @ localhost:5000/Home/ProductsThatCostMoreThan?price=30 Pxg

WebApplication Home About Contact Login

Products That Cost More Than £30.00

Category Name Supplier's Company Name Product Name Unit Price Units In Stock
Condiments Grandma Kelly's Homestead Northwoods Cranberry Sauce 40.00 6

Meat/Poultry Tokyo Traders Mishi Kobe Niku 97.00 29

Seafood Tokyo Traders Ikura 31.00 31

Dairy Products Cooperativa de Quesos 'Las Cabras' Queso Manchego La Pastora 38.00 86
Meat/Poultry Pavlova, Ltd. Alice Mutton 39.00 0

Seafood Pavlova, Ltd. Carnarvon Tigers 62.50 42
Confections Specialty Biscuits, Ltd. Sir Rodney's Marmalade 81.00 40
Confections Heli StiBwaren GmbH & Co. KG Gumbar Gummibarchen 31.23 15
Confections Heli StiBwaren GmbH & Co. KG Schoggi Schokolade 43.90 49

Produce Plutzer LebensmittelgroBméarkte AG Rossle Sauerkraut 45.60 26

OEBPS/Image00085.jpg
Code Edit Selection View Go dow Help

[X X] Program.cs - Ch05_Debugging

@ DEBUG D .NET Core Launch (console) $ % [> & 4 4 & 0 M e
4 VARIABLES return a * b; // deliberate bug!

= e

args [stringll]: {string[0]} public static void Main(string[] args)

‘) a [double]: @ o &L u

b [double]: @ double a = 4.5; // or use var
answer [double]: @ doublelb = 257
® double answer = Add(a, b);
4 WATCH WriteLine($"{a} + {b} = {answer}");
ReadLine(); // wait for user to press ENTER
1
4 CALLSTACK PAUSED ON BREAKPOINT }

ConsoleApplication.Program.Main(string[] arg..

DEBUG CONSOLE ~

@/System.Private.Corelib.ni.d11'. Cannot find or open the symbol f
Loaded '/Users/markjprice/Code/Chapter5/Ch@5_Debugging/bin/Debug/
netcoreappl.1/Ch@5_Debugging.dll'. Symbols loaded.

Loaded '/usr/local/share/dotnet/shared/Microsoft.NETCore.App/1.1.
@/System.Runtime.d1l'. Cannot find or open the symbol file.

@ All Exceptions Loaded '/usr/local/share/dotnet/shared/Microsoft.NETCore.App/1.1.
@ User-Unhandled Exceptions @/mscorlib.dll'. Cannot find or open the symbol file.

4 BREAKPOINTS

Program.cs 12

OEBPS/Image00076.jpg
Browse: My Solution

<Search>

Ch03_CastingConverting
Ch03_CheckingForOverflow
Ch03_HandlingExceptions
ChO03_lterationStatements
Ch03_SelectionStatements
Microsoft.CSharp

=8 Microsoft.VisualBasic

B Microsoft.Win32.Primitives
B System.AppContext

-8 System.Buffers

=8 System.Collections.Concurrent

=8 System.Collections.Immutable

=8 System.ComponentModel

B System.ComponentModel.Annotations
=8 System.Console

4 {) System

|2
12
b
12
> =B System.Collections
2
|2
b
4
4

-

q; ConsoleCancelEventArgs
ConsoleCancelEventHandler
&' ConsoleColor

= ConsoleKey
== ConsoleKeylnfo

vvvw

& ConsoleModifiers
b & ConsoleSpecialKey
b =B System.Diagnostics.Debug
B System.Diagnostics.DiagnosticSource
B System.Diagnostics.Process
b =B System.Diagnostics.Tools

D BB Cuetam Nismnackice Tracina

4

“

‘G “‘-l\ﬁ"

WriteLine()
WriteLine(bool)
WriteLine(char)
WriteLine(char[])
WriteLine(char[], int, int)
WriteLine(decimal)
WriteLine(double)
WriteLine(float)
WriteLine(int)
WriteLine(long)
WriteLine(object)
WriteLine(string)
WriteLine(string, object)
WriteLine(string, object, object)
WriteLine(string, object, object, object)
WriteLine(string, object[])
WriteLine(uint)
WriteLine(ulong)

& BackgroundColor

F BufferHeight

& BufferWidth

K CapsLock
4

00RO RRLBD

public static class Console
Member of System

Summary:

Represents the standard input, output, and error streams for console applications.
This class cannot be inherited.To browse the .NET Framework source code for this

type, see the Reference Source.

OEBPS/Image00197.jpg
® Home Page - WebApplication x

< C % @ localhost:5000

WebApplication = Home About Contact Register Log in

i1sing Grunt or Gulp Learn More

Application How to Overview Run & Deploy

uses « Add a Controller and View « Conceptual overview of « Run your app
. « Add an appsetting in config what is ASPNET Core « Run tools such as EF
+ Sample pages using and access it in app. « Fundamentals of ASP.NET migrations and more
ASP.NET Core MVC « Manage User Secrets Core such as Startup and « Publish to Microsoft Azure

« Gulp and Bower for

using Secret Manager. middleware. Web Apps

OEBPS/Image00196.jpg
3 DAspNlelsefs (WebApplication)

@ SQLiteStudio Database Structure View Tools Help
e®e # sQLiteStudio (3.1.1)
X 8 B B B BIE B B & 2 #« @ @ @ B »: [»: 8 »
Q6 Databases e®e@ | |AspNetUsers (WebApplication)
Filter by name Data Constraints Indexes Triggers DDL
& Northwind (sQLite 3) - R, =
v & WebApplication (sQLite 3) 8 0 o i @ @ n 24 @ 9
v [} Tables 8) Table name: AspNetUsers WITHOUT ROWID
» || _EFMigrationsHistory - -
» | AspNetRoleClaims Name Data type Prll(r:;ry Fo;:lygn Unique Check NTJTL Collate Default value
» [AspNetRoles
» | AspNetUserClaims 1 TEXT 7 o NULL
» | AspNetUserLogins 2 AccessFailedCount INTEGER o NULL
L g AspNetUserRoles 3 ConcurrencyStamp TEXT NULL
» | AspNetUsers "
» | AspNetUserTokens 4 Email TEXT NULL
¥ Views 5 EmailConfirmed INTEGER o NULL
6 LockoutEnabled INTEGER o NULL
7 LockoutEnd TEXT NULL
8 NormalizedEmail TEXT NULL
9 NormalizedUserName TEXT NULL
10 PasswordHash TEXT NULL
BEHDo %8
Type Name Details

OEBPS/Image00078.jpg
Browse: My Solution

AT VvV V VT

<Search>

=B System.Globalization.Calendars
=B System.Globalization.Extensions

=8 System.|O.Compression

5-B Quctam IN Camnraccinn 7inEila

v,.|° |='-l|'l§'

Assembly System.l0
C:\Users\markj\.nuget\packages\system.io\4.3.0\ref\netstandard1.5\System.|O.dl|

OEBPS/Image00199.jpg
@ Code File Edit Selection View Go Window Help
[X X]

]
Jo

12
®

EXPLORER

4 OPEN EDITORS
HomeController.cs
4 CH14_WEBAPP
» .vscode
> bin
» Controllers
> Data

e ey

HomeController.cs - Ch14_WebApp

Bower Init Create bower.json (bower init)

Bower Install Restore packages defined in bower.json (bower install)
Bower Search and Install Search for a package and install it

Bower Uninstall Select and uninstall a package

Bower Update Update all packages or a selected package (bower update)
Bower Cache - Clear Clear bower cache (bower cache clear)

Bower Cache - List List the items in the bower cache and action them

OEBPS/Image00077.jpg
Browse: My Solution

AT VvV VT

<Search>

=8 System.ComponentModel

=B System.ComponentModel.Annotations
-

=-B System.Diagnostics.Debug

5-B Quctam Niannnctire NiaAnactirSanirea

v4..|° |='-ll'l§'

Assembly System.Console
C:\Users\markj\.nuget\packages\system.console\4.3.0\ref\netstandard1.3\System.Console.dll

OEBPS/Image00198.jpg
@ Code File Edit Selection View Go Window Help

]
Jo

® &

Extension: Bower - Ch14_WebApp

EXTENSIONS E ... HomeController.cs

bower

Bower 0.0.3

Create bower.json, install, uninstall, upd...
Don Jayamanne

Bower package watcher 0.0.1

Keeps your Bower dependencies fresh ...
Matias Quaranta

Product.cs Supplier.cs Extension: Bower X

Bower donjayamanne.bower
Don Jayamanne | & 22059 | % % % %%

Create bower.json, install, uninstall, update bower packages, etc

OEBPS/Image00080.jpg
3 m Ch03 SelectionStatements (unavailable)
Reload Project

¢ Edit Ch03_SelectionStatements.csproj

& cut Ctrl+X
Paste Ctrl+V

X Remove Del

OEBPS/Image00201.jpg
|
-

Product ID
Product Name
Category ID
Unit Price
Units In Stock

©2017 - Ch14_WebApp

Product Detail - Chang - X

C' | ® localhost:55198/Home/ProductDetail/2

Ch14_WebApp Hor

Product Detall

ne About Contact

Chang

$19.00
1z

OEBPS/Image00079.jpg
> {}
4 {}

~

VYV YVYYYYYVYY YV W

Browse:

My Solution ~ . | (<] | :‘-l| 'm' X

<Search>

4 -8 System.Collections

System.Collections

System.Collections.Generic

* Comparer<T>

#3 Dictionary<TKey, TValue>

== Dictionary<TKey, TValue>.Enumerator

#z Dictionary <TKey, TValue>.KeyCollection

== Dictionary<TKey, TValue>.KeyCollection.Enum
“1 Dictionary<TKey, TValue>.ValueCollection

== Dictionary<TKey, TValue>.ValueCollection.Enu
EqualityComparer<T>

‘I: HashSet<T>

== HashSet<T>.Enumerator

“3 LinkedList<T>

o= LinkedList<T>.Enumerator

‘B LinkedListNode<T>

L ist<T>|

== List<T>.Enumerator

® Addm) -
@ AddRange(System.Collections.Generic.l[Enumerable<T>)
@ AsReadOnly()
@ BinarySearch(int, int, T, System.Collections.Generic.IComparer<T>)
@ BinarySearch(T)
@ BinarySearch(T, System.Collections.Generic.IComparer<T>)

@ Clear()

@ Contains(T)

@ _CopyTo(int, T[], int, int) bs

public class List<T>
Member of System.Collections.Generic

Summary:

Represents a strongly typed list of objects that can be accessed by index. Provides methods to
search, sort, and manipulate lists.To browse the .NET Framework source code for this type, see
the Reference Source.

. |Type Parameters:

T: The type of elements in the list.

OEBPS/Image00200.jpg
| Home Page - My First A~ X

c

@ localhost:55198

Northwind

We have had 807 visitors this month.

Products

« Chai costs $18.00

« Chang costs $19.00

« Aniseed Syrup costs $10.00

« Chef Anton's Cajun Seasoning costs
$22.00

« Chef Anton's Gumbo Mix costs $21.35

« Grandma's Boysenberry Spread costs
$25.00

« Uncle Bob's Organic Dried Pears costs
$30.00

« Northwoods Cranberry Sauce costs
$40.00

« Mishi Kobe Niku costs $97.00
o lkura costs €21 0

Rossle Sauerkraut costs $45.60
Thuringer Rostbratwurst costs $123.79
Nord-Ost Matjeshering costs $25.89
Gorgonzola Telino costs $12.50
Mascarpone Fabioli costs $32.00
Geitost costs $2.50

Sasquatch Ale costs $14.00

Steeleye Stout costs $18.00

Inlagd Sill costs $19.00

Gravad lax costs $26.00

Cote de Blaye costs $263.50
Chartreuse verte costs $18.00

Boston Crab Meat costs $18.40

lack's New Enaland Clam Chowder cost:

Escargots de Bourgogne costs $13.25
Raclette Courdavault costs $55.00
Camembert Pierrot costs $34.00

Sirop d'érable costs $28.50

Tarte au sucre costs $49.30
Vegie-spread costs $43.90

Wimmers gute Semmelknddel costs
$33.25

Louisiana Fiery Hot Pepper Sauce costs
$21.05

Louisiana Hot Spiced Okra costs $17.00
Laughing Lumberjack Lager costs $14.00

Scottish Longbreads costs $12.50
Cudbrandsdalsnst coste €38 00

OEBPS/Image00049.jpg
eomtl-|o-5
Search Solution Explorer (Ctrl+;)

m Solution 'Chapter02' (5 projects)
4 Ch02_Basics

P =B Dependencies

b c# Program.cs

@@Gﬁﬁ!v|'@vg

Search Solution Explorer (Ctrl+;)

m Solution 'Chapter02' (5 projects)

OEBPS/Image00170.jpg
@ Chapter13 - Microsoft Blend for Visual Studio

File Edit View Project Build Debug Team Design Format Tools Window

Debug ~ x86 ~ Ch13_BouncingBall (Universal Win ~ P Local Machine ~ _

v @ X MainPagexaml =
©-50¢d@

Solution Explorer

& & -

> App.xaml.cs

’ [E 5" Phone (1920 x 1080) 300% scale

Search Solution Explorer (Ctrl+;) P~ k g - a2
1 0
| Solutlon 'Chapter13 (3 projeds) ~ W
o S
4 4 8°8
Solution Explorer | Assets States Data o
OecsandTmelne TR &
X o
L. [Page]
4) [Page]

‘= TopAppBar
@ BottomAppBar

4 fd [Canvas] E XAML
o i WO LgHUIrdULES U >
1
-l
10 E]i <Canvas Background=
11 |
12 [
a ! ' .
= 100% ~ 4

Y & Quick Launch (Ctrl+Q) P - a
Help Mark Price ~
¥ Properties A
> | ®m° o Name <No Name> @
640 Type Ellipse
Arrange by: Category ~
4 Brush
FocusVisualPr... s}
FocusVisualse... | -
Stroke No brush =]
= = =
v Editor O Color Resources
» N
R 1255
=i B —
- G 0
+ B O
- A 100%

"{ThemeResource Applicati—
<Ellipse Fill="Red" Heigh _

» Properties Resources Team Explorer

X

X
¥

»

OEBPS/Image00048.jpg
| ¥ = |cho2_Basics
Home Share View
<« v /M | <« Code » Chapter02 » Ch02 Basics > v O Search Ch02_Basics

~

% . Local Disk (C) ~ Name Date modified Type
. Code

Size

" bin 3/11/2017 11:54 AM File folder
' Chapter01 © obj 3/11/2017 11:54 AM File folder

) ! Chapter02 i Ch02_Basics.csproj 3/11/2017 11:54 AM Visual C# Project File
 Perflogs B Program.cs 3/11/2017 11:54 AM Visual C# Source File

| Program Files

4 items

OEBPS/Image00169.jpg
Ch13_DataBinding

1 First Name Last Name
Alice Smith

2 First Name Last Name
Bob Jones

May

June

July
August
September
October

November

v

21

22

23

24

25

26

27

1977

1978

1979

1980

1981

1982

1983

Salary

34000

Salary

64000

OEBPS/Image00051.jpg
@ Code File Edit Selection View Go Window Help

[N N J Program.cs - Ch02_Basics
@ EXPLORER [WMBM] Required assets to build and debug are missing from 'Ch02.... m -
L
@aORENEDITC - There are unresolved dependencies from 'Ch02_Basics.csproj'. Please execute t...
Program
p 2 namespace Ch@2_Basics 1
4 CHO2_BASICS {
0 pabic 0 references L
> obj class Program [
Ch02_Basics.csproj i
@) 0 references
Erodiannes static void Main(string[] args)
{
[l] Console.WriteLine("Hello World!");
}
}

OEBPS/Image00172.jpg
© BounceBall timeline recording is on.

OEBPS/Image00050.jpg
[1 Ch02_Basics
% 22 =i =y %Y 6 © B Q Search

Favorites [% Applications » [Chapter01 4 Bl Ch02_Basics [2
[Applications (Parallels) » | | Chapter02 >
$3 Dropbox
[Code >
®) Airbrop [%] Downloads >
. »
& iCloud Drive = Dm?box °
[Movies >
#%; Applications 1% Music >
&3 Desktop F OneDrive >
[Parallels >
o Downloads [Pictures 4
[# Public >

@ [C] Windo... = & Macintosh HD » [# Users > % markjprice > [1 Code > || Chapter02 > [Ch02_Basics

OEBPS/Image00171.jpg
Create Storyboard Resource

Name (Key)
O BounceBall
L]

OEBPS/Image00053.jpg
@ Code File Edit Selection View Go Window Help

000 Program.cs - Ch02_Basics \
@ EXPLORER Program.cs X M e
4 OPEN EDITORS using System;
Program.cs .
namespace Ch@2_Basics
4 CHO2_BASICS {
® > .vscode 0 references
> bin class Program
> obj {
: . 0 references =
h02_Basics.csproj
® Cho2.| proj static void Main(string[] args)
Program.cs q
-] Console.WriteLine("Hello World!");
}
}
}

OEBPS/Image00174.jpg
®Bounce.. ¥ X + - |4 4 p b »
2 [Page] *e 000800 @
@8 0 1
4 [[Page]
‘= TopAppBar

= BottomAppBar
4 [g [Canvas] & O

OEBPS/Image00052.jpg
Program.cs # X
[£#] cho2_Basics be “%ChOZ,BasicsProgram

1
2
3
4
5
6
7
8
9

B R
N R

using System;
Enamespace Che2_Basics
class Program

{

statlc void Main(string[] args)

B|
=
{ Console.WriteLine("Hello World!");

~ | @, Main(string[] args)

OEBPS/Image00173.jpg
®Bounce.. ¥ X + - |4 4 p I »l
[Page] *e 000000 @

4 [[Page]
‘= TopAppBar
= BottomAppBar|
4 fd [Canvas] & O

OEBPS/Image00055.jpg
" Untitled - Notepad — O
File Edit Format View Help

X

Console.Writeline("Hello C#!")

OEBPS/Image00054.jpg
“|Untitled - Notepad ~ — O
File Edit Format View Help

do you like icecream?

OEBPS/Image00175.jpg
Solution Explorer v 1x _AppxamLcs

Q- o-5s¢F@ . 5" Phone (1920 x 1080) 300% scale

W
R
S

Search Solution Explorer (Ctrl+;) el 0 0

100 1

©
@
wn
a

%] Solution ‘Chapter13' (3 projects)
4 Ch13_BouncingBall (Universal Windo
&P Service Capabilities
> /M Properties

Solution Explorer | Assets States Data

Objects and Timeline v 1x

320

[
L3
 J
Q
&
4
0
]

®Bounce.. ¥ X + - |4 4 p I »l

[Page] *s 000800 = [4-

538.947

100

4 [[Page]

=
vy

©
| &
o
v A8

‘= TopAppBar

‘= BottomAppBar

4 [g [Canvas] & O

22.76% ~

OEBPS/Image00166.jpg
Ch13_UWP

OEBPS/Image00047.jpg
Add New Project ? X

¢ et NET Framework 462 ~ | Sort by: | Default Search Installed Templates (Ctrl+E £ ~
4 |nstalled o
- Console App (.NET Core) Visual C# Type: Visual C#
-~
4 Visual C# A project for creating a command-line

Class Library (NET Core) Visual C# application that can run on .NET Core on
Windows, Linux and MacOS.

oo
e

Windows Universal

Windows Classic Desktop

c#
Web E Unit Test Project (NET Core) Visual C#
.NET Core c#
NET Standard E_] xUnit Test Project (NET Core) Visual C#
Cloud
Test @ ASP.NET Core Web Application (NET Core) Visual C#
WCF

b Azure Data Lake
P Other Languages

P Online

Name: Ch02_Basics

Location: C:\Code\Chapter02 ~

| OK | | Cancel

OEBPS/Image00168.jpg
Ch13_DataBinding

1 First Name Last Name DOB Salary
Alice Smith December 31 2016 34000

2 First Name Last Name DOB Salary
Bob Jones December 31 2016 64000

OEBPS/Image00046.jpg
ﬂ Chapter02 - Microsoft Visual Studio

File

Edit View Project Debug Team
New

Open

Start Page

Add to Source Control

Add

Close

Close Solution
Save Chapter02.sin Ctrl+S
Save Chapter02.sin As...
Save All

Source Control

Data Lake

Ctrl+Shift+S

Tools Test

New Project...

New Web Site...

Existing Project...

Analyze Window Help

P Attach... ¥

Existing Web Site...

g

&7 | Quick Launch (Ctrl+Q)

P - o

Mark Price ~

Solution Explorer
@ e

Search Solution Explorer (Ctrl+;)

v I X

F|p -

suonesyoN

OEBPS/Image00167.jpg

OEBPS/Image00060.jpg
Ch02_Variables

Program.cs Program.cs
- & q‘. Ch02_Variables.Program

'M E’a Main(string[]

args)

// this only works with C# 6.0 or later
rite($"The population of the UK is {population}. ");

riteLine($"The population of the UK is {population:N@}.

riteLine($"{weight}kg of {fruit} costs {price:C}. ");

// this works in all versions of C#

rite("The population of the UK is {@}. ", population);
riteLine("The population of the UK is {@:Ne}. ",

population);
-wr'iteLine("{e} kilos of {@} costs {@:C}. ",

weight, fruit, price);

-rite("Type your name and press ENTER: ");

string name = -ReadLine();
-r.lr'ite("Type your age and press ENTER: ");

string age = -ReadLine();

-Alr‘iteLine($"Hello {name}, you look good for {age}.

A Console.

Replace..

Aa Abl

«* Current Document

OEBPS/Image00181.jpg
MainPage.xam| + X

57" HoloLens 2D App (1280 x 720) 150% scale ~

Bounce Ball

A IEIE

OEBPS/Image00059.jpg
Solution 'Chapter02' Property Pages

Configuration: [IN/A

4 Common Properties
Startup Project
Project Dependencies
Code Analysis Settings
Debug Source Files

> Configuration Properties

Platform: [N/A

© Current selection
O single startup project
Ch02_Basics

OMuItipie startup projects:

Project
Ch02_Basics
Ch02_Numbers

Action
None

None

X

Configuration Manager...

Cancel

Apply

OEBPS/Image00180.jpg
MainPage.xaml + X

23" Desktop (1920 x 1080) 100% scale v|| | m |

Bounce Ball

OEBPS/Image00062.jpg
Application
Build

Build Events
Package
Debu

Signing

Resources

Profile:

Launch:

Application arguments:

Working directory:

Environment variables:

Ch02_Arguments

Project

firstarg second-arg third:arg "fourth arg”

Absolute path to working directory

Name Value

New... | |

Delete

Remove

OEBPS/Image00183.jpg
Ch09_BouncingBall

Bounce Ball

OEBPS/Image00061.jpg
Program.cs

x

// declaring the size of the array Console.| e &
string[] names = new stringl[4]; Replace

// storing items at index positions

names [@0] = "Kate";

names [1] = "Jack";

names [2] = "Rebecca";

names [3] = "Tom";

for (int i = @; i < names.Length; i++)

{

Console:WriteLine(names[il); // read the item at this index

Console.Write($"The population of the UK is {population}. ");

Console.WriteLine($"The population of the UK is {population:N@}.

N M
&| 1of9 € > x
Eh %ﬂ

Replace All (_88Enter)

OEBPS/Image00182.jpg
M Chapter13 - Microsoft Visual Studio

File Edit View Project Build Debug Team Design Format Tools Test Analyze Window Help
io-o|B-am| - :

'I Debug ~ x86

P Simulator l

v Simulator

57" HoloLens 2D App (1280 x 720) 150% scale ~

Local Machine
Remote Machine

Device

Download New Emulators...

ejleg SUIINO UBWNDOQ

Bounce Ball

OEBPS/Image00064.jpg
Code File Edit Selection View Go Window Help
[X X) Program.cs - Ch02_
@ EXPLORER Program.cs X gl

uments

4 OPEN EDITORS
p Program.cs namespace Ch@2_Arguments

.+ Problem Report for dotnet

0 j dotnet quit unexpectedly.

el Click Reopen to open the application again. This report will be sent to Apple
@ i automatically.

» Comments (ConsoleColor), args[@], trt

Problem Detalls and System Configuration (ConsoleColor),

dotnet [3760]
/usr/local/share/dotnet/dotnet
dotnet
[

Code Type X86-64 (Native)

Parent Process: dotnet [3755]

Responsible: Electron [2618]

User ID: 501

1]
ol

Date/Time: 2017-03-11 13:35:36.642 +0000

0S Versio Mac 0S X 10.12.3 (16D32)

Report Version: 12

Anonymous UUID: AA7295DC-51D9-E1D9-3A55-888DF150A215

Hide Details 0K

OEBPS/Image00185.jpg
©® B¥ Get Started with ASPNET | T/ x

& C {d @ https://www.asp.net/get-started
.Microsoft v f Blog |"| o\ @ @ = ﬂ Elements Console Sources Network Timeline Profiles

© ™ ¥ | View
ASP.NET

= Preserve log (| Disable cache

Regex Hide data URLs
XHR JS CSS Img Media Font Doc WS Manifest Other

(; et Sta rte d With AS P N ET 20000ms 40000ms 60000ms 80000ms 100000ms 120000ms 140000ms 160000ms 18]
’ . ; 4

| Below you will find the steps to build your first ASP.NET Core app.

[See Start ASF I'if you are looking to get started with Name X Headers Preview Response Cookies Timing

ASP.NET and the .NET Framework on Windows. Learn more about

1
the difference between ASP.NET and ASP.NET Core. | get-started.css 3
get-started-1.png 4| <i—[if IE]><![endif]—>
= 5| <html>
| get-started-2.png 6 <head>
e EE 7| <!— build date: Sun, 18 Dec 2016 00:29:21 GMT ——>
B 7.2.min, z
get-started.js 9 <meta charset="UTF-8" />
e § - 10 <meta http-equi
1 n - *
Let's start by building a simple "Hello, b 1 <meta : ¢
j5?mt_id=1007149&mt_adid=16... g <"l'e‘i aPPUC?‘”:*”f’“
n - <lin| ns-prefetch” href:
world! app. un loader1.1.0.s 14 <link ns-prefetch” href
32 requests | 226KB transferred | ...| 15 <link ns-prefetch” href:
16 1ink ri ns-nrefetch" href:

<title>Get Started with ASP.NET | The ASP.NET Site</title>

"'X-UA-Compatible" content="IE=edge,chrome=
viewport" content="width=device-width, initial-

Mark

| ¢

Application » 2| ¢ X
Offline No throttling v

content="Microsoft ASP.NET Si
"https://media-www-asp.azureed
“https://static.adzerk.net" /
ttps://engine.adzerk.net" /3
1105 //www.qoaale-analvtics,

OEBPS/Image00063.jpg
== CA\WINDOWS\system... ~ — O

OEBPS/Image00184.jpg
[NON J G Google x Mark

& <o ‘ [https://www.google.co.uk/

x O Elements Console Sources Network > ¢ X
® © ™ Y View: I=E = | () Preservelog (] Disable cache
Filter [Regex [| Hide data URLs

(@) XHR JS CSS Img Media Font Doc WS Manifest Other

200ms 400ms 600ms 800ms 1000ms

Recording network activity...

Perform a request or hit 38 R to record the reload.

OEBPS/Image00065.jpg

OEBPS/Image00056.jpg
EHS-O- Document1 - Word ?H - 0O X
HO INSE DESI PAG REF MAI REVI VIE Maru."l

dg you like icecream?|

PAGE 10F 1

OEBPS/Image00177.jpg
Solution Explorer v 1 x
Wil o-s¢T@

Search Solution Explorer (Ctrl+;) P~

%] Solution ‘Chapter13' (3 projects)
4 Ch13_BouncingBall (Universal Windo
&P Service Capabilities
> /M Properties

Solution Explorer | Assets States Data

Objects and Timeline v o x
®Bounce.. ¥ X + - |4 4 p I »l
[Page] *e 002000 @b [4-
A
4 [[Page]

‘= TopAppBar

‘= BottomAppBar

4 [g [Canvas] & O

Ap

5" Phone (1920 x 1080) 300% scale

0 0

w
R
S

100

22.76% ~ 2 HE B[4/

OEBPS/Image00176.jpg
Solution Explorer
@dE- o-S¢a@

Search Solution Explorer (Ctrl+;)

P~
%] Solution ‘Chapter13' (3 projects)
4 Ch13_BouncingBall (Universal Windo
&p Service Capabilities
> M Properties

Solution Explorer | Assets States Data

Objects and Timeline v 1x

®Bounce.. ¥ X + - |4 4 p b b

=

*e 001000 =
@8 0

[Page]

4 [[Page]
‘= TopAppBar

= BottomAppBar
4 [[Canvas]

&® 0

v I x _App aml.cs

5" Phone (1920 x 1080) 300% scale

10 0 320
100

=)

320

0= € %, & ¥z

vaH
568

640

22.76%

2 [+

OEBPS/Image00058.jpg
@ Code File Edit Selection View Go Window Help

o000 Program.cs - Ch02_Basics
@ EXPLORER Program.cs X oo o
4 OPEN EDITORS using System;
Program.cs o
namespace Ch@2_Basics
4 CHO2_BASICS {
0 > .vscode 0 references
> bin class Program _l'
b obj {
: . 0 references
® h02_Basics.csproj
£ho: bas prol static void Main(string[] args)
Program.cs e
[‘?I Console.Writeline|(['Hello WOrld!“
}
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL Filter by typ...

4 Program.cs 2
@ 'Console’ does not contain a definition for 'Writeline' [Ch02_Basics] (9, 21)
@ ; expected [Ch02_Basics] (9, 46)

OEBPS/Image00179.jpg
Ch13_BouncingBall

Bounce Ball

OEBPS/Image00057.jpg
Ch02_Basics

- ‘ ”ﬁ. Ch02_Basics.Program

4

¥ |l e, Main(string[] args)

1
2
3 &
4 | {
5 =
s |
79 B
8
o |
10
11
12 }
100% ~

o
Entire Solution
* Code

€ cs1002

€ cso117

us'ir}“g System;

namespace Ch@2_Basics

b [dp)

v | 0 2 Errors | ‘ 0 Warnings | o 0 Messages || Build + IntelliSense ~| | Search Error Li: P ~

class Program
{
static void Main(string[] args)
{
Console.Writeline("Hello World!")
}
}
Description Project
; expected Ch02_Basics

‘Console’ does not contain a

definition for ‘Writeline' Ch02_Basics

File Line SuppressionS.. Y
Program.cs 9 Active
Program.cs 9 Active

OEBPS/Image00178.jpg
® BounceBall timeline recording is off.

OEBPS/Image00155.jpg
B MainWindow

Get Products

Type in here while the products Ioad."hjhhkhhH

OEBPS/Image00148.jpg
Program.cs - ChO9_PLINQ
Program.cs % m -

Write("Press ENTER to start. ");
ReadLine();

watch.Start();

IEnumerable<int> numbers = Enumerable.Range(1l, 200000000) ;|
//var squares = numbers.Select(number => number x 2).ToAci
var squares = numbers.AsParallel().Select(number => numb
watch.Stop();
WriteLine($"{watch.ElapsedMilliseconds:#,##0} elapsed mi

TERMINAL 1: bash t 4+ I v

Compiling Ch@9_PLINQ for .NETCoreApp,Version=v1.1

Compilation succeeded.
0 Warning(s)
0 Error(s)

Time elapsed 00:00:01.2571625
Press ENTER to start.

20,278 elapsed milliseconds.
bash-3.2%

OEBPS/Image00147.jpg
B C:\WINDOWS\system32\cmd.exe

File Options View Press ENTER to start.
26,830 ellapsed milliseconds.

Processes Performance App history Start-up Users Details Services Press any key to continue .

CPU :
5% 256 G CP Intel(R) Core(TM) i7-3615QM CPU @ 2.30...

% Uti

Memory
2.0/6.0 GB (33%)

Disk 0 (C:)
0%

OEBPS/Image00150.jpg
Namespace

Class

Description

System.IO

StreamReader

This reads from streams as text

StreamWriter

This writes to streams as text

BinaryReader

This reads from streams as .NET types

BinaryWriter

This writes to streams as .NET types

System.Xml

XmlReader

This reads from streams as XML

XmlWriter

This writes to streams as XML

OEBPS/Image00149.jpg
Namespace

Class

Description

System. IO

FileStream

This is stored in the filesystem

MemoryStream

This is stored in memory in the current
process

System.Net.Sockets

NetworkStream

This is stored at a network location

OEBPS/Image00152.jpg
B Carl T. Bergstrom @CT_Bergstrom - Dec 17
) My son clearly has a better grasp on the real world than his teacher

does.

8. If 6 workers can make a car in 90 hours, how long would it take
12 workers to make the same car?

(A) 12 hours
) 25 hours

) 30 hours
D) 45 hours
180 hours

OEBPS/Image00151.jpg
Program.cs

Installed Updates NuGet Package Manager: Ch10_Serialization

System.Xml.XmlSerializer x ~| @& [Include prerelease Package source: nuget.org AR 2]

NET

System.Xml.XmlSerializer

Version: | Latest stable 4.3.0 ~ Install

OEBPS/Image00154.jpg
<Grid>

<StackPanel> <New Event Handler>

<Button Name="GetProductsButton" Click="">Get Products</Button>
<TextBox>Type in here while the products load...</TextBox>

OEBPS/Image00153.jpg
MainWindow.xaml* # X MainWindow.xaml.cs

Get Products

Type in here while the products load...

£ [=]2] «
LG Design 1t E XAML
[Button '{ Button
=<Window x:Class="Ch12_GUITasks.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:local="clr-namespace:Ch12_GUITasks"
mc:Ignorable="d"
Title="MainWindow" Height="350" Width="525">
<Grid>
<StackPanel>
<Button Name="GetProductsButton">Get Products</Button>
<TextBox>Type in here while the products load...</TextBox>
<ListBox Name="ProductsListBox"></ListBox>
</StackPanel>
i </Grid>
{(/window>

100% ~ 4

OEBPS/Image00146.jpg
Program.cs - ChO9_PLINQ

Program.cs X

TERMINAL

Compiling Ch@9_PLINQ for .NETCoreApp,Version=v1l.1

Compilation
0 Warning(s)
0 Error(s)

Write("Press ENTER to start. ");

ReadLine();

watch.Start();

IEnumerable<int> numbers = Enumerable.Range(1l, 200000000
var squares = numbers.Select(number => number * 2).ToArr
//var squares = numbers.AsParallel().Select(number => nu
watch.Stop();
WriteLine($"{watch.ElapsedMilliseconds:#,##0} elapsed mi

1: bash v

succeeded.

Time elapsed 00:00:01.3652742

Press ENTER to start.
14,493 elapsed milliseconds.

bash-3.2$

OEBPS/Image00159.jpg
5" Phone (1920 x 1080) 300% scale

mom

i Design 1 E XAML
[Grid ~ [Grid
E<ﬁage
x:Class="Ch13_UWP.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:Ch13_UWP"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">

Voo NOUV A WN R

[y
)

El <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

| </Grid>
</Page>

o
S

[
w

OEBPS/Image00158.jpg
New Universal Windows Project

Choose the target and minimum platform versions that your Universal Windows application will

support.

Target Version

Minimum Version

Which version should I\l ToRET0) Id 10240)

Windows 10 Anniversary Edition (10.0; Build 14393)

Windows 10 (10.0; Build 10240)

Windows 10 Anniversary Edition (10.0; Build 14393)

Windows 10 (10.0; B

ild 10586)

OK

Cancel

OEBPS/Image00161.jpg

OEBPS/Image00160.jpg
bu X

4 Common XAML Controls

@ RadioButton
4 All XAML Controls
AppBarButton

AppBarToggleButton

HyperlinkButton
RepeatButton

ToggleButton

OEBPS/Image00163.jpg
Ch13_UWP

02:29:13

OEBPS/Image00162.jpg
5" Phone (1920 x 1080) 300% scale

L2 Design 14 E XAML
[Button ~ | [Button
I 5 | xmlns:local="using:Ch13_UWP"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
10 =] <Button Margin="6" Padding="6" Name="clickMeButton">
11 Click Me
12 </Butfton>
13 [</6rid>

14 [</Pases
v 4

OEBPS/Image00165.jpg
Ch13_UWP

—
02:45:40

OEBPS/Image00164.jpg
Ch13_UWP

OEBPS/Image00157.jpg
Settings

¢ Home Use developer features

| Find a setting These settings are intended for development use only.

Learn more
Update & security
(O Windows Store apps

Windows Update Only install apps from the Windows Store.

Windows Defender O Sideload apps
Install apps from other sources that you trust, like your
Backup workplace.

Recovery (® Developer mode

Install any signed app and use advanced development features.

Activation . '
Some features might not work until you restart your PC.

For developers .
Enable Device Portal

Windows Insider Program . . .
Turn on remote diagnostics over local area network connections.

@ off

OEBPS/Image00156.jpg
B MainWindow ~

Get Products

Type in here while the products Ioad..jkhjhkhhhhkhkhhkhkhkhhjhjkhhhhhhhhh‘

1: Chai costs £18.00
2: Chang costs £19.00
3: Aniseed Syrup costs £10.00

OEBPS/Image00254.jpg

OEBPS/Image00255.jpg

OEBPS/Image00248.jpg
* App name
muppets v
azurewebsites.net
* Subscription

csbdatnetcorePAYG

* Resource Group ©

Create new @ Use existing

csbdatnetcore

* App Service plan/Location
csbdotnetcore(North Europe)

Application Insights® | on

Pin to dashboard

OEBPS/Image00249.jpg
@ Safari File Edit View History Bookmarks Window Help

eve < im] portal.azure.com
Azure Facebook MSN Spotify Epiv Mev Screencastsv Learnv Readv Techv Travelv Watchv Tempv

csédotnetcore@outlo.
CSEDOTNETCOREOUTLOOK (G

6 muppets 2 X

muppets

0 Search (Ctri+/) [Z Browse M Stop © Restart [Delete

ick here to access our Quickstart guide for deploying code to your app =
(& Overview
Essentials ~

B Activity log
Resource group (change) URL

2 Access control (IAM) csédotnetcore http://muppets.azurewebsites.net
Status App Service plan/pricing tier
& s Running csbdotnetcore (Free)
Location FTP/deployment username
3 Diagnose and solve problems North Europe No FTP/deployment user set
Subscription name(FIP hostname
6dotnetcorePAYG ftp://waws-prod-db3-041.ftp.azurewebsites window.
APP DEPLOYMENT Subscription 1D FTPS hostname
54250439-aeec-4fa2-9479-fe2028ebdeaf ftps://waws-prod-db3-041.ftp.azurewebsites.windo..
@ Quickstart

> Monitorin
@ Deployment credentials 9

N Requests and errors
i, Deployment slots

%+ Deployment options

@ Continuous Delivery (Preview)

OEBPS/Image00246.jpg
Microsoft Azure v Allresources

All resources
—+ New Default Directory

[9)

¥# Resource groups Add Columns Refresh

inia _

OEBPS/Image00247.jpg
Everything

Y

Filter

web app|

PUBLISHER

Web App Microsoft

OEBPS/Image00253.jpg

OEBPS/Image00250.jpg
Overview Publish

Connected Services Publish your app to Azure or another host. Learn more

(]
23 O =

Azure App Service

T (Preyiim) IIS, FTP, etc Folder

Publish

OEBPS/Image00251.jpg
Create App Service BN Microsoft account
Host your web and mobile applications, REST APIs, and more in Azure I csdotnetcore@outiook.com

Ch16lmageEditorSite

v

Services

Subscription

cs6dotnetcorePAYG v

Resource Group

cs6dotnetcore (northeurope) ¥ New...

App Service Plan

Ch16ImageEditorSite20170316095437Plan” “I[New.

Container Registry
registry20170316095720* ¥ New...

Clicking the Create button will create the following Azure resources
Explore additional Azure services

Ann Qanvira - Ch1AlmanaFditarQita

If you have removed your spending limit or you are using Pay as You Go, there may be monetary impact if you provision additional resources.

Learn More

Create | | Cancel

OEBPS/Image00257.jpg

OEBPS/Image00259.jpg
C#7.and .NET Core:
Modern Cross-Platform
Development
prp—

m s

OEBPS/Image00256.jpg

OEBPS/Image00030.jpg
1_WelcomeDotNetCore s q’bCh01,WelcomeDotNetCore.Program ¥ ﬁfla Main(stringl[] args)
using System;

[=Inamespace Ch@1l_WelcomeDotNetCore

Ki

El class Program

|«

=] static void Main(string[] args)

{

i !
X
3
4
5
6
7
8
9

System.Console.WriteLine("Welcome, .NET Core![')

B R
N R

100% ~ 4

OEBPS/Image00029.jpg
h01_WelcomeDotNetCore -l q‘. Ch01_WelcomeDotNetCore.Program ~ &’a Main(string[] args)
using System;

=Inamespace Ch@1l_WelcomeDotNetCore
|{

E| class Program

{

=] static void Main(string[] args)

{

1
2
3
4
5
6
7
8
9

System.Console .WriteLine(\)v

=
[\

A 1 of 18 ¥ void Console.WriteLine()
Writes the current line terminator to the standard output stream.

Il
[

OEBPS/Image00032.jpg
Microsoft Visual Studio X

0 There were build errors. Would you like to continue and run the last
successful build?

Yes

[Jbo not show this dialog again

OEBPS/Image00031.jpg
C:\Windows\system32\cmd.exe

Welcome, .NET Core! ~
Press any key to continue .

OEBPS/Image00034.jpg
aY Program.cs _ Solution Explorer
BO1Fieliofs " Myrop =] @ Maing RE-[o-5aB| L=
- 4 =lclass MyApp { static void Main() {
2 LSystem.Console.WriteLine("Hello, C#!"); } }\ pP-
%] Solution ‘Chapter01' (2 projects)

4 Cho1_HelloCS

P =B Dependencies
b ¢ MyApp.cs

Search Solution Explorer (Ctrl+;)

4 Ch01_WelcomeDotNetCore
P =B Dependencies
P C# Program.cs

Solution Explorer BEETR N1l

OEBPS/Image00033.jpg
[ch01_WelcomeDotNetCore % qﬁ.ChO17WeIcc:meDotNetCore.Program ~ %3 main(string(] args) -
3 using System; =5
: 3
3 [=Inamespace Ch@1l_WelcomeDotNetCore
4 g
5 = class Program I
s | 1
7 IE} static void main(string[] args)

8 {

99 I System.Console.WriteLin("Welcome, .NET Core!™);
10 }

11 }

12 } u|

100% ~

Entire Solution s |[2 E’mrsﬁ‘H IL‘ O:Wamfngsm @ 00f 1 Message | Build + IntelliSense - Search Error List P~
Code Description Project File Line SuppressionS.. Y
€ cssooy Frograt does not contain /static "Main) Thettiod Ch01_WelcomeDotNetCore CSC 1 Active

suitable for an entry point
0 CS0117 'Console’ does not contain a definition for ‘WriteLin' ~ Ch01_WelcomeDotNetCore Program.cs 9 Active

OEBPS/Image00035.jpg
Program.cs .~ |Solution Explorer
b b T | ©aMaing @i o5 9B &=
P~

Search Solution Explorer (Ctrl+;)

5
2
X
o
o
Y
%

Bciass MyApp
{
= static void Main() & Solution ‘Chapter01' (2 projects)
L 4 Ch01_HelloCS
System.Console.WriteLine("Hello, C#!"); | b =B Dependencies
b ¢ MyApp.cs
4 Ch01_WelcomeDotNetCore
P =B Dependencies

1
S
3
4
5
6
7

P C# Program.cs

Solution Explorer BEETR N1l

OEBPS/Image00026.jpg
Ch01_WelcomeDotNetCore M | qﬁ. Ch01_WelcomeDotNetCore.Program v @a Main(string[] args)
using System;

amespace Ch@1l_WelcomeDotNetCore

class Program

{

static void Main(string[] args)

System.con

3 AppContext

{

Voo NV A WN R

B
=S

‘t: BitConverter

% class SystemConsole

4 ConsoleCancelEventArgs Represents the standard input, output, and error streams for console applications.
Framework source code for this type, see the Reference Source.

[
N

@ ConsoleCancelEventHandler
ConsoleColor
ConsoleKey

ConsoleKeylInfo

O & O O

ConsoleModifiers

100% ~

OEBPS/Image00028.jpg
100 %

1

2

3

4 I{
5 ®
6

7
8

29 |
10

11

12 }

Ch01_WelcomeDotNetCore

usiﬁg System;

[=lnamespace Ch@1l_WelcomeDotNetCore

class Program

{

static void Main(string[] args)

{

System.Console.wr

© Writeline

M ". Ch01_WelcomeDotNetCore.Program ~ &’a Main(string([] args)

o

F 5 9

4

» b

OEBPS/Image00027.jpg
n B X
h01_WelcomeDotNetCore 'i ‘un. Ch01_WelcomeDotNetCore.Program hé ‘ &’a Main(string[] args)

usiﬁg System;

[=Inamespace Ch@1l_WelcomeDotNetCore
[
=] class Program
{
= static void Main(string[] args)
{

VWO NOU A WN R

2
—

System.Console.L

& |BackgroundCoIor

© Beep

& BufferHeight
& BufferWidth

% CancelKeyPress
& CapsLock

@ Clear

& Cursorleft

& CursorSize

F 5 9

“ | ConsoleColor Console.BackgroundColor { get; set; }

Gets or sets the background color of the console.

OEBPS/Image00041.jpg
Code File Edit Selection View Go Window Help
000 Program.cs - Ch01_WelcomeDotNetCore
@ EXPLORER Program.cs % m -
4 OPEN EDITORS using System;
Program.cs L
namespace Cho1_WelcomeDotNetCore
4 CHO1_WELCOMEDOTNETCORE I
0 > .vscode 0 references
> bin class Program
» obj i
Ch01_WelcomeDotNetCore.csproj O fetermncse
® = 3 static void Main(string[] args)
Program.cs. 7
Console.WriteLine("Welcome, .NET Core!");
}
¥
]
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL tbash ¢ + @ x

bash-3.2$ dotnet new console

Content generation time: 58.9268 ms

The template "Console Application" created successfully.
bash-3.2¢ dotnet run

Welcome, .NET Core!

bash-3.2$ I

OEBPS/Image00040.jpg
Code File Edit Selection View Go Window Help
eeo Program.cs - ChO1_WelcomeDotNetCore
@ EXPLORER |WER| Required assets to build and debug are missing from 'Ch01_WelcomeDotNe... m -
. 1
OPENEDITORS jn5 There are unresolved dependencies from 'Ch01_WelcomeDotNetCore.csproj'. Please execute t...
o) Program.cs
namespace Ch@l_WelcomeDotNetCore
4 CHO1_WELCOMEDOTNETCORE { 1
® AT 0 references 1
> obj class Progran [
ChO1_WelcomeDotNetCore.csproj i
0 references
Program.cs
® o static void Main(string[] args)
{
Console.WriteLine("Hello World
}
¥
¥
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL 3 P E £ x
Downloading package '.NET Core Debugger (macOS / x64)' (38602 KB)

.................... Done!

Installing package 'Mono Runtime (mac0S)'

Installing package 'Mono Framework Assemblies'
Installing package 'OmniSharp (Mono 4.6)"

Installing package '.NET Core Debugger (mac0S / x64)'

Finished

OEBPS/Image00043.jpg
o

Code File Edi Selection View Go Window Help

Untitled-

Untitled-1 %

TERMINAL

bash-3.2¢ cd Code
bash-3.2$ mkdir Repos
bash-3.2$ cd Repos

bash-3.2§ git clone https://github.com/markjprice/cs7dotnetcore.git
Cloning into ‘cs7dotnetcore’.
remote: Counting objects: 1856,

done.

remote: Compressing objects: 100% (363/363), done.
Receiving objects: 54% (1003/1856), 12.92 MiB | 1.72 MiB/s

1: git

~

OEBPS/Image00042.jpg
Gj ¥ | 0 Search Work Items (Ctrl+#)

Connect | Offline
Manage Connections v
4 Hosted Service Providers
Visual Studio Team Services
Microsoft Corporation
Services to help you ship high quality software. On time,
every time. Focus on your code. We'll simplify the rest.

Connect... Get started for free @

GitHub
GitHub, Inc.

Powerful collaboration, code review, and code
management for open source and private projects.

Connect...

D Local Git Repositories (1)

OEBPS/Image00045.jpg
| ¥ = |Chaptero2
Home Share View
<« v A | > ThisPC > Local Disk (C:) > Code > Chapter02 v U Search Chapter02

~

% . Local Disk (C) ~ Name Date modified Type
. Code
b § Chapter01
) ! Chapter02
b § PerfLogs

5 Chapter02.sin 3/11/2017 11:48 AM Visual Studio Solution

v

1item 1item selected 281 bytes

OEBPS/Image00044.jpg
New Project

? X

Search Installed T P ~

Type: Visual Studio Solutions

Create an empty solution containing no
projects

Browse...

P Recent .NET Framework 462 ~ Sort by: Default
4 |nstalled
Blank Solution Visual Studio Solutions
-
4 Templates
b Visual C#
b Azure Data Lake
P Other Languages
4 Other Project Types
Visual Studio Solutions
Not finding what you are looking for?
P Online
Name: Chapter02
Location: C:\Code ad
Solution: Create new solution o
Solution name: |Chapter02

| Create directory for solution

["] Add to Source Control

OK | | Cancel

OEBPS/Image00037.jpg
View | Project Build Debug
Code 57/

A
v

Solution Explorer Ctrl+W, S
Team Explorer Ctrl+, Ctrl+M

m g £

Server Explorer Ctrl+W, L
SQL Server Object Explorer Ctrl+’, Ctrl+S

c
k=

i)

Call Hierarchy Ctrl+W, K
Class View Ctrl+W, C
Code Definition Window Ctrl+W, D
Object Browser Ctrl+W, J

0 @

Error List Ctrl+W, E
Output Ctrl+W, O

OEBPS/Image00036.jpg
Z+ ¥
Microsoft (R) Roslyn C# Compiler version 2.0.0.61104
Loading context from 'CSharpInteractive.rsp’.
Type "#help" for more information.
#r "System.Net.Http"
using System.Net.Http;
var client = new HttpClient();
client.BaseAddress = new Uri(“"http://www.microsoft.com/");
var response = await client.GetAsync("about");
response.StatusCode

> response.Content.Headers.GetValues("Content-Type")
string[1] { "text/html" }

> await response.Content.ReadAsStringAsync()

"<IDOCTYPE html ><html xmlns:mscom=\"http://schemas.microsoft
>

100% ~ 4

C# Interactive BE{GIARES

OEBPS/Image00039.jpg
Code File Edit Selection View Go Window
L X X]

@ EXPLORER

4 OPEN EDITORS
p 4 CHO1_WELCOMEDOTNETCORE
Ch01_WelcomeDotNetCore.csproj

FY Program.cs

elp
ChO1_WelcomeDotNetCore

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL tbash ¢ + @ x

bash-3.2¢ dotnet new console

Content generation time: 58.9268 ms

The template “Console Application" created successfully.
bash-3.25 [l

OEBPS/Image00038.jpg
@ Code File Edit

Selection

View Go Window

<
Dropbox
™) iCloud Drive
s Applications

[Desktop

© Downloads
@

markjprice
[(1 Window...
iCloud
b iCloud Drive
[Desktop
% Documents

Devices

Chapter01 ChO1_HelloCS

New Folder
Name of new folder:
Ch01_WelcomeDotNetCore|

Cancel

OEBPS/Image00015.jpg
Code
LN)

@ EXTENSIONS

@sort:installs

e Edit Selection Vie Go Window

Python 055 S14M *45
Linting, Debugging (multi-threaded, remote),
Don Jayamanne

oy vscode-icons 7.3.0 @1.2M *5
[!. Icons for Visual Studio Code
Roberto Huertas [Install |
Debugger for Chrome 2.6.0 H12M 45

Debug your JavaScript code in the Chrome b

Microsoft
C[C++ 010.2 1M *35
Complete C/C++ language support, including

Microsoft
ESLint 127 &736K K45

Integrates ESLint into VS Code.
Dirk Baeumer
beautify 0.8

Beautify code in place for VS Code
HookyQR

@724K *45

Help

Extension: C#

Extension: C# X

y N C## ms-vscode.csharp

Microsoft | & 1586736

Yk ok ok

C# for Visual Studio Code (powered by OmniSharp).

License

Details Contributions Changelog Dependencies

C# for Visual Studio Code (powered by OmniSharp)
Master
T

Welcome to the C# extension for Visual Studio Code! This preview provides the following
features inside VS Code:

« Lightweight development tools for .NET Core.
« Great C# editing support, including Syntax Highlighting, IntelliSense, Go to
Definition, Find All References, etc.

g 60 0.655 @BABK K4, Debugging support for .NET Core (CoreCLR). NOTE: Mono and Desktop CLR

OEBPS/Image00008.jpg
Visual Studio
Hello, Mark Price
M markes7@outlook.com
View your Visual Studio profile
Start with a familiar environment
Development Settings: | Visual C# v

Choose your color theme

@® Blue O Dark O Light
4] visual Studio =) 4] visual Studio

I_-__

You can always change these settings later.

Start Visual Studio

OEBPS/Image00129.jpg
¢ x|EE alk
b Z» Azure
4 ﬁi Data Connections
4 E win81vm\localdb#99a11e8d.Northwind.dbo
4 [Tables
FH Categories
FH CustomerCustomerDemo
FH CustomerDemographics
FH Customers
FH Employees
FH EmployeeTerritories
FEH Order Details
FH Orders
FH Products
[Region
FH Shippers
FH Suppliers
FH Territories
> I Views
b I Stored Procedures

OEBPS/Image00007.jpg
Visual Studio

Products

Installed

Visual Studio Community 2017

Acquiring Microsoft VisualStudio.CoreEditor

0% o

Applying Microsoft Visualtudio Setup. Configuration
0%

Cancel

Available

Visual Studio Enterprise 2017

Microsoft DevOps solution for productivity and coordination across teams of any size
License terms | Release notes

Install

Welcome!

We inite you o go oniine o hone your
siils and find acditonsl tools to support
your developrent workfiow.

Learn

Whether you're new to development or an
experienced developer, we have you covered
with our tutorial, videos, and sample code.

Marketplace
Use Visual Studio extensions to add support
for new technologies,integrate with other
products and services, and fine-tune your
experience.

@ Need some help?
Check out the Microsoft Developer
Community where developers provide
feedback and answers to many common
problems

Get help from Microsoft at Visual Studio
Support

15302272

OEBPS/Image00128.jpg
Add Connection

Enter information to connect to the selected data source or click “"Change" to choose a

different data source and/or provider.

Data source:

Server name:

Microsoft SQL Server (SqlClient) Change...
(localdb)\mssqllocaldb e Refresh
Log on to the server
Authentication: Windows Authentication >
Save my password
Connect to a database
(® Select or enter a database name:
Northwind e
QO Attach a database file:
Browse...
T»i/‘
Advanced...

Test Connection

OK

Cancel

OEBPS/Image00010.jpg
(21 Downloads

H = [EERENE = v Q Search
Favorites Size Kind Date Added

22 bro ual Studio Code 1555 MB __Application Today, 20:14
@ Air i VSCode-darwin-stable.zip 54.4 MB ZIP archive Today, 20:13

& VisualStudioForMac-...view-7.0.0.1566.dmg 273.4 MB Disk Image Today, 19:54
O el rive >4 vs_community.exe 1MB EXEfile Today, 17:36
'.Ag Applications & Win10_1607_English_x64.iso 4.38 GB ISO Disk Image Yesterday, 05:39
B Desktop & Microsoft_Office_201...021600_Installer.pkg 1.63 GB Install...ackage Yesterday, 00:28
o e & sqlitestudio-3.1.1.dmg 26.4 MB Disk Image 5 Mar 2017, 20:5

ﬁj markjprice
[[C]Windo.. A B Macintosh HD > [Users > 4 markjprice » [Downloads > 04 Visual Studio Code

OEBPS/Image00131.jpg
-+ Update | Script File: dbo.Products.sql T

| Name Data Type | Allow Nulls | Default

'; ProductlD int [
ProductName nvarchar(40) O
SupplierlD int
CategorylD int

UnitPrice money
UnitsInStock smallint

UnitsOnOrder smallint

1.
}
|
‘ QuantityPerUnit nvarchar(20)
|
|
|
|
\

ReorderLevel smallint
O

Discontinued bit

OEBPS/Image00009.jpg
29) start Page - Microsft Visul Studio

Fle Edt View Projsct Debug

Team

Tools

Test

Anslyze Window Help

ol a9 -C-

Get Started

New to Visual Studio? Che ing tutoral and ssmple

ot training on new frameworks,languages, and technologies
Creste s private code repo and backlog for your project
See how easy it i to get started with cloud services

Discover ways to extend and customize the IDE

Recent

The projects, solutions and folders you open locally
appear here.

The remote host for Gt repositores and other source
control providers will appear on the recent st of other
devices you've signed in to.

b Attach. < | 5% .

Open

on your local div.
Checkout from:
& Visual Studio Team Services

Githud

Open Project/ Solution
Open Folder

Open Website

New project
Search projec templates 0 ©
Recent project templates:

The new project templates you
use appear here, The it alzo.

More project templates.

@ vl - markc

L= |

Developer News

Announcing .NET Core Tools 1.0
Today, we are releasing NET Core Tools
10,1t an excting day and an important.
milestone in the .NET Core journey. Th
NEW Tuesday, March 7, 2017

Announcing New ASPNET Core and
Web Development Features in
Visual Studio 2017

We are pleased to announce updates to
our ASPNET tools, ASP.NET Core tools
Container tools, and framevorks that a
NEW Tuesday, March 7, 201

Redgate Data Tools in Visual Studio
2017

Today during the Visual Studio launch
event, we announced tht we've
partnered with Redigate o include Red.
NEW Tuesdsy, March 7. 2017

Visual Studio 2017

- Pin to taskber

Solution Explorer

Solution Explorer

»

- & x

warcoren ~ Bl

OEBPS/Image00130.jpg
Y | | Max Rows: 1000 3 | oo

ProductID | ProductName SupplierlD CategorylD QuantityPerUnit
Chai 1 1 10 boxes x 20 bags

24 - 12 oz bottles

Chang
12 - 550 ml bottles

Aniseed Syrup
Chef Anton's Cajun Seasoning 48 - 6 oz jars
Chef Anton's Gumbo Mix 36 boxes

OEBPS/Image00012.jpg
[N) 7Y markjprice — -bash — 80x37

Marks-MBP-13:~ markjprice$ brew update
Updated 1 tap (homebrew/core).
==> Updated Formulae
consul-backinator gce@4.9
Marks-MBP-13:~ markjprice$ brew install openssl
==> Downloading https://homebrew.bintray.com/bottles/openssl-1.8.2k.sierra.bottl
HE R AR R R R 100.0%
> Pouring openssl-1.0.2k.sierra.bottle.tar.gz
> Using the sandbox
==> Caveats
A CA file has been bootstrapped using certificates from the SystemRoots
keychain. To add additional certificates (e.g. the certificates added in
the System keychain), place .pem files in
/usr/local/etc/openssl/certs

and run
/usr/local/opt/openssl/bin/c_rehash

This formula is keg-only, which means it was not symlinked into /usr/local.
Apple has deprecated use of OpenSSL in favor of its own TLS and crypto libraries

If you need to have this software first in your PATH run:
echo 'export PATH="/usr/local/opt/openssl/bin:$PATH"' >> ~/.bash_profile

For compilers to find this software you may need to set:
LDFLAGS: -L/usr/local/opt/openssl/lib
CPPFLAGS: -I/usr/local/opt/openssl/include

==> Summary

Bl /usr/local/Cellar/openssl/1.8.2k: 1,696 files, 12MB

Marks-MBP-13:~ markjprice$ mkdir -p /usr/local/lib

Marks-MBP-13:~ markjprice$ 1ln -s /usr/local/opt/openssl/lib/libcrypto.1.08.0.dyli
b /usr/local/lib/

Marks-MBP-13:~ markjprice$ 1n -s /usr/local/opt/openssl/1lib/libssl.1.0.0.dylib /
usr/local/lib/

Marks-MBP-13:~ markjprice$ [l

OEBPS/Image00133.jpg
[XN] # SQLiteStudio (3.1.1)
Y |
0@ Databases

‘Filter by name ‘

Northuingd

_a_ﬁ_aévelye

‘ Connect to th

‘ &¥ Disconnect from the database

OEBPS/Image00011.jpg
‘ ® O ® " markjprice — ruby -e #!/System/Library/Frameworks/Ruby.framework/Versions...

Last login: Tue Mar 7 17:18:54 on console

Marks-MBP-13:~ markjprice$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubuser
content.com/Homebrew/install/master/install)"

==> This script will install:

/usr/local/bin/brew

/usr/local/share/doc/homebrew

/usr/local/share/man/manl/brew.1
/usr/local/share/zsh/site-functions/_brew
/usr/local/etc/bash_completion.d/brew

/usr/local/Homebrew

==> The following existing directories will be made group writable:
/usr/local/bin

/usr/local/share

/usr/local/share/man

/usr/local/share/man/man8

==> The following existing directories will have their owner set to markjprice:
/usr/local/bin

/usr/local/share

/usr/local/share/man

/usr/local/share/man/man8

==> The following existing directories will have their group set to
/usr/local/bin

/usr/local/share

/usr/local/share/man

/usr/local/share/man/man8

==> The following new directories will be created:
/usr/local/Cellar

/usr/local/Homebrew

/usr/local/Frameworks

/usr/local/etc

/usr/local/include

/usr/local/lib

/usr/local/opt

/usr/local/sbin

/usr/local/share/zsh

/usr/local/share/zsh/site-functions

/usr/local/var

Press RETURN to continue or any other key to

OEBPS/Image00132.jpg
0 # Database

Database type
sQLite 3
File
markjprice/Code/ChapterOS/Northwind.db| [+ 0=
Name (on the list)
Northwind

Options

Permanent (keep it in configuration)

Test connection & Cancel

OEBPS/Image00014.jpg
Introduction
License
Destination Select
Installation Type
Installation

© Summary

Microsoft®

NET

& Install .NET Core SDK 1.0.1 (x64)

The installation was completed successfully.

The installation was successful.

.NET Core CLI was successfully installed.

Install dependencies

In order to be able to use .NET Core on OS X, you need to install
OpenSSL version 1.0.1/1.0.2. There are many ways to install/update your
libssl. Using Homebrew is the easiest. You can view the instructions here
or if you're updating, on this page.

OEBPS/Image00135.jpg
o @ Databases

Filter by name

v = Northwind (SQLite 3)

v |7} Tables (10)

» || Categories

| Customers
] Employees
|| EmployeeTerritories
| Order Details
|| Orders

4y vvVvyy

B Producjs

|| shippe___a Create a table

] Supplié

vvVvy

B Territo("2 Delete the table

OEBPS/Image00013.jpg
@ Introduction
License
Destination Select
Installation Type
Installation

Summary

Microsoft®

NET

& Install .NET Core SDK 1.0.1 (x64)

Welcome to the .NET Core SDK 1.0.1 (x64) Installer
Microsoft .NET Core CLI

.NET Core is a development platform that you can use to build command-
line applications, microservices and modern websites. It is open source,
cross-platform and is supported by Microsoft. We hope you enjoy using it!
If you do, please consider joining the active community of developers that
are contributing to the project on GitHub (https://github.com/dotnet/core).
We happily accept issues and PRs.

This package contains all the tools you will need to start writing
applications with .NET Core. It includes several tools, including the C#
compiler and the NuGet package manager, and a copy of .NET Core for
both you and the tools to use.

Continue

OEBPS/Image00134.jpg
a @ Databases

Filter by name

v B Nothwind |
Tables (10)

|I7| Categories

/7| Customers

| Employees

| EmployeeTerritories
/| Order Details

7| Orders

/7| Products

.| Shippers

|I7| Suppliers

7| Territories

v

VVYVVYVVYVYYVYYVYY

OEBPS/Image00006.jpg
Installing - Visual Studio Community 2017 (15.0.26228.4)

Workloads ~ Individual components Language packs

Code tools

{2 Class Designer
[Ciickonce Publishing
Dependency Validation

Developer Analytics tools
DGML editor

Git for Windows
¥ GitHub extension for Visual Studio
Help Viewer
LINQ to SQL tools

2 Powershell tools
PreEmptive Protection - Dotfuscator

Static analysis tools
2 Text Template Transformation

i c—

mpilers, build tools, and runtimes.

C# and Visual Basic Roslyn compilers
Co+/CU support
Clang/C2 (experimental)
IncreciBuild
RV
Location
CAProgram Files (x86)\Microsoft Visual Studio\2017\Community

Summary

> NET desktop development

> ASP.NET and web developm...
> Azure development

> NET Core cross-platform de...

+ Individual components
Indluded

Class Designer

[Powershell tools

9 Git for Windows

Gittub extension for Visual Studio

@ 5y contining,you agree o the icensefor the
ViualStuioediion you selected.We sl oferthe
abilty to download other software with Viual
Studio. T softuare = Icensed separately s set
outin the3r Party Notices orin s accompanying
lcense. By continung,you ako agee to those
lcenses

Install size: 13,11 GB

Install

OEBPS/Image00127.jpg
Choose Data Source

Data source:

Microsoft Access Database File
Microsoft ODBC Data Source
Microsoft SQL Server Database File
Oracle Database

<other>

Data provider:

.NET Framework Data Provider for SC ~

[Always use this selection

Description

Use this selection to connect to
Microsoft SQL Server 2005 or
above, or to Microsoft SQL Azure
using the .NET Framework Data

Provider for SQL Server.

Continue

Cancel

OEBPS/Image00126.jpg
ﬂ Connect

History Browse

|P Type here to filter the list

D Local
> Network
D Azure

Server Name:

Authentication:

User Name:

Password:

Database Name:

I(Iocaldb)\mssq!localdb

| Windows Authentication

DESKTOP-HOTOOFD\markj

Remember Password

<default>

v |

Advanced...

Connect

|| Cancel |

OEBPS/Image00019.jpg
| MyApp.cs - Notepad -
File Edit Format View Help

class MyApp { static void Main() {
System.Console.WriteLine("Hello, C#!"); } }

OEBPS/Image00140.jpg
Program.cs X @ M -
L using System;
2 using static System.Console;

©

©

=

D
BiE

w

S

1
1

namespace ConsoleApplication

{

0 references
public class Program

{

0 references
public static void Main(string[] args)

{
var names = new string[l { "Michael", "Pam", "Jim", "Dwight", "Angela",
var query = names.w
@ GetLowerBound int GetLowerBound(int dimension)
} Gets the index of the first element of the specified dimension in th... @

OEBPS/Image00018.jpg
j Save As

<« v A | < Local Disk (C:) > Code » Chapter01 » Ch01 HelloCS v O Search Ch01_HelloCS
Organize ~ New folder e
Local Disk (C) a Name Date modified Type
| Code

3 ch 1 No items match your search.
apter

 ChO1_HelloCS
| PerfLogs il

File name: ‘ MyApp.cs

Save as type: All Files

A Hide Folders Encoding: ANSI v Cancel

OEBPS/Image00139.jpg
Preview

Review Changes

Visual Studio is about to make changes to this solution. Click OK to proceed with the
changes listed below.

ChO8_EFCore

Updates:
System.Text.Encoding.CodePages.4.0.1 -> System.Text.Encoding.CodePages.4.3.0

Installing:
Microsoft.EntityFrameworkCore.1.1.1
Microsoft.EntityFrameworkCore.Relational.1.1.1
Microsoft.EntityFrameworkCore.SqlServer.1.1.1
Microsoft.Extensions.Caching.Abstractions.1.1.1
Microsoft.Extensions.Caching.Memory.1.1.1
Microsoft.Extensions.Dependencylnjection.1.1.0
Microsoft.Extensions.Dependencylnjection.Abstractions.1.1.0
Microsoft.Extensions.Logging.1.1.1
Microsoft.Extensions.Logging.Abstractions.1.1.1
Microsoft.Extensions.Options.1.1.1
Microsoft.Extensions.Primitives.1.1.0
Remotion.Ling.2.1.1
runtime.native.System.Data.SqlClient.sni.4.3.0 -

[Do not show this again OK | | Cancel

OEBPS/Image00021.jpg
@ Terminal Shell Edit View Window Help

[ON] 7 markjprice — -bash — 90x17

Last login: Sun Mar 5 ©7:18:52 on console
Marks—-MacBook-Pro-15:~ markjprice$ dotnet

Microsoft .NET Core Shared Framework Host

Version : 1.1.0
Build : 928f77c4bc3f49d892459992fbbeld5542¢ch5e86

Usage: dotnet [common-options] [[options] path-to-application]

Common Options:

—-help Display .NET Core Shared Framework Host help.

—-version Display .NET Core Shared Framework Host version.
Options:

——fx-version <version> Version of the installed Shared Framework to use to run

the application.

OEBPS/Image00142.jpg
h09_LinqToObjects b q’l.Program -1, Main(string[] args)
1 [Flusing System;
2 using static System.Console;
3 using System.Ling;
4
5 Elclass Program
6 {
7 =] static void Main(string[] args)
8 {
9 var names = new string[] { "Michael”, "Pam", "Jim", "Dwight", "Angela", "Kevin", "Toby", "Creed" };
10 var query = names.where(mM)v
1; } } Func<string, bool>(bool (string) target)

OEBPS/Image00020.jpg
@ TextEdit File Edit Format View Window Help
o Untitled —

Save As: MyApp4cs|

Tags:

< = [ChO1_HelloCS Q Search

Favorites [Applications » [Chapter01 » [ChO1_HelloCS
& Recent [Applications (Parallels)
ecents B Code

v Dropbox [Downloads
k.) [# Dropbox
& iCloud Drive I Movies
-,A; Applications [Music
[Desktop [& OneDrive
[Parallels
0 Downloads [Pictures
%1 Public

>
>
>
>
>
>
>
>
>
>

Plain Text Encoding: = Unicode (UTF-8)

If no extension is provided, use “.txt".

Hide extension New Folder Cancel

OEBPS/Image00141.jpg
Program.cs % R M

L el s
2 using static System.Console;

namespace ConsoleApplication
6 {

0 references
7 public class Program
{

0 references
public static void Main(string[] args)
{
var names = new stringl[]l { "Michael", "Pam", "Jim", "Dwight", "Angela", "Kevin", "Toby",
var query = names. W
@ GetLowerBound
14 } @ Skipwhile
15 } @ TakeWhile

16 } @ Where IEnumerable<string> Where(Func<string, bool> pred..
17 Filters a sequence of values based on a predicate. Returns: An Sys... @

OEBPS/Image00023.jpg
New Project

? X

]

Search Installed Templates (Ctrl+| R ~

P Recent .NET Framework 4.6.2 ~ Sort by: | Default
4 |nstalled
Console App (.NET Core)
-
4 Templates s
4 Visual C# E[gi Class Library (NET Core)
4
Windows Universal cx
Windows Classic Desktop E Unit Test Project (NET Core)
Web c
'NET Core E xUnit Test Project (NET Core)
.NET Standard
cloud @ ASP.NET Core Web Application (NET Core)
Test -
P Online
Name: Ch01_WelcomeDotNetCore
Location: C:\Code
Solution name: Chapter01

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Type: Visual C#

A project for creating a command-line
application that can run on .NET Core on
Windows, Linux and MacOS.

' Browse...

Create directory for solution
["] Add to Source Control

| OK | | Cancel

OEBPS/Image00144.jpg
Program.cs - ChO9_PLINQ

Program.cs

TERMINAL

bash-3.2$ [

x

Write("Press ENTER to start. ");
ReadLine();

watch.Start();

IEnumerable<int> numbers = Enumerable.Range(1, 200000000);
var squares = numbers.Select(number => number * 2).ToArna
//var squares = numbers.AsParallel().Select(number => ny
watch.Stop();
WriteLine($"{watch.ElapsedMilliseconds:#,##0} elapsed mill

1: bash s+ @I v~ |

OEBPS/Image00022.jpg
@ Terminal Shell Edit View Window Help

[ON] [1 ChO1_HelloCS — -bash — 113x21

Marks-MBP-13:Ch@1_HelloCS markjprice$ dotnet new console

Content generation time: 59.9867 ms

The template "Console Application" created successfully.

Marks-MBP-13:Ch@1_HelloCS markjprice$ 1s

Ch@1_HelloCS.csproj MyApp.cs Program.cs

Marks-MBP-13:Ch@1_HelloCS markjprice$ rm Program.cs

Marks-MBP-13:Ch@1_HelloCS markjprice$ dotnet restore
Restoring packages for /Users/markjprice/Code/Chapter@1/Ch@l_HelloCS/Ch@1_HelloCS.csproj...
Generating MSBuild file /Users/markjprice/Code/Chapter@1/Ch@1_HelloCS/obj/Ch@1_HelloCS.csproj.nuget.g.props.
Generating MSBuild file /Users/markjprice/Code/Chapter@1/Ch@1_HelloCS/obj/Ch@1_HelloCS.csproj.nuget.g.targets.
Writing lock file to disk. Path: /Users/markjprice/Code/Chapter®1/Ch@l_HelloCS/obj/project.assets.json
Restore completed in 955.37 ms for /Users/markjprice/Code/Chapter@1/Ch@1_HelloCS/Ch@l_HelloCS.csproj.

NuGet Config files used:
/Users/markjprice/.nuget/NuGet/NuGet.Config

Feeds used:
https://api.nuget.org/v3/index.json
Marks—-MBP-13:Ch@1_HelloCS markjprice$ dotnet run

Hello, C#!
Marks-MBP-13:Ch@1_HelloCS markjprice$ [

OEBPS/Image00143.jpg
CPU intel(R) Core(TM) i7-3615QM CPU @ 2.30G...

% Utilisation 100%

| Changegraphto > e Overallutisation

Show kernel times Logical processors

Graph summary view NUMA nodes

View

Copy Ctrl+C

L e |

60 seconds

OEBPS/Image00025.jpg
Ch01_WelcomeDotNetCore - k‘ q’l. Ch01_WelcomeDotNetCore.Program - ‘Q’a Main(string[] args)

1 using System;
2
3 =Inamespace Ch@l_WelcomeDotNetCore
a1
5 class Program
6 |t
7 =] static void Main(string[] args)
8 {
9 l System.
i? - ¥ L] |Action “ delegate void System.Action() (+ 16 overloads)
I ¥ @ Action<> Encapsulates a method that has no parameters and does not return a value.
12 |}
- ‘l: Activator

% AggregateException

* AppContext

% ArgumentException

“z ArgumentNullException

% ArgumentOutOfRangeException

#3 ArithmeticException -

o % o S @ ()}

100% ~

4

b [

OEBPS/Image00024.jpg
[£# cho1_WelcomeDotNetCore i qﬁ. Ch01_WelcomeDotNetCore.Program i &’a Main(string[] args)

usihg System;

Zinamespace Ch@l_WelcomeDotNetCore
ki
=] class Program

£

=] static void Main(string[] args)

y |
2
3
4
5
6
7
8
9

H
)
=
i

namespace System

2o
[

100% ~

OEBPS/Image00145.jpg
'™ ¥ C:\WINDOWS\system32\cmd.exe = O X

File Options View Press ENTER to start.
31,230 ellapsed milliseconds.
Press any key to continue

Processes Performance App history Start-up Users Details Services

| CPU :
R CPU Intel(R) Core(TM) i7-3615QM CPU @ 2.30...

% Utilisation over 60 seconds 100%

Memory
" 2.0/6.0 GB (33%)

Disk 0 (C:)
0%

OEBPS/Image00136.jpg
[Products (Northwind)

Data Constraints Indexes Triggers

B @BOdmHoo B84 9 9
Table name: Products WITHOUT ROWID

Name Data type Pr:'(n;;ry Fop:z;gn Unique Check NhL‘JTL Collate
1 ProductlD INTEGER ? NULL
2 ProductName nvarchar (40) o NULL
3 SupplierlD "int" e NULL
4 CategorylD "int" e NULL
5 QuantityPerUnit nvarchar (20) NULL
6 UnitPrice "money" El 0
7 UnitsInStock "smallint" El 0
BEHoBD % & B

Type Name Details

1 7. FOREIGN KEY = FK_Products_Categories

2 /. FOREIGN KEY FK_Products_Suppliers
3 [] CHECK CK_Products_UnitPrice
4 [] CHECK CK_ReorderLevel
5 [] CHECK CK_UnitsInStock
6 [] CHECK CK_UnitsOnOrder

(CategorylD) REFERENCES Categories (CategoryID)
(SupplierlD) REFERENCES Suppliers (SupplieriD)
(UnitPrice >=0)

(ReorderLevel >= 0)

(UnitsIinStock >= 0)

(UnitsOnOrder >= 0)

DDL

Default value

OEBPS/Image00017.jpg
Technology

Feature set

Compiles to

Host OSes

NET Framework

Mature and extensive

Xamarin

Mature and limited to mobile
features

NET Core

New and somewhat limited
(until NET Core 2.0)

IL executed
by a runtime

Windows only

i0S, Android,
Windows Mobile

NET Native

New and somewhat limited

Native code

Windows, Linux,
macOS, Docker

OEBPS/Image00138.jpg
Browse Installed Updates NuGet Package Manager: Ch08_EFCore

Microsoft.EntityFrameworkCore.SqlServer X ~| @ [Include prerelease

Microsoft.EntityFrameworkCore.SqlServer by Microsoft, 611K d v1.1.1

Microsoft SQL Server database provider for Entity Framework Core.

Microsoft.EntityFrameworkCore.SqlServer.Design by Microsof v1.1.1

Design-time Entity Framework Core Functionality for Microsoft SQL Server.

Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any
licenses to, third-party packages.

[] Do not show this again

Package source: nuget.org MR

E Microsoft.EntityFrameworkC

Version: Latest stable 1.1.1 ~
@ Options

Description

Microsoft SQL Server database provider for Entity
Framework Core.

Version: 111

Author(s): Microsoft

License: http://www.microsoft.com/web/
webpi/eula/
net_library_eula_enu.htm

Date published: Monday, March 6, 2017
(3/6/2017)

Project URL: http://www.asp.net/

Report Abuse: https://www.nuget.org/
packages/

OEBPS/Image00016.jpg
Windows Universal iOS (iPhone,
Presentation Windows iPad), macQOSs,
Foundation Platform watchOS, tvOS

ASP.NET ASP.NET Core Android

Xamarin

Console
Applicatio

.NET Framework

S
.o
oD =
v o
~ O
v c
T O
B
s g
Q_Lu
D_L
<3
=)

.NET Standard Library 2.0

Languages Compilers Runtime components

Common Library
and Infrastructure

OEBPS/Image00137.jpg
© 0NN ®N S

vEBEE 6 Ga
ProductID
Chai

Chang
Aniseed Syrup

© N O B ®WN

Mishi Kobe Niku
Ikura
Queso Cabrales

® 823

Konbu

Tofu

Genen Shouyu
Paviova

Alice Mutton
Carnarvon Tigers

N ||| fcafaa
S o ®»I® o

1

ProductName

Chef Anton's Cajun Seasoning
Chef Anton's Gumbo Mix
Grandma's Boysenberry Spread
Uncle Bob's Organic Dried Pears
Northwoods Cranberry Sauce

Queso Manchego La Pastora

Teatime Chocolate Biscuits
Sir Rodney's Marmalade

| |Products (Northwind)

Structure m Constraints

B a & X A&

SupplierlD CategoryID
1

1
2
2
2
2
7
2
6
8
4
4
8
7
2
3
6
8
3
3

©®ONNNDOODO DA DOOONN S S

Filter data

Indexes Triggers

QuantityPerUnit
10 boxes x 20 bags
24 - 12 oz bottles
12 - 5650 ml bottles
48 - 6 oz jars
36 boxes
12 - 8 oz jars
12 - 11b pkgs.

12 -12 oz jars

18 - 500 g pkgs.
12 - 200 ml jars
1kg pkg.

10 - 500 g pkgs.

2 kg box

40 - 100 g pkgs.
24 - 250 ml bottles
32 - 500 g boxes
20 - 1kg tins

16 kg pkg.

10 boxes x 12 pieces
30 gift boxes

DDL

UnitPrice UnitsinStock ~ UnitsOnOrder

18

19

10

22
21.35
25
30
40
97

31

21

38

6
23.25
15.5
17.45
39
62.5
9.2
81

I ~ Total rows loaded: 77

39
17
13
53
0
120
15
6
29
31
22
86
24
35
39
29
0
42
25
40

30

Reordt¢
10

25

25

0

0

25

10

0

o

OEBPS/Image00115.jpg
SayHelloTo("Emily"));

@ string Person.SayHelloTo(string name)

OEBPS/Image00114.jpg
SayHello());

@ string Person.SayHello()

OEBPS/Image00235.jpg
Microsoft.NETCore.App 1.1.1

Aset of .NET API's that are included in the default .NET Core application model.
When using NuGet 3.x this package requires at least version 3.4.

To install Microsoft.NETCore.App, run the following command in the Pz

PM> Install-Package Microsoft.NETCore.App

OEBPS/Image00107.jpg
@ Code File Edit Selection View Go Window Help
o000 Chapter06

@ EXPLORER

4 OPEN EDITORS

p 4 CHAPTERO6

4 Ch06_PacktLibrary
> bin
0 > obj
ChO06_PacktLibrary.csproj

® Person.cs

4 Ch06_PeopleApp

[.'} > .vscode
> bin PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL bash 4 4+ M x
> obj
: bash-3.2$ cd Ch@6_PeopleApp
Ch06_PeopleApp.csproj bash-3.25 [
Program.cs

OEBPS/Image00228.jpg
@& Simulator File Edit Hardware

@ iPhone 7 -i0S 10.2 (14C89)
Carrier & 2:06 PM -
List Add

Northwind Customers
Alfreds Futterkiste

Berlin, Germany

Seven Oceans Imports
London, UK

AlphaCo
Glasgow, UK

OEBPS/Image00106.jpg
@ Code File Edit

)]
0
©

EXPLORER

4 OPEN EDITORS
Ch06_PeopleApp.csproj
4 CHO6_PEOPLEAPP
> bin
b obj
Ch06_PeopleApp.csproj
Program.cs

(CH

Selection

View Go Window Help

ChO06_PeopleApp.csproj - Ch06_PeopleApp
Ch06_PeopleApp.csproj x m
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>

<0OutputType>Exe</OutputType>
<TargetFramework>netcoreappl.l</TargetFramework>

</PropertyGroup>
<ItemGroup>
<ProjectReference Include="../Ch@6_PacktLibrary/Ch@6_PacktLibrary.csproj" />
K/1temGroupf
</Project>
PROBLEMS QUTPUT DEBUG CONSOLE TERMINAL 1: bash v + m

bash-3.2$ dotnet build
Microsoft (R) Build Engine version 15.1.548.43366
Copyright (C) Microsoft Corporation. All rights reserved.

Cho6_PacktLibrary —-> /Users/markjprice/Code/Chapter@6/Ch@6_PacktLibrary/bin/Debug/n
etstandardl.4/Ch@6_PacktLibrary.dll

Ch@6_PeopleApp —> /Users/markjprice/Code/Chapter06/Ch@6_PeopleApp/bin/Debug/netcore
appl.1/Cho6_PeopleApp.dll

Build succeeded.
0 Warning(s)
0 Error(s)

Time Elapsed 00:00:03.94
bash-3.2$

OEBPS/Image00227.jpg
@& Simulator File Edit Hardware

@ iPhone 7 -i0S 10.2 (14C89)
Carrier & 2:05 PM
List

Northwind Customers
Alfreds Futterkiste

Berlin, Germany

Frankenversand
Minchen, Germany

Seven Oceans Imports
London, UK

AlphaCo
Glasgow, UK

OEBPS/Image00109.jpg
hOG,Packtlera H%Packtcﬁ Person 'He Name 5 -ChOG,PeopIeApp '"‘q’bChOG,PeopIeApp.Prow "‘&’a Main(string[] args) ~ @ B | -5 &

1 using System; a E= 1 Husing System; B [+
5 5 N using Packe.C87; [Search Solution Explorer (Ctrl+;) P~
3 IBnamespace Packt.CS7 3 | using static System.Console; I &1 Solution ‘Chapter06’ (2 projects)
& : 4 4 [Ch06_Packtlibrary
5 IE! public class Person : object 5 I=Inamespace Ch@6_PeopleApp b =8 Dependencies
s ¢ 5 . | { P C* Person.cs
7 // fields 7 =] class Program 4 Ch06_PeopleApp
8 public string Name; 8 | { b =8 Dependencies
9 public DateTime DateOfBirth; 9 = static void Main(string[] args) b * Program.cs
10 } 10 { gram
11 } 11 var pl = new Person();
12 12 WriteLine(pl.ToString());

13 }

O

15 [}

- i b

100% ~ 4 » 100% ~ 4 b Solution Explorer B8 plore

OEBPS/Image00230.jpg
nuget.org

.NET

JNETHFX

™)

Add Packages

o

Microsoft HTTP Client Libraries 17,211,692

This package provides a programming interface for modern HTTP/REST based
applications.

System.Net.Http 6,813,031

Provides a programming interface for modern HTTP applications, including HTTP
client components that allow applications to consume web services over HTTP
and HTTP components that can be used by both clients and servers for parsing

RestSharp
Simple REST and HTTP API Client

4,105,289

Microsoft ASP.NET SignalR 2,364,699

Incredibly simple real-time web for .NET. This package pulls in the server
components and JavaScript client required to use SignalR in an ASP.NET
application.

NETFx HttpEntityClient 6,970
Simple CRUD + Query typed HTTP client

System.Net.Http.Formatting
Extesion Assembly System.Net.Http.Formatting.dll

385,127

Show pre-release packages

System.Net.Http

Provides a programming interface for
modemn HTTP applications, including HTTP
client components that allow applications to
consume web services over P and
HTTP components that can be used by both
clients and servers for parsing HTTP
headers.

Commonly Used Types:
System.Net.Http.HitpResponseMessage
System.Net.Http.Dele: SahngHandler
System.Net.Http.HttpRequestException
System.Net.Http.HttpClient
System.Net.Http.MultipartContent
System.Net.Http.Headers. HttpContentHeader
System.Net.Http.HttpClientHandler
System.Net.Http.StreamContent
System.Net.Http.FormUrlEncodedContent
System.Net.Http.HttpMessageHandler

When using NuGet 3.x this package
requires at least version 3.4.

Id System.Net.Http
Author Microsoft
Published 21/02/2017
Downloads 6,813,031
License View License

Project Page Visit Page

Version 4.3.1 L:J

Close Add Package

OEBPS/Image00108.jpg
Zlnamespace System

{

Elpublic class Object
{
Elpublic Object();

E|~Object();

public static bool Equals(Object objA, Object objB);
public static bool ReferenceEquals(Object objA, Object objB);
public virtual bool Equals(Object obj);

public virtual int GetHashCode();

.. .Jpublic Type GetType();

public virtual string ToString();

pr‘otected Object MemberwiseClone();

OEBPS/Image00229.jpg
@ Simulator File Edit Hardware De

iPhone 7 -i0S 10.2 (14C89)

Dial a Number
Would you like to call 089-0877310?

OEBPS/Image00111.jpg
@ Code File Edit Selection View Go Window Help

[X N J Program.cs - Chapter06
@ EXPLORER Program.cs %

4 OPEN EDITORS static void Main(string[] args)

{

p RIogramics czos—zeOpleApp var pl = new Person();

GACHRRIEROS LQW | ¢ g pl.Name = "Bob Smith";

> .vscode pl.Date0fBirth = new DateTime(1965, 12, 22);
0 4 Ch06_PacktLibrary WriteLine($"{pl.Name} was born on {pl.DateOfE
> bin

. var p2 = new Person
> obj {

OEBPS/Image00232.jpg
New Project ? X

P Recent .NET Framework 462 ~ Sort by: Default = Search Installed Tem; P ~

4 |nstalled i
NET Standard) Visual Cit Type: VisualGit
-
4 Templates A project for creating a class library that
4 Visual C# targets .NET Standard.
Windows Universal
Windows Classic Desktop
Web
.NET Core
.NET Standard
Cloud
Test =
P Online
Name: Ch16_SharedLibrary
Location: C:\Code e
Solution name: Chapter16 Create directory for solution

["] Add to Source Control

| OK | | Cancel

OEBPS/Image00110.jpg
@ Code
000

]
Jo
¥
®

File Edit Selection

EXPLORER

4 OPEN EDITORS
LEFT
Person.cs Ch06_PacktLibrary
RIGHT
Program.cs Ch06_PeopleApp
4 CHAPTER06
> .vscode
4 Ch06_PacktLibrary
> bin
> obj
ChO06_PacktLibrary.csproj
Person.cs
4 Ch06_PeopleApp
> .vscode
> bin
> obj
ChO06_PeopleApp.csproj
Program.cs

View Go Window Help

Program.cs - Chapter06

Person.cs X

using System;
namespace Packt.CS7
{
1 reference L
public class Person : object
{
// fields
0 references
public string Name;
0 references
public DateTime DateOfBirth;
}
}
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

bash-3.2$ cd Ch@6_PeopleApp
bash-3.2$ []

Program.cs X

using static System.Console;

namespace Ch@6_PeopleApp

{
0 references
class Program
{
0 references
static void Main(string[] args)
{
var pl = new Person();
WriteLine(pl.ToString());
}
}
}
1: bash I i |

OEBPS/Image00231.jpg
@ iPhone 7 -i0S 10.2 (14C89)
Carrier & 10:03 PM

List

Walla Walla, USA

4

Add

Lehmanns Marktstand
Frankfurt a.M., Germany

Let's Stop N Shop

San Francisco, USA

LILA-Supermercado

Barquisimeto, Venezuela

LINO-Delicateses

I. de Margarita, Venezuela

Lonesome Pine Restaurant
Portland, USA

Magazzini Alimentari Riuniti
Bergamo, Italy

Maison Dewey
Bruxelles, Belgium

Mere Paillarde
Montréal, Canada

Morgenstern Gesundkost
Leipzig, Germany

North/South
London, UK

Océano Atlantico Ltda.
Buenos Aires, Argentina

Old World Delicatessen
Anchorage, USA

Ottilies Kaseladen
KdIn, Germany

Mt Fois gy

OEBPS/Image00113.jpg
Browse Installed Updates NuGet Package Manager: Ch06_PacktLibrary
System.ValueTuple X v @& [Include prerelease Package source: nuget.org - 3

Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any
licenses to, third-party packages.

[] Do not show this again

E System.ValueTuple

Version: | Latest stable 4.3.0 ~ Install
@ Options

Description

Provides the System.ValueTuple structs, which
implement the underlying types for C# 7 tuples.

Commonly Used Types:
System.ValueTuple
System.ValueTuple<T1>
System.ValueTuple<T1, T2>

OEBPS/Image00234.jpg
4 =B Dependencies
4 F]spk
Metapackage E> 4 ﬁ'_J NETStandard.Library
&8 Microsoft. NETCore.Platforms (1.1.0)
P &8 Microsoft.Win32.Primitives (4.3.0)
b &8 System.AppContext (4.3.0)

Package E> 4 8 System.Collections (4.3.0)
&8 Microsoft. NETCore.Platforms (1.1.0)

&8 Microsoft.NETCore.Targets (1.1.0)
4 @8 System.Runtime (4.3.0)
&8 Microsoft. NETCore.Platforms (1.1.0)
&8 Microsoft.NETCore.Targets (1.1.0)
Assembly E> =B System.Runtime.dll
s-8 System.Collections.dll
P &8 System.Collections.Concurrent (4.3.0)

OEBPS/Image00112.jpg
(constant) int int.MaxValue = 2147483647
Represents the largest possible value of an int. This field is constant.

(constant) double Math.PI = 3.1415926535897931
Represents the ratio of the circumference of a circle to its diameter, specified by the constant, 1.

OEBPS/Image00233.jpg
WE-|o-5saB| L=
Search Solution Explorer (Ctrl+;)

m Solution 'Chapter16' (1 project)
4 Ch16_SharedLibrary
4 =B Dependencies
4 F]spk
4 Z] NETStandard.Library

&8 Microsoft. NETCore.Platforms (1.1.0)
&8 Microsoft. Win32.Primitives (4.3.0)
&8 System.AppContext (4.3.0)
&8 System.Collections (4.3.0)
&8 System.Collections.Concurrent (4.3.0)
&8 System.Console (4.3.0)
&8 System.Diagnostics.Debug (4.3.0)
&8 System.Diagnostics.Tools (4.3.0)

&8 System.Diagnostics.Tracing (4.3.0)

&8 System.Globalization (4.3.0)

&8 System.Globalization.Calendars (4.3.0)
&8 System.lO (4.3.0)

OEBPS/Image00226.jpg
@& Simulator File Edit Hardware

@ iPhone 7 -i0S 10.2 (14C89)

Carrier & 2:05 PM

< List Add Customer
| Customer ID AAAAA
Company Name AlphaCo
Contact Name John Smith
City Glasgow
Country UK

Phone 123456789

Insert Customer

-

OEBPS/Image00005.jpg
Installing - Visual Studio Community 2017 (15.0.26228.4)

Workloads ~ Individual components Language packs

Windows (3)

MMl Universal Windows Platform development
W Create applications for the Universal Windows
Platform with C#, VB, JavaSeript, or optionally C++.

NET desktop development
Build WPF, Windows Forms and console applications
using the NET Framework.

Desktop development with C++
Build classic Windows-based applications using the
power of the Visual C++ toolset, ATL, and optional

Web & Cloud (5)

ASPNET and web development
Build web applications using ASP.NET, ASP.NET Core,
HTML JavaScript, and CSS.

>

Azure development
Azure DK, tools, and projects for developing cloud
apps and creating resources.

Nodejs development
Build scalable network applications using Nodejs, an

asynchronous event-driven Javascript runtime.

Location

Ci\Program Files (xB6)\Microsoft Visual Studio\2017\Community

Data storage and processing
Connect, develop and test data solutions using SQL
Server, Azure Data Lake, Hadoop or Azure ML.

Summary

> Visual Studio core editor

> Universal Windows Platform de...
> NET desktop development

> ASP.NET and web development
> Azure development

> NET Core cross-platform devel...

@ 5y contining,you agree o the icensefor the
ViualStuioediion you selected.We sl oferthe
abilty to download other software with Viual
Studio. T softuare = Icensed separately s set
outin the3r Party Notices orin s accompanying
lcense. By continung,you ako agee to those
lcenses

Install size: 12,86 GB

OEBPS/Image00004.jpg
& Windows10 File Edit View Actions

- bl

tions ¥ Placs \ Studio C

Program.cs -t

wte Program cs

3 -
4 ormions

st

ExpLORE

o

« opewsorrons
E [
+ cuon uasics

a » wscode

> bin

» obj
Program.cs
projectjson
projectlock json

©

oA

CLre)

MmO D o

Devices Develop Window _Help

o | Fe Project Buld Debug Tesm

Dabug -

Using Systen;
using Systen Refle

g System.Lina;

Program.cs X
Xnl.Ling

ity

progran

tatic void Mainlstring(] args)

System.Xnl.xnlReader reader;
System.Xnl,Ling.XElement elenent
System.Net. Http. HetpClient client

types with @ nethod

hods in Systes

foreachivar in Assembly.GetEntryks =
L= L

« = O

TERMINAL bash i+ B v

bash-3.26 dotnet run
Project Cho2 Basics (.NETCoreApp, Version=vi.1) was previously ¢
onpiled. Skipping conpilation.

23 types with 258 methods in Systen.Runtine asseably.

366 types with 3,066 methods in System.Xal.Readerwriter assembl

y.
84 types with 1,121 methods in Systen.xnl.XDocusent assembly.
223 types with 2,346 methods in Systen.Net.Http assembly.

9 types with @ nethods in Systen.Reflection assenbly.

87 types with 917 nethods in Systen.Ling assembly.

59 types with 721 methods in Systen.Console assenbly.
bash-3.26]

n10,Col10 Spaces:4 UTF-8wHhEOM LF C# & ChoZBasics @

OO L8

) 100% B

Wind

Test

Any cPU

elenent;

1

sat09:58 Q. @

Window Help

- [Solution Explorer

OEBPS/Image00125.jpg
Customers
CustomerlD

CompanyName
ContactName
ContactTitle
Address

City

Region
PostalCode
Country

Phone

Fax

Orders
s OrderlD

CustomerlD
EmployeelD
OrderDate
RequiredDate
ShippedDate
ShipVia

Freight
ShipName
ShipAddress
ShipCity
ShipRegion
ShipPostalCode

ShipCountry

Order Details
s OrderlD

¢ ProductiD
UnitPrice
Quantity

Discount

Products
s ProductiD

ProductName
SupplierlD
CategorylD
QuantityPerUnit
UnitPrice
UnitsInStock
UnitsOnOrder
ReorderLevel

Discontinued

Cateqgories

s CategorylD
CategoryName
Description
Picture

Suppliers
¢ SupplierlD

CompanyName
ContactName
ContactTitle
Address

City

Region
PostalCode
Country

Phone

Fax

HomePage

OEBPS/Image00118.jpg
harry.Shout+=_

Harry_Shout; (Press TAB to insert)

OEBPS/Image00239.jpg
Connected Services

Publish

Publish

Publish your app to Azure or another host. Learn more

B FolderProfile . Publish ‘
Create new profile
Summary
Target Location bin\Release\PublishOutput [} Settings
Configuration Release Delete profile
Target Framework netcoreapp1.1

Target Runtime win10-x64

OEBPS/Image00117.jpg
@ Code File Edit Selection
[X N J

@ EXPLORER

4 OPEN EDITORS
p Program.cs Ch06_PeopleApp
Person.cs Ch06_PacktLibrary
4 CHAPTERO6

e b .vscode

4 Ch06_PacktLibrary

b bin
b obj
E.'} BankAccount.cs
Ch06_PacktLibrary.csproj
Person.cs

WondersOfTheAncientWor...

4 Ch06_PeopleApp
b .vscode
> bin
b obj
Ch06_PeopleApp.csproj
Program.cs

bash-3.2%

View Go Window Help

Program.cs - Chapter06

Program.cs X Person.cs

(string, int) fruit7 = pl.GetFruitCS7();
WriteLine($"{fruit7.Iteml}, {fruit7.Item2} there are.");

var fruitNamed = pl.GetNamedFruit();
WriteLine($"Are there {fruitNamed.Number} {fruitNamed.Name}?");

(string fruitName, int fruitNumber) = pl.GetFruitCS7();
WriteLine($"Deconstructed: {fruitName}, {fruitNumber}");

WriteLine(pl.SayHellnf)):

WriteLine(pl.SayHel Void Person.OptionalParameters(string command = "Run!",

double number = @, bool active = true)
p1.0ptionalParameters]£m

b

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL 1: bash

Aziz was instantiated at 10:04:30 on Sunday, 12 March 2017
Bob Smith was born on Wednesday, 22 December 1965

Bob Smith was born on Earth

There are 5 Apples.

Apples, 5 there are.

Are there 5 apples?

Deconstructed: Apples, 57

“«~

OEBPS/Image00238.jpg
Connected Services Publish

Publish Publish your app to Azure or another host. Learn more

Folder

Choose a folder

bin\Release\PublishOutput [Browse... | L Publish

OEBPS/Image00120.jpg
public partial class Person : IComparable<Person>

{

// properties

public string Origin

{
get

{

return $"

Implement interface explicitly

0 CS0535 'Person’ does not implement interface member
‘IComparable <Person>.CompareTo(Person)*

{Name} was born on {HomePlanet}";

}
public int

throw new N

OEBPS/Image00241.jpg
Q- o-5 8

Search Solution Explorer (Ctrl+;)

m Solution 'Chapter16' (4 projects)

P =B Dependencies
> & Properties

Ch16_DotNetCoreEverywhere
Ch16_DotNetCoreEverywhere.deps.json
Ch16_DotNetCoreEverywhere.dll
Ch16_DotNetCoreEverywhere.pdb
Ch16_DotNetCoreEverywhere.runtimeconfig.dev.json
Ch16_DotNetCoreEverywhere.runtimeconfig.json
libhostfxr.dylib

libhostpolicy.dylib

Ch16_DotNetCoreEverywhere.deps.json
Ch16_DotNetCoreEverywhere.dll
Ch16_DotNetCoreEverywhere.exe
Ch16_DotNetCoreEverywhere.pdb

OEBPS/Image00119.jpg
Person.cs d; _
| Ch0777 Pegp!eApE -1, Program -le, Main(string[] args)
Flusing System;
using Packt.CS7;
using static System.Console; Modify any highlighted location to begin renaming.

Rename: Harry_Shout X

L ["1 Include comments
Elclass Program [1 Include strings

{

= static void Main(string[] args) [Preview changes

{ Rename will update 2 references in 1 file.
var harry = new Person { Name = "Harry" };

var mary = new Person { Name = "Mary" }; Apply
var babyl = harry.Procreate(mary);

var baby2 = harry * mary;

WriteLine($"{mary.Name} has {mary.Children.Count} children.");

WriteLine($"{harry.Name} has {harry.Children.Count} children.");

WriteLine($"{harry.Name}'s first child is named {harry.Children[@].Name}.");

harry.Shout += _;

W ooNOUV A WNRE

NRE R R R R RRRRR
©®WVW NV AWNR®

private static void (object sender, EventArgs e)

{

NN
N B

throw new NotImplementedException();

N
w

N
i

OEBPS/Image00240.jpg
Profile Settings

Profile Name:

Configuration:

FolderProfile

Release

Target Framework: | netcoreapp1.1

Target Runtime:

Target Location:

0sx.10.12-x64

bin\Release\PublishOutput

Cancel

OEBPS/Image00001.jpg
Microsoft Microsoft Microsoft

CERTIFIED Specialist Specialist

Trainer

Programming in C# Architecting Microsoft
Azure Solutions

OEBPS/Image00122.jpg
override

@ |Equals(object obj)

9@ GetHashCode()
© ToString()

OEBPS/Image00243.jpg
New ASP.NET Core Web Application (NET Core) - Ch16_ImageEditorSite
ASP.NET Core 1.1 o
ASP.NET Core 1.1 Templates

S B gE]

Empty Web API

Appllcatlon

Enable Docker Support
Requires Docker for Windows

Docker support can also be enabled later Learn more

A project template for creating an ASP.NET Core
application with example ASP.NET MVC Views and
Controllers. This template can also be used for RESTful
HTTP services.

Learn more

Change Authentication

Authentication: No Authentication

OEBPS/Image00000.jpg

OEBPS/Image00121.jpg
Code File Edit Selection View Go Window Help

[X X] Employee.cs - Chapter07]
@ EXPLORER Person.cs Program.cs Employee.cs x DisplacementVector.cs m e
4 OPEN EDITORS {
; 2 references
p Reizon.ceiChozRackEbIany public class Employee : Person
Program.cs Ch07_PeopleApp {
® Employee.cs Ch07_PacktLibrary 1 reference
DisplacementVector.cs Ch07... public strin gmnioyee.WriteToConsole()' hides inherited member 'Person.WriteToC
4 CHAPTERO7 3references | onsole()'. Use the new keyword if hiding was intended. [Ch@7_PacktL [
public DateT) ibrary] |-
» .vscode Yy
4 ChO07_PacktLibrary tireforence void Employee.WriteToConsole()
1] > bin public void WriteToCoAsole()
S
Lo) WriteLine($"{Name}'s birth dat {Date0fBirth:dd/MM/yy} and h dat {HireD:
riteLine($"{Name}'s bir ate is {DateOfBirth: and hire date was reDa
ChO07_PacktLibrary.csproj } v
DisplacementVector.cs }
Employee.cs }
Person.cs
PersonComparer.cs
4 ChO07_PeopleApp PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL 1: bash $ 0+ 0 x
S Ubi
bin bash-3.2$ dotnet run
> obj Employee.cs(11,21): warning CS@108: 'Employee.WriteToConsole()' hides inherited member 'Person.Wri
3 teToConsole()'. Use the new keyword if hiding was intended. [/Users/markjprice/Code/Chapter@7/Che7
Ch07_PeopleApp.csproj _PacktLibrary/Ch@7_PacktLibrary.csprojl
Program.cs Mary has 2 children.

Harri has 2 children.

OEBPS/Image00242.jpg
eve 1 win10-x64.
< Elo = P=) E* Q Search

» [Debug > [netcoreapp1.1 > [0sx.10.12-x64 » :a Ch16_DotNe..ere.deps.json

23 oropb woj [Release > [59 thel.7-x64 > Ch16_DotNe..verywhere.dil
Topbox 19 ubuntu.14.04-x64 B B Chi6 DotNe..erywhere.exe

>

@) Airbrop 11 win10-x64 Ch16_DotNe..rywhere.pdb
& IClovs Drive Ch16_DotNe..nfig.devJson
Ch16_DotNe...econfig.json
#3; Applications hostfxr.dll
E Desktop hostpolicy.dil
19 publish
© Downloads

Favorites

[C1 Win
icloud

& iCloud Drive

[Desktop

[Documents

Devices

&l Macintosh HD > [Usc > 4 mar > I Coc > [Che > [Ch1 > I bin > B Rel: > i net: > I win10-x64 > Ch16_DotNetCoreEverywhere.exe

OEBPS/Image00003.jpg
Chapters

IDE

Operating systems

1to 12,
14, 16

Visual Studio 2017

Windows 7 SP1 or later

Visual Studio Code

Windows, macOS, or Linux

Visual Studio 2017

Windows 10

Visual Studio for Mac

macOS

OEBPS/Image00124.jpg
emaill.|

@ IndexOf

@ IndexOfAny
@ Insert
@
D:

IsNormalized
£ (extension) bool string.IsValidEmail()
@ LastindexOf
@ LastindexOfAny
& Length
© Normalize

OEBPS/Image00245.jpg
B Dashboard - Microsoft Az x

€« C' 2 https;//portal.azure.com/#

Microsoft Azure

Resource groups

All resources

Recent

Web Apps

SQL databases

Virtual machines (classic)
Virtual macl

Cloud services (classic)
Subscriptions

Browse >

Service health
MY RESOURCES

MARKETPLACE

What's new

LN LB O Mark Price

Azure Porta

DEFAULT DIRECTORY

quizwebapp
WEB APP

Running Default1

quizwebapp
APPLICATION INSIGHTS

eamingcs
WEB APP

Running

OEBPS/Image00002.jpg

OEBPS/Image00123.jpg
Employee e2 = aliceInPerson;

Y - | € 1Em 0 We || @ 0 of 11 Messages
) S 9

* Code Description

€3 CS0266 Cannot implicitly convert type 'Packt.LearningCS.Person’ to
‘Packt.LearningCS.Employee’. An explicit conversion exists (are you missing a
cast?)

OEBPS/Image00244.jpg
Ch16_ImageEditorSite = Home About Contact

About.

Your application description page.

Painting of the author by his mum.

© 2017 - Ch16_ImageEditorSite

OEBPS/Image00116.jpg
SayHelllo("Emily"));

@ string Person.SayHello(string name) (+ 1 overload)

OEBPS/Image00237.jpg
Entire Solution T [arn)',s| @ 0 Messages /| Build + IntelliSense Search Error List

2| code Description Project File Line Suppression S...

Q One or more packages are incompatible
with .NETStandard,Version=v1.1.
Package System.Collections.Specialized 4.3.0 is not
iQ compatible with netstandard1.1
(.NETStandard,Version=v1.1). Package
System.Collections.Specialized 4.3.0 supports: ...

0

Package System.Collections.Specialized 4.3.0 is not compatible with netstandard1.1 (NETStandard,Version=v1.1). Package System.Collections.Specialized 4.3.0
- monoandroid10 (MonoAndroid,Version=v1.0)
- monotouch10 (MonoTouch,Version=v1.0)
- net46 (NETFramework,Version=v4.6)
- netstandard1.3 (NETStandard,Version=v1.3)
- xamarinios10 (Xamarin.iOS,Version=v1.0)

R ——

OEBPS/Image00236.jpg
:NETCoreApp 1.1
Libuv (>= 1.9.1)
Microsoft.CodeAnalysis.CSharp (>= 1.3.0)
Microsoft.CodeAnalysis.VisualBasic (>= 1.3.0)
Microsoft.CSharp (>= 4.3.0)
Microsoft.DiaSymReader.Native (>= 1.4. 1)
Microsoft.NETCore.DotNetHostPolicy (>
Microsoft.NETCore.Runtime.CoreCLR (>
Microsoft.VisualBasic (>= 10.1.0)
NETStandard.Library (>= 1.6.1)
System.Buffers (>= 4.3.0)
System.Collections.Immutable (>= 1.3.0)

lI “

'.1)

OEBPS/Image00093.jpg
static double Add(double a, double b)
I < 20ms elapsed

return a * b; @ a*b 1125

}

OEBPS/Image00214.jpg
@ Postman File Edit Window

ﬂ:] Runner Import G Builder Mark Price Vv I\ &

No Environment

localhost:5000/api/cu

Collections

All M ean
POST localhost:5000/api/customers Params m Save
>

Chapter15 ¢

localhost:5000/api/customers v

5 requests utt {eaders (1) Body ® Pre-request Scrip ests Code
localhost:5000/api/customers form-data x-www-form-urlencoded ~ ® raw binary JSON (application/json)
localhost:5000/api/customers ivg
GeT |ocalhost:5000/api/customers/aaaaa 2 "CustomerID": "AAAAA",
3 "CompanyName": "TestCo",
PUT localhost:5000/api/customers/aaaaa 4 "City": "London",
5 "Country": "UK"
DEL localhost:5000/api/customers/aaaaa 6 1
Postman Echo
20 requests
Body Cookies Headers (5) rests Status: 201 Created Time: 120 ms
Pretty Raw review JSON = Save Response
¥

2 "customerID": "AAAAA",
3 "companyName": "TestCo",
4 "city": "London",

5 "country": "UK"

[~

OEBPS/Image00092.jpg
static void Main(string[] an

var a 4.5;
var b 2.5;

WriteLine($;{a} + {b} =

OEBPS/Image00213.jpg
@ Chrome File Edit View History Bookmarks People Window Help

[e | localhost:5000/api/customer: X Mark

< C 0O @ localhost:5000/api/customers/?country=USA bie

USA"},
ountry":"USA"}, |

[{"customerI
{"customerID
{"customerID
{"customerID
{"customerID
{"customerID
{"customerID
{"customerID
{"customerID
{"customerID

"LAZYK", "companyName
TRAIH", "companyName" :
"THEBI"
SPLIR", "companyName"
RATTC", "companyName"
LONEP", "companyName"
"WHITC"
"HUNGC"
LETSS", "companyName"
OLDWO" , "companyName"

Lazy K Kountry Store","city":"Walla Walla", "country
"Trail's Head Gourmet Provisioners","city":"Kirkland",
"The Big Cheese","city":"Portland","country":"USA"},
"Split Rail Beer & Ale","city":"Lander","country":"USA"},
"Rattlesnake Canyon Grocery","city":"Albuquerque","country":"USA"},
"Lonesome Pine Restaurant","city":"Portland","country":"USA"},
"White Clover Markets","city":"Seattle","country":"USA"},

"Hungry Coyote Import Store",'"city Elgin "USA"},
"Let's Stop N Shop","city":"San Francisco","country":"USA"},
"0ld World Delicatessen","city":"Anchorage", "country":"USA"},
{"customerID":"GREAL", "companyName":"Great Lakes Food Market",'"city":"Eugene","country":"USA"},
{"customerID":"THECR", "companyName":"The Cracker Box","city":"Butte","country":"USA"},
{"customerID":"SAVEA", "companyName":"Save-a-lot Markets","city":"Boise", "country":"USA"}]

OEBPS/Image00095.jpg
static void Main(string[] args)
{
double a = 4.5; // or use var
double b = 2.5;
double answer = Add(a, b);
riteLine($"{a} + {b} = {answer}");

Location: Program.cs, Line: 21, Character: 13, Must match source

Conditions

Conditional Expression v s true v answer>9 X
And Hit Count = = v 3 X Saved
Add condition

I:‘ Actions

ReadLine(); // wait for user to press ENTER

OEBPS/Image00094.jpg
static void Main(string[] args)

Delete Breakpoint

Disable Breakpoint

Conditions...
Actions...

Edit labels...

Export...

Ctrl+F9
Alt+F9, C

Alt+F9, L

/ or use var

dd(a, b);
{b} = {answer}");
it for user to press ENTER

OEBPS/Image00215.jpg
Choose a template for your new project
@ Recently used

£\ Multiplatform

Library
Tests

B ios

App
Library
Tests

= tvos

App
Library

Android

App
Library
Tests

@ .NET Core

App
Tests

Cancel

New Project

Xamarin.Forms

Native (i0S, Android) “.

Native App (iOS, Android)
')

. . . Blank Forms App
‘.1 Blank Native App (i0OS, Android)
-

Creates a simple cross-platform app that
uses Xamarin's cross-plaform Ul toolkit,
Games (i0S, Mac) Xamarin.Forms.

The standard template has three
projects: iOS, Android, and third project
to house shared code in the form of
‘.é SceneKit Game either a Shared Project or a Portable

- Class Library. The shared user interface
can be built with XAML or C#.

‘.ﬁ&' SpriteKit Game
-

OEBPS/Image00206.jpg
Search Results for “xcode”

Xcode
Developer Tools

ok xolex 10 Ratings

Essentials

OEBPS/Image00087.jpg
o€

(L3

OEBPS/Image00208.jpg
®® Visual Studio for Mac Preview Installer

Downloading and installing components...

(©Xamarin.Android 7.1.0 (®Xamarin.ios 10.4.0
(X)Xamarin.Mac 3.0.0 @ Xamarin Profiler 1.2.0

@Xamarin Workbooks & Inspector 1.1.2

» Dependencies (5)

Downloading Mono Framework

OEBPS/Image00086.jpg
Continue ~

OEBPS/Image00207.jpg
® O Visual Studio for Mac Preview Installer

Which components would you like to install?

(©Xamarin.Android 7.1.0 (®Xamarin.ios 10.4.0

(X)Xamarin.Mac 3.0.0 ®Xamarin Workbooks & Inspector 1.1.2

v Dependencies (3)

v 1.8.0 v 24.41

v 6.0.5

OEBPS/Image00089.jpg
e 4 VARIABLES

Name Value Type 4 Locals

g ergs [srina[): fstrinalol
double a [double]: @
] b 0 double b [double]: @

answer [double]: @

@ answer 0 double

OEBPS/Image00210.jpg
[BON] Visual Studio Update

Update channel: Stable Check automatically

LJ

Updates have been downloaded and are ready to install.

Visual Studio for Mac 7.0.0.1659 - Downloaded

» Details...

Close Restart and Install Update

OEBPS/Image00088.jpg
ﬂ] Chapter05 (Debugging) - Microsoft Visual Studio X' & |Quick Launch

File Edit View Project Build | Debug | Team Tools Test Analyze Window Help Send Feedback
Q- ‘ -2 W ‘ [[‘.‘ Windows @ Breakpoints Ctrl+D, B
= = P Continue F5 #9 Exception Settings Ctrl+D, E
ogra
_ >
€ Chos._Debugging Break All Ctrl+Alt+Break | [® Output 1
1 Eusing System; B Stop Debugging Shift+F5 M Show Diagnostic Tools Ctrl+Alt+F2
2 \Lusing static Systen X Detach All % GPU Threads o
3 .
4 Enamespace Ch@5_Deb Iermninate Al [Tasks Ctrl+D, K B
s |t O Resait CUrleShift+FS | B2 parallel Stacks Ctrlsshift+D,s [~
6 !T class Program | {@] Performance Profiler... Alt+F2 Parallel Watch »
7 { # Attach to Process Ctrl+Alt+P
8 =] static doul Sther Detua T Watch >
t! t: »
9 { LR R & Autos Ctrl+D, A
2 retupn IR > | #] Locals Ctri+D, L
11 } g
12 ¢ Stepinto F11 Bl Immediate Ctrl+D, | L
o 13 e itatic voiq 2 Step Over £l JavaScript Console Ctr+AltsV,C ks
14 { ? StepoOut Shift+F11
»
15 Toubte . DOM Explorer
16 double & QuickWatch.. SR B Live Visual Tree s
17 double‘ Toggle Breakpoint F9 K Live Property Explorer
18 Writeli New Breakpoint N
19 ReadLir W RieaspOI (= Call Stack Ctrl+D, €
n N | & Delete All Breakpoints Ctr+Shift+F | 2y Threads BT M
100% ~ | ol ; :
O’ Disable All Breakpoints B Modules Ctrl+D, M
o ‘ Clear All DataTips ¥ Processes Ctrl+D, P
Naiie Value Export DataTips ... Memol N
@ args {string[0]} ‘ | DataT 1 s
@a 0 \ TpceE Hate e Disassembly Ctrl+Alt+D
@b 0 ! Save Dump As.. Registers Ctrl+D, R
@ answer 0 £+ Options..
& Ch05_Debugging Properties...

OEBPS/Image00209.jpg
@& VisualStudio File Edit View Search Project Build Run Version Control

[O) > Default > [] Default Visual Studio for Mac Preview (

. . Minimize #M
g Visual Studio for Mac signin.. Zoom *
Get Started Recent Dev,
Welcome Page
—> Discover what's new in Visual Your recent solutions will appear here. Cognitive Services - Enable Natural Language
Studio for Mac Interaction with LUIS
—> Get up to speed with .NET Core Open... The technological landscape has changed quite radically in
- Learn about Mobile recent years. Computing capabilities moved from PCs to

smartphones and wearables, while adding even more power to
these devices. This advancement in technology has also
changed the way we interact with our devices. Physical
keyboards have been replaced with software implementations
and the input methods changed from stylus to a mere tap of the
fingers. It was only a matter of time before we started looking for
even more effortless ways to interact with our computing
devices.

Development with Xamarin

Failure Anomalies alert now detects dependency failures

Manage your open source usage and security in your pipeline

New work item form in TFS 2017

OEBPS/Image00091.jpg
static void Main(string[] args)

var b = 2.5;

OEBPS/Image00212.jpg
@ Chrome File Edit View History Bookmarks People Window Help

[NON | localhost:5000/api/customers X \ Mark

< C 10 | ® localhost:5000/api/customers/alfki Prg

{"customerID":"ALFKI", "companyName":"Alfreds Futterkiste","city":"Berlin","country":"Germany"}

OEBPS/Image00090.jpg
Immediate Window
2142

3]
?answer
Qo

PROBLEMS

1+2
3
> |

OUTPUT

DEBUG CONSOLE

TERMINAL

i

OEBPS/Image00211.jpg
@ Chrome File Edit View History Bookmarks People Window Help

eC e | localhost:5000/api/customers x Mark

< C % @ localhost:5000/api/customers e

[{"customerID":"LAZYK", "companyName":"Lazy K Kountry Store","city":"Walla Walla", "country":"USA"},
{"customerID":"FISSA", "companyName":"FISSA Fabrica Inter. Salchichas S.A.","city":"Madrid","country":"Spain"},
{"customerID":"TRAIH", "companyName Trail's Head Gourmet Provisioners","cit: Kirkland", "country":"USA"},
{"customerID":"GOURL", "companyName":"Gourmet Lanchonetes","city":"Campinas", "country":"Brazil"},
{"customerID":"QUICK","companyName":"QUICK-Stop", "city":"Cunewalde", "country ermany"},
{"customerID":"FRANS", "companyName":"Franchi S.p.A.","city":"Torino", "country Italy"},

{"customerID "companyName": "Océano Atlantico Ltda.","city":"Buenos Aires", "country":"Argentina"},
{"customerID" "companyName": "Vaffeljernet","city":"Arhus", "country":"Denmark"},

{"customerID" "companyName":"La corne d'abondance"," Versailles country":"France"},
{"customerID" "companyName Santé Gourmet","city":"Stavern","country Norway"},

The Big Cheese","city":"Portland","country":"USA"},

Godos Cocina Tipica","city":"Sevilla","country":"Spain"},
Eastern Connection","city":"London","country":"UK"},
Bottom-Dollar Markets","city":"Tsawassen","country":"Canada"},

{"customerID"
{"customerID"
{"customerID"
{"customerID":

companyName
"companyName
"companyName
"BOTTM" , "companyName

OEBPS/Image00104.jpg
Reference Manager - Ch06_PeopleApp

D Assemblies

4 Projects Name

Solution

D Shared Projects
b COM

D Browse

Path
C\Code\Chapter06\Ch06_PacktLibrary\Ch06_PacktLibral

Search Projects (Ctrl+E)

Name:
Ch06_PacktLibrary

Browse... OK

Cancel

OEBPS/Image00225.jpg
@ Simulator File Edit Hardware

Debug W

[©) iPhone 7 - i0S 10.2 (14C89)
Carrier ¥ 2:02 PM -
< List Edit Customer
Customer ID SEVES
Company Name Seven Oceans Imports
Contact Name Hari Kumar
City London
Country UK

Phone (171) 555-1717

OEBPS/Image00103.jpg
Microsoft Visual Studio

o You are renaming a file. Would you also like to perform a rename

in this project of all references to the code element 'Class1'?

OEBPS/Image00224.jpg
@& Simulator File

Edit

Hardware

@ iPhone 7 -i0S 10.2 (14C89)
Carrier & 2:00 PM
List

4

Add

Northwind Customers
Alfreds Futterkiste

Berlin, Germany

Frankenversand
Minchen, Germany

Seven Seas Imports
London, UK

OEBPS/Image00105.jpg
58] Ch06_Packilibrary - %3 Packt.Cs7.person -1 i AE-|o-sa@|e”
: ? T=
; ‘usmg system, 1— Search Solution Explorer (Ctrl+;) P~
3 IE!namespace Packt.CS7 %] Solution ‘Chapter06' (2 projects)
4 |t I' | < & chos_packiLibrary
5 lE public class Person 1 4 =B Dependencies
6 { 4 F]spk
7 ¥ > E] NETStandard.Library
9 ¥ D C* Person.cs
3 = Ch06_PeopleApp
4 =B Dependencies
4 A Projects
> [Ch06_PacktLibrary
4 F]spk
> E] MicrosoftNETCore.App
P ¢* Program.cs
4

100% ~ Solution Explorer B plore

OEBPS/Image00096.jpg
Add New Project

P Recent .NET Framework 4.6.2 ~ Sort by: Default
4 |nstalled Ce
Class Lib NET Standard) Visual C#
- 9

4 Visual C#
Windows Universal
Windows Classic Desktop
Web
.NET Core
.NET Standard
Cloud
Test
WCF

P Azure Data Lake

P Other Languages

b i
P Online
Name: ChO05_Calculator
Location: C:\Code\Chapter05

? X

Search Installed Te P ~

Type: Visual C#

A project for creating a class library that
targets .NET Standard.

= Browse...

| OK | | Cancel

OEBPS/Image00217.jpg
New Project

Configure your new Blank Forms App

Project Name:

Solution Name:

Location:

Version Control:

Xamarin Test Cloud:

Cancel

Ch15_MobileApp

Chapter15

/Users/markjprice/Code

Create a project directory within the solution directory.

() Use git for version control.

v, Create a .gitignore file to ignore inessential files.

O Add an automated Ul test project. Learn More

Browse...

PREVIEW
[0 /Users/markjprice/Code
[0 Chapter15
[J Chapter15.sin
['n Ch15_MobileApp
[[J ch15_MobileApp.csproj

OEBPS/Image00216.jpg
New Project

Configure your Blank Forms App

App Name:

Organization Identifier:

Target Platforms:

Shared Code:

Ch15_MobileApp

com.packt (i]

'ﬁ' com.packt.ch15_mobileapp
l com.packt.ch15_mobileapp

Android

i0S

© Use Portable Class Library (i}
() Use Shared Library i}

Use XAML for user interface files

Previous

OEBPS/Image00098.jpg
Reference Manager - Ch05_CalculatorUnitTests

4 Projects Search Projects (Ctrl+E)
Solution Name Path Name:
. ChO05_Calculator C:\Code\Chapter05\Ch05_Calculator\Ch05_Calcul e Ll T Elee)d
b Shared Projects Ch05_Debugging C:\Code\Chapter05\Ch05_Debugging\Ch05_Debu

Ch05_Monitoring C:\Code\Chapter05\Ch05_Monitoring\Ch05_Moni
D Browse

X
p-

Browse... | |

Cancel

OEBPS/Image00219.jpg
oo e New File

FQums Empty Class Empty Class
| ceneral Creates an empty

s P class.

Gtk -3 Empty Enumeration

c#
Misc

Empty Fil
Text Templating c# pLyFlle L
Web ;‘ Empty Interface
XML c#

Empty Struct
© c#

Name: |Customer

Cancel New

OEBPS/Image00097.jpg
Add New Project ? X

D Recent .NET Framework 4.6.2 ~ Sort by: Default v Search Installed Templates (Ctrl+E) P ~
s P!
4 |nstalled .
: Type: Visual C#
5 ‘Dﬁ Console App (NET Core) Visual C# P
4 Visual C# i A project that contains xunit tests that can
Wikidisws Universal E[:i! Class Library (NET Core) Visual C# run on .NET Core on Windows, Linux and
X K L MacOS
Windows Classic Desktop cx
Web E_] Unit Test Project (NET Core) Visual C#
.NET Core
NET Standard ct (NET Core) Visual C#
Cloud
Test @ ASP.NET Core Web Application (NET Core) Visual C#
WCF
b Azure Data Lake
P Other Languages
v
P Online
Name: Ch05_CalculatorUnitTests

Location: C:\Code\Chapter05 >

| OK | | Cancel

OEBPS/Image00218.jpg
@ Visual Studio File Edit

View Search Project

Build Run Version Control Tools Window Help

D
[|
L
4

o000)

[Ch15_MobileApp.iOS > [] Debug > []

@ Packages successfully added.

[& Solution o x

v || Chapter15
v [Ch15_MobileApp

1 Connected Services
» [1 References
» [1 Packages
» [1 Properties
»] App.xaml
» [©¥] Ch15_MobileAppPage.xaml
[¥] packages.config
» [| Ch15_MobileApp.Droid
» [| Ch15_MobileApp.iOS

<

X

Getting Started X v

Xamarin.Forms
Build your app, add an Azure mobile backend, and assess your app in the
Xamarin Test Cloud.
Build Connect Test
Open Add an Azure Add an Unit Test
Xamarin.Forms Mobile Backend Project
Previewer

Explore more Azure Add an UlTest Project

Add a new XAML services

ContentPage Get Xamarin Test Cloud

Run app in iOS Simulator

@ Errors Tasks Bl Package Console

X0gj00L =) |

saiuadold [fj

aulINQE juswna0q [

sisal Wun -

OEBPS/Image00100.jpg
S [E~ = search

Run All | Run.. ¥ | Playlist: All Tests ~
4 Failed Tests (1)

€ chos_CalculatorUnitTests.CalculatorUnitTests.TestAdding2And3 8 ms
4 Passed Tests (1)

(/] Ch05_CalculatorUnitTests.CalculatorUnitTests.TestAdding2And2 13 ms

Ch05_CalculatorUnitTests.CalculatorUnitTests.TestAdding?]

Source: CalculatorUnitTests.cs line 24

€ Test Failed - Ch05_CalculatorUnitTests.CalculatorUnitTests.Test/

Message: Assert.Equal() Failure
Expected: 5
Actual: 6

Elapsed time: 0:00:00.008
4 StackTrace:
CalculatorUnitTests.TestAdding2And3()

OEBPS/Image00221.jpg
Visual Studio

Are you sure you want to remove the file Ch15_MobileAppPage.xaml and its code-
behind children from project Ch15_MobileApp?

The Delete option permanently removes the file from your hard disk. Click Remove from Project if you only
want to remove it from your current solution.

Delete Cancel Remove from Project

OEBPS/Image00099.jpg
S [i=+ 2 search

RunAll | Run.. > | Playlist: All Tests v

4 Failed Tests (1)

€ ChoS_CalculatorUnitTests.CalculatorUnitTests. TestAdding2And3
4 Passed Tests (1)

@ ChoS_CalculatorUnitTests.CalculatorUnitTests. TestAdding2And2

8ms

13 ms

Summary
Last Test Run Failed (Total Run Time 0:00:03.1792281)

@ 1 Test Failed
@ 1 Test Passed

OEBPS/Image00220.jpg
New File

Forms

Gtk

Misc

Text Templating
Web

XML

LY
Empty Class
Q C#

Empty Enumeration
c#

Empty File
C#

0‘ Empty Interface

~
Empty Struct
© c#

Empty Interface

Creates an empty
interface.

Name: | IDialer

Cancel New

OEBPS/Image00102.jpg
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL 1: bash v + m x

Test run for /Users/markjprice/Code/Chapter05/Ch@5_CalculatorUnitTests/bin/Debug/netc
oreappl.1/Ch@5_CalculatorUnitTests.dl1(.NETCoreApp,Version=v1.1)

Microsoft (R) Test Execution Command Line Tool Version 15.0.0.0

Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...

[xUnit.net 00:00:00.7751594] Discovering: Ch@5_CalculatorUnitTests
[xUnit.net 00:00:00.8965400] Discovered: Ch@5_CalculatorUnitTests
[xUnit.net 00:00:00.9499252] Starting: Cho5_CalculatorUnitTests

[xUnit.net 00:00:01.0906369] Che5_CalculatorUnitTests.CalculatorUnitTests.TestAdd
ing2And3 [FAIL]
[xUnit.net 00:00:01.0918747] Assert.Equal() Failure
[xUnit.net 00:00:01.0919671] Expected: 5

Actual: 6

Stack Trace:
[xUnit.net 00:00:01.0945452] /Users/markjprice/Code/Chapter@5/Ch@5_Calculator
UnitTests/CalculatorUnitTests.cs(32,0): at Ch@5_CalculatorUnitTests.CalculatorUnitTes

ts.TestAdding2And3()
[xUnit.net 00:00:01.0997456] Finished: Che5_CalculatorUnitTests
Failed Ch@5_CalculatorUnitTests.CalculatorUnitTests.TestAdding2And3
Error Message:
Assert.Equal() Failure
Expected: 5
Actual: 6
Stack Trace:
at Che5_CalculatorUnitTests.CalculatorUnitTests.TestAdding2And3() in /Users/markjp
rice/Code/Chapter@5/Che5_CalculatorUnitTests/CalculatorUnitTests.cs:line 32

Total tests: 2. Passed: 1. Failed: 1. Skipped: 0.
Test Run Failed.
Test execution time: 1.8676 Seconds

OEBPS/Image00223.jpg
Edit

@ Visual Studio File View Search Project Build Run Version Control Tools Window Help

[XOX) >] Ch15_MobileApp.iOS > [] Debug > [J Visual Studio for Mac Preview

OEBPS/Image00101.jpg
S =

~ 3 | Search

RunAll | Run.. > | Playlist: All Tests v

4 Passed Tests (2)

@ Cho5_CalculatorUnitTests.CalculatorUnitTests.TestAdding2And2 12 ms
(/) Ch05_CalculatorUnitTests.CalculatorUnitTests.TestAdding2And3 1 ms

ChO05_CalculatorUnitTests.CalculatorUnitTests.TestAdding2
Source: CalculatorUnitTests.cs line 24

@ Test Passed - Ch05_CalculatorUnitTests.CalculatorUnitTests.Test
Elapsed time: 0:00:00.001

OEBPS/Image00222.jpg
New File

General

Gtk

Misc

Text Templating
Web

XML

I3y

O

Forms ContentPage
c#

Forms ContentPage Xaml

I3y

Forms ContentView
c#

Forms ContentView Xaml
c#

Forms ContentPage Xaml
Creates a Forms ContentPage

with a CodeBehind class.

Name: | CustomersList

Cancel

New

OEBPS/Image00252.jpg
C# 7 and .NET Core:
Modern Cross-Platform
Development

Second Edition

Create powerful cross-platform applications using C# 7,
.NET Core, and Visual Studio 2017 or Visual Studio Code

1]

